1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
52 //
53 //===----------------------------------------------------------------------===//
54
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/IVUsers.h"
71 #include "llvm/Analysis/LoopAnalysisManager.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/LoopPass.h"
74 #include "llvm/Analysis/MemorySSA.h"
75 #include "llvm/Analysis/MemorySSAUpdater.h"
76 #include "llvm/Analysis/ScalarEvolution.h"
77 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
78 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/TargetTransformInfo.h"
81 #include "llvm/Analysis/ValueTracking.h"
82 #include "llvm/BinaryFormat/Dwarf.h"
83 #include "llvm/Config/llvm-config.h"
84 #include "llvm/IR/BasicBlock.h"
85 #include "llvm/IR/Constant.h"
86 #include "llvm/IR/Constants.h"
87 #include "llvm/IR/DebugInfoMetadata.h"
88 #include "llvm/IR/DerivedTypes.h"
89 #include "llvm/IR/Dominators.h"
90 #include "llvm/IR/GlobalValue.h"
91 #include "llvm/IR/IRBuilder.h"
92 #include "llvm/IR/InstrTypes.h"
93 #include "llvm/IR/Instruction.h"
94 #include "llvm/IR/Instructions.h"
95 #include "llvm/IR/IntrinsicInst.h"
96 #include "llvm/IR/Module.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/LoopUtils.h"
118 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cstddef>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <optional>
128 #include <utility>
129
130 using namespace llvm;
131
132 #define DEBUG_TYPE "loop-reduce"
133
134 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
135 /// bail out. This threshold is far beyond the number of users that LSR can
136 /// conceivably solve, so it should not affect generated code, but catches the
137 /// worst cases before LSR burns too much compile time and stack space.
138 static const unsigned MaxIVUsers = 200;
139
140 /// Limit the size of expression that SCEV-based salvaging will attempt to
141 /// translate into a DIExpression.
142 /// Choose a maximum size such that debuginfo is not excessively increased and
143 /// the salvaging is not too expensive for the compiler.
144 static const unsigned MaxSCEVSalvageExpressionSize = 64;
145
146 // Cleanup congruent phis after LSR phi expansion.
147 static cl::opt<bool> EnablePhiElim(
148 "enable-lsr-phielim", cl::Hidden, cl::init(true),
149 cl::desc("Enable LSR phi elimination"));
150
151 // The flag adds instruction count to solutions cost comparison.
152 static cl::opt<bool> InsnsCost(
153 "lsr-insns-cost", cl::Hidden, cl::init(true),
154 cl::desc("Add instruction count to a LSR cost model"));
155
156 // Flag to choose how to narrow complex lsr solution
157 static cl::opt<bool> LSRExpNarrow(
158 "lsr-exp-narrow", cl::Hidden, cl::init(false),
159 cl::desc("Narrow LSR complex solution using"
160 " expectation of registers number"));
161
162 // Flag to narrow search space by filtering non-optimal formulae with
163 // the same ScaledReg and Scale.
164 static cl::opt<bool> FilterSameScaledReg(
165 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
166 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
167 " with the same ScaledReg and Scale"));
168
169 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
170 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
171 cl::desc("A flag that overrides the target's preferred addressing mode."),
172 cl::values(clEnumValN(TTI::AMK_None,
173 "none",
174 "Don't prefer any addressing mode"),
175 clEnumValN(TTI::AMK_PreIndexed,
176 "preindexed",
177 "Prefer pre-indexed addressing mode"),
178 clEnumValN(TTI::AMK_PostIndexed,
179 "postindexed",
180 "Prefer post-indexed addressing mode")));
181
182 static cl::opt<unsigned> ComplexityLimit(
183 "lsr-complexity-limit", cl::Hidden,
184 cl::init(std::numeric_limits<uint16_t>::max()),
185 cl::desc("LSR search space complexity limit"));
186
187 static cl::opt<unsigned> SetupCostDepthLimit(
188 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
189 cl::desc("The limit on recursion depth for LSRs setup cost"));
190
191 static cl::opt<bool> AllowTerminatingConditionFoldingAfterLSR(
192 "lsr-term-fold", cl::Hidden, cl::init(false),
193 cl::desc("Attempt to replace primary IV with other IV."));
194
195 static cl::opt<bool> AllowDropSolutionIfLessProfitable(
196 "lsr-drop-solution", cl::Hidden, cl::init(false),
197 cl::desc("Attempt to drop solution if it is less profitable"));
198
199 STATISTIC(NumTermFold,
200 "Number of terminating condition fold recognized and performed");
201
202 #ifndef NDEBUG
203 // Stress test IV chain generation.
204 static cl::opt<bool> StressIVChain(
205 "stress-ivchain", cl::Hidden, cl::init(false),
206 cl::desc("Stress test LSR IV chains"));
207 #else
208 static bool StressIVChain = false;
209 #endif
210
211 namespace {
212
213 struct MemAccessTy {
214 /// Used in situations where the accessed memory type is unknown.
215 static const unsigned UnknownAddressSpace =
216 std::numeric_limits<unsigned>::max();
217
218 Type *MemTy = nullptr;
219 unsigned AddrSpace = UnknownAddressSpace;
220
221 MemAccessTy() = default;
MemAccessTy__anon6fa033cb0111::MemAccessTy222 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
223
operator ==__anon6fa033cb0111::MemAccessTy224 bool operator==(MemAccessTy Other) const {
225 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
226 }
227
operator !=__anon6fa033cb0111::MemAccessTy228 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
229
getUnknown__anon6fa033cb0111::MemAccessTy230 static MemAccessTy getUnknown(LLVMContext &Ctx,
231 unsigned AS = UnknownAddressSpace) {
232 return MemAccessTy(Type::getVoidTy(Ctx), AS);
233 }
234
getType__anon6fa033cb0111::MemAccessTy235 Type *getType() { return MemTy; }
236 };
237
238 /// This class holds data which is used to order reuse candidates.
239 class RegSortData {
240 public:
241 /// This represents the set of LSRUse indices which reference
242 /// a particular register.
243 SmallBitVector UsedByIndices;
244
245 void print(raw_ostream &OS) const;
246 void dump() const;
247 };
248
249 } // end anonymous namespace
250
251 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const252 void RegSortData::print(raw_ostream &OS) const {
253 OS << "[NumUses=" << UsedByIndices.count() << ']';
254 }
255
dump() const256 LLVM_DUMP_METHOD void RegSortData::dump() const {
257 print(errs()); errs() << '\n';
258 }
259 #endif
260
261 namespace {
262
263 /// Map register candidates to information about how they are used.
264 class RegUseTracker {
265 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
266
267 RegUsesTy RegUsesMap;
268 SmallVector<const SCEV *, 16> RegSequence;
269
270 public:
271 void countRegister(const SCEV *Reg, size_t LUIdx);
272 void dropRegister(const SCEV *Reg, size_t LUIdx);
273 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
274
275 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
276
277 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
278
279 void clear();
280
281 using iterator = SmallVectorImpl<const SCEV *>::iterator;
282 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
283
begin()284 iterator begin() { return RegSequence.begin(); }
end()285 iterator end() { return RegSequence.end(); }
begin() const286 const_iterator begin() const { return RegSequence.begin(); }
end() const287 const_iterator end() const { return RegSequence.end(); }
288 };
289
290 } // end anonymous namespace
291
292 void
countRegister(const SCEV * Reg,size_t LUIdx)293 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
294 std::pair<RegUsesTy::iterator, bool> Pair =
295 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
296 RegSortData &RSD = Pair.first->second;
297 if (Pair.second)
298 RegSequence.push_back(Reg);
299 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
300 RSD.UsedByIndices.set(LUIdx);
301 }
302
303 void
dropRegister(const SCEV * Reg,size_t LUIdx)304 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
305 RegUsesTy::iterator It = RegUsesMap.find(Reg);
306 assert(It != RegUsesMap.end());
307 RegSortData &RSD = It->second;
308 assert(RSD.UsedByIndices.size() > LUIdx);
309 RSD.UsedByIndices.reset(LUIdx);
310 }
311
312 void
swapAndDropUse(size_t LUIdx,size_t LastLUIdx)313 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
314 assert(LUIdx <= LastLUIdx);
315
316 // Update RegUses. The data structure is not optimized for this purpose;
317 // we must iterate through it and update each of the bit vectors.
318 for (auto &Pair : RegUsesMap) {
319 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
320 if (LUIdx < UsedByIndices.size())
321 UsedByIndices[LUIdx] =
322 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
323 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
324 }
325 }
326
327 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const328 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
329 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
330 if (I == RegUsesMap.end())
331 return false;
332 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
333 int i = UsedByIndices.find_first();
334 if (i == -1) return false;
335 if ((size_t)i != LUIdx) return true;
336 return UsedByIndices.find_next(i) != -1;
337 }
338
getUsedByIndices(const SCEV * Reg) const339 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
340 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
341 assert(I != RegUsesMap.end() && "Unknown register!");
342 return I->second.UsedByIndices;
343 }
344
clear()345 void RegUseTracker::clear() {
346 RegUsesMap.clear();
347 RegSequence.clear();
348 }
349
350 namespace {
351
352 /// This class holds information that describes a formula for computing
353 /// satisfying a use. It may include broken-out immediates and scaled registers.
354 struct Formula {
355 /// Global base address used for complex addressing.
356 GlobalValue *BaseGV = nullptr;
357
358 /// Base offset for complex addressing.
359 int64_t BaseOffset = 0;
360
361 /// Whether any complex addressing has a base register.
362 bool HasBaseReg = false;
363
364 /// The scale of any complex addressing.
365 int64_t Scale = 0;
366
367 /// The list of "base" registers for this use. When this is non-empty. The
368 /// canonical representation of a formula is
369 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
370 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
371 /// 3. The reg containing recurrent expr related with currect loop in the
372 /// formula should be put in the ScaledReg.
373 /// #1 enforces that the scaled register is always used when at least two
374 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
375 /// #2 enforces that 1 * reg is reg.
376 /// #3 ensures invariant regs with respect to current loop can be combined
377 /// together in LSR codegen.
378 /// This invariant can be temporarily broken while building a formula.
379 /// However, every formula inserted into the LSRInstance must be in canonical
380 /// form.
381 SmallVector<const SCEV *, 4> BaseRegs;
382
383 /// The 'scaled' register for this use. This should be non-null when Scale is
384 /// not zero.
385 const SCEV *ScaledReg = nullptr;
386
387 /// An additional constant offset which added near the use. This requires a
388 /// temporary register, but the offset itself can live in an add immediate
389 /// field rather than a register.
390 int64_t UnfoldedOffset = 0;
391
392 Formula() = default;
393
394 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
395
396 bool isCanonical(const Loop &L) const;
397
398 void canonicalize(const Loop &L);
399
400 bool unscale();
401
402 bool hasZeroEnd() const;
403
404 size_t getNumRegs() const;
405 Type *getType() const;
406
407 void deleteBaseReg(const SCEV *&S);
408
409 bool referencesReg(const SCEV *S) const;
410 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
411 const RegUseTracker &RegUses) const;
412
413 void print(raw_ostream &OS) const;
414 void dump() const;
415 };
416
417 } // end anonymous namespace
418
419 /// Recursion helper for initialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)420 static void DoInitialMatch(const SCEV *S, Loop *L,
421 SmallVectorImpl<const SCEV *> &Good,
422 SmallVectorImpl<const SCEV *> &Bad,
423 ScalarEvolution &SE) {
424 // Collect expressions which properly dominate the loop header.
425 if (SE.properlyDominates(S, L->getHeader())) {
426 Good.push_back(S);
427 return;
428 }
429
430 // Look at add operands.
431 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
432 for (const SCEV *S : Add->operands())
433 DoInitialMatch(S, L, Good, Bad, SE);
434 return;
435 }
436
437 // Look at addrec operands.
438 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
439 if (!AR->getStart()->isZero() && AR->isAffine()) {
440 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
441 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
442 AR->getStepRecurrence(SE),
443 // FIXME: AR->getNoWrapFlags()
444 AR->getLoop(), SCEV::FlagAnyWrap),
445 L, Good, Bad, SE);
446 return;
447 }
448
449 // Handle a multiplication by -1 (negation) if it didn't fold.
450 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
451 if (Mul->getOperand(0)->isAllOnesValue()) {
452 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
453 const SCEV *NewMul = SE.getMulExpr(Ops);
454
455 SmallVector<const SCEV *, 4> MyGood;
456 SmallVector<const SCEV *, 4> MyBad;
457 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
458 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
459 SE.getEffectiveSCEVType(NewMul->getType())));
460 for (const SCEV *S : MyGood)
461 Good.push_back(SE.getMulExpr(NegOne, S));
462 for (const SCEV *S : MyBad)
463 Bad.push_back(SE.getMulExpr(NegOne, S));
464 return;
465 }
466
467 // Ok, we can't do anything interesting. Just stuff the whole thing into a
468 // register and hope for the best.
469 Bad.push_back(S);
470 }
471
472 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
473 /// all loop-invariant and loop-computable values in a single base register.
initialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)474 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
475 SmallVector<const SCEV *, 4> Good;
476 SmallVector<const SCEV *, 4> Bad;
477 DoInitialMatch(S, L, Good, Bad, SE);
478 if (!Good.empty()) {
479 const SCEV *Sum = SE.getAddExpr(Good);
480 if (!Sum->isZero())
481 BaseRegs.push_back(Sum);
482 HasBaseReg = true;
483 }
484 if (!Bad.empty()) {
485 const SCEV *Sum = SE.getAddExpr(Bad);
486 if (!Sum->isZero())
487 BaseRegs.push_back(Sum);
488 HasBaseReg = true;
489 }
490 canonicalize(*L);
491 }
492
containsAddRecDependentOnLoop(const SCEV * S,const Loop & L)493 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
494 return SCEVExprContains(S, [&L](const SCEV *S) {
495 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
496 });
497 }
498
499 /// Check whether or not this formula satisfies the canonical
500 /// representation.
501 /// \see Formula::BaseRegs.
isCanonical(const Loop & L) const502 bool Formula::isCanonical(const Loop &L) const {
503 if (!ScaledReg)
504 return BaseRegs.size() <= 1;
505
506 if (Scale != 1)
507 return true;
508
509 if (Scale == 1 && BaseRegs.empty())
510 return false;
511
512 if (containsAddRecDependentOnLoop(ScaledReg, L))
513 return true;
514
515 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
516 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
517 // loop, we want to swap the reg in BaseRegs with ScaledReg.
518 return none_of(BaseRegs, [&L](const SCEV *S) {
519 return containsAddRecDependentOnLoop(S, L);
520 });
521 }
522
523 /// Helper method to morph a formula into its canonical representation.
524 /// \see Formula::BaseRegs.
525 /// Every formula having more than one base register, must use the ScaledReg
526 /// field. Otherwise, we would have to do special cases everywhere in LSR
527 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
528 /// On the other hand, 1*reg should be canonicalized into reg.
canonicalize(const Loop & L)529 void Formula::canonicalize(const Loop &L) {
530 if (isCanonical(L))
531 return;
532
533 if (BaseRegs.empty()) {
534 // No base reg? Use scale reg with scale = 1 as such.
535 assert(ScaledReg && "Expected 1*reg => reg");
536 assert(Scale == 1 && "Expected 1*reg => reg");
537 BaseRegs.push_back(ScaledReg);
538 Scale = 0;
539 ScaledReg = nullptr;
540 return;
541 }
542
543 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
544 if (!ScaledReg) {
545 ScaledReg = BaseRegs.pop_back_val();
546 Scale = 1;
547 }
548
549 // If ScaledReg is an invariant with respect to L, find the reg from
550 // BaseRegs containing the recurrent expr related with Loop L. Swap the
551 // reg with ScaledReg.
552 if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
553 auto I = find_if(BaseRegs, [&L](const SCEV *S) {
554 return containsAddRecDependentOnLoop(S, L);
555 });
556 if (I != BaseRegs.end())
557 std::swap(ScaledReg, *I);
558 }
559 assert(isCanonical(L) && "Failed to canonicalize?");
560 }
561
562 /// Get rid of the scale in the formula.
563 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
564 /// \return true if it was possible to get rid of the scale, false otherwise.
565 /// \note After this operation the formula may not be in the canonical form.
unscale()566 bool Formula::unscale() {
567 if (Scale != 1)
568 return false;
569 Scale = 0;
570 BaseRegs.push_back(ScaledReg);
571 ScaledReg = nullptr;
572 return true;
573 }
574
hasZeroEnd() const575 bool Formula::hasZeroEnd() const {
576 if (UnfoldedOffset || BaseOffset)
577 return false;
578 if (BaseRegs.size() != 1 || ScaledReg)
579 return false;
580 return true;
581 }
582
583 /// Return the total number of register operands used by this formula. This does
584 /// not include register uses implied by non-constant addrec strides.
getNumRegs() const585 size_t Formula::getNumRegs() const {
586 return !!ScaledReg + BaseRegs.size();
587 }
588
589 /// Return the type of this formula, if it has one, or null otherwise. This type
590 /// is meaningless except for the bit size.
getType() const591 Type *Formula::getType() const {
592 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
593 ScaledReg ? ScaledReg->getType() :
594 BaseGV ? BaseGV->getType() :
595 nullptr;
596 }
597
598 /// Delete the given base reg from the BaseRegs list.
deleteBaseReg(const SCEV * & S)599 void Formula::deleteBaseReg(const SCEV *&S) {
600 if (&S != &BaseRegs.back())
601 std::swap(S, BaseRegs.back());
602 BaseRegs.pop_back();
603 }
604
605 /// Test if this formula references the given register.
referencesReg(const SCEV * S) const606 bool Formula::referencesReg(const SCEV *S) const {
607 return S == ScaledReg || is_contained(BaseRegs, S);
608 }
609
610 /// Test whether this formula uses registers which are used by uses other than
611 /// the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const612 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
613 const RegUseTracker &RegUses) const {
614 if (ScaledReg)
615 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
616 return true;
617 for (const SCEV *BaseReg : BaseRegs)
618 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
619 return true;
620 return false;
621 }
622
623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const624 void Formula::print(raw_ostream &OS) const {
625 bool First = true;
626 if (BaseGV) {
627 if (!First) OS << " + "; else First = false;
628 BaseGV->printAsOperand(OS, /*PrintType=*/false);
629 }
630 if (BaseOffset != 0) {
631 if (!First) OS << " + "; else First = false;
632 OS << BaseOffset;
633 }
634 for (const SCEV *BaseReg : BaseRegs) {
635 if (!First) OS << " + "; else First = false;
636 OS << "reg(" << *BaseReg << ')';
637 }
638 if (HasBaseReg && BaseRegs.empty()) {
639 if (!First) OS << " + "; else First = false;
640 OS << "**error: HasBaseReg**";
641 } else if (!HasBaseReg && !BaseRegs.empty()) {
642 if (!First) OS << " + "; else First = false;
643 OS << "**error: !HasBaseReg**";
644 }
645 if (Scale != 0) {
646 if (!First) OS << " + "; else First = false;
647 OS << Scale << "*reg(";
648 if (ScaledReg)
649 OS << *ScaledReg;
650 else
651 OS << "<unknown>";
652 OS << ')';
653 }
654 if (UnfoldedOffset != 0) {
655 if (!First) OS << " + ";
656 OS << "imm(" << UnfoldedOffset << ')';
657 }
658 }
659
dump() const660 LLVM_DUMP_METHOD void Formula::dump() const {
661 print(errs()); errs() << '\n';
662 }
663 #endif
664
665 /// Return true if the given addrec can be sign-extended without changing its
666 /// value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)667 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
668 Type *WideTy =
669 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
670 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
671 }
672
673 /// Return true if the given add can be sign-extended without changing its
674 /// value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)675 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
676 Type *WideTy =
677 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
678 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
679 }
680
681 /// Return true if the given mul can be sign-extended without changing its
682 /// value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)683 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
684 Type *WideTy =
685 IntegerType::get(SE.getContext(),
686 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
687 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
688 }
689
690 /// Return an expression for LHS /s RHS, if it can be determined and if the
691 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
692 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
693 /// the multiplication may overflow, which is useful when the result will be
694 /// used in a context where the most significant bits are ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)695 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
696 ScalarEvolution &SE,
697 bool IgnoreSignificantBits = false) {
698 // Handle the trivial case, which works for any SCEV type.
699 if (LHS == RHS)
700 return SE.getConstant(LHS->getType(), 1);
701
702 // Handle a few RHS special cases.
703 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
704 if (RC) {
705 const APInt &RA = RC->getAPInt();
706 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
707 // some folding.
708 if (RA.isAllOnes()) {
709 if (LHS->getType()->isPointerTy())
710 return nullptr;
711 return SE.getMulExpr(LHS, RC);
712 }
713 // Handle x /s 1 as x.
714 if (RA == 1)
715 return LHS;
716 }
717
718 // Check for a division of a constant by a constant.
719 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
720 if (!RC)
721 return nullptr;
722 const APInt &LA = C->getAPInt();
723 const APInt &RA = RC->getAPInt();
724 if (LA.srem(RA) != 0)
725 return nullptr;
726 return SE.getConstant(LA.sdiv(RA));
727 }
728
729 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
730 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
731 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
732 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
733 IgnoreSignificantBits);
734 if (!Step) return nullptr;
735 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
736 IgnoreSignificantBits);
737 if (!Start) return nullptr;
738 // FlagNW is independent of the start value, step direction, and is
739 // preserved with smaller magnitude steps.
740 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
741 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
742 }
743 return nullptr;
744 }
745
746 // Distribute the sdiv over add operands, if the add doesn't overflow.
747 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
748 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
749 SmallVector<const SCEV *, 8> Ops;
750 for (const SCEV *S : Add->operands()) {
751 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
752 if (!Op) return nullptr;
753 Ops.push_back(Op);
754 }
755 return SE.getAddExpr(Ops);
756 }
757 return nullptr;
758 }
759
760 // Check for a multiply operand that we can pull RHS out of.
761 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
762 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
763 // Handle special case C1*X*Y /s C2*X*Y.
764 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
765 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
766 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
767 const SCEVConstant *RC =
768 dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
769 if (LC && RC) {
770 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
771 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
772 if (LOps == ROps)
773 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
774 }
775 }
776 }
777
778 SmallVector<const SCEV *, 4> Ops;
779 bool Found = false;
780 for (const SCEV *S : Mul->operands()) {
781 if (!Found)
782 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
783 IgnoreSignificantBits)) {
784 S = Q;
785 Found = true;
786 }
787 Ops.push_back(S);
788 }
789 return Found ? SE.getMulExpr(Ops) : nullptr;
790 }
791 return nullptr;
792 }
793
794 // Otherwise we don't know.
795 return nullptr;
796 }
797
798 /// If S involves the addition of a constant integer value, return that integer
799 /// value, and mutate S to point to a new SCEV with that value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)800 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
801 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
802 if (C->getAPInt().getMinSignedBits() <= 64) {
803 S = SE.getConstant(C->getType(), 0);
804 return C->getValue()->getSExtValue();
805 }
806 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
807 SmallVector<const SCEV *, 8> NewOps(Add->operands());
808 int64_t Result = ExtractImmediate(NewOps.front(), SE);
809 if (Result != 0)
810 S = SE.getAddExpr(NewOps);
811 return Result;
812 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
813 SmallVector<const SCEV *, 8> NewOps(AR->operands());
814 int64_t Result = ExtractImmediate(NewOps.front(), SE);
815 if (Result != 0)
816 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
817 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
818 SCEV::FlagAnyWrap);
819 return Result;
820 }
821 return 0;
822 }
823
824 /// If S involves the addition of a GlobalValue address, return that symbol, and
825 /// mutate S to point to a new SCEV with that value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)826 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
827 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
828 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
829 S = SE.getConstant(GV->getType(), 0);
830 return GV;
831 }
832 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
833 SmallVector<const SCEV *, 8> NewOps(Add->operands());
834 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
835 if (Result)
836 S = SE.getAddExpr(NewOps);
837 return Result;
838 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
839 SmallVector<const SCEV *, 8> NewOps(AR->operands());
840 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
841 if (Result)
842 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
843 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
844 SCEV::FlagAnyWrap);
845 return Result;
846 }
847 return nullptr;
848 }
849
850 /// Returns true if the specified instruction is using the specified value as an
851 /// address.
isAddressUse(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)852 static bool isAddressUse(const TargetTransformInfo &TTI,
853 Instruction *Inst, Value *OperandVal) {
854 bool isAddress = isa<LoadInst>(Inst);
855 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
856 if (SI->getPointerOperand() == OperandVal)
857 isAddress = true;
858 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859 // Addressing modes can also be folded into prefetches and a variety
860 // of intrinsics.
861 switch (II->getIntrinsicID()) {
862 case Intrinsic::memset:
863 case Intrinsic::prefetch:
864 case Intrinsic::masked_load:
865 if (II->getArgOperand(0) == OperandVal)
866 isAddress = true;
867 break;
868 case Intrinsic::masked_store:
869 if (II->getArgOperand(1) == OperandVal)
870 isAddress = true;
871 break;
872 case Intrinsic::memmove:
873 case Intrinsic::memcpy:
874 if (II->getArgOperand(0) == OperandVal ||
875 II->getArgOperand(1) == OperandVal)
876 isAddress = true;
877 break;
878 default: {
879 MemIntrinsicInfo IntrInfo;
880 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
881 if (IntrInfo.PtrVal == OperandVal)
882 isAddress = true;
883 }
884 }
885 }
886 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
887 if (RMW->getPointerOperand() == OperandVal)
888 isAddress = true;
889 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
890 if (CmpX->getPointerOperand() == OperandVal)
891 isAddress = true;
892 }
893 return isAddress;
894 }
895
896 /// Return the type of the memory being accessed.
getAccessType(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)897 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
898 Instruction *Inst, Value *OperandVal) {
899 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
900 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
901 AccessTy.MemTy = SI->getOperand(0)->getType();
902 AccessTy.AddrSpace = SI->getPointerAddressSpace();
903 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
904 AccessTy.AddrSpace = LI->getPointerAddressSpace();
905 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
906 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
907 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
908 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
909 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
910 switch (II->getIntrinsicID()) {
911 case Intrinsic::prefetch:
912 case Intrinsic::memset:
913 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
914 AccessTy.MemTy = OperandVal->getType();
915 break;
916 case Intrinsic::memmove:
917 case Intrinsic::memcpy:
918 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
919 AccessTy.MemTy = OperandVal->getType();
920 break;
921 case Intrinsic::masked_load:
922 AccessTy.AddrSpace =
923 II->getArgOperand(0)->getType()->getPointerAddressSpace();
924 break;
925 case Intrinsic::masked_store:
926 AccessTy.MemTy = II->getOperand(0)->getType();
927 AccessTy.AddrSpace =
928 II->getArgOperand(1)->getType()->getPointerAddressSpace();
929 break;
930 default: {
931 MemIntrinsicInfo IntrInfo;
932 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
933 AccessTy.AddrSpace
934 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
935 }
936
937 break;
938 }
939 }
940 }
941
942 // All pointers have the same requirements, so canonicalize them to an
943 // arbitrary pointer type to minimize variation.
944 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
945 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
946 PTy->getAddressSpace());
947
948 return AccessTy;
949 }
950
951 /// Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)952 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
953 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
954 if (SE.isSCEVable(PN.getType()) &&
955 (SE.getEffectiveSCEVType(PN.getType()) ==
956 SE.getEffectiveSCEVType(AR->getType())) &&
957 SE.getSCEV(&PN) == AR)
958 return true;
959 }
960 return false;
961 }
962
963 /// Check if expanding this expression is likely to incur significant cost. This
964 /// is tricky because SCEV doesn't track which expressions are actually computed
965 /// by the current IR.
966 ///
967 /// We currently allow expansion of IV increments that involve adds,
968 /// multiplication by constants, and AddRecs from existing phis.
969 ///
970 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
971 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)972 static bool isHighCostExpansion(const SCEV *S,
973 SmallPtrSetImpl<const SCEV*> &Processed,
974 ScalarEvolution &SE) {
975 // Zero/One operand expressions
976 switch (S->getSCEVType()) {
977 case scUnknown:
978 case scConstant:
979 return false;
980 case scTruncate:
981 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
982 Processed, SE);
983 case scZeroExtend:
984 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
985 Processed, SE);
986 case scSignExtend:
987 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
988 Processed, SE);
989 default:
990 break;
991 }
992
993 if (!Processed.insert(S).second)
994 return false;
995
996 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
997 for (const SCEV *S : Add->operands()) {
998 if (isHighCostExpansion(S, Processed, SE))
999 return true;
1000 }
1001 return false;
1002 }
1003
1004 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1005 if (Mul->getNumOperands() == 2) {
1006 // Multiplication by a constant is ok
1007 if (isa<SCEVConstant>(Mul->getOperand(0)))
1008 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1009
1010 // If we have the value of one operand, check if an existing
1011 // multiplication already generates this expression.
1012 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1013 Value *UVal = U->getValue();
1014 for (User *UR : UVal->users()) {
1015 // If U is a constant, it may be used by a ConstantExpr.
1016 Instruction *UI = dyn_cast<Instruction>(UR);
1017 if (UI && UI->getOpcode() == Instruction::Mul &&
1018 SE.isSCEVable(UI->getType())) {
1019 return SE.getSCEV(UI) == Mul;
1020 }
1021 }
1022 }
1023 }
1024 }
1025
1026 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1027 if (isExistingPhi(AR, SE))
1028 return false;
1029 }
1030
1031 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1032 return true;
1033 }
1034
1035 namespace {
1036
1037 class LSRUse;
1038
1039 } // end anonymous namespace
1040
1041 /// Check if the addressing mode defined by \p F is completely
1042 /// folded in \p LU at isel time.
1043 /// This includes address-mode folding and special icmp tricks.
1044 /// This function returns true if \p LU can accommodate what \p F
1045 /// defines and up to 1 base + 1 scaled + offset.
1046 /// In other words, if \p F has several base registers, this function may
1047 /// still return true. Therefore, users still need to account for
1048 /// additional base registers and/or unfolded offsets to derive an
1049 /// accurate cost model.
1050 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1051 const LSRUse &LU, const Formula &F);
1052
1053 // Get the cost of the scaling factor used in F for LU.
1054 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1055 const LSRUse &LU, const Formula &F,
1056 const Loop &L);
1057
1058 namespace {
1059
1060 /// This class is used to measure and compare candidate formulae.
1061 class Cost {
1062 const Loop *L = nullptr;
1063 ScalarEvolution *SE = nullptr;
1064 const TargetTransformInfo *TTI = nullptr;
1065 TargetTransformInfo::LSRCost C;
1066 TTI::AddressingModeKind AMK = TTI::AMK_None;
1067
1068 public:
1069 Cost() = delete;
Cost(const Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,TTI::AddressingModeKind AMK)1070 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1071 TTI::AddressingModeKind AMK) :
1072 L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1073 C.Insns = 0;
1074 C.NumRegs = 0;
1075 C.AddRecCost = 0;
1076 C.NumIVMuls = 0;
1077 C.NumBaseAdds = 0;
1078 C.ImmCost = 0;
1079 C.SetupCost = 0;
1080 C.ScaleCost = 0;
1081 }
1082
1083 bool isLess(const Cost &Other) const;
1084
1085 void Lose();
1086
1087 #ifndef NDEBUG
1088 // Once any of the metrics loses, they must all remain losers.
isValid()1089 bool isValid() {
1090 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1091 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1092 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1093 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1094 }
1095 #endif
1096
isLoser()1097 bool isLoser() {
1098 assert(isValid() && "invalid cost");
1099 return C.NumRegs == ~0u;
1100 }
1101
1102 void RateFormula(const Formula &F,
1103 SmallPtrSetImpl<const SCEV *> &Regs,
1104 const DenseSet<const SCEV *> &VisitedRegs,
1105 const LSRUse &LU,
1106 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1107
1108 void print(raw_ostream &OS) const;
1109 void dump() const;
1110
1111 private:
1112 void RateRegister(const Formula &F, const SCEV *Reg,
1113 SmallPtrSetImpl<const SCEV *> &Regs);
1114 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1115 SmallPtrSetImpl<const SCEV *> &Regs,
1116 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1117 };
1118
1119 /// An operand value in an instruction which is to be replaced with some
1120 /// equivalent, possibly strength-reduced, replacement.
1121 struct LSRFixup {
1122 /// The instruction which will be updated.
1123 Instruction *UserInst = nullptr;
1124
1125 /// The operand of the instruction which will be replaced. The operand may be
1126 /// used more than once; every instance will be replaced.
1127 Value *OperandValToReplace = nullptr;
1128
1129 /// If this user is to use the post-incremented value of an induction
1130 /// variable, this set is non-empty and holds the loops associated with the
1131 /// induction variable.
1132 PostIncLoopSet PostIncLoops;
1133
1134 /// A constant offset to be added to the LSRUse expression. This allows
1135 /// multiple fixups to share the same LSRUse with different offsets, for
1136 /// example in an unrolled loop.
1137 int64_t Offset = 0;
1138
1139 LSRFixup() = default;
1140
1141 bool isUseFullyOutsideLoop(const Loop *L) const;
1142
1143 void print(raw_ostream &OS) const;
1144 void dump() const;
1145 };
1146
1147 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1148 /// SmallVectors of const SCEV*.
1149 struct UniquifierDenseMapInfo {
getEmptyKey__anon6fa033cb0811::UniquifierDenseMapInfo1150 static SmallVector<const SCEV *, 4> getEmptyKey() {
1151 SmallVector<const SCEV *, 4> V;
1152 V.push_back(reinterpret_cast<const SCEV *>(-1));
1153 return V;
1154 }
1155
getTombstoneKey__anon6fa033cb0811::UniquifierDenseMapInfo1156 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1157 SmallVector<const SCEV *, 4> V;
1158 V.push_back(reinterpret_cast<const SCEV *>(-2));
1159 return V;
1160 }
1161
getHashValue__anon6fa033cb0811::UniquifierDenseMapInfo1162 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1163 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1164 }
1165
isEqual__anon6fa033cb0811::UniquifierDenseMapInfo1166 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1167 const SmallVector<const SCEV *, 4> &RHS) {
1168 return LHS == RHS;
1169 }
1170 };
1171
1172 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1173 /// as uses invented by LSR itself. It includes information about what kinds of
1174 /// things can be folded into the user, information about the user itself, and
1175 /// information about how the use may be satisfied. TODO: Represent multiple
1176 /// users of the same expression in common?
1177 class LSRUse {
1178 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1179
1180 public:
1181 /// An enum for a kind of use, indicating what types of scaled and immediate
1182 /// operands it might support.
1183 enum KindType {
1184 Basic, ///< A normal use, with no folding.
1185 Special, ///< A special case of basic, allowing -1 scales.
1186 Address, ///< An address use; folding according to TargetLowering
1187 ICmpZero ///< An equality icmp with both operands folded into one.
1188 // TODO: Add a generic icmp too?
1189 };
1190
1191 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1192
1193 KindType Kind;
1194 MemAccessTy AccessTy;
1195
1196 /// The list of operands which are to be replaced.
1197 SmallVector<LSRFixup, 8> Fixups;
1198
1199 /// Keep track of the min and max offsets of the fixups.
1200 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1201 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1202
1203 /// This records whether all of the fixups using this LSRUse are outside of
1204 /// the loop, in which case some special-case heuristics may be used.
1205 bool AllFixupsOutsideLoop = true;
1206
1207 /// RigidFormula is set to true to guarantee that this use will be associated
1208 /// with a single formula--the one that initially matched. Some SCEV
1209 /// expressions cannot be expanded. This allows LSR to consider the registers
1210 /// used by those expressions without the need to expand them later after
1211 /// changing the formula.
1212 bool RigidFormula = false;
1213
1214 /// This records the widest use type for any fixup using this
1215 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1216 /// fixup widths to be equivalent, because the narrower one may be relying on
1217 /// the implicit truncation to truncate away bogus bits.
1218 Type *WidestFixupType = nullptr;
1219
1220 /// A list of ways to build a value that can satisfy this user. After the
1221 /// list is populated, one of these is selected heuristically and used to
1222 /// formulate a replacement for OperandValToReplace in UserInst.
1223 SmallVector<Formula, 12> Formulae;
1224
1225 /// The set of register candidates used by all formulae in this LSRUse.
1226 SmallPtrSet<const SCEV *, 4> Regs;
1227
LSRUse(KindType K,MemAccessTy AT)1228 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1229
getNewFixup()1230 LSRFixup &getNewFixup() {
1231 Fixups.push_back(LSRFixup());
1232 return Fixups.back();
1233 }
1234
pushFixup(LSRFixup & f)1235 void pushFixup(LSRFixup &f) {
1236 Fixups.push_back(f);
1237 if (f.Offset > MaxOffset)
1238 MaxOffset = f.Offset;
1239 if (f.Offset < MinOffset)
1240 MinOffset = f.Offset;
1241 }
1242
1243 bool HasFormulaWithSameRegs(const Formula &F) const;
1244 float getNotSelectedProbability(const SCEV *Reg) const;
1245 bool InsertFormula(const Formula &F, const Loop &L);
1246 void DeleteFormula(Formula &F);
1247 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1248
1249 void print(raw_ostream &OS) const;
1250 void dump() const;
1251 };
1252
1253 } // end anonymous namespace
1254
1255 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1256 LSRUse::KindType Kind, MemAccessTy AccessTy,
1257 GlobalValue *BaseGV, int64_t BaseOffset,
1258 bool HasBaseReg, int64_t Scale,
1259 Instruction *Fixup = nullptr);
1260
getSetupCost(const SCEV * Reg,unsigned Depth)1261 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1262 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1263 return 1;
1264 if (Depth == 0)
1265 return 0;
1266 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1267 return getSetupCost(S->getStart(), Depth - 1);
1268 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1269 return getSetupCost(S->getOperand(), Depth - 1);
1270 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1271 return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1272 [&](unsigned i, const SCEV *Reg) {
1273 return i + getSetupCost(Reg, Depth - 1);
1274 });
1275 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1276 return getSetupCost(S->getLHS(), Depth - 1) +
1277 getSetupCost(S->getRHS(), Depth - 1);
1278 return 0;
1279 }
1280
1281 /// Tally up interesting quantities from the given register.
RateRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs)1282 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1283 SmallPtrSetImpl<const SCEV *> &Regs) {
1284 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1285 // If this is an addrec for another loop, it should be an invariant
1286 // with respect to L since L is the innermost loop (at least
1287 // for now LSR only handles innermost loops).
1288 if (AR->getLoop() != L) {
1289 // If the AddRec exists, consider it's register free and leave it alone.
1290 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1291 return;
1292
1293 // It is bad to allow LSR for current loop to add induction variables
1294 // for its sibling loops.
1295 if (!AR->getLoop()->contains(L)) {
1296 Lose();
1297 return;
1298 }
1299
1300 // Otherwise, it will be an invariant with respect to Loop L.
1301 ++C.NumRegs;
1302 return;
1303 }
1304
1305 unsigned LoopCost = 1;
1306 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1307 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1308
1309 // If the step size matches the base offset, we could use pre-indexed
1310 // addressing.
1311 if (AMK == TTI::AMK_PreIndexed) {
1312 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1313 if (Step->getAPInt() == F.BaseOffset)
1314 LoopCost = 0;
1315 } else if (AMK == TTI::AMK_PostIndexed) {
1316 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1317 if (isa<SCEVConstant>(LoopStep)) {
1318 const SCEV *LoopStart = AR->getStart();
1319 if (!isa<SCEVConstant>(LoopStart) &&
1320 SE->isLoopInvariant(LoopStart, L))
1321 LoopCost = 0;
1322 }
1323 }
1324 }
1325 C.AddRecCost += LoopCost;
1326
1327 // Add the step value register, if it needs one.
1328 // TODO: The non-affine case isn't precisely modeled here.
1329 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1330 if (!Regs.count(AR->getOperand(1))) {
1331 RateRegister(F, AR->getOperand(1), Regs);
1332 if (isLoser())
1333 return;
1334 }
1335 }
1336 }
1337 ++C.NumRegs;
1338
1339 // Rough heuristic; favor registers which don't require extra setup
1340 // instructions in the preheader.
1341 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1342 // Ensure we don't, even with the recusion limit, produce invalid costs.
1343 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1344
1345 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1346 SE->hasComputableLoopEvolution(Reg, L);
1347 }
1348
1349 /// Record this register in the set. If we haven't seen it before, rate
1350 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1351 /// one of those regs an instant loser.
RatePrimaryRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,SmallPtrSetImpl<const SCEV * > * LoserRegs)1352 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1353 SmallPtrSetImpl<const SCEV *> &Regs,
1354 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355 if (LoserRegs && LoserRegs->count(Reg)) {
1356 Lose();
1357 return;
1358 }
1359 if (Regs.insert(Reg).second) {
1360 RateRegister(F, Reg, Regs);
1361 if (LoserRegs && isLoser())
1362 LoserRegs->insert(Reg);
1363 }
1364 }
1365
RateFormula(const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)1366 void Cost::RateFormula(const Formula &F,
1367 SmallPtrSetImpl<const SCEV *> &Regs,
1368 const DenseSet<const SCEV *> &VisitedRegs,
1369 const LSRUse &LU,
1370 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1371 if (isLoser())
1372 return;
1373 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1374 // Tally up the registers.
1375 unsigned PrevAddRecCost = C.AddRecCost;
1376 unsigned PrevNumRegs = C.NumRegs;
1377 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1378 if (const SCEV *ScaledReg = F.ScaledReg) {
1379 if (VisitedRegs.count(ScaledReg)) {
1380 Lose();
1381 return;
1382 }
1383 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1384 if (isLoser())
1385 return;
1386 }
1387 for (const SCEV *BaseReg : F.BaseRegs) {
1388 if (VisitedRegs.count(BaseReg)) {
1389 Lose();
1390 return;
1391 }
1392 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1393 if (isLoser())
1394 return;
1395 }
1396
1397 // Determine how many (unfolded) adds we'll need inside the loop.
1398 size_t NumBaseParts = F.getNumRegs();
1399 if (NumBaseParts > 1)
1400 // Do not count the base and a possible second register if the target
1401 // allows to fold 2 registers.
1402 C.NumBaseAdds +=
1403 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1404 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1405
1406 // Accumulate non-free scaling amounts.
1407 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1408
1409 // Tally up the non-zero immediates.
1410 for (const LSRFixup &Fixup : LU.Fixups) {
1411 int64_t O = Fixup.Offset;
1412 int64_t Offset = (uint64_t)O + F.BaseOffset;
1413 if (F.BaseGV)
1414 C.ImmCost += 64; // Handle symbolic values conservatively.
1415 // TODO: This should probably be the pointer size.
1416 else if (Offset != 0)
1417 C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1418
1419 // Check with target if this offset with this instruction is
1420 // specifically not supported.
1421 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1422 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1423 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1424 C.NumBaseAdds++;
1425 }
1426
1427 // If we don't count instruction cost exit here.
1428 if (!InsnsCost) {
1429 assert(isValid() && "invalid cost");
1430 return;
1431 }
1432
1433 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1434 // additional instruction (at least fill).
1435 // TODO: Need distinguish register class?
1436 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1437 TTI->getRegisterClassForType(false, F.getType())) - 1;
1438 if (C.NumRegs > TTIRegNum) {
1439 // Cost already exceeded TTIRegNum, then only newly added register can add
1440 // new instructions.
1441 if (PrevNumRegs > TTIRegNum)
1442 C.Insns += (C.NumRegs - PrevNumRegs);
1443 else
1444 C.Insns += (C.NumRegs - TTIRegNum);
1445 }
1446
1447 // If ICmpZero formula ends with not 0, it could not be replaced by
1448 // just add or sub. We'll need to compare final result of AddRec.
1449 // That means we'll need an additional instruction. But if the target can
1450 // macro-fuse a compare with a branch, don't count this extra instruction.
1451 // For -10 + {0, +, 1}:
1452 // i = i + 1;
1453 // cmp i, 10
1454 //
1455 // For {-10, +, 1}:
1456 // i = i + 1;
1457 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1458 !TTI->canMacroFuseCmp())
1459 C.Insns++;
1460 // Each new AddRec adds 1 instruction to calculation.
1461 C.Insns += (C.AddRecCost - PrevAddRecCost);
1462
1463 // BaseAdds adds instructions for unfolded registers.
1464 if (LU.Kind != LSRUse::ICmpZero)
1465 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1466 assert(isValid() && "invalid cost");
1467 }
1468
1469 /// Set this cost to a losing value.
Lose()1470 void Cost::Lose() {
1471 C.Insns = std::numeric_limits<unsigned>::max();
1472 C.NumRegs = std::numeric_limits<unsigned>::max();
1473 C.AddRecCost = std::numeric_limits<unsigned>::max();
1474 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1475 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1476 C.ImmCost = std::numeric_limits<unsigned>::max();
1477 C.SetupCost = std::numeric_limits<unsigned>::max();
1478 C.ScaleCost = std::numeric_limits<unsigned>::max();
1479 }
1480
1481 /// Choose the lower cost.
isLess(const Cost & Other) const1482 bool Cost::isLess(const Cost &Other) const {
1483 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1484 C.Insns != Other.C.Insns)
1485 return C.Insns < Other.C.Insns;
1486 return TTI->isLSRCostLess(C, Other.C);
1487 }
1488
1489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1490 void Cost::print(raw_ostream &OS) const {
1491 if (InsnsCost)
1492 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1493 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1494 if (C.AddRecCost != 0)
1495 OS << ", with addrec cost " << C.AddRecCost;
1496 if (C.NumIVMuls != 0)
1497 OS << ", plus " << C.NumIVMuls << " IV mul"
1498 << (C.NumIVMuls == 1 ? "" : "s");
1499 if (C.NumBaseAdds != 0)
1500 OS << ", plus " << C.NumBaseAdds << " base add"
1501 << (C.NumBaseAdds == 1 ? "" : "s");
1502 if (C.ScaleCost != 0)
1503 OS << ", plus " << C.ScaleCost << " scale cost";
1504 if (C.ImmCost != 0)
1505 OS << ", plus " << C.ImmCost << " imm cost";
1506 if (C.SetupCost != 0)
1507 OS << ", plus " << C.SetupCost << " setup cost";
1508 }
1509
dump() const1510 LLVM_DUMP_METHOD void Cost::dump() const {
1511 print(errs()); errs() << '\n';
1512 }
1513 #endif
1514
1515 /// Test whether this fixup always uses its value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1516 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1517 // PHI nodes use their value in their incoming blocks.
1518 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1519 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1520 if (PN->getIncomingValue(i) == OperandValToReplace &&
1521 L->contains(PN->getIncomingBlock(i)))
1522 return false;
1523 return true;
1524 }
1525
1526 return !L->contains(UserInst);
1527 }
1528
1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1530 void LSRFixup::print(raw_ostream &OS) const {
1531 OS << "UserInst=";
1532 // Store is common and interesting enough to be worth special-casing.
1533 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1534 OS << "store ";
1535 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1536 } else if (UserInst->getType()->isVoidTy())
1537 OS << UserInst->getOpcodeName();
1538 else
1539 UserInst->printAsOperand(OS, /*PrintType=*/false);
1540
1541 OS << ", OperandValToReplace=";
1542 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1543
1544 for (const Loop *PIL : PostIncLoops) {
1545 OS << ", PostIncLoop=";
1546 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1547 }
1548
1549 if (Offset != 0)
1550 OS << ", Offset=" << Offset;
1551 }
1552
dump() const1553 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1554 print(errs()); errs() << '\n';
1555 }
1556 #endif
1557
1558 /// Test whether this use as a formula which has the same registers as the given
1559 /// formula.
HasFormulaWithSameRegs(const Formula & F) const1560 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1561 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1562 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1563 // Unstable sort by host order ok, because this is only used for uniquifying.
1564 llvm::sort(Key);
1565 return Uniquifier.count(Key);
1566 }
1567
1568 /// The function returns a probability of selecting formula without Reg.
getNotSelectedProbability(const SCEV * Reg) const1569 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1570 unsigned FNum = 0;
1571 for (const Formula &F : Formulae)
1572 if (F.referencesReg(Reg))
1573 FNum++;
1574 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1575 }
1576
1577 /// If the given formula has not yet been inserted, add it to the list, and
1578 /// return true. Return false otherwise. The formula must be in canonical form.
InsertFormula(const Formula & F,const Loop & L)1579 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1580 assert(F.isCanonical(L) && "Invalid canonical representation");
1581
1582 if (!Formulae.empty() && RigidFormula)
1583 return false;
1584
1585 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1586 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1587 // Unstable sort by host order ok, because this is only used for uniquifying.
1588 llvm::sort(Key);
1589
1590 if (!Uniquifier.insert(Key).second)
1591 return false;
1592
1593 // Using a register to hold the value of 0 is not profitable.
1594 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1595 "Zero allocated in a scaled register!");
1596 #ifndef NDEBUG
1597 for (const SCEV *BaseReg : F.BaseRegs)
1598 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1599 #endif
1600
1601 // Add the formula to the list.
1602 Formulae.push_back(F);
1603
1604 // Record registers now being used by this use.
1605 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1606 if (F.ScaledReg)
1607 Regs.insert(F.ScaledReg);
1608
1609 return true;
1610 }
1611
1612 /// Remove the given formula from this use's list.
DeleteFormula(Formula & F)1613 void LSRUse::DeleteFormula(Formula &F) {
1614 if (&F != &Formulae.back())
1615 std::swap(F, Formulae.back());
1616 Formulae.pop_back();
1617 }
1618
1619 /// Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1620 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1621 // Now that we've filtered out some formulae, recompute the Regs set.
1622 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1623 Regs.clear();
1624 for (const Formula &F : Formulae) {
1625 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1626 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1627 }
1628
1629 // Update the RegTracker.
1630 for (const SCEV *S : OldRegs)
1631 if (!Regs.count(S))
1632 RegUses.dropRegister(S, LUIdx);
1633 }
1634
1635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1636 void LSRUse::print(raw_ostream &OS) const {
1637 OS << "LSR Use: Kind=";
1638 switch (Kind) {
1639 case Basic: OS << "Basic"; break;
1640 case Special: OS << "Special"; break;
1641 case ICmpZero: OS << "ICmpZero"; break;
1642 case Address:
1643 OS << "Address of ";
1644 if (AccessTy.MemTy->isPointerTy())
1645 OS << "pointer"; // the full pointer type could be really verbose
1646 else {
1647 OS << *AccessTy.MemTy;
1648 }
1649
1650 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1651 }
1652
1653 OS << ", Offsets={";
1654 bool NeedComma = false;
1655 for (const LSRFixup &Fixup : Fixups) {
1656 if (NeedComma) OS << ',';
1657 OS << Fixup.Offset;
1658 NeedComma = true;
1659 }
1660 OS << '}';
1661
1662 if (AllFixupsOutsideLoop)
1663 OS << ", all-fixups-outside-loop";
1664
1665 if (WidestFixupType)
1666 OS << ", widest fixup type: " << *WidestFixupType;
1667 }
1668
dump() const1669 LLVM_DUMP_METHOD void LSRUse::dump() const {
1670 print(errs()); errs() << '\n';
1671 }
1672 #endif
1673
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,Instruction * Fixup)1674 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1675 LSRUse::KindType Kind, MemAccessTy AccessTy,
1676 GlobalValue *BaseGV, int64_t BaseOffset,
1677 bool HasBaseReg, int64_t Scale,
1678 Instruction *Fixup/*= nullptr*/) {
1679 switch (Kind) {
1680 case LSRUse::Address:
1681 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1682 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1683
1684 case LSRUse::ICmpZero:
1685 // There's not even a target hook for querying whether it would be legal to
1686 // fold a GV into an ICmp.
1687 if (BaseGV)
1688 return false;
1689
1690 // ICmp only has two operands; don't allow more than two non-trivial parts.
1691 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1692 return false;
1693
1694 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1695 // putting the scaled register in the other operand of the icmp.
1696 if (Scale != 0 && Scale != -1)
1697 return false;
1698
1699 // If we have low-level target information, ask the target if it can fold an
1700 // integer immediate on an icmp.
1701 if (BaseOffset != 0) {
1702 // We have one of:
1703 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1704 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1705 // Offs is the ICmp immediate.
1706 if (Scale == 0)
1707 // The cast does the right thing with
1708 // std::numeric_limits<int64_t>::min().
1709 BaseOffset = -(uint64_t)BaseOffset;
1710 return TTI.isLegalICmpImmediate(BaseOffset);
1711 }
1712
1713 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1714 return true;
1715
1716 case LSRUse::Basic:
1717 // Only handle single-register values.
1718 return !BaseGV && Scale == 0 && BaseOffset == 0;
1719
1720 case LSRUse::Special:
1721 // Special case Basic to handle -1 scales.
1722 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1723 }
1724
1725 llvm_unreachable("Invalid LSRUse Kind!");
1726 }
1727
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1728 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1729 int64_t MinOffset, int64_t MaxOffset,
1730 LSRUse::KindType Kind, MemAccessTy AccessTy,
1731 GlobalValue *BaseGV, int64_t BaseOffset,
1732 bool HasBaseReg, int64_t Scale) {
1733 // Check for overflow.
1734 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1735 (MinOffset > 0))
1736 return false;
1737 MinOffset = (uint64_t)BaseOffset + MinOffset;
1738 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1739 (MaxOffset > 0))
1740 return false;
1741 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1742
1743 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1744 HasBaseReg, Scale) &&
1745 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1746 HasBaseReg, Scale);
1747 }
1748
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F,const Loop & L)1749 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1750 int64_t MinOffset, int64_t MaxOffset,
1751 LSRUse::KindType Kind, MemAccessTy AccessTy,
1752 const Formula &F, const Loop &L) {
1753 // For the purpose of isAMCompletelyFolded either having a canonical formula
1754 // or a scale not equal to zero is correct.
1755 // Problems may arise from non canonical formulae having a scale == 0.
1756 // Strictly speaking it would best to just rely on canonical formulae.
1757 // However, when we generate the scaled formulae, we first check that the
1758 // scaling factor is profitable before computing the actual ScaledReg for
1759 // compile time sake.
1760 assert((F.isCanonical(L) || F.Scale != 0));
1761 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1762 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1763 }
1764
1765 /// Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1766 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1767 int64_t MaxOffset, LSRUse::KindType Kind,
1768 MemAccessTy AccessTy, GlobalValue *BaseGV,
1769 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1770 // We know how to expand completely foldable formulae.
1771 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1772 BaseOffset, HasBaseReg, Scale) ||
1773 // Or formulae that use a base register produced by a sum of base
1774 // registers.
1775 (Scale == 1 &&
1776 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1777 BaseGV, BaseOffset, true, 0));
1778 }
1779
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1780 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1781 int64_t MaxOffset, LSRUse::KindType Kind,
1782 MemAccessTy AccessTy, const Formula &F) {
1783 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1784 F.BaseOffset, F.HasBaseReg, F.Scale);
1785 }
1786
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1787 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1788 const LSRUse &LU, const Formula &F) {
1789 // Target may want to look at the user instructions.
1790 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1791 for (const LSRFixup &Fixup : LU.Fixups)
1792 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1793 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1794 F.Scale, Fixup.UserInst))
1795 return false;
1796 return true;
1797 }
1798
1799 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1801 F.Scale);
1802 }
1803
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F,const Loop & L)1804 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1805 const LSRUse &LU, const Formula &F,
1806 const Loop &L) {
1807 if (!F.Scale)
1808 return 0;
1809
1810 // If the use is not completely folded in that instruction, we will have to
1811 // pay an extra cost only for scale != 1.
1812 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1813 LU.AccessTy, F, L))
1814 return F.Scale != 1;
1815
1816 switch (LU.Kind) {
1817 case LSRUse::Address: {
1818 // Check the scaling factor cost with both the min and max offsets.
1819 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1820 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1821 F.Scale, LU.AccessTy.AddrSpace);
1822 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1823 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1824 F.Scale, LU.AccessTy.AddrSpace);
1825
1826 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1827 "Legal addressing mode has an illegal cost!");
1828 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1829 }
1830 case LSRUse::ICmpZero:
1831 case LSRUse::Basic:
1832 case LSRUse::Special:
1833 // The use is completely folded, i.e., everything is folded into the
1834 // instruction.
1835 return 0;
1836 }
1837
1838 llvm_unreachable("Invalid LSRUse Kind!");
1839 }
1840
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1841 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1842 LSRUse::KindType Kind, MemAccessTy AccessTy,
1843 GlobalValue *BaseGV, int64_t BaseOffset,
1844 bool HasBaseReg) {
1845 // Fast-path: zero is always foldable.
1846 if (BaseOffset == 0 && !BaseGV) return true;
1847
1848 // Conservatively, create an address with an immediate and a
1849 // base and a scale.
1850 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1851
1852 // Canonicalize a scale of 1 to a base register if the formula doesn't
1853 // already have a base register.
1854 if (!HasBaseReg && Scale == 1) {
1855 Scale = 0;
1856 HasBaseReg = true;
1857 }
1858
1859 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1860 HasBaseReg, Scale);
1861 }
1862
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const SCEV * S,bool HasBaseReg)1863 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1864 ScalarEvolution &SE, int64_t MinOffset,
1865 int64_t MaxOffset, LSRUse::KindType Kind,
1866 MemAccessTy AccessTy, const SCEV *S,
1867 bool HasBaseReg) {
1868 // Fast-path: zero is always foldable.
1869 if (S->isZero()) return true;
1870
1871 // Conservatively, create an address with an immediate and a
1872 // base and a scale.
1873 int64_t BaseOffset = ExtractImmediate(S, SE);
1874 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1875
1876 // If there's anything else involved, it's not foldable.
1877 if (!S->isZero()) return false;
1878
1879 // Fast-path: zero is always foldable.
1880 if (BaseOffset == 0 && !BaseGV) return true;
1881
1882 // Conservatively, create an address with an immediate and a
1883 // base and a scale.
1884 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1885
1886 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1887 BaseOffset, HasBaseReg, Scale);
1888 }
1889
1890 namespace {
1891
1892 /// An individual increment in a Chain of IV increments. Relate an IV user to
1893 /// an expression that computes the IV it uses from the IV used by the previous
1894 /// link in the Chain.
1895 ///
1896 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1897 /// original IVOperand. The head of the chain's IVOperand is only valid during
1898 /// chain collection, before LSR replaces IV users. During chain generation,
1899 /// IncExpr can be used to find the new IVOperand that computes the same
1900 /// expression.
1901 struct IVInc {
1902 Instruction *UserInst;
1903 Value* IVOperand;
1904 const SCEV *IncExpr;
1905
IVInc__anon6fa033cb0a11::IVInc1906 IVInc(Instruction *U, Value *O, const SCEV *E)
1907 : UserInst(U), IVOperand(O), IncExpr(E) {}
1908 };
1909
1910 // The list of IV increments in program order. We typically add the head of a
1911 // chain without finding subsequent links.
1912 struct IVChain {
1913 SmallVector<IVInc, 1> Incs;
1914 const SCEV *ExprBase = nullptr;
1915
1916 IVChain() = default;
IVChain__anon6fa033cb0a11::IVChain1917 IVChain(const IVInc &Head, const SCEV *Base)
1918 : Incs(1, Head), ExprBase(Base) {}
1919
1920 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1921
1922 // Return the first increment in the chain.
begin__anon6fa033cb0a11::IVChain1923 const_iterator begin() const {
1924 assert(!Incs.empty());
1925 return std::next(Incs.begin());
1926 }
end__anon6fa033cb0a11::IVChain1927 const_iterator end() const {
1928 return Incs.end();
1929 }
1930
1931 // Returns true if this chain contains any increments.
hasIncs__anon6fa033cb0a11::IVChain1932 bool hasIncs() const { return Incs.size() >= 2; }
1933
1934 // Add an IVInc to the end of this chain.
add__anon6fa033cb0a11::IVChain1935 void add(const IVInc &X) { Incs.push_back(X); }
1936
1937 // Returns the last UserInst in the chain.
tailUserInst__anon6fa033cb0a11::IVChain1938 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1939
1940 // Returns true if IncExpr can be profitably added to this chain.
1941 bool isProfitableIncrement(const SCEV *OperExpr,
1942 const SCEV *IncExpr,
1943 ScalarEvolution&);
1944 };
1945
1946 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1947 /// between FarUsers that definitely cross IV increments and NearUsers that may
1948 /// be used between IV increments.
1949 struct ChainUsers {
1950 SmallPtrSet<Instruction*, 4> FarUsers;
1951 SmallPtrSet<Instruction*, 4> NearUsers;
1952 };
1953
1954 /// This class holds state for the main loop strength reduction logic.
1955 class LSRInstance {
1956 IVUsers &IU;
1957 ScalarEvolution &SE;
1958 DominatorTree &DT;
1959 LoopInfo &LI;
1960 AssumptionCache &AC;
1961 TargetLibraryInfo &TLI;
1962 const TargetTransformInfo &TTI;
1963 Loop *const L;
1964 MemorySSAUpdater *MSSAU;
1965 TTI::AddressingModeKind AMK;
1966 mutable SCEVExpander Rewriter;
1967 bool Changed = false;
1968
1969 /// This is the insert position that the current loop's induction variable
1970 /// increment should be placed. In simple loops, this is the latch block's
1971 /// terminator. But in more complicated cases, this is a position which will
1972 /// dominate all the in-loop post-increment users.
1973 Instruction *IVIncInsertPos = nullptr;
1974
1975 /// Interesting factors between use strides.
1976 ///
1977 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1978 /// default, a SmallDenseSet, because we need to use the full range of
1979 /// int64_ts, and there's currently no good way of doing that with
1980 /// SmallDenseSet.
1981 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1982
1983 /// The cost of the current SCEV, the best solution by LSR will be dropped if
1984 /// the solution is not profitable.
1985 Cost BaselineCost;
1986
1987 /// Interesting use types, to facilitate truncation reuse.
1988 SmallSetVector<Type *, 4> Types;
1989
1990 /// The list of interesting uses.
1991 mutable SmallVector<LSRUse, 16> Uses;
1992
1993 /// Track which uses use which register candidates.
1994 RegUseTracker RegUses;
1995
1996 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1997 // have more than a few IV increment chains in a loop. Missing a Chain falls
1998 // back to normal LSR behavior for those uses.
1999 static const unsigned MaxChains = 8;
2000
2001 /// IV users can form a chain of IV increments.
2002 SmallVector<IVChain, MaxChains> IVChainVec;
2003
2004 /// IV users that belong to profitable IVChains.
2005 SmallPtrSet<Use*, MaxChains> IVIncSet;
2006
2007 /// Induction variables that were generated and inserted by the SCEV Expander.
2008 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2009
2010 void OptimizeShadowIV();
2011 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2012 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2013 void OptimizeLoopTermCond();
2014
2015 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2016 SmallVectorImpl<ChainUsers> &ChainUsersVec);
2017 void FinalizeChain(IVChain &Chain);
2018 void CollectChains();
2019 void GenerateIVChain(const IVChain &Chain,
2020 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2021
2022 void CollectInterestingTypesAndFactors();
2023 void CollectFixupsAndInitialFormulae();
2024
2025 // Support for sharing of LSRUses between LSRFixups.
2026 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2027 UseMapTy UseMap;
2028
2029 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2030 LSRUse::KindType Kind, MemAccessTy AccessTy);
2031
2032 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2033 MemAccessTy AccessTy);
2034
2035 void DeleteUse(LSRUse &LU, size_t LUIdx);
2036
2037 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2038
2039 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2040 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2041 void CountRegisters(const Formula &F, size_t LUIdx);
2042 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2043
2044 void CollectLoopInvariantFixupsAndFormulae();
2045
2046 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2047 unsigned Depth = 0);
2048
2049 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2050 const Formula &Base, unsigned Depth,
2051 size_t Idx, bool IsScaledReg = false);
2052 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2053 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2054 const Formula &Base, size_t Idx,
2055 bool IsScaledReg = false);
2056 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2057 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2058 const Formula &Base,
2059 const SmallVectorImpl<int64_t> &Worklist,
2060 size_t Idx, bool IsScaledReg = false);
2061 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2062 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2063 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2064 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2065 void GenerateCrossUseConstantOffsets();
2066 void GenerateAllReuseFormulae();
2067
2068 void FilterOutUndesirableDedicatedRegisters();
2069
2070 size_t EstimateSearchSpaceComplexity() const;
2071 void NarrowSearchSpaceByDetectingSupersets();
2072 void NarrowSearchSpaceByCollapsingUnrolledCode();
2073 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2074 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2075 void NarrowSearchSpaceByFilterPostInc();
2076 void NarrowSearchSpaceByDeletingCostlyFormulas();
2077 void NarrowSearchSpaceByPickingWinnerRegs();
2078 void NarrowSearchSpaceUsingHeuristics();
2079
2080 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2081 Cost &SolutionCost,
2082 SmallVectorImpl<const Formula *> &Workspace,
2083 const Cost &CurCost,
2084 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2085 DenseSet<const SCEV *> &VisitedRegs) const;
2086 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2087
2088 BasicBlock::iterator
2089 HoistInsertPosition(BasicBlock::iterator IP,
2090 const SmallVectorImpl<Instruction *> &Inputs) const;
2091 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2092 const LSRFixup &LF,
2093 const LSRUse &LU) const;
2094
2095 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2096 BasicBlock::iterator IP,
2097 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2098 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2099 const Formula &F,
2100 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2101 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2102 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2103 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2104
2105 public:
2106 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2107 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2108 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2109
getChanged() const2110 bool getChanged() const { return Changed; }
getScalarEvolutionIVs() const2111 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2112 return ScalarEvolutionIVs;
2113 }
2114
2115 void print_factors_and_types(raw_ostream &OS) const;
2116 void print_fixups(raw_ostream &OS) const;
2117 void print_uses(raw_ostream &OS) const;
2118 void print(raw_ostream &OS) const;
2119 void dump() const;
2120 };
2121
2122 } // end anonymous namespace
2123
2124 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2125 /// the cast operation.
OptimizeShadowIV()2126 void LSRInstance::OptimizeShadowIV() {
2127 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2128 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2129 return;
2130
2131 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2132 UI != E; /* empty */) {
2133 IVUsers::const_iterator CandidateUI = UI;
2134 ++UI;
2135 Instruction *ShadowUse = CandidateUI->getUser();
2136 Type *DestTy = nullptr;
2137 bool IsSigned = false;
2138
2139 /* If shadow use is a int->float cast then insert a second IV
2140 to eliminate this cast.
2141
2142 for (unsigned i = 0; i < n; ++i)
2143 foo((double)i);
2144
2145 is transformed into
2146
2147 double d = 0.0;
2148 for (unsigned i = 0; i < n; ++i, ++d)
2149 foo(d);
2150 */
2151 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2152 IsSigned = false;
2153 DestTy = UCast->getDestTy();
2154 }
2155 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2156 IsSigned = true;
2157 DestTy = SCast->getDestTy();
2158 }
2159 if (!DestTy) continue;
2160
2161 // If target does not support DestTy natively then do not apply
2162 // this transformation.
2163 if (!TTI.isTypeLegal(DestTy)) continue;
2164
2165 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2166 if (!PH) continue;
2167 if (PH->getNumIncomingValues() != 2) continue;
2168
2169 // If the calculation in integers overflows, the result in FP type will
2170 // differ. So we only can do this transformation if we are guaranteed to not
2171 // deal with overflowing values
2172 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2173 if (!AR) continue;
2174 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2175 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2176
2177 Type *SrcTy = PH->getType();
2178 int Mantissa = DestTy->getFPMantissaWidth();
2179 if (Mantissa == -1) continue;
2180 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2181 continue;
2182
2183 unsigned Entry, Latch;
2184 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2185 Entry = 0;
2186 Latch = 1;
2187 } else {
2188 Entry = 1;
2189 Latch = 0;
2190 }
2191
2192 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2193 if (!Init) continue;
2194 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2195 (double)Init->getSExtValue() :
2196 (double)Init->getZExtValue());
2197
2198 BinaryOperator *Incr =
2199 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2200 if (!Incr) continue;
2201 if (Incr->getOpcode() != Instruction::Add
2202 && Incr->getOpcode() != Instruction::Sub)
2203 continue;
2204
2205 /* Initialize new IV, double d = 0.0 in above example. */
2206 ConstantInt *C = nullptr;
2207 if (Incr->getOperand(0) == PH)
2208 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2209 else if (Incr->getOperand(1) == PH)
2210 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2211 else
2212 continue;
2213
2214 if (!C) continue;
2215
2216 // Ignore negative constants, as the code below doesn't handle them
2217 // correctly. TODO: Remove this restriction.
2218 if (!C->getValue().isStrictlyPositive()) continue;
2219
2220 /* Add new PHINode. */
2221 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2222
2223 /* create new increment. '++d' in above example. */
2224 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2225 BinaryOperator *NewIncr =
2226 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2227 Instruction::FAdd : Instruction::FSub,
2228 NewPH, CFP, "IV.S.next.", Incr);
2229
2230 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2231 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2232
2233 /* Remove cast operation */
2234 ShadowUse->replaceAllUsesWith(NewPH);
2235 ShadowUse->eraseFromParent();
2236 Changed = true;
2237 break;
2238 }
2239 }
2240
2241 /// If Cond has an operand that is an expression of an IV, set the IV user and
2242 /// stride information and return true, otherwise return false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)2243 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2244 for (IVStrideUse &U : IU)
2245 if (U.getUser() == Cond) {
2246 // NOTE: we could handle setcc instructions with multiple uses here, but
2247 // InstCombine does it as well for simple uses, it's not clear that it
2248 // occurs enough in real life to handle.
2249 CondUse = &U;
2250 return true;
2251 }
2252 return false;
2253 }
2254
2255 /// Rewrite the loop's terminating condition if it uses a max computation.
2256 ///
2257 /// This is a narrow solution to a specific, but acute, problem. For loops
2258 /// like this:
2259 ///
2260 /// i = 0;
2261 /// do {
2262 /// p[i] = 0.0;
2263 /// } while (++i < n);
2264 ///
2265 /// the trip count isn't just 'n', because 'n' might not be positive. And
2266 /// unfortunately this can come up even for loops where the user didn't use
2267 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2268 /// will commonly be lowered like this:
2269 ///
2270 /// if (n > 0) {
2271 /// i = 0;
2272 /// do {
2273 /// p[i] = 0.0;
2274 /// } while (++i < n);
2275 /// }
2276 ///
2277 /// and then it's possible for subsequent optimization to obscure the if
2278 /// test in such a way that indvars can't find it.
2279 ///
2280 /// When indvars can't find the if test in loops like this, it creates a
2281 /// max expression, which allows it to give the loop a canonical
2282 /// induction variable:
2283 ///
2284 /// i = 0;
2285 /// max = n < 1 ? 1 : n;
2286 /// do {
2287 /// p[i] = 0.0;
2288 /// } while (++i != max);
2289 ///
2290 /// Canonical induction variables are necessary because the loop passes
2291 /// are designed around them. The most obvious example of this is the
2292 /// LoopInfo analysis, which doesn't remember trip count values. It
2293 /// expects to be able to rediscover the trip count each time it is
2294 /// needed, and it does this using a simple analysis that only succeeds if
2295 /// the loop has a canonical induction variable.
2296 ///
2297 /// However, when it comes time to generate code, the maximum operation
2298 /// can be quite costly, especially if it's inside of an outer loop.
2299 ///
2300 /// This function solves this problem by detecting this type of loop and
2301 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2302 /// the instructions for the maximum computation.
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)2303 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2304 // Check that the loop matches the pattern we're looking for.
2305 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2306 Cond->getPredicate() != CmpInst::ICMP_NE)
2307 return Cond;
2308
2309 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2310 if (!Sel || !Sel->hasOneUse()) return Cond;
2311
2312 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2313 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2314 return Cond;
2315 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2316
2317 // Add one to the backedge-taken count to get the trip count.
2318 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2319 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2320
2321 // Check for a max calculation that matches the pattern. There's no check
2322 // for ICMP_ULE here because the comparison would be with zero, which
2323 // isn't interesting.
2324 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2325 const SCEVNAryExpr *Max = nullptr;
2326 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2327 Pred = ICmpInst::ICMP_SLE;
2328 Max = S;
2329 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2330 Pred = ICmpInst::ICMP_SLT;
2331 Max = S;
2332 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2333 Pred = ICmpInst::ICMP_ULT;
2334 Max = U;
2335 } else {
2336 // No match; bail.
2337 return Cond;
2338 }
2339
2340 // To handle a max with more than two operands, this optimization would
2341 // require additional checking and setup.
2342 if (Max->getNumOperands() != 2)
2343 return Cond;
2344
2345 const SCEV *MaxLHS = Max->getOperand(0);
2346 const SCEV *MaxRHS = Max->getOperand(1);
2347
2348 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2349 // for a comparison with 1. For <= and >=, a comparison with zero.
2350 if (!MaxLHS ||
2351 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2352 return Cond;
2353
2354 // Check the relevant induction variable for conformance to
2355 // the pattern.
2356 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2357 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2358 if (!AR || !AR->isAffine() ||
2359 AR->getStart() != One ||
2360 AR->getStepRecurrence(SE) != One)
2361 return Cond;
2362
2363 assert(AR->getLoop() == L &&
2364 "Loop condition operand is an addrec in a different loop!");
2365
2366 // Check the right operand of the select, and remember it, as it will
2367 // be used in the new comparison instruction.
2368 Value *NewRHS = nullptr;
2369 if (ICmpInst::isTrueWhenEqual(Pred)) {
2370 // Look for n+1, and grab n.
2371 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2372 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2373 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2374 NewRHS = BO->getOperand(0);
2375 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2376 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2377 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2378 NewRHS = BO->getOperand(0);
2379 if (!NewRHS)
2380 return Cond;
2381 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2382 NewRHS = Sel->getOperand(1);
2383 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2384 NewRHS = Sel->getOperand(2);
2385 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2386 NewRHS = SU->getValue();
2387 else
2388 // Max doesn't match expected pattern.
2389 return Cond;
2390
2391 // Determine the new comparison opcode. It may be signed or unsigned,
2392 // and the original comparison may be either equality or inequality.
2393 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2394 Pred = CmpInst::getInversePredicate(Pred);
2395
2396 // Ok, everything looks ok to change the condition into an SLT or SGE and
2397 // delete the max calculation.
2398 ICmpInst *NewCond =
2399 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2400
2401 // Delete the max calculation instructions.
2402 NewCond->setDebugLoc(Cond->getDebugLoc());
2403 Cond->replaceAllUsesWith(NewCond);
2404 CondUse->setUser(NewCond);
2405 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2406 Cond->eraseFromParent();
2407 Sel->eraseFromParent();
2408 if (Cmp->use_empty())
2409 Cmp->eraseFromParent();
2410 return NewCond;
2411 }
2412
2413 /// Change loop terminating condition to use the postinc iv when possible.
2414 void
OptimizeLoopTermCond()2415 LSRInstance::OptimizeLoopTermCond() {
2416 SmallPtrSet<Instruction *, 4> PostIncs;
2417
2418 // We need a different set of heuristics for rotated and non-rotated loops.
2419 // If a loop is rotated then the latch is also the backedge, so inserting
2420 // post-inc expressions just before the latch is ideal. To reduce live ranges
2421 // it also makes sense to rewrite terminating conditions to use post-inc
2422 // expressions.
2423 //
2424 // If the loop is not rotated then the latch is not a backedge; the latch
2425 // check is done in the loop head. Adding post-inc expressions before the
2426 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2427 // in the loop body. In this case we do *not* want to use post-inc expressions
2428 // in the latch check, and we want to insert post-inc expressions before
2429 // the backedge.
2430 BasicBlock *LatchBlock = L->getLoopLatch();
2431 SmallVector<BasicBlock*, 8> ExitingBlocks;
2432 L->getExitingBlocks(ExitingBlocks);
2433 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2434 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2435 IVIncInsertPos = LatchBlock->getTerminator();
2436 return;
2437 }
2438
2439 // Otherwise treat this as a rotated loop.
2440 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2441 // Get the terminating condition for the loop if possible. If we
2442 // can, we want to change it to use a post-incremented version of its
2443 // induction variable, to allow coalescing the live ranges for the IV into
2444 // one register value.
2445
2446 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2447 if (!TermBr)
2448 continue;
2449 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2450 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2451 continue;
2452
2453 // Search IVUsesByStride to find Cond's IVUse if there is one.
2454 IVStrideUse *CondUse = nullptr;
2455 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2456 if (!FindIVUserForCond(Cond, CondUse))
2457 continue;
2458
2459 // If the trip count is computed in terms of a max (due to ScalarEvolution
2460 // being unable to find a sufficient guard, for example), change the loop
2461 // comparison to use SLT or ULT instead of NE.
2462 // One consequence of doing this now is that it disrupts the count-down
2463 // optimization. That's not always a bad thing though, because in such
2464 // cases it may still be worthwhile to avoid a max.
2465 Cond = OptimizeMax(Cond, CondUse);
2466
2467 // If this exiting block dominates the latch block, it may also use
2468 // the post-inc value if it won't be shared with other uses.
2469 // Check for dominance.
2470 if (!DT.dominates(ExitingBlock, LatchBlock))
2471 continue;
2472
2473 // Conservatively avoid trying to use the post-inc value in non-latch
2474 // exits if there may be pre-inc users in intervening blocks.
2475 if (LatchBlock != ExitingBlock)
2476 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2477 // Test if the use is reachable from the exiting block. This dominator
2478 // query is a conservative approximation of reachability.
2479 if (&*UI != CondUse &&
2480 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2481 // Conservatively assume there may be reuse if the quotient of their
2482 // strides could be a legal scale.
2483 const SCEV *A = IU.getStride(*CondUse, L);
2484 const SCEV *B = IU.getStride(*UI, L);
2485 if (!A || !B) continue;
2486 if (SE.getTypeSizeInBits(A->getType()) !=
2487 SE.getTypeSizeInBits(B->getType())) {
2488 if (SE.getTypeSizeInBits(A->getType()) >
2489 SE.getTypeSizeInBits(B->getType()))
2490 B = SE.getSignExtendExpr(B, A->getType());
2491 else
2492 A = SE.getSignExtendExpr(A, B->getType());
2493 }
2494 if (const SCEVConstant *D =
2495 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2496 const ConstantInt *C = D->getValue();
2497 // Stride of one or negative one can have reuse with non-addresses.
2498 if (C->isOne() || C->isMinusOne())
2499 goto decline_post_inc;
2500 // Avoid weird situations.
2501 if (C->getValue().getMinSignedBits() >= 64 ||
2502 C->getValue().isMinSignedValue())
2503 goto decline_post_inc;
2504 // Check for possible scaled-address reuse.
2505 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2506 MemAccessTy AccessTy = getAccessType(
2507 TTI, UI->getUser(), UI->getOperandValToReplace());
2508 int64_t Scale = C->getSExtValue();
2509 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2510 /*BaseOffset=*/0,
2511 /*HasBaseReg=*/false, Scale,
2512 AccessTy.AddrSpace))
2513 goto decline_post_inc;
2514 Scale = -Scale;
2515 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2516 /*BaseOffset=*/0,
2517 /*HasBaseReg=*/false, Scale,
2518 AccessTy.AddrSpace))
2519 goto decline_post_inc;
2520 }
2521 }
2522 }
2523
2524 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2525 << *Cond << '\n');
2526
2527 // It's possible for the setcc instruction to be anywhere in the loop, and
2528 // possible for it to have multiple users. If it is not immediately before
2529 // the exiting block branch, move it.
2530 if (Cond->getNextNonDebugInstruction() != TermBr) {
2531 if (Cond->hasOneUse()) {
2532 Cond->moveBefore(TermBr);
2533 } else {
2534 // Clone the terminating condition and insert into the loopend.
2535 ICmpInst *OldCond = Cond;
2536 Cond = cast<ICmpInst>(Cond->clone());
2537 Cond->setName(L->getHeader()->getName() + ".termcond");
2538 Cond->insertInto(ExitingBlock, TermBr->getIterator());
2539
2540 // Clone the IVUse, as the old use still exists!
2541 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2542 TermBr->replaceUsesOfWith(OldCond, Cond);
2543 }
2544 }
2545
2546 // If we get to here, we know that we can transform the setcc instruction to
2547 // use the post-incremented version of the IV, allowing us to coalesce the
2548 // live ranges for the IV correctly.
2549 CondUse->transformToPostInc(L);
2550 Changed = true;
2551
2552 PostIncs.insert(Cond);
2553 decline_post_inc:;
2554 }
2555
2556 // Determine an insertion point for the loop induction variable increment. It
2557 // must dominate all the post-inc comparisons we just set up, and it must
2558 // dominate the loop latch edge.
2559 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2560 for (Instruction *Inst : PostIncs)
2561 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2562 }
2563
2564 /// Determine if the given use can accommodate a fixup at the given offset and
2565 /// other details. If so, update the use and return true.
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,MemAccessTy AccessTy)2566 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2567 bool HasBaseReg, LSRUse::KindType Kind,
2568 MemAccessTy AccessTy) {
2569 int64_t NewMinOffset = LU.MinOffset;
2570 int64_t NewMaxOffset = LU.MaxOffset;
2571 MemAccessTy NewAccessTy = AccessTy;
2572
2573 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2574 // something conservative, however this can pessimize in the case that one of
2575 // the uses will have all its uses outside the loop, for example.
2576 if (LU.Kind != Kind)
2577 return false;
2578
2579 // Check for a mismatched access type, and fall back conservatively as needed.
2580 // TODO: Be less conservative when the type is similar and can use the same
2581 // addressing modes.
2582 if (Kind == LSRUse::Address) {
2583 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2584 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2585 AccessTy.AddrSpace);
2586 }
2587 }
2588
2589 // Conservatively assume HasBaseReg is true for now.
2590 if (NewOffset < LU.MinOffset) {
2591 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2592 LU.MaxOffset - NewOffset, HasBaseReg))
2593 return false;
2594 NewMinOffset = NewOffset;
2595 } else if (NewOffset > LU.MaxOffset) {
2596 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2597 NewOffset - LU.MinOffset, HasBaseReg))
2598 return false;
2599 NewMaxOffset = NewOffset;
2600 }
2601
2602 // Update the use.
2603 LU.MinOffset = NewMinOffset;
2604 LU.MaxOffset = NewMaxOffset;
2605 LU.AccessTy = NewAccessTy;
2606 return true;
2607 }
2608
2609 /// Return an LSRUse index and an offset value for a fixup which needs the given
2610 /// expression, with the given kind and optional access type. Either reuse an
2611 /// existing use or create a new one, as needed.
getUse(const SCEV * & Expr,LSRUse::KindType Kind,MemAccessTy AccessTy)2612 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2613 LSRUse::KindType Kind,
2614 MemAccessTy AccessTy) {
2615 const SCEV *Copy = Expr;
2616 int64_t Offset = ExtractImmediate(Expr, SE);
2617
2618 // Basic uses can't accept any offset, for example.
2619 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2620 Offset, /*HasBaseReg=*/ true)) {
2621 Expr = Copy;
2622 Offset = 0;
2623 }
2624
2625 std::pair<UseMapTy::iterator, bool> P =
2626 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2627 if (!P.second) {
2628 // A use already existed with this base.
2629 size_t LUIdx = P.first->second;
2630 LSRUse &LU = Uses[LUIdx];
2631 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2632 // Reuse this use.
2633 return std::make_pair(LUIdx, Offset);
2634 }
2635
2636 // Create a new use.
2637 size_t LUIdx = Uses.size();
2638 P.first->second = LUIdx;
2639 Uses.push_back(LSRUse(Kind, AccessTy));
2640 LSRUse &LU = Uses[LUIdx];
2641
2642 LU.MinOffset = Offset;
2643 LU.MaxOffset = Offset;
2644 return std::make_pair(LUIdx, Offset);
2645 }
2646
2647 /// Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2648 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2649 if (&LU != &Uses.back())
2650 std::swap(LU, Uses.back());
2651 Uses.pop_back();
2652
2653 // Update RegUses.
2654 RegUses.swapAndDropUse(LUIdx, Uses.size());
2655 }
2656
2657 /// Look for a use distinct from OrigLU which is has a formula that has the same
2658 /// registers as the given formula.
2659 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2660 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2661 const LSRUse &OrigLU) {
2662 // Search all uses for the formula. This could be more clever.
2663 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2664 LSRUse &LU = Uses[LUIdx];
2665 // Check whether this use is close enough to OrigLU, to see whether it's
2666 // worthwhile looking through its formulae.
2667 // Ignore ICmpZero uses because they may contain formulae generated by
2668 // GenerateICmpZeroScales, in which case adding fixup offsets may
2669 // be invalid.
2670 if (&LU != &OrigLU &&
2671 LU.Kind != LSRUse::ICmpZero &&
2672 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2673 LU.WidestFixupType == OrigLU.WidestFixupType &&
2674 LU.HasFormulaWithSameRegs(OrigF)) {
2675 // Scan through this use's formulae.
2676 for (const Formula &F : LU.Formulae) {
2677 // Check to see if this formula has the same registers and symbols
2678 // as OrigF.
2679 if (F.BaseRegs == OrigF.BaseRegs &&
2680 F.ScaledReg == OrigF.ScaledReg &&
2681 F.BaseGV == OrigF.BaseGV &&
2682 F.Scale == OrigF.Scale &&
2683 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2684 if (F.BaseOffset == 0)
2685 return &LU;
2686 // This is the formula where all the registers and symbols matched;
2687 // there aren't going to be any others. Since we declined it, we
2688 // can skip the rest of the formulae and proceed to the next LSRUse.
2689 break;
2690 }
2691 }
2692 }
2693 }
2694
2695 // Nothing looked good.
2696 return nullptr;
2697 }
2698
CollectInterestingTypesAndFactors()2699 void LSRInstance::CollectInterestingTypesAndFactors() {
2700 SmallSetVector<const SCEV *, 4> Strides;
2701
2702 // Collect interesting types and strides.
2703 SmallVector<const SCEV *, 4> Worklist;
2704 for (const IVStrideUse &U : IU) {
2705 const SCEV *Expr = IU.getExpr(U);
2706
2707 // Collect interesting types.
2708 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2709
2710 // Add strides for mentioned loops.
2711 Worklist.push_back(Expr);
2712 do {
2713 const SCEV *S = Worklist.pop_back_val();
2714 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2715 if (AR->getLoop() == L)
2716 Strides.insert(AR->getStepRecurrence(SE));
2717 Worklist.push_back(AR->getStart());
2718 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2719 append_range(Worklist, Add->operands());
2720 }
2721 } while (!Worklist.empty());
2722 }
2723
2724 // Compute interesting factors from the set of interesting strides.
2725 for (SmallSetVector<const SCEV *, 4>::const_iterator
2726 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2727 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2728 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2729 const SCEV *OldStride = *I;
2730 const SCEV *NewStride = *NewStrideIter;
2731
2732 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2733 SE.getTypeSizeInBits(NewStride->getType())) {
2734 if (SE.getTypeSizeInBits(OldStride->getType()) >
2735 SE.getTypeSizeInBits(NewStride->getType()))
2736 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2737 else
2738 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2739 }
2740 if (const SCEVConstant *Factor =
2741 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2742 SE, true))) {
2743 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2744 Factors.insert(Factor->getAPInt().getSExtValue());
2745 } else if (const SCEVConstant *Factor =
2746 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2747 NewStride,
2748 SE, true))) {
2749 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2750 Factors.insert(Factor->getAPInt().getSExtValue());
2751 }
2752 }
2753
2754 // If all uses use the same type, don't bother looking for truncation-based
2755 // reuse.
2756 if (Types.size() == 1)
2757 Types.clear();
2758
2759 LLVM_DEBUG(print_factors_and_types(dbgs()));
2760 }
2761
2762 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2763 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2764 /// IVStrideUses, we could partially skip this.
2765 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2766 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2767 Loop *L, ScalarEvolution &SE) {
2768 for(; OI != OE; ++OI) {
2769 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2770 if (!SE.isSCEVable(Oper->getType()))
2771 continue;
2772
2773 if (const SCEVAddRecExpr *AR =
2774 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2775 if (AR->getLoop() == L)
2776 break;
2777 }
2778 }
2779 }
2780 return OI;
2781 }
2782
2783 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2784 /// a convenient helper.
getWideOperand(Value * Oper)2785 static Value *getWideOperand(Value *Oper) {
2786 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2787 return Trunc->getOperand(0);
2788 return Oper;
2789 }
2790
2791 /// Return true if we allow an IV chain to include both types.
isCompatibleIVType(Value * LVal,Value * RVal)2792 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2793 Type *LType = LVal->getType();
2794 Type *RType = RVal->getType();
2795 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2796 // Different address spaces means (possibly)
2797 // different types of the pointer implementation,
2798 // e.g. i16 vs i32 so disallow that.
2799 (LType->getPointerAddressSpace() ==
2800 RType->getPointerAddressSpace()));
2801 }
2802
2803 /// Return an approximation of this SCEV expression's "base", or NULL for any
2804 /// constant. Returning the expression itself is conservative. Returning a
2805 /// deeper subexpression is more precise and valid as long as it isn't less
2806 /// complex than another subexpression. For expressions involving multiple
2807 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2808 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2809 /// IVInc==b-a.
2810 ///
2811 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2812 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2813 static const SCEV *getExprBase(const SCEV *S) {
2814 switch (S->getSCEVType()) {
2815 default: // uncluding scUnknown.
2816 return S;
2817 case scConstant:
2818 return nullptr;
2819 case scTruncate:
2820 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2821 case scZeroExtend:
2822 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2823 case scSignExtend:
2824 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2825 case scAddExpr: {
2826 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2827 // there's nothing more complex.
2828 // FIXME: not sure if we want to recognize negation.
2829 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2830 for (const SCEV *SubExpr : reverse(Add->operands())) {
2831 if (SubExpr->getSCEVType() == scAddExpr)
2832 return getExprBase(SubExpr);
2833
2834 if (SubExpr->getSCEVType() != scMulExpr)
2835 return SubExpr;
2836 }
2837 return S; // all operands are scaled, be conservative.
2838 }
2839 case scAddRecExpr:
2840 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2841 }
2842 llvm_unreachable("Unknown SCEV kind!");
2843 }
2844
2845 /// Return true if the chain increment is profitable to expand into a loop
2846 /// invariant value, which may require its own register. A profitable chain
2847 /// increment will be an offset relative to the same base. We allow such offsets
2848 /// to potentially be used as chain increment as long as it's not obviously
2849 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2850 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2851 const SCEV *IncExpr,
2852 ScalarEvolution &SE) {
2853 // Aggressively form chains when -stress-ivchain.
2854 if (StressIVChain)
2855 return true;
2856
2857 // Do not replace a constant offset from IV head with a nonconstant IV
2858 // increment.
2859 if (!isa<SCEVConstant>(IncExpr)) {
2860 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2861 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2862 return false;
2863 }
2864
2865 SmallPtrSet<const SCEV*, 8> Processed;
2866 return !isHighCostExpansion(IncExpr, Processed, SE);
2867 }
2868
2869 /// Return true if the number of registers needed for the chain is estimated to
2870 /// be less than the number required for the individual IV users. First prohibit
2871 /// any IV users that keep the IV live across increments (the Users set should
2872 /// be empty). Next count the number and type of increments in the chain.
2873 ///
2874 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2875 /// effectively use postinc addressing modes. Only consider it profitable it the
2876 /// increments can be computed in fewer registers when chained.
2877 ///
2878 /// TODO: Consider IVInc free if it's already used in another chains.
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2879 static bool isProfitableChain(IVChain &Chain,
2880 SmallPtrSetImpl<Instruction *> &Users,
2881 ScalarEvolution &SE,
2882 const TargetTransformInfo &TTI) {
2883 if (StressIVChain)
2884 return true;
2885
2886 if (!Chain.hasIncs())
2887 return false;
2888
2889 if (!Users.empty()) {
2890 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2891 for (Instruction *Inst
2892 : Users) { dbgs() << " " << *Inst << "\n"; });
2893 return false;
2894 }
2895 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2896
2897 // The chain itself may require a register, so intialize cost to 1.
2898 int cost = 1;
2899
2900 // A complete chain likely eliminates the need for keeping the original IV in
2901 // a register. LSR does not currently know how to form a complete chain unless
2902 // the header phi already exists.
2903 if (isa<PHINode>(Chain.tailUserInst())
2904 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2905 --cost;
2906 }
2907 const SCEV *LastIncExpr = nullptr;
2908 unsigned NumConstIncrements = 0;
2909 unsigned NumVarIncrements = 0;
2910 unsigned NumReusedIncrements = 0;
2911
2912 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2913 return true;
2914
2915 for (const IVInc &Inc : Chain) {
2916 if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2917 return true;
2918 if (Inc.IncExpr->isZero())
2919 continue;
2920
2921 // Incrementing by zero or some constant is neutral. We assume constants can
2922 // be folded into an addressing mode or an add's immediate operand.
2923 if (isa<SCEVConstant>(Inc.IncExpr)) {
2924 ++NumConstIncrements;
2925 continue;
2926 }
2927
2928 if (Inc.IncExpr == LastIncExpr)
2929 ++NumReusedIncrements;
2930 else
2931 ++NumVarIncrements;
2932
2933 LastIncExpr = Inc.IncExpr;
2934 }
2935 // An IV chain with a single increment is handled by LSR's postinc
2936 // uses. However, a chain with multiple increments requires keeping the IV's
2937 // value live longer than it needs to be if chained.
2938 if (NumConstIncrements > 1)
2939 --cost;
2940
2941 // Materializing increment expressions in the preheader that didn't exist in
2942 // the original code may cost a register. For example, sign-extended array
2943 // indices can produce ridiculous increments like this:
2944 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2945 cost += NumVarIncrements;
2946
2947 // Reusing variable increments likely saves a register to hold the multiple of
2948 // the stride.
2949 cost -= NumReusedIncrements;
2950
2951 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2952 << "\n");
2953
2954 return cost < 0;
2955 }
2956
2957 /// Add this IV user to an existing chain or make it the head of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2958 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2959 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2960 // When IVs are used as types of varying widths, they are generally converted
2961 // to a wider type with some uses remaining narrow under a (free) trunc.
2962 Value *const NextIV = getWideOperand(IVOper);
2963 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2964 const SCEV *const OperExprBase = getExprBase(OperExpr);
2965
2966 // Visit all existing chains. Check if its IVOper can be computed as a
2967 // profitable loop invariant increment from the last link in the Chain.
2968 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2969 const SCEV *LastIncExpr = nullptr;
2970 for (; ChainIdx < NChains; ++ChainIdx) {
2971 IVChain &Chain = IVChainVec[ChainIdx];
2972
2973 // Prune the solution space aggressively by checking that both IV operands
2974 // are expressions that operate on the same unscaled SCEVUnknown. This
2975 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2976 // first avoids creating extra SCEV expressions.
2977 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2978 continue;
2979
2980 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2981 if (!isCompatibleIVType(PrevIV, NextIV))
2982 continue;
2983
2984 // A phi node terminates a chain.
2985 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2986 continue;
2987
2988 // The increment must be loop-invariant so it can be kept in a register.
2989 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2990 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2991 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2992 continue;
2993
2994 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2995 LastIncExpr = IncExpr;
2996 break;
2997 }
2998 }
2999 // If we haven't found a chain, create a new one, unless we hit the max. Don't
3000 // bother for phi nodes, because they must be last in the chain.
3001 if (ChainIdx == NChains) {
3002 if (isa<PHINode>(UserInst))
3003 return;
3004 if (NChains >= MaxChains && !StressIVChain) {
3005 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
3006 return;
3007 }
3008 LastIncExpr = OperExpr;
3009 // IVUsers may have skipped over sign/zero extensions. We don't currently
3010 // attempt to form chains involving extensions unless they can be hoisted
3011 // into this loop's AddRec.
3012 if (!isa<SCEVAddRecExpr>(LastIncExpr))
3013 return;
3014 ++NChains;
3015 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3016 OperExprBase));
3017 ChainUsersVec.resize(NChains);
3018 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3019 << ") IV=" << *LastIncExpr << "\n");
3020 } else {
3021 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
3022 << ") IV+" << *LastIncExpr << "\n");
3023 // Add this IV user to the end of the chain.
3024 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3025 }
3026 IVChain &Chain = IVChainVec[ChainIdx];
3027
3028 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3029 // This chain's NearUsers become FarUsers.
3030 if (!LastIncExpr->isZero()) {
3031 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3032 NearUsers.end());
3033 NearUsers.clear();
3034 }
3035
3036 // All other uses of IVOperand become near uses of the chain.
3037 // We currently ignore intermediate values within SCEV expressions, assuming
3038 // they will eventually be used be the current chain, or can be computed
3039 // from one of the chain increments. To be more precise we could
3040 // transitively follow its user and only add leaf IV users to the set.
3041 for (User *U : IVOper->users()) {
3042 Instruction *OtherUse = dyn_cast<Instruction>(U);
3043 if (!OtherUse)
3044 continue;
3045 // Uses in the chain will no longer be uses if the chain is formed.
3046 // Include the head of the chain in this iteration (not Chain.begin()).
3047 IVChain::const_iterator IncIter = Chain.Incs.begin();
3048 IVChain::const_iterator IncEnd = Chain.Incs.end();
3049 for( ; IncIter != IncEnd; ++IncIter) {
3050 if (IncIter->UserInst == OtherUse)
3051 break;
3052 }
3053 if (IncIter != IncEnd)
3054 continue;
3055
3056 if (SE.isSCEVable(OtherUse->getType())
3057 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3058 && IU.isIVUserOrOperand(OtherUse)) {
3059 continue;
3060 }
3061 NearUsers.insert(OtherUse);
3062 }
3063
3064 // Since this user is part of the chain, it's no longer considered a use
3065 // of the chain.
3066 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3067 }
3068
3069 /// Populate the vector of Chains.
3070 ///
3071 /// This decreases ILP at the architecture level. Targets with ample registers,
3072 /// multiple memory ports, and no register renaming probably don't want
3073 /// this. However, such targets should probably disable LSR altogether.
3074 ///
3075 /// The job of LSR is to make a reasonable choice of induction variables across
3076 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3077 /// ILP *within the loop* if the target wants it.
3078 ///
3079 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3080 /// will not reorder memory operations, it will recognize this as a chain, but
3081 /// will generate redundant IV increments. Ideally this would be corrected later
3082 /// by a smart scheduler:
3083 /// = A[i]
3084 /// = A[i+x]
3085 /// A[i] =
3086 /// A[i+x] =
3087 ///
3088 /// TODO: Walk the entire domtree within this loop, not just the path to the
3089 /// loop latch. This will discover chains on side paths, but requires
3090 /// maintaining multiple copies of the Chains state.
CollectChains()3091 void LSRInstance::CollectChains() {
3092 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3093 SmallVector<ChainUsers, 8> ChainUsersVec;
3094
3095 SmallVector<BasicBlock *,8> LatchPath;
3096 BasicBlock *LoopHeader = L->getHeader();
3097 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3098 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3099 LatchPath.push_back(Rung->getBlock());
3100 }
3101 LatchPath.push_back(LoopHeader);
3102
3103 // Walk the instruction stream from the loop header to the loop latch.
3104 for (BasicBlock *BB : reverse(LatchPath)) {
3105 for (Instruction &I : *BB) {
3106 // Skip instructions that weren't seen by IVUsers analysis.
3107 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3108 continue;
3109
3110 // Ignore users that are part of a SCEV expression. This way we only
3111 // consider leaf IV Users. This effectively rediscovers a portion of
3112 // IVUsers analysis but in program order this time.
3113 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3114 continue;
3115
3116 // Remove this instruction from any NearUsers set it may be in.
3117 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3118 ChainIdx < NChains; ++ChainIdx) {
3119 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3120 }
3121 // Search for operands that can be chained.
3122 SmallPtrSet<Instruction*, 4> UniqueOperands;
3123 User::op_iterator IVOpEnd = I.op_end();
3124 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3125 while (IVOpIter != IVOpEnd) {
3126 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3127 if (UniqueOperands.insert(IVOpInst).second)
3128 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3129 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3130 }
3131 } // Continue walking down the instructions.
3132 } // Continue walking down the domtree.
3133 // Visit phi backedges to determine if the chain can generate the IV postinc.
3134 for (PHINode &PN : L->getHeader()->phis()) {
3135 if (!SE.isSCEVable(PN.getType()))
3136 continue;
3137
3138 Instruction *IncV =
3139 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3140 if (IncV)
3141 ChainInstruction(&PN, IncV, ChainUsersVec);
3142 }
3143 // Remove any unprofitable chains.
3144 unsigned ChainIdx = 0;
3145 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3146 UsersIdx < NChains; ++UsersIdx) {
3147 if (!isProfitableChain(IVChainVec[UsersIdx],
3148 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3149 continue;
3150 // Preserve the chain at UsesIdx.
3151 if (ChainIdx != UsersIdx)
3152 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3153 FinalizeChain(IVChainVec[ChainIdx]);
3154 ++ChainIdx;
3155 }
3156 IVChainVec.resize(ChainIdx);
3157 }
3158
FinalizeChain(IVChain & Chain)3159 void LSRInstance::FinalizeChain(IVChain &Chain) {
3160 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3161 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3162
3163 for (const IVInc &Inc : Chain) {
3164 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3165 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3166 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3167 IVIncSet.insert(UseI);
3168 }
3169 }
3170
3171 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)3172 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3173 Value *Operand, const TargetTransformInfo &TTI) {
3174 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3175 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3176 return false;
3177
3178 if (IncConst->getAPInt().getMinSignedBits() > 64)
3179 return false;
3180
3181 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3182 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3183 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3184 IncOffset, /*HasBaseReg=*/false))
3185 return false;
3186
3187 return true;
3188 }
3189
3190 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3191 /// user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SmallVectorImpl<WeakTrackingVH> & DeadInsts)3192 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3193 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3194 // Find the new IVOperand for the head of the chain. It may have been replaced
3195 // by LSR.
3196 const IVInc &Head = Chain.Incs[0];
3197 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3198 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3199 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3200 IVOpEnd, L, SE);
3201 Value *IVSrc = nullptr;
3202 while (IVOpIter != IVOpEnd) {
3203 IVSrc = getWideOperand(*IVOpIter);
3204
3205 // If this operand computes the expression that the chain needs, we may use
3206 // it. (Check this after setting IVSrc which is used below.)
3207 //
3208 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3209 // narrow for the chain, so we can no longer use it. We do allow using a
3210 // wider phi, assuming the LSR checked for free truncation. In that case we
3211 // should already have a truncate on this operand such that
3212 // getSCEV(IVSrc) == IncExpr.
3213 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3214 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3215 break;
3216 }
3217 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3218 }
3219 if (IVOpIter == IVOpEnd) {
3220 // Gracefully give up on this chain.
3221 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3222 return;
3223 }
3224 assert(IVSrc && "Failed to find IV chain source");
3225
3226 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3227 Type *IVTy = IVSrc->getType();
3228 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3229 const SCEV *LeftOverExpr = nullptr;
3230 for (const IVInc &Inc : Chain) {
3231 Instruction *InsertPt = Inc.UserInst;
3232 if (isa<PHINode>(InsertPt))
3233 InsertPt = L->getLoopLatch()->getTerminator();
3234
3235 // IVOper will replace the current IV User's operand. IVSrc is the IV
3236 // value currently held in a register.
3237 Value *IVOper = IVSrc;
3238 if (!Inc.IncExpr->isZero()) {
3239 // IncExpr was the result of subtraction of two narrow values, so must
3240 // be signed.
3241 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3242 LeftOverExpr = LeftOverExpr ?
3243 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3244 }
3245 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3246 // Expand the IV increment.
3247 Rewriter.clearPostInc();
3248 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3249 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3250 SE.getUnknown(IncV));
3251 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3252
3253 // If an IV increment can't be folded, use it as the next IV value.
3254 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3255 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3256 IVSrc = IVOper;
3257 LeftOverExpr = nullptr;
3258 }
3259 }
3260 Type *OperTy = Inc.IVOperand->getType();
3261 if (IVTy != OperTy) {
3262 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3263 "cannot extend a chained IV");
3264 IRBuilder<> Builder(InsertPt);
3265 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3266 }
3267 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3268 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3269 DeadInsts.emplace_back(OperandIsInstr);
3270 }
3271 // If LSR created a new, wider phi, we may also replace its postinc. We only
3272 // do this if we also found a wide value for the head of the chain.
3273 if (isa<PHINode>(Chain.tailUserInst())) {
3274 for (PHINode &Phi : L->getHeader()->phis()) {
3275 if (!isCompatibleIVType(&Phi, IVSrc))
3276 continue;
3277 Instruction *PostIncV = dyn_cast<Instruction>(
3278 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3279 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3280 continue;
3281 Value *IVOper = IVSrc;
3282 Type *PostIncTy = PostIncV->getType();
3283 if (IVTy != PostIncTy) {
3284 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3285 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3286 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3287 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3288 }
3289 Phi.replaceUsesOfWith(PostIncV, IVOper);
3290 DeadInsts.emplace_back(PostIncV);
3291 }
3292 }
3293 }
3294
CollectFixupsAndInitialFormulae()3295 void LSRInstance::CollectFixupsAndInitialFormulae() {
3296 BranchInst *ExitBranch = nullptr;
3297 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3298
3299 // For calculating baseline cost
3300 SmallPtrSet<const SCEV *, 16> Regs;
3301 DenseSet<const SCEV *> VisitedRegs;
3302 DenseSet<size_t> VisitedLSRUse;
3303
3304 for (const IVStrideUse &U : IU) {
3305 Instruction *UserInst = U.getUser();
3306 // Skip IV users that are part of profitable IV Chains.
3307 User::op_iterator UseI =
3308 find(UserInst->operands(), U.getOperandValToReplace());
3309 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3310 if (IVIncSet.count(UseI)) {
3311 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3312 continue;
3313 }
3314
3315 LSRUse::KindType Kind = LSRUse::Basic;
3316 MemAccessTy AccessTy;
3317 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3318 Kind = LSRUse::Address;
3319 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3320 }
3321
3322 const SCEV *S = IU.getExpr(U);
3323 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3324
3325 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3326 // (N - i == 0), and this allows (N - i) to be the expression that we work
3327 // with rather than just N or i, so we can consider the register
3328 // requirements for both N and i at the same time. Limiting this code to
3329 // equality icmps is not a problem because all interesting loops use
3330 // equality icmps, thanks to IndVarSimplify.
3331 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3332 // If CI can be saved in some target, like replaced inside hardware loop
3333 // in PowerPC, no need to generate initial formulae for it.
3334 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3335 continue;
3336 if (CI->isEquality()) {
3337 // Swap the operands if needed to put the OperandValToReplace on the
3338 // left, for consistency.
3339 Value *NV = CI->getOperand(1);
3340 if (NV == U.getOperandValToReplace()) {
3341 CI->setOperand(1, CI->getOperand(0));
3342 CI->setOperand(0, NV);
3343 NV = CI->getOperand(1);
3344 Changed = true;
3345 }
3346
3347 // x == y --> x - y == 0
3348 const SCEV *N = SE.getSCEV(NV);
3349 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3350 (!NV->getType()->isPointerTy() ||
3351 SE.getPointerBase(N) == SE.getPointerBase(S))) {
3352 // S is normalized, so normalize N before folding it into S
3353 // to keep the result normalized.
3354 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3355 Kind = LSRUse::ICmpZero;
3356 S = SE.getMinusSCEV(N, S);
3357 } else if (L->isLoopInvariant(NV) &&
3358 (!isa<Instruction>(NV) ||
3359 DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3360 !NV->getType()->isPointerTy()) {
3361 // If we can't generally expand the expression (e.g. it contains
3362 // a divide), but it is already at a loop invariant point before the
3363 // loop, wrap it in an unknown (to prevent the expander from trying
3364 // to re-expand in a potentially unsafe way.) The restriction to
3365 // integer types is required because the unknown hides the base, and
3366 // SCEV can't compute the difference of two unknown pointers.
3367 N = SE.getUnknown(NV);
3368 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3369 Kind = LSRUse::ICmpZero;
3370 S = SE.getMinusSCEV(N, S);
3371 assert(!isa<SCEVCouldNotCompute>(S));
3372 }
3373
3374 // -1 and the negations of all interesting strides (except the negation
3375 // of -1) are now also interesting.
3376 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3377 if (Factors[i] != -1)
3378 Factors.insert(-(uint64_t)Factors[i]);
3379 Factors.insert(-1);
3380 }
3381 }
3382
3383 // Get or create an LSRUse.
3384 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3385 size_t LUIdx = P.first;
3386 int64_t Offset = P.second;
3387 LSRUse &LU = Uses[LUIdx];
3388
3389 // Record the fixup.
3390 LSRFixup &LF = LU.getNewFixup();
3391 LF.UserInst = UserInst;
3392 LF.OperandValToReplace = U.getOperandValToReplace();
3393 LF.PostIncLoops = TmpPostIncLoops;
3394 LF.Offset = Offset;
3395 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3396
3397 // Create SCEV as Formula for calculating baseline cost
3398 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3399 Formula F;
3400 F.initialMatch(S, L, SE);
3401 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3402 VisitedLSRUse.insert(LUIdx);
3403 }
3404
3405 if (!LU.WidestFixupType ||
3406 SE.getTypeSizeInBits(LU.WidestFixupType) <
3407 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3408 LU.WidestFixupType = LF.OperandValToReplace->getType();
3409
3410 // If this is the first use of this LSRUse, give it a formula.
3411 if (LU.Formulae.empty()) {
3412 InsertInitialFormula(S, LU, LUIdx);
3413 CountRegisters(LU.Formulae.back(), LUIdx);
3414 }
3415 }
3416
3417 LLVM_DEBUG(print_fixups(dbgs()));
3418 }
3419
3420 /// Insert a formula for the given expression into the given use, separating out
3421 /// loop-variant portions from loop-invariant and loop-computable portions.
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3422 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3423 size_t LUIdx) {
3424 // Mark uses whose expressions cannot be expanded.
3425 if (!Rewriter.isSafeToExpand(S))
3426 LU.RigidFormula = true;
3427
3428 Formula F;
3429 F.initialMatch(S, L, SE);
3430 bool Inserted = InsertFormula(LU, LUIdx, F);
3431 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3432 }
3433
3434 /// Insert a simple single-register formula for the given expression into the
3435 /// given use.
3436 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3437 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3438 LSRUse &LU, size_t LUIdx) {
3439 Formula F;
3440 F.BaseRegs.push_back(S);
3441 F.HasBaseReg = true;
3442 bool Inserted = InsertFormula(LU, LUIdx, F);
3443 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3444 }
3445
3446 /// Note which registers are used by the given formula, updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3447 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3448 if (F.ScaledReg)
3449 RegUses.countRegister(F.ScaledReg, LUIdx);
3450 for (const SCEV *BaseReg : F.BaseRegs)
3451 RegUses.countRegister(BaseReg, LUIdx);
3452 }
3453
3454 /// If the given formula has not yet been inserted, add it to the list, and
3455 /// return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3456 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3457 // Do not insert formula that we will not be able to expand.
3458 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3459 "Formula is illegal");
3460
3461 if (!LU.InsertFormula(F, *L))
3462 return false;
3463
3464 CountRegisters(F, LUIdx);
3465 return true;
3466 }
3467
3468 /// Check for other uses of loop-invariant values which we're tracking. These
3469 /// other uses will pin these values in registers, making them less profitable
3470 /// for elimination.
3471 /// TODO: This currently misses non-constant addrec step registers.
3472 /// TODO: Should this give more weight to users inside the loop?
3473 void
CollectLoopInvariantFixupsAndFormulae()3474 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3475 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3476 SmallPtrSet<const SCEV *, 32> Visited;
3477
3478 while (!Worklist.empty()) {
3479 const SCEV *S = Worklist.pop_back_val();
3480
3481 // Don't process the same SCEV twice
3482 if (!Visited.insert(S).second)
3483 continue;
3484
3485 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3486 append_range(Worklist, N->operands());
3487 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3488 Worklist.push_back(C->getOperand());
3489 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3490 Worklist.push_back(D->getLHS());
3491 Worklist.push_back(D->getRHS());
3492 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3493 const Value *V = US->getValue();
3494 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3495 // Look for instructions defined outside the loop.
3496 if (L->contains(Inst)) continue;
3497 } else if (isa<UndefValue>(V))
3498 // Undef doesn't have a live range, so it doesn't matter.
3499 continue;
3500 for (const Use &U : V->uses()) {
3501 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3502 // Ignore non-instructions.
3503 if (!UserInst)
3504 continue;
3505 // Don't bother if the instruction is an EHPad.
3506 if (UserInst->isEHPad())
3507 continue;
3508 // Ignore instructions in other functions (as can happen with
3509 // Constants).
3510 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3511 continue;
3512 // Ignore instructions not dominated by the loop.
3513 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3514 UserInst->getParent() :
3515 cast<PHINode>(UserInst)->getIncomingBlock(
3516 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3517 if (!DT.dominates(L->getHeader(), UseBB))
3518 continue;
3519 // Don't bother if the instruction is in a BB which ends in an EHPad.
3520 if (UseBB->getTerminator()->isEHPad())
3521 continue;
3522
3523 // Ignore cases in which the currently-examined value could come from
3524 // a basic block terminated with an EHPad. This checks all incoming
3525 // blocks of the phi node since it is possible that the same incoming
3526 // value comes from multiple basic blocks, only some of which may end
3527 // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3528 // pass would try to insert instructions into an EHPad, hitting an
3529 // assertion.
3530 if (isa<PHINode>(UserInst)) {
3531 const auto *PhiNode = cast<PHINode>(UserInst);
3532 bool HasIncompatibleEHPTerminatedBlock = false;
3533 llvm::Value *ExpectedValue = U;
3534 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3535 if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3536 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3537 HasIncompatibleEHPTerminatedBlock = true;
3538 break;
3539 }
3540 }
3541 }
3542 if (HasIncompatibleEHPTerminatedBlock) {
3543 continue;
3544 }
3545 }
3546
3547 // Don't bother rewriting PHIs in catchswitch blocks.
3548 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3549 continue;
3550 // Ignore uses which are part of other SCEV expressions, to avoid
3551 // analyzing them multiple times.
3552 if (SE.isSCEVable(UserInst->getType())) {
3553 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3554 // If the user is a no-op, look through to its uses.
3555 if (!isa<SCEVUnknown>(UserS))
3556 continue;
3557 if (UserS == US) {
3558 Worklist.push_back(
3559 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3560 continue;
3561 }
3562 }
3563 // Ignore icmp instructions which are already being analyzed.
3564 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3565 unsigned OtherIdx = !U.getOperandNo();
3566 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3567 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3568 continue;
3569 }
3570
3571 std::pair<size_t, int64_t> P = getUse(
3572 S, LSRUse::Basic, MemAccessTy());
3573 size_t LUIdx = P.first;
3574 int64_t Offset = P.second;
3575 LSRUse &LU = Uses[LUIdx];
3576 LSRFixup &LF = LU.getNewFixup();
3577 LF.UserInst = const_cast<Instruction *>(UserInst);
3578 LF.OperandValToReplace = U;
3579 LF.Offset = Offset;
3580 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3581 if (!LU.WidestFixupType ||
3582 SE.getTypeSizeInBits(LU.WidestFixupType) <
3583 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3584 LU.WidestFixupType = LF.OperandValToReplace->getType();
3585 InsertSupplementalFormula(US, LU, LUIdx);
3586 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3587 break;
3588 }
3589 }
3590 }
3591 }
3592
3593 /// Split S into subexpressions which can be pulled out into separate
3594 /// registers. If C is non-null, multiply each subexpression by C.
3595 ///
3596 /// Return remainder expression after factoring the subexpressions captured by
3597 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3598 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3599 SmallVectorImpl<const SCEV *> &Ops,
3600 const Loop *L,
3601 ScalarEvolution &SE,
3602 unsigned Depth = 0) {
3603 // Arbitrarily cap recursion to protect compile time.
3604 if (Depth >= 3)
3605 return S;
3606
3607 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3608 // Break out add operands.
3609 for (const SCEV *S : Add->operands()) {
3610 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3611 if (Remainder)
3612 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3613 }
3614 return nullptr;
3615 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3616 // Split a non-zero base out of an addrec.
3617 if (AR->getStart()->isZero() || !AR->isAffine())
3618 return S;
3619
3620 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3621 C, Ops, L, SE, Depth+1);
3622 // Split the non-zero AddRec unless it is part of a nested recurrence that
3623 // does not pertain to this loop.
3624 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3625 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3626 Remainder = nullptr;
3627 }
3628 if (Remainder != AR->getStart()) {
3629 if (!Remainder)
3630 Remainder = SE.getConstant(AR->getType(), 0);
3631 return SE.getAddRecExpr(Remainder,
3632 AR->getStepRecurrence(SE),
3633 AR->getLoop(),
3634 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3635 SCEV::FlagAnyWrap);
3636 }
3637 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3638 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3639 if (Mul->getNumOperands() != 2)
3640 return S;
3641 if (const SCEVConstant *Op0 =
3642 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3643 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3644 const SCEV *Remainder =
3645 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3646 if (Remainder)
3647 Ops.push_back(SE.getMulExpr(C, Remainder));
3648 return nullptr;
3649 }
3650 }
3651 return S;
3652 }
3653
3654 /// Return true if the SCEV represents a value that may end up as a
3655 /// post-increment operation.
mayUsePostIncMode(const TargetTransformInfo & TTI,LSRUse & LU,const SCEV * S,const Loop * L,ScalarEvolution & SE)3656 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3657 LSRUse &LU, const SCEV *S, const Loop *L,
3658 ScalarEvolution &SE) {
3659 if (LU.Kind != LSRUse::Address ||
3660 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3661 return false;
3662 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3663 if (!AR)
3664 return false;
3665 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3666 if (!isa<SCEVConstant>(LoopStep))
3667 return false;
3668 // Check if a post-indexed load/store can be used.
3669 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3670 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3671 const SCEV *LoopStart = AR->getStart();
3672 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3673 return true;
3674 }
3675 return false;
3676 }
3677
3678 /// Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3679 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3680 const Formula &Base,
3681 unsigned Depth, size_t Idx,
3682 bool IsScaledReg) {
3683 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3684 // Don't generate reassociations for the base register of a value that
3685 // may generate a post-increment operator. The reason is that the
3686 // reassociations cause extra base+register formula to be created,
3687 // and possibly chosen, but the post-increment is more efficient.
3688 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3689 return;
3690 SmallVector<const SCEV *, 8> AddOps;
3691 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3692 if (Remainder)
3693 AddOps.push_back(Remainder);
3694
3695 if (AddOps.size() == 1)
3696 return;
3697
3698 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3699 JE = AddOps.end();
3700 J != JE; ++J) {
3701 // Loop-variant "unknown" values are uninteresting; we won't be able to
3702 // do anything meaningful with them.
3703 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3704 continue;
3705
3706 // Don't pull a constant into a register if the constant could be folded
3707 // into an immediate field.
3708 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3709 LU.AccessTy, *J, Base.getNumRegs() > 1))
3710 continue;
3711
3712 // Collect all operands except *J.
3713 SmallVector<const SCEV *, 8> InnerAddOps(
3714 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3715 InnerAddOps.append(std::next(J),
3716 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3717
3718 // Don't leave just a constant behind in a register if the constant could
3719 // be folded into an immediate field.
3720 if (InnerAddOps.size() == 1 &&
3721 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3722 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3723 continue;
3724
3725 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3726 if (InnerSum->isZero())
3727 continue;
3728 Formula F = Base;
3729
3730 // Add the remaining pieces of the add back into the new formula.
3731 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3732 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3733 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3734 InnerSumSC->getValue()->getZExtValue())) {
3735 F.UnfoldedOffset =
3736 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3737 if (IsScaledReg)
3738 F.ScaledReg = nullptr;
3739 else
3740 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3741 } else if (IsScaledReg)
3742 F.ScaledReg = InnerSum;
3743 else
3744 F.BaseRegs[Idx] = InnerSum;
3745
3746 // Add J as its own register, or an unfolded immediate.
3747 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3748 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3749 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3750 SC->getValue()->getZExtValue()))
3751 F.UnfoldedOffset =
3752 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3753 else
3754 F.BaseRegs.push_back(*J);
3755 // We may have changed the number of register in base regs, adjust the
3756 // formula accordingly.
3757 F.canonicalize(*L);
3758
3759 if (InsertFormula(LU, LUIdx, F))
3760 // If that formula hadn't been seen before, recurse to find more like
3761 // it.
3762 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3763 // Because just Depth is not enough to bound compile time.
3764 // This means that every time AddOps.size() is greater 16^x we will add
3765 // x to Depth.
3766 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3767 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3768 }
3769 }
3770
3771 /// Split out subexpressions from adds and the bases of addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3772 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3773 Formula Base, unsigned Depth) {
3774 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3775 // Arbitrarily cap recursion to protect compile time.
3776 if (Depth >= 3)
3777 return;
3778
3779 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3780 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3781
3782 if (Base.Scale == 1)
3783 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3784 /* Idx */ -1, /* IsScaledReg */ true);
3785 }
3786
3787 /// Generate a formula consisting of all of the loop-dominating registers added
3788 /// into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3789 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3790 Formula Base) {
3791 // This method is only interesting on a plurality of registers.
3792 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3793 (Base.UnfoldedOffset != 0) <= 1)
3794 return;
3795
3796 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3797 // processing the formula.
3798 Base.unscale();
3799 SmallVector<const SCEV *, 4> Ops;
3800 Formula NewBase = Base;
3801 NewBase.BaseRegs.clear();
3802 Type *CombinedIntegerType = nullptr;
3803 for (const SCEV *BaseReg : Base.BaseRegs) {
3804 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3805 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3806 if (!CombinedIntegerType)
3807 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3808 Ops.push_back(BaseReg);
3809 }
3810 else
3811 NewBase.BaseRegs.push_back(BaseReg);
3812 }
3813
3814 // If no register is relevant, we're done.
3815 if (Ops.size() == 0)
3816 return;
3817
3818 // Utility function for generating the required variants of the combined
3819 // registers.
3820 auto GenerateFormula = [&](const SCEV *Sum) {
3821 Formula F = NewBase;
3822
3823 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3824 // opportunity to fold something. For now, just ignore such cases
3825 // rather than proceed with zero in a register.
3826 if (Sum->isZero())
3827 return;
3828
3829 F.BaseRegs.push_back(Sum);
3830 F.canonicalize(*L);
3831 (void)InsertFormula(LU, LUIdx, F);
3832 };
3833
3834 // If we collected at least two registers, generate a formula combining them.
3835 if (Ops.size() > 1) {
3836 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3837 GenerateFormula(SE.getAddExpr(OpsCopy));
3838 }
3839
3840 // If we have an unfolded offset, generate a formula combining it with the
3841 // registers collected.
3842 if (NewBase.UnfoldedOffset) {
3843 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3844 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3845 true));
3846 NewBase.UnfoldedOffset = 0;
3847 GenerateFormula(SE.getAddExpr(Ops));
3848 }
3849 }
3850
3851 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3852 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3853 const Formula &Base, size_t Idx,
3854 bool IsScaledReg) {
3855 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3856 GlobalValue *GV = ExtractSymbol(G, SE);
3857 if (G->isZero() || !GV)
3858 return;
3859 Formula F = Base;
3860 F.BaseGV = GV;
3861 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3862 return;
3863 if (IsScaledReg)
3864 F.ScaledReg = G;
3865 else
3866 F.BaseRegs[Idx] = G;
3867 (void)InsertFormula(LU, LUIdx, F);
3868 }
3869
3870 /// Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3871 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3872 Formula Base) {
3873 // We can't add a symbolic offset if the address already contains one.
3874 if (Base.BaseGV) return;
3875
3876 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3877 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3878 if (Base.Scale == 1)
3879 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3880 /* IsScaledReg */ true);
3881 }
3882
3883 /// Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3884 void LSRInstance::GenerateConstantOffsetsImpl(
3885 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3886 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3887
3888 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3889 Formula F = Base;
3890 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3891
3892 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3893 // Add the offset to the base register.
3894 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3895 // If it cancelled out, drop the base register, otherwise update it.
3896 if (NewG->isZero()) {
3897 if (IsScaledReg) {
3898 F.Scale = 0;
3899 F.ScaledReg = nullptr;
3900 } else
3901 F.deleteBaseReg(F.BaseRegs[Idx]);
3902 F.canonicalize(*L);
3903 } else if (IsScaledReg)
3904 F.ScaledReg = NewG;
3905 else
3906 F.BaseRegs[Idx] = NewG;
3907
3908 (void)InsertFormula(LU, LUIdx, F);
3909 }
3910 };
3911
3912 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3913
3914 // With constant offsets and constant steps, we can generate pre-inc
3915 // accesses by having the offset equal the step. So, for access #0 with a
3916 // step of 8, we generate a G - 8 base which would require the first access
3917 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3918 // for itself and hopefully becomes the base for other accesses. This means
3919 // means that a single pre-indexed access can be generated to become the new
3920 // base pointer for each iteration of the loop, resulting in no extra add/sub
3921 // instructions for pointer updating.
3922 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3923 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3924 if (auto *StepRec =
3925 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3926 const APInt &StepInt = StepRec->getAPInt();
3927 int64_t Step = StepInt.isNegative() ?
3928 StepInt.getSExtValue() : StepInt.getZExtValue();
3929
3930 for (int64_t Offset : Worklist) {
3931 Offset -= Step;
3932 GenerateOffset(G, Offset);
3933 }
3934 }
3935 }
3936 }
3937 for (int64_t Offset : Worklist)
3938 GenerateOffset(G, Offset);
3939
3940 int64_t Imm = ExtractImmediate(G, SE);
3941 if (G->isZero() || Imm == 0)
3942 return;
3943 Formula F = Base;
3944 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3945 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3946 return;
3947 if (IsScaledReg) {
3948 F.ScaledReg = G;
3949 } else {
3950 F.BaseRegs[Idx] = G;
3951 // We may generate non canonical Formula if G is a recurrent expr reg
3952 // related with current loop while F.ScaledReg is not.
3953 F.canonicalize(*L);
3954 }
3955 (void)InsertFormula(LU, LUIdx, F);
3956 }
3957
3958 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3959 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3960 Formula Base) {
3961 // TODO: For now, just add the min and max offset, because it usually isn't
3962 // worthwhile looking at everything inbetween.
3963 SmallVector<int64_t, 2> Worklist;
3964 Worklist.push_back(LU.MinOffset);
3965 if (LU.MaxOffset != LU.MinOffset)
3966 Worklist.push_back(LU.MaxOffset);
3967
3968 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3969 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3970 if (Base.Scale == 1)
3971 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3972 /* IsScaledReg */ true);
3973 }
3974
3975 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3976 /// == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3977 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3978 Formula Base) {
3979 if (LU.Kind != LSRUse::ICmpZero) return;
3980
3981 // Determine the integer type for the base formula.
3982 Type *IntTy = Base.getType();
3983 if (!IntTy) return;
3984 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3985
3986 // Don't do this if there is more than one offset.
3987 if (LU.MinOffset != LU.MaxOffset) return;
3988
3989 // Check if transformation is valid. It is illegal to multiply pointer.
3990 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3991 return;
3992 for (const SCEV *BaseReg : Base.BaseRegs)
3993 if (BaseReg->getType()->isPointerTy())
3994 return;
3995 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3996
3997 // Check each interesting stride.
3998 for (int64_t Factor : Factors) {
3999 // Check that Factor can be represented by IntTy
4000 if (!ConstantInt::isValueValidForType(IntTy, Factor))
4001 continue;
4002 // Check that the multiplication doesn't overflow.
4003 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4004 continue;
4005 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4006 assert(Factor != 0 && "Zero factor not expected!");
4007 if (NewBaseOffset / Factor != Base.BaseOffset)
4008 continue;
4009 // If the offset will be truncated at this use, check that it is in bounds.
4010 if (!IntTy->isPointerTy() &&
4011 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4012 continue;
4013
4014 // Check that multiplying with the use offset doesn't overflow.
4015 int64_t Offset = LU.MinOffset;
4016 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4017 continue;
4018 Offset = (uint64_t)Offset * Factor;
4019 if (Offset / Factor != LU.MinOffset)
4020 continue;
4021 // If the offset will be truncated at this use, check that it is in bounds.
4022 if (!IntTy->isPointerTy() &&
4023 !ConstantInt::isValueValidForType(IntTy, Offset))
4024 continue;
4025
4026 Formula F = Base;
4027 F.BaseOffset = NewBaseOffset;
4028
4029 // Check that this scale is legal.
4030 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4031 continue;
4032
4033 // Compensate for the use having MinOffset built into it.
4034 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4035
4036 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4037
4038 // Check that multiplying with each base register doesn't overflow.
4039 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4040 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4041 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4042 goto next;
4043 }
4044
4045 // Check that multiplying with the scaled register doesn't overflow.
4046 if (F.ScaledReg) {
4047 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4048 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4049 continue;
4050 }
4051
4052 // Check that multiplying with the unfolded offset doesn't overflow.
4053 if (F.UnfoldedOffset != 0) {
4054 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4055 Factor == -1)
4056 continue;
4057 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4058 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4059 continue;
4060 // If the offset will be truncated, check that it is in bounds.
4061 if (!IntTy->isPointerTy() &&
4062 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4063 continue;
4064 }
4065
4066 // If we make it here and it's legal, add it.
4067 (void)InsertFormula(LU, LUIdx, F);
4068 next:;
4069 }
4070 }
4071
4072 /// Generate stride factor reuse formulae by making use of scaled-offset address
4073 /// modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)4074 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4075 // Determine the integer type for the base formula.
4076 Type *IntTy = Base.getType();
4077 if (!IntTy) return;
4078
4079 // If this Formula already has a scaled register, we can't add another one.
4080 // Try to unscale the formula to generate a better scale.
4081 if (Base.Scale != 0 && !Base.unscale())
4082 return;
4083
4084 assert(Base.Scale == 0 && "unscale did not did its job!");
4085
4086 // Check each interesting stride.
4087 for (int64_t Factor : Factors) {
4088 Base.Scale = Factor;
4089 Base.HasBaseReg = Base.BaseRegs.size() > 1;
4090 // Check whether this scale is going to be legal.
4091 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4092 Base)) {
4093 // As a special-case, handle special out-of-loop Basic users specially.
4094 // TODO: Reconsider this special case.
4095 if (LU.Kind == LSRUse::Basic &&
4096 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4097 LU.AccessTy, Base) &&
4098 LU.AllFixupsOutsideLoop)
4099 LU.Kind = LSRUse::Special;
4100 else
4101 continue;
4102 }
4103 // For an ICmpZero, negating a solitary base register won't lead to
4104 // new solutions.
4105 if (LU.Kind == LSRUse::ICmpZero &&
4106 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4107 continue;
4108 // For each addrec base reg, if its loop is current loop, apply the scale.
4109 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4110 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4111 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4112 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4113 if (FactorS->isZero())
4114 continue;
4115 // Divide out the factor, ignoring high bits, since we'll be
4116 // scaling the value back up in the end.
4117 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4118 if (!Quotient->isZero()) {
4119 // TODO: This could be optimized to avoid all the copying.
4120 Formula F = Base;
4121 F.ScaledReg = Quotient;
4122 F.deleteBaseReg(F.BaseRegs[i]);
4123 // The canonical representation of 1*reg is reg, which is already in
4124 // Base. In that case, do not try to insert the formula, it will be
4125 // rejected anyway.
4126 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4127 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4128 continue;
4129 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4130 // non canonical Formula with ScaledReg's loop not being L.
4131 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4132 F.canonicalize(*L);
4133 (void)InsertFormula(LU, LUIdx, F);
4134 }
4135 }
4136 }
4137 }
4138 }
4139
4140 /// Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)4141 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4142 // Don't bother truncating symbolic values.
4143 if (Base.BaseGV) return;
4144
4145 // Determine the integer type for the base formula.
4146 Type *DstTy = Base.getType();
4147 if (!DstTy) return;
4148 if (DstTy->isPointerTy())
4149 return;
4150
4151 // It is invalid to extend a pointer type so exit early if ScaledReg or
4152 // any of the BaseRegs are pointers.
4153 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4154 return;
4155 if (any_of(Base.BaseRegs,
4156 [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4157 return;
4158
4159 for (Type *SrcTy : Types) {
4160 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4161 Formula F = Base;
4162
4163 // Sometimes SCEV is able to prove zero during ext transform. It may
4164 // happen if SCEV did not do all possible transforms while creating the
4165 // initial node (maybe due to depth limitations), but it can do them while
4166 // taking ext.
4167 if (F.ScaledReg) {
4168 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4169 if (NewScaledReg->isZero())
4170 continue;
4171 F.ScaledReg = NewScaledReg;
4172 }
4173 bool HasZeroBaseReg = false;
4174 for (const SCEV *&BaseReg : F.BaseRegs) {
4175 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4176 if (NewBaseReg->isZero()) {
4177 HasZeroBaseReg = true;
4178 break;
4179 }
4180 BaseReg = NewBaseReg;
4181 }
4182 if (HasZeroBaseReg)
4183 continue;
4184
4185 // TODO: This assumes we've done basic processing on all uses and
4186 // have an idea what the register usage is.
4187 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4188 continue;
4189
4190 F.canonicalize(*L);
4191 (void)InsertFormula(LU, LUIdx, F);
4192 }
4193 }
4194 }
4195
4196 namespace {
4197
4198 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4199 /// modifications so that the search phase doesn't have to worry about the data
4200 /// structures moving underneath it.
4201 struct WorkItem {
4202 size_t LUIdx;
4203 int64_t Imm;
4204 const SCEV *OrigReg;
4205
WorkItem__anon6fa033cb0e11::WorkItem4206 WorkItem(size_t LI, int64_t I, const SCEV *R)
4207 : LUIdx(LI), Imm(I), OrigReg(R) {}
4208
4209 void print(raw_ostream &OS) const;
4210 void dump() const;
4211 };
4212
4213 } // end anonymous namespace
4214
4215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const4216 void WorkItem::print(raw_ostream &OS) const {
4217 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4218 << " , add offset " << Imm;
4219 }
4220
dump() const4221 LLVM_DUMP_METHOD void WorkItem::dump() const {
4222 print(errs()); errs() << '\n';
4223 }
4224 #endif
4225
4226 /// Look for registers which are a constant distance apart and try to form reuse
4227 /// opportunities between them.
GenerateCrossUseConstantOffsets()4228 void LSRInstance::GenerateCrossUseConstantOffsets() {
4229 // Group the registers by their value without any added constant offset.
4230 using ImmMapTy = std::map<int64_t, const SCEV *>;
4231
4232 DenseMap<const SCEV *, ImmMapTy> Map;
4233 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4234 SmallVector<const SCEV *, 8> Sequence;
4235 for (const SCEV *Use : RegUses) {
4236 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4237 int64_t Imm = ExtractImmediate(Reg, SE);
4238 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4239 if (Pair.second)
4240 Sequence.push_back(Reg);
4241 Pair.first->second.insert(std::make_pair(Imm, Use));
4242 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4243 }
4244
4245 // Now examine each set of registers with the same base value. Build up
4246 // a list of work to do and do the work in a separate step so that we're
4247 // not adding formulae and register counts while we're searching.
4248 SmallVector<WorkItem, 32> WorkItems;
4249 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4250 for (const SCEV *Reg : Sequence) {
4251 const ImmMapTy &Imms = Map.find(Reg)->second;
4252
4253 // It's not worthwhile looking for reuse if there's only one offset.
4254 if (Imms.size() == 1)
4255 continue;
4256
4257 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4258 for (const auto &Entry
4259 : Imms) dbgs()
4260 << ' ' << Entry.first;
4261 dbgs() << '\n');
4262
4263 // Examine each offset.
4264 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4265 J != JE; ++J) {
4266 const SCEV *OrigReg = J->second;
4267
4268 int64_t JImm = J->first;
4269 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4270
4271 if (!isa<SCEVConstant>(OrigReg) &&
4272 UsedByIndicesMap[Reg].count() == 1) {
4273 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4274 << '\n');
4275 continue;
4276 }
4277
4278 // Conservatively examine offsets between this orig reg a few selected
4279 // other orig regs.
4280 int64_t First = Imms.begin()->first;
4281 int64_t Last = std::prev(Imms.end())->first;
4282 // Compute (First + Last) / 2 without overflow using the fact that
4283 // First + Last = 2 * (First + Last) + (First ^ Last).
4284 int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4285 // If the result is negative and First is odd and Last even (or vice versa),
4286 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4287 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4288 ImmMapTy::const_iterator OtherImms[] = {
4289 Imms.begin(), std::prev(Imms.end()),
4290 Imms.lower_bound(Avg)};
4291 for (const auto &M : OtherImms) {
4292 if (M == J || M == JE) continue;
4293
4294 // Compute the difference between the two.
4295 int64_t Imm = (uint64_t)JImm - M->first;
4296 for (unsigned LUIdx : UsedByIndices.set_bits())
4297 // Make a memo of this use, offset, and register tuple.
4298 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4299 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4300 }
4301 }
4302 }
4303
4304 Map.clear();
4305 Sequence.clear();
4306 UsedByIndicesMap.clear();
4307 UniqueItems.clear();
4308
4309 // Now iterate through the worklist and add new formulae.
4310 for (const WorkItem &WI : WorkItems) {
4311 size_t LUIdx = WI.LUIdx;
4312 LSRUse &LU = Uses[LUIdx];
4313 int64_t Imm = WI.Imm;
4314 const SCEV *OrigReg = WI.OrigReg;
4315
4316 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4317 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4318 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4319
4320 // TODO: Use a more targeted data structure.
4321 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4322 Formula F = LU.Formulae[L];
4323 // FIXME: The code for the scaled and unscaled registers looks
4324 // very similar but slightly different. Investigate if they
4325 // could be merged. That way, we would not have to unscale the
4326 // Formula.
4327 F.unscale();
4328 // Use the immediate in the scaled register.
4329 if (F.ScaledReg == OrigReg) {
4330 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4331 // Don't create 50 + reg(-50).
4332 if (F.referencesReg(SE.getSCEV(
4333 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4334 continue;
4335 Formula NewF = F;
4336 NewF.BaseOffset = Offset;
4337 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4338 NewF))
4339 continue;
4340 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4341
4342 // If the new scale is a constant in a register, and adding the constant
4343 // value to the immediate would produce a value closer to zero than the
4344 // immediate itself, then the formula isn't worthwhile.
4345 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4346 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4347 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4348 .ule(std::abs(NewF.BaseOffset)))
4349 continue;
4350
4351 // OK, looks good.
4352 NewF.canonicalize(*this->L);
4353 (void)InsertFormula(LU, LUIdx, NewF);
4354 } else {
4355 // Use the immediate in a base register.
4356 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4357 const SCEV *BaseReg = F.BaseRegs[N];
4358 if (BaseReg != OrigReg)
4359 continue;
4360 Formula NewF = F;
4361 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4362 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4363 LU.Kind, LU.AccessTy, NewF)) {
4364 if (AMK == TTI::AMK_PostIndexed &&
4365 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4366 continue;
4367 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4368 continue;
4369 NewF = F;
4370 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4371 }
4372 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4373
4374 // If the new formula has a constant in a register, and adding the
4375 // constant value to the immediate would produce a value closer to
4376 // zero than the immediate itself, then the formula isn't worthwhile.
4377 for (const SCEV *NewReg : NewF.BaseRegs)
4378 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4379 if ((C->getAPInt() + NewF.BaseOffset)
4380 .abs()
4381 .slt(std::abs(NewF.BaseOffset)) &&
4382 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4383 countTrailingZeros<uint64_t>(NewF.BaseOffset))
4384 goto skip_formula;
4385
4386 // Ok, looks good.
4387 NewF.canonicalize(*this->L);
4388 (void)InsertFormula(LU, LUIdx, NewF);
4389 break;
4390 skip_formula:;
4391 }
4392 }
4393 }
4394 }
4395 }
4396
4397 /// Generate formulae for each use.
4398 void
GenerateAllReuseFormulae()4399 LSRInstance::GenerateAllReuseFormulae() {
4400 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4401 // queries are more precise.
4402 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4403 LSRUse &LU = Uses[LUIdx];
4404 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4405 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4406 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4407 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4408 }
4409 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4410 LSRUse &LU = Uses[LUIdx];
4411 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4412 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4413 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4414 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4415 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4416 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4417 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4418 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4419 }
4420 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4421 LSRUse &LU = Uses[LUIdx];
4422 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4423 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4424 }
4425
4426 GenerateCrossUseConstantOffsets();
4427
4428 LLVM_DEBUG(dbgs() << "\n"
4429 "After generating reuse formulae:\n";
4430 print_uses(dbgs()));
4431 }
4432
4433 /// If there are multiple formulae with the same set of registers used
4434 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()4435 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4436 DenseSet<const SCEV *> VisitedRegs;
4437 SmallPtrSet<const SCEV *, 16> Regs;
4438 SmallPtrSet<const SCEV *, 16> LoserRegs;
4439 #ifndef NDEBUG
4440 bool ChangedFormulae = false;
4441 #endif
4442
4443 // Collect the best formula for each unique set of shared registers. This
4444 // is reset for each use.
4445 using BestFormulaeTy =
4446 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4447
4448 BestFormulaeTy BestFormulae;
4449
4450 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4451 LSRUse &LU = Uses[LUIdx];
4452 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4453 dbgs() << '\n');
4454
4455 bool Any = false;
4456 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4457 FIdx != NumForms; ++FIdx) {
4458 Formula &F = LU.Formulae[FIdx];
4459
4460 // Some formulas are instant losers. For example, they may depend on
4461 // nonexistent AddRecs from other loops. These need to be filtered
4462 // immediately, otherwise heuristics could choose them over others leading
4463 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4464 // avoids the need to recompute this information across formulae using the
4465 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4466 // the corresponding bad register from the Regs set.
4467 Cost CostF(L, SE, TTI, AMK);
4468 Regs.clear();
4469 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4470 if (CostF.isLoser()) {
4471 // During initial formula generation, undesirable formulae are generated
4472 // by uses within other loops that have some non-trivial address mode or
4473 // use the postinc form of the IV. LSR needs to provide these formulae
4474 // as the basis of rediscovering the desired formula that uses an AddRec
4475 // corresponding to the existing phi. Once all formulae have been
4476 // generated, these initial losers may be pruned.
4477 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4478 dbgs() << "\n");
4479 }
4480 else {
4481 SmallVector<const SCEV *, 4> Key;
4482 for (const SCEV *Reg : F.BaseRegs) {
4483 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4484 Key.push_back(Reg);
4485 }
4486 if (F.ScaledReg &&
4487 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4488 Key.push_back(F.ScaledReg);
4489 // Unstable sort by host order ok, because this is only used for
4490 // uniquifying.
4491 llvm::sort(Key);
4492
4493 std::pair<BestFormulaeTy::const_iterator, bool> P =
4494 BestFormulae.insert(std::make_pair(Key, FIdx));
4495 if (P.second)
4496 continue;
4497
4498 Formula &Best = LU.Formulae[P.first->second];
4499
4500 Cost CostBest(L, SE, TTI, AMK);
4501 Regs.clear();
4502 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4503 if (CostF.isLess(CostBest))
4504 std::swap(F, Best);
4505 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4506 dbgs() << "\n"
4507 " in favor of formula ";
4508 Best.print(dbgs()); dbgs() << '\n');
4509 }
4510 #ifndef NDEBUG
4511 ChangedFormulae = true;
4512 #endif
4513 LU.DeleteFormula(F);
4514 --FIdx;
4515 --NumForms;
4516 Any = true;
4517 }
4518
4519 // Now that we've filtered out some formulae, recompute the Regs set.
4520 if (Any)
4521 LU.RecomputeRegs(LUIdx, RegUses);
4522
4523 // Reset this to prepare for the next use.
4524 BestFormulae.clear();
4525 }
4526
4527 LLVM_DEBUG(if (ChangedFormulae) {
4528 dbgs() << "\n"
4529 "After filtering out undesirable candidates:\n";
4530 print_uses(dbgs());
4531 });
4532 }
4533
4534 /// Estimate the worst-case number of solutions the solver might have to
4535 /// consider. It almost never considers this many solutions because it prune the
4536 /// search space, but the pruning isn't always sufficient.
EstimateSearchSpaceComplexity() const4537 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4538 size_t Power = 1;
4539 for (const LSRUse &LU : Uses) {
4540 size_t FSize = LU.Formulae.size();
4541 if (FSize >= ComplexityLimit) {
4542 Power = ComplexityLimit;
4543 break;
4544 }
4545 Power *= FSize;
4546 if (Power >= ComplexityLimit)
4547 break;
4548 }
4549 return Power;
4550 }
4551
4552 /// When one formula uses a superset of the registers of another formula, it
4553 /// won't help reduce register pressure (though it may not necessarily hurt
4554 /// register pressure); remove it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4555 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4556 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4557 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4558
4559 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4560 "which use a superset of registers used by other "
4561 "formulae.\n");
4562
4563 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4564 LSRUse &LU = Uses[LUIdx];
4565 bool Any = false;
4566 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4567 Formula &F = LU.Formulae[i];
4568 // Look for a formula with a constant or GV in a register. If the use
4569 // also has a formula with that same value in an immediate field,
4570 // delete the one that uses a register.
4571 for (SmallVectorImpl<const SCEV *>::const_iterator
4572 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4573 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4574 Formula NewF = F;
4575 //FIXME: Formulas should store bitwidth to do wrapping properly.
4576 // See PR41034.
4577 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4578 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4579 (I - F.BaseRegs.begin()));
4580 if (LU.HasFormulaWithSameRegs(NewF)) {
4581 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4582 dbgs() << '\n');
4583 LU.DeleteFormula(F);
4584 --i;
4585 --e;
4586 Any = true;
4587 break;
4588 }
4589 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4590 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4591 if (!F.BaseGV) {
4592 Formula NewF = F;
4593 NewF.BaseGV = GV;
4594 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4595 (I - F.BaseRegs.begin()));
4596 if (LU.HasFormulaWithSameRegs(NewF)) {
4597 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4598 dbgs() << '\n');
4599 LU.DeleteFormula(F);
4600 --i;
4601 --e;
4602 Any = true;
4603 break;
4604 }
4605 }
4606 }
4607 }
4608 }
4609 if (Any)
4610 LU.RecomputeRegs(LUIdx, RegUses);
4611 }
4612
4613 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4614 }
4615 }
4616
4617 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4618 /// allocate a single register for them.
NarrowSearchSpaceByCollapsingUnrolledCode()4619 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4620 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4621 return;
4622
4623 LLVM_DEBUG(
4624 dbgs() << "The search space is too complex.\n"
4625 "Narrowing the search space by assuming that uses separated "
4626 "by a constant offset will use the same registers.\n");
4627
4628 // This is especially useful for unrolled loops.
4629
4630 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4631 LSRUse &LU = Uses[LUIdx];
4632 for (const Formula &F : LU.Formulae) {
4633 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4634 continue;
4635
4636 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4637 if (!LUThatHas)
4638 continue;
4639
4640 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4641 LU.Kind, LU.AccessTy))
4642 continue;
4643
4644 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4645
4646 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4647
4648 // Transfer the fixups of LU to LUThatHas.
4649 for (LSRFixup &Fixup : LU.Fixups) {
4650 Fixup.Offset += F.BaseOffset;
4651 LUThatHas->pushFixup(Fixup);
4652 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4653 }
4654
4655 // Delete formulae from the new use which are no longer legal.
4656 bool Any = false;
4657 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4658 Formula &F = LUThatHas->Formulae[i];
4659 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4660 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4661 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4662 LUThatHas->DeleteFormula(F);
4663 --i;
4664 --e;
4665 Any = true;
4666 }
4667 }
4668
4669 if (Any)
4670 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4671
4672 // Delete the old use.
4673 DeleteUse(LU, LUIdx);
4674 --LUIdx;
4675 --NumUses;
4676 break;
4677 }
4678 }
4679
4680 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4681 }
4682
4683 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4684 /// we've done more filtering, as it may be able to find more formulae to
4685 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4686 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4687 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4688 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4689
4690 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4691 "undesirable dedicated registers.\n");
4692
4693 FilterOutUndesirableDedicatedRegisters();
4694
4695 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4696 }
4697 }
4698
4699 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4700 /// Pick the best one and delete the others.
4701 /// This narrowing heuristic is to keep as many formulae with different
4702 /// Scale and ScaledReg pair as possible while narrowing the search space.
4703 /// The benefit is that it is more likely to find out a better solution
4704 /// from a formulae set with more Scale and ScaledReg variations than
4705 /// a formulae set with the same Scale and ScaledReg. The picking winner
4706 /// reg heuristic will often keep the formulae with the same Scale and
4707 /// ScaledReg and filter others, and we want to avoid that if possible.
NarrowSearchSpaceByFilterFormulaWithSameScaledReg()4708 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4709 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4710 return;
4711
4712 LLVM_DEBUG(
4713 dbgs() << "The search space is too complex.\n"
4714 "Narrowing the search space by choosing the best Formula "
4715 "from the Formulae with the same Scale and ScaledReg.\n");
4716
4717 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4718 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4719
4720 BestFormulaeTy BestFormulae;
4721 #ifndef NDEBUG
4722 bool ChangedFormulae = false;
4723 #endif
4724 DenseSet<const SCEV *> VisitedRegs;
4725 SmallPtrSet<const SCEV *, 16> Regs;
4726
4727 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4728 LSRUse &LU = Uses[LUIdx];
4729 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4730 dbgs() << '\n');
4731
4732 // Return true if Formula FA is better than Formula FB.
4733 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4734 // First we will try to choose the Formula with fewer new registers.
4735 // For a register used by current Formula, the more the register is
4736 // shared among LSRUses, the less we increase the register number
4737 // counter of the formula.
4738 size_t FARegNum = 0;
4739 for (const SCEV *Reg : FA.BaseRegs) {
4740 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4741 FARegNum += (NumUses - UsedByIndices.count() + 1);
4742 }
4743 size_t FBRegNum = 0;
4744 for (const SCEV *Reg : FB.BaseRegs) {
4745 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4746 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4747 }
4748 if (FARegNum != FBRegNum)
4749 return FARegNum < FBRegNum;
4750
4751 // If the new register numbers are the same, choose the Formula with
4752 // less Cost.
4753 Cost CostFA(L, SE, TTI, AMK);
4754 Cost CostFB(L, SE, TTI, AMK);
4755 Regs.clear();
4756 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4757 Regs.clear();
4758 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4759 return CostFA.isLess(CostFB);
4760 };
4761
4762 bool Any = false;
4763 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4764 ++FIdx) {
4765 Formula &F = LU.Formulae[FIdx];
4766 if (!F.ScaledReg)
4767 continue;
4768 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4769 if (P.second)
4770 continue;
4771
4772 Formula &Best = LU.Formulae[P.first->second];
4773 if (IsBetterThan(F, Best))
4774 std::swap(F, Best);
4775 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4776 dbgs() << "\n"
4777 " in favor of formula ";
4778 Best.print(dbgs()); dbgs() << '\n');
4779 #ifndef NDEBUG
4780 ChangedFormulae = true;
4781 #endif
4782 LU.DeleteFormula(F);
4783 --FIdx;
4784 --NumForms;
4785 Any = true;
4786 }
4787 if (Any)
4788 LU.RecomputeRegs(LUIdx, RegUses);
4789
4790 // Reset this to prepare for the next use.
4791 BestFormulae.clear();
4792 }
4793
4794 LLVM_DEBUG(if (ChangedFormulae) {
4795 dbgs() << "\n"
4796 "After filtering out undesirable candidates:\n";
4797 print_uses(dbgs());
4798 });
4799 }
4800
4801 /// If we are over the complexity limit, filter out any post-inc prefering
4802 /// variables to only post-inc values.
NarrowSearchSpaceByFilterPostInc()4803 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4804 if (AMK != TTI::AMK_PostIndexed)
4805 return;
4806 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4807 return;
4808
4809 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4810 "Narrowing the search space by choosing the lowest "
4811 "register Formula for PostInc Uses.\n");
4812
4813 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4814 LSRUse &LU = Uses[LUIdx];
4815
4816 if (LU.Kind != LSRUse::Address)
4817 continue;
4818 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4819 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4820 continue;
4821
4822 size_t MinRegs = std::numeric_limits<size_t>::max();
4823 for (const Formula &F : LU.Formulae)
4824 MinRegs = std::min(F.getNumRegs(), MinRegs);
4825
4826 bool Any = false;
4827 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4828 ++FIdx) {
4829 Formula &F = LU.Formulae[FIdx];
4830 if (F.getNumRegs() > MinRegs) {
4831 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4832 dbgs() << "\n");
4833 LU.DeleteFormula(F);
4834 --FIdx;
4835 --NumForms;
4836 Any = true;
4837 }
4838 }
4839 if (Any)
4840 LU.RecomputeRegs(LUIdx, RegUses);
4841
4842 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4843 break;
4844 }
4845
4846 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4847 }
4848
4849 /// The function delete formulas with high registers number expectation.
4850 /// Assuming we don't know the value of each formula (already delete
4851 /// all inefficient), generate probability of not selecting for each
4852 /// register.
4853 /// For example,
4854 /// Use1:
4855 /// reg(a) + reg({0,+,1})
4856 /// reg(a) + reg({-1,+,1}) + 1
4857 /// reg({a,+,1})
4858 /// Use2:
4859 /// reg(b) + reg({0,+,1})
4860 /// reg(b) + reg({-1,+,1}) + 1
4861 /// reg({b,+,1})
4862 /// Use3:
4863 /// reg(c) + reg(b) + reg({0,+,1})
4864 /// reg(c) + reg({b,+,1})
4865 ///
4866 /// Probability of not selecting
4867 /// Use1 Use2 Use3
4868 /// reg(a) (1/3) * 1 * 1
4869 /// reg(b) 1 * (1/3) * (1/2)
4870 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4871 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4872 /// reg({a,+,1}) (2/3) * 1 * 1
4873 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4874 /// reg(c) 1 * 1 * 0
4875 ///
4876 /// Now count registers number mathematical expectation for each formula:
4877 /// Note that for each use we exclude probability if not selecting for the use.
4878 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4879 /// probabilty 1/3 of not selecting for Use1).
4880 /// Use1:
4881 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4882 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4883 /// reg({a,+,1}) 1
4884 /// Use2:
4885 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4886 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4887 /// reg({b,+,1}) 2/3
4888 /// Use3:
4889 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4890 /// reg(c) + reg({b,+,1}) 1 + 2/3
NarrowSearchSpaceByDeletingCostlyFormulas()4891 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4892 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4893 return;
4894 // Ok, we have too many of formulae on our hands to conveniently handle.
4895 // Use a rough heuristic to thin out the list.
4896
4897 // Set of Regs wich will be 100% used in final solution.
4898 // Used in each formula of a solution (in example above this is reg(c)).
4899 // We can skip them in calculations.
4900 SmallPtrSet<const SCEV *, 4> UniqRegs;
4901 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4902
4903 // Map each register to probability of not selecting
4904 DenseMap <const SCEV *, float> RegNumMap;
4905 for (const SCEV *Reg : RegUses) {
4906 if (UniqRegs.count(Reg))
4907 continue;
4908 float PNotSel = 1;
4909 for (const LSRUse &LU : Uses) {
4910 if (!LU.Regs.count(Reg))
4911 continue;
4912 float P = LU.getNotSelectedProbability(Reg);
4913 if (P != 0.0)
4914 PNotSel *= P;
4915 else
4916 UniqRegs.insert(Reg);
4917 }
4918 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4919 }
4920
4921 LLVM_DEBUG(
4922 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4923
4924 // Delete formulas where registers number expectation is high.
4925 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4926 LSRUse &LU = Uses[LUIdx];
4927 // If nothing to delete - continue.
4928 if (LU.Formulae.size() < 2)
4929 continue;
4930 // This is temporary solution to test performance. Float should be
4931 // replaced with round independent type (based on integers) to avoid
4932 // different results for different target builds.
4933 float FMinRegNum = LU.Formulae[0].getNumRegs();
4934 float FMinARegNum = LU.Formulae[0].getNumRegs();
4935 size_t MinIdx = 0;
4936 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4937 Formula &F = LU.Formulae[i];
4938 float FRegNum = 0;
4939 float FARegNum = 0;
4940 for (const SCEV *BaseReg : F.BaseRegs) {
4941 if (UniqRegs.count(BaseReg))
4942 continue;
4943 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4944 if (isa<SCEVAddRecExpr>(BaseReg))
4945 FARegNum +=
4946 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4947 }
4948 if (const SCEV *ScaledReg = F.ScaledReg) {
4949 if (!UniqRegs.count(ScaledReg)) {
4950 FRegNum +=
4951 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4952 if (isa<SCEVAddRecExpr>(ScaledReg))
4953 FARegNum +=
4954 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4955 }
4956 }
4957 if (FMinRegNum > FRegNum ||
4958 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4959 FMinRegNum = FRegNum;
4960 FMinARegNum = FARegNum;
4961 MinIdx = i;
4962 }
4963 }
4964 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
4965 dbgs() << " with min reg num " << FMinRegNum << '\n');
4966 if (MinIdx != 0)
4967 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4968 while (LU.Formulae.size() != 1) {
4969 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
4970 dbgs() << '\n');
4971 LU.Formulae.pop_back();
4972 }
4973 LU.RecomputeRegs(LUIdx, RegUses);
4974 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4975 Formula &F = LU.Formulae[0];
4976 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
4977 // When we choose the formula, the regs become unique.
4978 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4979 if (F.ScaledReg)
4980 UniqRegs.insert(F.ScaledReg);
4981 }
4982 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4983 }
4984
4985 /// Pick a register which seems likely to be profitable, and then in any use
4986 /// which has any reference to that register, delete all formulae which do not
4987 /// reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4988 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4989 // With all other options exhausted, loop until the system is simple
4990 // enough to handle.
4991 SmallPtrSet<const SCEV *, 4> Taken;
4992 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4993 // Ok, we have too many of formulae on our hands to conveniently handle.
4994 // Use a rough heuristic to thin out the list.
4995 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4996
4997 // Pick the register which is used by the most LSRUses, which is likely
4998 // to be a good reuse register candidate.
4999 const SCEV *Best = nullptr;
5000 unsigned BestNum = 0;
5001 for (const SCEV *Reg : RegUses) {
5002 if (Taken.count(Reg))
5003 continue;
5004 if (!Best) {
5005 Best = Reg;
5006 BestNum = RegUses.getUsedByIndices(Reg).count();
5007 } else {
5008 unsigned Count = RegUses.getUsedByIndices(Reg).count();
5009 if (Count > BestNum) {
5010 Best = Reg;
5011 BestNum = Count;
5012 }
5013 }
5014 }
5015 assert(Best && "Failed to find best LSRUse candidate");
5016
5017 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5018 << " will yield profitable reuse.\n");
5019 Taken.insert(Best);
5020
5021 // In any use with formulae which references this register, delete formulae
5022 // which don't reference it.
5023 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5024 LSRUse &LU = Uses[LUIdx];
5025 if (!LU.Regs.count(Best)) continue;
5026
5027 bool Any = false;
5028 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5029 Formula &F = LU.Formulae[i];
5030 if (!F.referencesReg(Best)) {
5031 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
5032 LU.DeleteFormula(F);
5033 --e;
5034 --i;
5035 Any = true;
5036 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5037 continue;
5038 }
5039 }
5040
5041 if (Any)
5042 LU.RecomputeRegs(LUIdx, RegUses);
5043 }
5044
5045 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5046 }
5047 }
5048
5049 /// If there are an extraordinary number of formulae to choose from, use some
5050 /// rough heuristics to prune down the number of formulae. This keeps the main
5051 /// solver from taking an extraordinary amount of time in some worst-case
5052 /// scenarios.
NarrowSearchSpaceUsingHeuristics()5053 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5054 NarrowSearchSpaceByDetectingSupersets();
5055 NarrowSearchSpaceByCollapsingUnrolledCode();
5056 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5057 if (FilterSameScaledReg)
5058 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5059 NarrowSearchSpaceByFilterPostInc();
5060 if (LSRExpNarrow)
5061 NarrowSearchSpaceByDeletingCostlyFormulas();
5062 else
5063 NarrowSearchSpaceByPickingWinnerRegs();
5064 }
5065
5066 /// This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const5067 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5068 Cost &SolutionCost,
5069 SmallVectorImpl<const Formula *> &Workspace,
5070 const Cost &CurCost,
5071 const SmallPtrSet<const SCEV *, 16> &CurRegs,
5072 DenseSet<const SCEV *> &VisitedRegs) const {
5073 // Some ideas:
5074 // - prune more:
5075 // - use more aggressive filtering
5076 // - sort the formula so that the most profitable solutions are found first
5077 // - sort the uses too
5078 // - search faster:
5079 // - don't compute a cost, and then compare. compare while computing a cost
5080 // and bail early.
5081 // - track register sets with SmallBitVector
5082
5083 const LSRUse &LU = Uses[Workspace.size()];
5084
5085 // If this use references any register that's already a part of the
5086 // in-progress solution, consider it a requirement that a formula must
5087 // reference that register in order to be considered. This prunes out
5088 // unprofitable searching.
5089 SmallSetVector<const SCEV *, 4> ReqRegs;
5090 for (const SCEV *S : CurRegs)
5091 if (LU.Regs.count(S))
5092 ReqRegs.insert(S);
5093
5094 SmallPtrSet<const SCEV *, 16> NewRegs;
5095 Cost NewCost(L, SE, TTI, AMK);
5096 for (const Formula &F : LU.Formulae) {
5097 // Ignore formulae which may not be ideal in terms of register reuse of
5098 // ReqRegs. The formula should use all required registers before
5099 // introducing new ones.
5100 // This can sometimes (notably when trying to favour postinc) lead to
5101 // sub-optimial decisions. There it is best left to the cost modelling to
5102 // get correct.
5103 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5104 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5105 for (const SCEV *Reg : ReqRegs) {
5106 if ((F.ScaledReg && F.ScaledReg == Reg) ||
5107 is_contained(F.BaseRegs, Reg)) {
5108 --NumReqRegsToFind;
5109 if (NumReqRegsToFind == 0)
5110 break;
5111 }
5112 }
5113 if (NumReqRegsToFind != 0) {
5114 // If none of the formulae satisfied the required registers, then we could
5115 // clear ReqRegs and try again. Currently, we simply give up in this case.
5116 continue;
5117 }
5118 }
5119
5120 // Evaluate the cost of the current formula. If it's already worse than
5121 // the current best, prune the search at that point.
5122 NewCost = CurCost;
5123 NewRegs = CurRegs;
5124 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5125 if (NewCost.isLess(SolutionCost)) {
5126 Workspace.push_back(&F);
5127 if (Workspace.size() != Uses.size()) {
5128 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5129 NewRegs, VisitedRegs);
5130 if (F.getNumRegs() == 1 && Workspace.size() == 1)
5131 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5132 } else {
5133 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5134 dbgs() << ".\nRegs:\n";
5135 for (const SCEV *S : NewRegs) dbgs()
5136 << "- " << *S << "\n";
5137 dbgs() << '\n');
5138
5139 SolutionCost = NewCost;
5140 Solution = Workspace;
5141 }
5142 Workspace.pop_back();
5143 }
5144 }
5145 }
5146
5147 /// Choose one formula from each use. Return the results in the given Solution
5148 /// vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const5149 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5150 SmallVector<const Formula *, 8> Workspace;
5151 Cost SolutionCost(L, SE, TTI, AMK);
5152 SolutionCost.Lose();
5153 Cost CurCost(L, SE, TTI, AMK);
5154 SmallPtrSet<const SCEV *, 16> CurRegs;
5155 DenseSet<const SCEV *> VisitedRegs;
5156 Workspace.reserve(Uses.size());
5157
5158 // SolveRecurse does all the work.
5159 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5160 CurRegs, VisitedRegs);
5161 if (Solution.empty()) {
5162 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5163 return;
5164 }
5165
5166 // Ok, we've now made all our decisions.
5167 LLVM_DEBUG(dbgs() << "\n"
5168 "The chosen solution requires ";
5169 SolutionCost.print(dbgs()); dbgs() << ":\n";
5170 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5171 dbgs() << " ";
5172 Uses[i].print(dbgs());
5173 dbgs() << "\n"
5174 " ";
5175 Solution[i]->print(dbgs());
5176 dbgs() << '\n';
5177 });
5178
5179 assert(Solution.size() == Uses.size() && "Malformed solution!");
5180
5181 if (BaselineCost.isLess(SolutionCost)) {
5182 LLVM_DEBUG(dbgs() << "The baseline solution requires ";
5183 BaselineCost.print(dbgs()); dbgs() << "\n");
5184 if (!AllowDropSolutionIfLessProfitable)
5185 LLVM_DEBUG(
5186 dbgs() << "Baseline is more profitable than chosen solution, "
5187 "add option 'lsr-drop-solution' to drop LSR solution.\n");
5188 else {
5189 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5190 "solution, dropping LSR solution.\n";);
5191 Solution.clear();
5192 }
5193 }
5194 }
5195
5196 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5197 /// we can go while still being dominated by the input positions. This helps
5198 /// canonicalize the insert position, which encourages sharing.
5199 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const5200 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5201 const SmallVectorImpl<Instruction *> &Inputs)
5202 const {
5203 Instruction *Tentative = &*IP;
5204 while (true) {
5205 bool AllDominate = true;
5206 Instruction *BetterPos = nullptr;
5207 // Don't bother attempting to insert before a catchswitch, their basic block
5208 // cannot have other non-PHI instructions.
5209 if (isa<CatchSwitchInst>(Tentative))
5210 return IP;
5211
5212 for (Instruction *Inst : Inputs) {
5213 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5214 AllDominate = false;
5215 break;
5216 }
5217 // Attempt to find an insert position in the middle of the block,
5218 // instead of at the end, so that it can be used for other expansions.
5219 if (Tentative->getParent() == Inst->getParent() &&
5220 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5221 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5222 }
5223 if (!AllDominate)
5224 break;
5225 if (BetterPos)
5226 IP = BetterPos->getIterator();
5227 else
5228 IP = Tentative->getIterator();
5229
5230 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5231 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5232
5233 BasicBlock *IDom;
5234 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5235 if (!Rung) return IP;
5236 Rung = Rung->getIDom();
5237 if (!Rung) return IP;
5238 IDom = Rung->getBlock();
5239
5240 // Don't climb into a loop though.
5241 const Loop *IDomLoop = LI.getLoopFor(IDom);
5242 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5243 if (IDomDepth <= IPLoopDepth &&
5244 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5245 break;
5246 }
5247
5248 Tentative = IDom->getTerminator();
5249 }
5250
5251 return IP;
5252 }
5253
5254 /// Determine an input position which will be dominated by the operands and
5255 /// which will dominate the result.
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU) const5256 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5257 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5258 // Collect some instructions which must be dominated by the
5259 // expanding replacement. These must be dominated by any operands that
5260 // will be required in the expansion.
5261 SmallVector<Instruction *, 4> Inputs;
5262 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5263 Inputs.push_back(I);
5264 if (LU.Kind == LSRUse::ICmpZero)
5265 if (Instruction *I =
5266 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5267 Inputs.push_back(I);
5268 if (LF.PostIncLoops.count(L)) {
5269 if (LF.isUseFullyOutsideLoop(L))
5270 Inputs.push_back(L->getLoopLatch()->getTerminator());
5271 else
5272 Inputs.push_back(IVIncInsertPos);
5273 }
5274 // The expansion must also be dominated by the increment positions of any
5275 // loops it for which it is using post-inc mode.
5276 for (const Loop *PIL : LF.PostIncLoops) {
5277 if (PIL == L) continue;
5278
5279 // Be dominated by the loop exit.
5280 SmallVector<BasicBlock *, 4> ExitingBlocks;
5281 PIL->getExitingBlocks(ExitingBlocks);
5282 if (!ExitingBlocks.empty()) {
5283 BasicBlock *BB = ExitingBlocks[0];
5284 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5285 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5286 Inputs.push_back(BB->getTerminator());
5287 }
5288 }
5289
5290 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5291 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5292 "Insertion point must be a normal instruction");
5293
5294 // Then, climb up the immediate dominator tree as far as we can go while
5295 // still being dominated by the input positions.
5296 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5297
5298 // Don't insert instructions before PHI nodes.
5299 while (isa<PHINode>(IP)) ++IP;
5300
5301 // Ignore landingpad instructions.
5302 while (IP->isEHPad()) ++IP;
5303
5304 // Ignore debug intrinsics.
5305 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5306
5307 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5308 // IP consistent across expansions and allows the previously inserted
5309 // instructions to be reused by subsequent expansion.
5310 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5311 ++IP;
5312
5313 return IP;
5314 }
5315
5316 /// Emit instructions for the leading candidate expression for this LSRUse (this
5317 /// is called "expanding").
Expand(const LSRUse & LU,const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5318 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5319 const Formula &F, BasicBlock::iterator IP,
5320 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5321 if (LU.RigidFormula)
5322 return LF.OperandValToReplace;
5323
5324 // Determine an input position which will be dominated by the operands and
5325 // which will dominate the result.
5326 IP = AdjustInsertPositionForExpand(IP, LF, LU);
5327 Rewriter.setInsertPoint(&*IP);
5328
5329 // Inform the Rewriter if we have a post-increment use, so that it can
5330 // perform an advantageous expansion.
5331 Rewriter.setPostInc(LF.PostIncLoops);
5332
5333 // This is the type that the user actually needs.
5334 Type *OpTy = LF.OperandValToReplace->getType();
5335 // This will be the type that we'll initially expand to.
5336 Type *Ty = F.getType();
5337 if (!Ty)
5338 // No type known; just expand directly to the ultimate type.
5339 Ty = OpTy;
5340 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5341 // Expand directly to the ultimate type if it's the right size.
5342 Ty = OpTy;
5343 // This is the type to do integer arithmetic in.
5344 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5345
5346 // Build up a list of operands to add together to form the full base.
5347 SmallVector<const SCEV *, 8> Ops;
5348
5349 // Expand the BaseRegs portion.
5350 for (const SCEV *Reg : F.BaseRegs) {
5351 assert(!Reg->isZero() && "Zero allocated in a base register!");
5352
5353 // If we're expanding for a post-inc user, make the post-inc adjustment.
5354 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5355 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5356 }
5357
5358 // Expand the ScaledReg portion.
5359 Value *ICmpScaledV = nullptr;
5360 if (F.Scale != 0) {
5361 const SCEV *ScaledS = F.ScaledReg;
5362
5363 // If we're expanding for a post-inc user, make the post-inc adjustment.
5364 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5365 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5366
5367 if (LU.Kind == LSRUse::ICmpZero) {
5368 // Expand ScaleReg as if it was part of the base regs.
5369 if (F.Scale == 1)
5370 Ops.push_back(
5371 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5372 else {
5373 // An interesting way of "folding" with an icmp is to use a negated
5374 // scale, which we'll implement by inserting it into the other operand
5375 // of the icmp.
5376 assert(F.Scale == -1 &&
5377 "The only scale supported by ICmpZero uses is -1!");
5378 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5379 }
5380 } else {
5381 // Otherwise just expand the scaled register and an explicit scale,
5382 // which is expected to be matched as part of the address.
5383
5384 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5385 // Unless the addressing mode will not be folded.
5386 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5387 isAMCompletelyFolded(TTI, LU, F)) {
5388 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5389 Ops.clear();
5390 Ops.push_back(SE.getUnknown(FullV));
5391 }
5392 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5393 if (F.Scale != 1)
5394 ScaledS =
5395 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5396 Ops.push_back(ScaledS);
5397 }
5398 }
5399
5400 // Expand the GV portion.
5401 if (F.BaseGV) {
5402 // Flush the operand list to suppress SCEVExpander hoisting.
5403 if (!Ops.empty()) {
5404 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5405 Ops.clear();
5406 Ops.push_back(SE.getUnknown(FullV));
5407 }
5408 Ops.push_back(SE.getUnknown(F.BaseGV));
5409 }
5410
5411 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5412 // unfolded offsets. LSR assumes they both live next to their uses.
5413 if (!Ops.empty()) {
5414 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5415 Ops.clear();
5416 Ops.push_back(SE.getUnknown(FullV));
5417 }
5418
5419 // Expand the immediate portion.
5420 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5421 if (Offset != 0) {
5422 if (LU.Kind == LSRUse::ICmpZero) {
5423 // The other interesting way of "folding" with an ICmpZero is to use a
5424 // negated immediate.
5425 if (!ICmpScaledV)
5426 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5427 else {
5428 Ops.push_back(SE.getUnknown(ICmpScaledV));
5429 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5430 }
5431 } else {
5432 // Just add the immediate values. These again are expected to be matched
5433 // as part of the address.
5434 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5435 }
5436 }
5437
5438 // Expand the unfolded offset portion.
5439 int64_t UnfoldedOffset = F.UnfoldedOffset;
5440 if (UnfoldedOffset != 0) {
5441 // Just add the immediate values.
5442 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5443 UnfoldedOffset)));
5444 }
5445
5446 // Emit instructions summing all the operands.
5447 const SCEV *FullS = Ops.empty() ?
5448 SE.getConstant(IntTy, 0) :
5449 SE.getAddExpr(Ops);
5450 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5451
5452 // We're done expanding now, so reset the rewriter.
5453 Rewriter.clearPostInc();
5454
5455 // An ICmpZero Formula represents an ICmp which we're handling as a
5456 // comparison against zero. Now that we've expanded an expression for that
5457 // form, update the ICmp's other operand.
5458 if (LU.Kind == LSRUse::ICmpZero) {
5459 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5460 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5461 DeadInsts.emplace_back(OperandIsInstr);
5462 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5463 "a scale at the same time!");
5464 if (F.Scale == -1) {
5465 if (ICmpScaledV->getType() != OpTy) {
5466 Instruction *Cast =
5467 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5468 OpTy, false),
5469 ICmpScaledV, OpTy, "tmp", CI);
5470 ICmpScaledV = Cast;
5471 }
5472 CI->setOperand(1, ICmpScaledV);
5473 } else {
5474 // A scale of 1 means that the scale has been expanded as part of the
5475 // base regs.
5476 assert((F.Scale == 0 || F.Scale == 1) &&
5477 "ICmp does not support folding a global value and "
5478 "a scale at the same time!");
5479 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5480 -(uint64_t)Offset);
5481 if (C->getType() != OpTy)
5482 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5483 OpTy, false),
5484 C, OpTy);
5485
5486 CI->setOperand(1, C);
5487 }
5488 }
5489
5490 return FullV;
5491 }
5492
5493 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5494 /// effectively happens in their predecessor blocks, so the expression may need
5495 /// to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRUse & LU,const LSRFixup & LF,const Formula & F,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5496 void LSRInstance::RewriteForPHI(
5497 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5498 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5499 DenseMap<BasicBlock *, Value *> Inserted;
5500 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5501 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5502 bool needUpdateFixups = false;
5503 BasicBlock *BB = PN->getIncomingBlock(i);
5504
5505 // If this is a critical edge, split the edge so that we do not insert
5506 // the code on all predecessor/successor paths. We do this unless this
5507 // is the canonical backedge for this loop, which complicates post-inc
5508 // users.
5509 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5510 !isa<IndirectBrInst>(BB->getTerminator()) &&
5511 !isa<CatchSwitchInst>(BB->getTerminator())) {
5512 BasicBlock *Parent = PN->getParent();
5513 Loop *PNLoop = LI.getLoopFor(Parent);
5514 if (!PNLoop || Parent != PNLoop->getHeader()) {
5515 // Split the critical edge.
5516 BasicBlock *NewBB = nullptr;
5517 if (!Parent->isLandingPad()) {
5518 NewBB =
5519 SplitCriticalEdge(BB, Parent,
5520 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5521 .setMergeIdenticalEdges()
5522 .setKeepOneInputPHIs());
5523 } else {
5524 SmallVector<BasicBlock*, 2> NewBBs;
5525 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5526 NewBB = NewBBs[0];
5527 }
5528 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5529 // phi predecessors are identical. The simple thing to do is skip
5530 // splitting in this case rather than complicate the API.
5531 if (NewBB) {
5532 // If PN is outside of the loop and BB is in the loop, we want to
5533 // move the block to be immediately before the PHI block, not
5534 // immediately after BB.
5535 if (L->contains(BB) && !L->contains(PN))
5536 NewBB->moveBefore(PN->getParent());
5537
5538 // Splitting the edge can reduce the number of PHI entries we have.
5539 e = PN->getNumIncomingValues();
5540 BB = NewBB;
5541 i = PN->getBasicBlockIndex(BB);
5542
5543 needUpdateFixups = true;
5544 }
5545 }
5546 }
5547
5548 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5549 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5550 if (!Pair.second)
5551 PN->setIncomingValue(i, Pair.first->second);
5552 else {
5553 Value *FullV =
5554 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5555
5556 // If this is reuse-by-noop-cast, insert the noop cast.
5557 Type *OpTy = LF.OperandValToReplace->getType();
5558 if (FullV->getType() != OpTy)
5559 FullV =
5560 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5561 OpTy, false),
5562 FullV, LF.OperandValToReplace->getType(),
5563 "tmp", BB->getTerminator());
5564
5565 PN->setIncomingValue(i, FullV);
5566 Pair.first->second = FullV;
5567 }
5568
5569 // If LSR splits critical edge and phi node has other pending
5570 // fixup operands, we need to update those pending fixups. Otherwise
5571 // formulae will not be implemented completely and some instructions
5572 // will not be eliminated.
5573 if (needUpdateFixups) {
5574 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5575 for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5576 // If fixup is supposed to rewrite some operand in the phi
5577 // that was just updated, it may be already moved to
5578 // another phi node. Such fixup requires update.
5579 if (Fixup.UserInst == PN) {
5580 // Check if the operand we try to replace still exists in the
5581 // original phi.
5582 bool foundInOriginalPHI = false;
5583 for (const auto &val : PN->incoming_values())
5584 if (val == Fixup.OperandValToReplace) {
5585 foundInOriginalPHI = true;
5586 break;
5587 }
5588
5589 // If fixup operand found in original PHI - nothing to do.
5590 if (foundInOriginalPHI)
5591 continue;
5592
5593 // Otherwise it might be moved to another PHI and requires update.
5594 // If fixup operand not found in any of the incoming blocks that
5595 // means we have already rewritten it - nothing to do.
5596 for (const auto &Block : PN->blocks())
5597 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5598 ++I) {
5599 PHINode *NewPN = cast<PHINode>(I);
5600 for (const auto &val : NewPN->incoming_values())
5601 if (val == Fixup.OperandValToReplace)
5602 Fixup.UserInst = NewPN;
5603 }
5604 }
5605 }
5606 }
5607 }
5608
5609 /// Emit instructions for the leading candidate expression for this LSRUse (this
5610 /// is called "expanding"), and update the UserInst to reference the newly
5611 /// expanded value.
Rewrite(const LSRUse & LU,const LSRFixup & LF,const Formula & F,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5612 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5613 const Formula &F,
5614 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5615 // First, find an insertion point that dominates UserInst. For PHI nodes,
5616 // find the nearest block which dominates all the relevant uses.
5617 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5618 RewriteForPHI(PN, LU, LF, F, DeadInsts);
5619 } else {
5620 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5621
5622 // If this is reuse-by-noop-cast, insert the noop cast.
5623 Type *OpTy = LF.OperandValToReplace->getType();
5624 if (FullV->getType() != OpTy) {
5625 Instruction *Cast =
5626 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5627 FullV, OpTy, "tmp", LF.UserInst);
5628 FullV = Cast;
5629 }
5630
5631 // Update the user. ICmpZero is handled specially here (for now) because
5632 // Expand may have updated one of the operands of the icmp already, and
5633 // its new value may happen to be equal to LF.OperandValToReplace, in
5634 // which case doing replaceUsesOfWith leads to replacing both operands
5635 // with the same value. TODO: Reorganize this.
5636 if (LU.Kind == LSRUse::ICmpZero)
5637 LF.UserInst->setOperand(0, FullV);
5638 else
5639 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5640 }
5641
5642 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5643 DeadInsts.emplace_back(OperandIsInstr);
5644 }
5645
5646 /// Rewrite all the fixup locations with new values, following the chosen
5647 /// solution.
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution)5648 void LSRInstance::ImplementSolution(
5649 const SmallVectorImpl<const Formula *> &Solution) {
5650 // Keep track of instructions we may have made dead, so that
5651 // we can remove them after we are done working.
5652 SmallVector<WeakTrackingVH, 16> DeadInsts;
5653
5654 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5655
5656 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5657 for (const IVChain &Chain : IVChainVec) {
5658 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5659 Rewriter.setChainedPhi(PN);
5660 }
5661
5662 // Expand the new value definitions and update the users.
5663 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5664 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5665 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5666 Changed = true;
5667 }
5668
5669 for (const IVChain &Chain : IVChainVec) {
5670 GenerateIVChain(Chain, DeadInsts);
5671 Changed = true;
5672 }
5673
5674 for (const WeakVH &IV : Rewriter.getInsertedIVs())
5675 if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5676 ScalarEvolutionIVs.push_back(IV);
5677
5678 // Clean up after ourselves. This must be done before deleting any
5679 // instructions.
5680 Rewriter.clear();
5681
5682 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5683 &TLI, MSSAU);
5684
5685 // In our cost analysis above, we assume that each addrec consumes exactly
5686 // one register, and arrange to have increments inserted just before the
5687 // latch to maximimize the chance this is true. However, if we reused
5688 // existing IVs, we now need to move the increments to match our
5689 // expectations. Otherwise, our cost modeling results in us having a
5690 // chosen a non-optimal result for the actual schedule. (And yes, this
5691 // scheduling decision does impact later codegen.)
5692 for (PHINode &PN : L->getHeader()->phis()) {
5693 BinaryOperator *BO = nullptr;
5694 Value *Start = nullptr, *Step = nullptr;
5695 if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5696 continue;
5697
5698 switch (BO->getOpcode()) {
5699 case Instruction::Sub:
5700 if (BO->getOperand(0) != &PN)
5701 // sub is non-commutative - match handling elsewhere in LSR
5702 continue;
5703 break;
5704 case Instruction::Add:
5705 break;
5706 default:
5707 continue;
5708 };
5709
5710 if (!isa<Constant>(Step))
5711 // If not a constant step, might increase register pressure
5712 // (We assume constants have been canonicalized to RHS)
5713 continue;
5714
5715 if (BO->getParent() == IVIncInsertPos->getParent())
5716 // Only bother moving across blocks. Isel can handle block local case.
5717 continue;
5718
5719 // Can we legally schedule inc at the desired point?
5720 if (!llvm::all_of(BO->uses(),
5721 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5722 continue;
5723 BO->moveBefore(IVIncInsertPos);
5724 Changed = true;
5725 }
5726
5727
5728 }
5729
LSRInstance(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSAUpdater * MSSAU)5730 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5731 DominatorTree &DT, LoopInfo &LI,
5732 const TargetTransformInfo &TTI, AssumptionCache &AC,
5733 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5734 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5735 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5736 ? PreferredAddresingMode
5737 : TTI.getPreferredAddressingMode(L, &SE)),
5738 Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5739 BaselineCost(L, SE, TTI, AMK) {
5740 // If LoopSimplify form is not available, stay out of trouble.
5741 if (!L->isLoopSimplifyForm())
5742 return;
5743
5744 // If there's no interesting work to be done, bail early.
5745 if (IU.empty()) return;
5746
5747 // If there's too much analysis to be done, bail early. We won't be able to
5748 // model the problem anyway.
5749 unsigned NumUsers = 0;
5750 for (const IVStrideUse &U : IU) {
5751 if (++NumUsers > MaxIVUsers) {
5752 (void)U;
5753 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5754 << "\n");
5755 return;
5756 }
5757 // Bail out if we have a PHI on an EHPad that gets a value from a
5758 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5759 // no good place to stick any instructions.
5760 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5761 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5762 if (isa<FuncletPadInst>(FirstNonPHI) ||
5763 isa<CatchSwitchInst>(FirstNonPHI))
5764 for (BasicBlock *PredBB : PN->blocks())
5765 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5766 return;
5767 }
5768 }
5769
5770 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5771 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5772 dbgs() << ":\n");
5773
5774 // Configure SCEVExpander already now, so the correct mode is used for
5775 // isSafeToExpand() checks.
5776 #ifndef NDEBUG
5777 Rewriter.setDebugType(DEBUG_TYPE);
5778 #endif
5779 Rewriter.disableCanonicalMode();
5780 Rewriter.enableLSRMode();
5781
5782 // First, perform some low-level loop optimizations.
5783 OptimizeShadowIV();
5784 OptimizeLoopTermCond();
5785
5786 // If loop preparation eliminates all interesting IV users, bail.
5787 if (IU.empty()) return;
5788
5789 // Skip nested loops until we can model them better with formulae.
5790 if (!L->isInnermost()) {
5791 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5792 return;
5793 }
5794
5795 // Start collecting data and preparing for the solver.
5796 // If number of registers is not the major cost, we cannot benefit from the
5797 // current profitable chain optimization which is based on number of
5798 // registers.
5799 // FIXME: add profitable chain optimization for other kinds major cost, for
5800 // example number of instructions.
5801 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5802 CollectChains();
5803 CollectInterestingTypesAndFactors();
5804 CollectFixupsAndInitialFormulae();
5805 CollectLoopInvariantFixupsAndFormulae();
5806
5807 if (Uses.empty())
5808 return;
5809
5810 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5811 print_uses(dbgs()));
5812
5813 // Now use the reuse data to generate a bunch of interesting ways
5814 // to formulate the values needed for the uses.
5815 GenerateAllReuseFormulae();
5816
5817 FilterOutUndesirableDedicatedRegisters();
5818 NarrowSearchSpaceUsingHeuristics();
5819
5820 SmallVector<const Formula *, 8> Solution;
5821 Solve(Solution);
5822
5823 // Release memory that is no longer needed.
5824 Factors.clear();
5825 Types.clear();
5826 RegUses.clear();
5827
5828 if (Solution.empty())
5829 return;
5830
5831 #ifndef NDEBUG
5832 // Formulae should be legal.
5833 for (const LSRUse &LU : Uses) {
5834 for (const Formula &F : LU.Formulae)
5835 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5836 F) && "Illegal formula generated!");
5837 };
5838 #endif
5839
5840 // Now that we've decided what we want, make it so.
5841 ImplementSolution(Solution);
5842 }
5843
5844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print_factors_and_types(raw_ostream & OS) const5845 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5846 if (Factors.empty() && Types.empty()) return;
5847
5848 OS << "LSR has identified the following interesting factors and types: ";
5849 bool First = true;
5850
5851 for (int64_t Factor : Factors) {
5852 if (!First) OS << ", ";
5853 First = false;
5854 OS << '*' << Factor;
5855 }
5856
5857 for (Type *Ty : Types) {
5858 if (!First) OS << ", ";
5859 First = false;
5860 OS << '(' << *Ty << ')';
5861 }
5862 OS << '\n';
5863 }
5864
print_fixups(raw_ostream & OS) const5865 void LSRInstance::print_fixups(raw_ostream &OS) const {
5866 OS << "LSR is examining the following fixup sites:\n";
5867 for (const LSRUse &LU : Uses)
5868 for (const LSRFixup &LF : LU.Fixups) {
5869 dbgs() << " ";
5870 LF.print(OS);
5871 OS << '\n';
5872 }
5873 }
5874
print_uses(raw_ostream & OS) const5875 void LSRInstance::print_uses(raw_ostream &OS) const {
5876 OS << "LSR is examining the following uses:\n";
5877 for (const LSRUse &LU : Uses) {
5878 dbgs() << " ";
5879 LU.print(OS);
5880 OS << '\n';
5881 for (const Formula &F : LU.Formulae) {
5882 OS << " ";
5883 F.print(OS);
5884 OS << '\n';
5885 }
5886 }
5887 }
5888
print(raw_ostream & OS) const5889 void LSRInstance::print(raw_ostream &OS) const {
5890 print_factors_and_types(OS);
5891 print_fixups(OS);
5892 print_uses(OS);
5893 }
5894
dump() const5895 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5896 print(errs()); errs() << '\n';
5897 }
5898 #endif
5899
5900 namespace {
5901
5902 class LoopStrengthReduce : public LoopPass {
5903 public:
5904 static char ID; // Pass ID, replacement for typeid
5905
5906 LoopStrengthReduce();
5907
5908 private:
5909 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5910 void getAnalysisUsage(AnalysisUsage &AU) const override;
5911 };
5912
5913 } // end anonymous namespace
5914
LoopStrengthReduce()5915 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5916 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5917 }
5918
getAnalysisUsage(AnalysisUsage & AU) const5919 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5920 // We split critical edges, so we change the CFG. However, we do update
5921 // many analyses if they are around.
5922 AU.addPreservedID(LoopSimplifyID);
5923
5924 AU.addRequired<LoopInfoWrapperPass>();
5925 AU.addPreserved<LoopInfoWrapperPass>();
5926 AU.addRequiredID(LoopSimplifyID);
5927 AU.addRequired<DominatorTreeWrapperPass>();
5928 AU.addPreserved<DominatorTreeWrapperPass>();
5929 AU.addRequired<ScalarEvolutionWrapperPass>();
5930 AU.addPreserved<ScalarEvolutionWrapperPass>();
5931 AU.addRequired<AssumptionCacheTracker>();
5932 AU.addRequired<TargetLibraryInfoWrapperPass>();
5933 // Requiring LoopSimplify a second time here prevents IVUsers from running
5934 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5935 AU.addRequiredID(LoopSimplifyID);
5936 AU.addRequired<IVUsersWrapperPass>();
5937 AU.addPreserved<IVUsersWrapperPass>();
5938 AU.addRequired<TargetTransformInfoWrapperPass>();
5939 AU.addPreserved<MemorySSAWrapperPass>();
5940 }
5941
5942 namespace {
5943
5944 /// Enables more convenient iteration over a DWARF expression vector.
5945 static iterator_range<llvm::DIExpression::expr_op_iterator>
ToDwarfOpIter(SmallVectorImpl<uint64_t> & Expr)5946 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
5947 llvm::DIExpression::expr_op_iterator Begin =
5948 llvm::DIExpression::expr_op_iterator(Expr.begin());
5949 llvm::DIExpression::expr_op_iterator End =
5950 llvm::DIExpression::expr_op_iterator(Expr.end());
5951 return {Begin, End};
5952 }
5953
5954 struct SCEVDbgValueBuilder {
5955 SCEVDbgValueBuilder() = default;
SCEVDbgValueBuilder__anon6fa033cb1211::SCEVDbgValueBuilder5956 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
5957
clone__anon6fa033cb1211::SCEVDbgValueBuilder5958 void clone(const SCEVDbgValueBuilder &Base) {
5959 LocationOps = Base.LocationOps;
5960 Expr = Base.Expr;
5961 }
5962
clear__anon6fa033cb1211::SCEVDbgValueBuilder5963 void clear() {
5964 LocationOps.clear();
5965 Expr.clear();
5966 }
5967
5968 /// The DIExpression as we translate the SCEV.
5969 SmallVector<uint64_t, 6> Expr;
5970 /// The location ops of the DIExpression.
5971 SmallVector<Value *, 2> LocationOps;
5972
pushOperator__anon6fa033cb1211::SCEVDbgValueBuilder5973 void pushOperator(uint64_t Op) { Expr.push_back(Op); }
pushUInt__anon6fa033cb1211::SCEVDbgValueBuilder5974 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5975
5976 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5977 /// in the set of values referenced by the expression.
pushLocation__anon6fa033cb1211::SCEVDbgValueBuilder5978 void pushLocation(llvm::Value *V) {
5979 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5980 auto *It = llvm::find(LocationOps, V);
5981 unsigned ArgIndex = 0;
5982 if (It != LocationOps.end()) {
5983 ArgIndex = std::distance(LocationOps.begin(), It);
5984 } else {
5985 ArgIndex = LocationOps.size();
5986 LocationOps.push_back(V);
5987 }
5988 Expr.push_back(ArgIndex);
5989 }
5990
pushValue__anon6fa033cb1211::SCEVDbgValueBuilder5991 void pushValue(const SCEVUnknown *U) {
5992 llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5993 pushLocation(V);
5994 }
5995
pushConst__anon6fa033cb1211::SCEVDbgValueBuilder5996 bool pushConst(const SCEVConstant *C) {
5997 if (C->getAPInt().getMinSignedBits() > 64)
5998 return false;
5999 Expr.push_back(llvm::dwarf::DW_OP_consts);
6000 Expr.push_back(C->getAPInt().getSExtValue());
6001 return true;
6002 }
6003
6004 // Iterating the expression as DWARF ops is convenient when updating
6005 // DWARF_OP_LLVM_args.
expr_ops__anon6fa033cb1211::SCEVDbgValueBuilder6006 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6007 return ToDwarfOpIter(Expr);
6008 }
6009
6010 /// Several SCEV types are sequences of the same arithmetic operator applied
6011 /// to constants and values that may be extended or truncated.
pushArithmeticExpr__anon6fa033cb1211::SCEVDbgValueBuilder6012 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6013 uint64_t DwarfOp) {
6014 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6015 "Expected arithmetic SCEV type");
6016 bool Success = true;
6017 unsigned EmitOperator = 0;
6018 for (const auto &Op : CommExpr->operands()) {
6019 Success &= pushSCEV(Op);
6020
6021 if (EmitOperator >= 1)
6022 pushOperator(DwarfOp);
6023 ++EmitOperator;
6024 }
6025 return Success;
6026 }
6027
6028 // TODO: Identify and omit noop casts.
pushCast__anon6fa033cb1211::SCEVDbgValueBuilder6029 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6030 const llvm::SCEV *Inner = C->getOperand(0);
6031 const llvm::Type *Type = C->getType();
6032 uint64_t ToWidth = Type->getIntegerBitWidth();
6033 bool Success = pushSCEV(Inner);
6034 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6035 IsSigned ? llvm::dwarf::DW_ATE_signed
6036 : llvm::dwarf::DW_ATE_unsigned};
6037 for (const auto &Op : CastOps)
6038 pushOperator(Op);
6039 return Success;
6040 }
6041
6042 // TODO: MinMax - although these haven't been encountered in the test suite.
pushSCEV__anon6fa033cb1211::SCEVDbgValueBuilder6043 bool pushSCEV(const llvm::SCEV *S) {
6044 bool Success = true;
6045 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6046 Success &= pushConst(StartInt);
6047
6048 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6049 if (!U->getValue())
6050 return false;
6051 pushLocation(U->getValue());
6052
6053 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6054 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6055
6056 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6057 Success &= pushSCEV(UDiv->getLHS());
6058 Success &= pushSCEV(UDiv->getRHS());
6059 pushOperator(llvm::dwarf::DW_OP_div);
6060
6061 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6062 // Assert if a new and unknown SCEVCastEXpr type is encountered.
6063 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6064 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6065 "Unexpected cast type in SCEV.");
6066 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6067
6068 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6069 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6070
6071 } else if (isa<SCEVAddRecExpr>(S)) {
6072 // Nested SCEVAddRecExpr are generated by nested loops and are currently
6073 // unsupported.
6074 return false;
6075
6076 } else {
6077 return false;
6078 }
6079 return Success;
6080 }
6081
6082 /// Return true if the combination of arithmetic operator and underlying
6083 /// SCEV constant value is an identity function.
isIdentityFunction__anon6fa033cb1211::SCEVDbgValueBuilder6084 bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6085 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6086 if (C->getAPInt().getMinSignedBits() > 64)
6087 return false;
6088 int64_t I = C->getAPInt().getSExtValue();
6089 switch (Op) {
6090 case llvm::dwarf::DW_OP_plus:
6091 case llvm::dwarf::DW_OP_minus:
6092 return I == 0;
6093 case llvm::dwarf::DW_OP_mul:
6094 case llvm::dwarf::DW_OP_div:
6095 return I == 1;
6096 }
6097 }
6098 return false;
6099 }
6100
6101 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6102 /// builder's expression stack. The stack should already contain an
6103 /// expression for the iteration count, so that it can be multiplied by
6104 /// the stride and added to the start.
6105 /// Components of the expression are omitted if they are an identity function.
6106 /// Chain (non-affine) SCEVs are not supported.
SCEVToValueExpr__anon6fa033cb1211::SCEVDbgValueBuilder6107 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6108 assert(SAR.isAffine() && "Expected affine SCEV");
6109 // TODO: Is this check needed?
6110 if (isa<SCEVAddRecExpr>(SAR.getStart()))
6111 return false;
6112
6113 const SCEV *Start = SAR.getStart();
6114 const SCEV *Stride = SAR.getStepRecurrence(SE);
6115
6116 // Skip pushing arithmetic noops.
6117 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6118 if (!pushSCEV(Stride))
6119 return false;
6120 pushOperator(llvm::dwarf::DW_OP_mul);
6121 }
6122 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6123 if (!pushSCEV(Start))
6124 return false;
6125 pushOperator(llvm::dwarf::DW_OP_plus);
6126 }
6127 return true;
6128 }
6129
6130 /// Create an expression that is an offset from a value (usually the IV).
createOffsetExpr__anon6fa033cb1211::SCEVDbgValueBuilder6131 void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6132 pushLocation(OffsetValue);
6133 DIExpression::appendOffset(Expr, Offset);
6134 LLVM_DEBUG(
6135 dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6136 << std::to_string(Offset) << "\n");
6137 }
6138
6139 /// Combine a translation of the SCEV and the IV to create an expression that
6140 /// recovers a location's value.
6141 /// returns true if an expression was created.
createIterCountExpr__anon6fa033cb1211::SCEVDbgValueBuilder6142 bool createIterCountExpr(const SCEV *S,
6143 const SCEVDbgValueBuilder &IterationCount,
6144 ScalarEvolution &SE) {
6145 // SCEVs for SSA values are most frquently of the form
6146 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6147 // This is because %a is a PHI node that is not the IV. However, these
6148 // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6149 // so its not expected this point will be reached.
6150 if (!isa<SCEVAddRecExpr>(S))
6151 return false;
6152
6153 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6154 << '\n');
6155
6156 const auto *Rec = cast<SCEVAddRecExpr>(S);
6157 if (!Rec->isAffine())
6158 return false;
6159
6160 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6161 return false;
6162
6163 // Initialise a new builder with the iteration count expression. In
6164 // combination with the value's SCEV this enables recovery.
6165 clone(IterationCount);
6166 if (!SCEVToValueExpr(*Rec, SE))
6167 return false;
6168
6169 return true;
6170 }
6171
6172 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6173 /// builder's expression stack. The stack should already contain an
6174 /// expression for the iteration count, so that it can be multiplied by
6175 /// the stride and added to the start.
6176 /// Components of the expression are omitted if they are an identity function.
SCEVToIterCountExpr__anon6fa033cb1211::SCEVDbgValueBuilder6177 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6178 ScalarEvolution &SE) {
6179 assert(SAR.isAffine() && "Expected affine SCEV");
6180 if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6181 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6182 << SAR << '\n');
6183 return false;
6184 }
6185 const SCEV *Start = SAR.getStart();
6186 const SCEV *Stride = SAR.getStepRecurrence(SE);
6187
6188 // Skip pushing arithmetic noops.
6189 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6190 if (!pushSCEV(Start))
6191 return false;
6192 pushOperator(llvm::dwarf::DW_OP_minus);
6193 }
6194 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6195 if (!pushSCEV(Stride))
6196 return false;
6197 pushOperator(llvm::dwarf::DW_OP_div);
6198 }
6199 return true;
6200 }
6201
6202 // Append the current expression and locations to a location list and an
6203 // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6204 // the locations already present in the destination list.
appendToVectors__anon6fa033cb1211::SCEVDbgValueBuilder6205 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6206 SmallVectorImpl<Value *> &DestLocations) {
6207 assert(!DestLocations.empty() &&
6208 "Expected the locations vector to contain the IV");
6209 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6210 // modified to account for the locations already in the destination vector.
6211 // All builders contain the IV as the first location op.
6212 assert(!LocationOps.empty() &&
6213 "Expected the location ops to contain the IV.");
6214 // DestIndexMap[n] contains the index in DestLocations for the nth
6215 // location in this SCEVDbgValueBuilder.
6216 SmallVector<uint64_t, 2> DestIndexMap;
6217 for (const auto &Op : LocationOps) {
6218 auto It = find(DestLocations, Op);
6219 if (It != DestLocations.end()) {
6220 // Location already exists in DestLocations, reuse existing ArgIndex.
6221 DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6222 continue;
6223 }
6224 // Location is not in DestLocations, add it.
6225 DestIndexMap.push_back(DestLocations.size());
6226 DestLocations.push_back(Op);
6227 }
6228
6229 for (const auto &Op : expr_ops()) {
6230 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6231 Op.appendToVector(DestExpr);
6232 continue;
6233 }
6234
6235 DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6236 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6237 // DestIndexMap[n] contains its new index in DestLocations.
6238 uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6239 DestExpr.push_back(NewIndex);
6240 }
6241 }
6242 };
6243
6244 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6245 /// and DIExpression.
6246 struct DVIRecoveryRec {
DVIRecoveryRec__anon6fa033cb1211::DVIRecoveryRec6247 DVIRecoveryRec(DbgValueInst *DbgValue)
6248 : DVI(DbgValue), Expr(DbgValue->getExpression()),
6249 HadLocationArgList(false) {}
6250
6251 DbgValueInst *DVI;
6252 DIExpression *Expr;
6253 bool HadLocationArgList;
6254 SmallVector<WeakVH, 2> LocationOps;
6255 SmallVector<const llvm::SCEV *, 2> SCEVs;
6256 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6257
clear__anon6fa033cb1211::DVIRecoveryRec6258 void clear() {
6259 for (auto &RE : RecoveryExprs)
6260 RE.reset();
6261 RecoveryExprs.clear();
6262 }
6263
~DVIRecoveryRec__anon6fa033cb1211::DVIRecoveryRec6264 ~DVIRecoveryRec() { clear(); }
6265 };
6266 } // namespace
6267
6268 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6269 /// This helps in determining if a DIArglist is necessary or can be omitted from
6270 /// the dbg.value.
numLLVMArgOps(SmallVectorImpl<uint64_t> & Expr)6271 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6272 auto expr_ops = ToDwarfOpIter(Expr);
6273 unsigned Count = 0;
6274 for (auto Op : expr_ops)
6275 if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6276 Count++;
6277 return Count;
6278 }
6279
6280 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6281 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6282 /// because a DIArglist is not created for the first argument of the dbg.value.
updateDVIWithLocation(DbgValueInst & DVI,Value * Location,SmallVectorImpl<uint64_t> & Ops)6283 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6284 SmallVectorImpl<uint64_t> &Ops) {
6285 assert(
6286 numLLVMArgOps(Ops) == 0 &&
6287 "Expected expression that does not contain any DW_OP_llvm_arg operands.");
6288 DVI.setRawLocation(ValueAsMetadata::get(Location));
6289 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6290 }
6291
6292 /// Overwrite DVI with locations placed into a DIArglist.
updateDVIWithLocations(DbgValueInst & DVI,SmallVectorImpl<Value * > & Locations,SmallVectorImpl<uint64_t> & Ops)6293 static void updateDVIWithLocations(DbgValueInst &DVI,
6294 SmallVectorImpl<Value *> &Locations,
6295 SmallVectorImpl<uint64_t> &Ops) {
6296 assert(numLLVMArgOps(Ops) != 0 &&
6297 "Expected expression that references DIArglist locations using "
6298 "DW_OP_llvm_arg operands.");
6299 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6300 for (Value *V : Locations)
6301 MetadataLocs.push_back(ValueAsMetadata::get(V));
6302 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6303 DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6304 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6305 }
6306
6307 /// Write the new expression and new location ops for the dbg.value. If possible
6308 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6309 /// can be omitted if:
6310 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6311 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
UpdateDbgValueInst(DVIRecoveryRec & DVIRec,SmallVectorImpl<Value * > & NewLocationOps,SmallVectorImpl<uint64_t> & NewExpr)6312 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6313 SmallVectorImpl<Value *> &NewLocationOps,
6314 SmallVectorImpl<uint64_t> &NewExpr) {
6315 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6316 if (NumLLVMArgs == 0) {
6317 // Location assumed to be on the stack.
6318 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6319 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6320 // There is only a single DW_OP_llvm_arg at the start of the expression,
6321 // so it can be omitted along with DIArglist.
6322 assert(NewExpr[1] == 0 &&
6323 "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6324 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6325 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6326 } else {
6327 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6328 updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6329 }
6330
6331 // If the DIExpression was previously empty then add the stack terminator.
6332 // Non-empty expressions have only had elements inserted into them and so the
6333 // terminator should already be present e.g. stack_value or fragment.
6334 DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6335 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6336 SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6337 DVIRec.DVI->setExpression(SalvageExpr);
6338 }
6339 }
6340
6341 /// Cached location ops may be erased during LSR, in which case an undef is
6342 /// required when restoring from the cache. The type of that location is no
6343 /// longer available, so just use int8. The undef will be replaced by one or
6344 /// more locations later when a SCEVDbgValueBuilder selects alternative
6345 /// locations to use for the salvage.
getValueOrUndef(WeakVH & VH,LLVMContext & C)6346 static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) {
6347 return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C));
6348 }
6349
6350 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
restorePreTransformState(DVIRecoveryRec & DVIRec)6351 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6352 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6353 << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n');
6354 assert(DVIRec.Expr && "Expected an expression");
6355 DVIRec.DVI->setExpression(DVIRec.Expr);
6356
6357 // Even a single location-op may be inside a DIArgList and referenced with
6358 // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6359 if (!DVIRec.HadLocationArgList) {
6360 assert(DVIRec.LocationOps.size() == 1 &&
6361 "Unexpected number of location ops.");
6362 // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6363 // this case was not present before, so force the location back to a single
6364 // uncontained Value.
6365 Value *CachedValue =
6366 getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6367 DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6368 } else {
6369 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6370 for (WeakVH VH : DVIRec.LocationOps) {
6371 Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext());
6372 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6373 }
6374 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6375 DVIRec.DVI->setRawLocation(
6376 llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6377 }
6378 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n');
6379 }
6380
SalvageDVI(llvm::Loop * L,ScalarEvolution & SE,llvm::PHINode * LSRInductionVar,DVIRecoveryRec & DVIRec,const SCEV * SCEVInductionVar,SCEVDbgValueBuilder IterCountExpr)6381 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6382 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6383 const SCEV *SCEVInductionVar,
6384 SCEVDbgValueBuilder IterCountExpr) {
6385 if (!DVIRec.DVI->isKillLocation())
6386 return false;
6387
6388 // LSR may have caused several changes to the dbg.value in the failed salvage
6389 // attempt. So restore the DIExpression, the location ops and also the
6390 // location ops format, which is always DIArglist for multiple ops, but only
6391 // sometimes for a single op.
6392 restorePreTransformState(DVIRec);
6393
6394 // LocationOpIndexMap[i] will store the post-LSR location index of
6395 // the non-optimised out location at pre-LSR index i.
6396 SmallVector<int64_t, 2> LocationOpIndexMap;
6397 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6398 SmallVector<Value *, 2> NewLocationOps;
6399 NewLocationOps.push_back(LSRInductionVar);
6400
6401 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6402 WeakVH VH = DVIRec.LocationOps[i];
6403 // Place the locations not optimised out in the list first, avoiding
6404 // inserts later. The map is used to update the DIExpression's
6405 // DW_OP_LLVM_arg arguments as the expression is updated.
6406 if (VH && !isa<UndefValue>(VH)) {
6407 NewLocationOps.push_back(VH);
6408 LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6409 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6410 << " now at index " << LocationOpIndexMap[i] << "\n");
6411 continue;
6412 }
6413
6414 // It's possible that a value referred to in the SCEV may have been
6415 // optimised out by LSR.
6416 if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6417 SE.containsUndefs(DVIRec.SCEVs[i])) {
6418 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6419 << " refers to a location that is now undef or erased. "
6420 "Salvage abandoned.\n");
6421 return false;
6422 }
6423
6424 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6425 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6426
6427 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6428 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6429
6430 // Create an offset-based salvage expression if possible, as it requires
6431 // less DWARF ops than an iteration count-based expression.
6432 if (std::optional<APInt> Offset =
6433 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6434 if (Offset->getMinSignedBits() <= 64)
6435 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6436 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6437 SE))
6438 return false;
6439 }
6440
6441 // Merge the DbgValueBuilder generated expressions and the original
6442 // DIExpression, place the result into an new vector.
6443 SmallVector<uint64_t, 3> NewExpr;
6444 if (DVIRec.Expr->getNumElements() == 0) {
6445 assert(DVIRec.RecoveryExprs.size() == 1 &&
6446 "Expected only a single recovery expression for an empty "
6447 "DIExpression.");
6448 assert(DVIRec.RecoveryExprs[0] &&
6449 "Expected a SCEVDbgSalvageBuilder for location 0");
6450 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6451 B->appendToVectors(NewExpr, NewLocationOps);
6452 }
6453 for (const auto &Op : DVIRec.Expr->expr_ops()) {
6454 // Most Ops needn't be updated.
6455 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6456 Op.appendToVector(NewExpr);
6457 continue;
6458 }
6459
6460 uint64_t LocationArgIndex = Op.getArg(0);
6461 SCEVDbgValueBuilder *DbgBuilder =
6462 DVIRec.RecoveryExprs[LocationArgIndex].get();
6463 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6464 // optimise it away. So just translate the argument to the updated
6465 // location index.
6466 if (!DbgBuilder) {
6467 NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6468 assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6469 "Expected a positive index for the location-op position.");
6470 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6471 continue;
6472 }
6473 // The location has a recovery expression.
6474 DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6475 }
6476
6477 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6478 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n");
6479 return true;
6480 }
6481
6482 /// Obtain an expression for the iteration count, then attempt to salvage the
6483 /// dbg.value intrinsics.
6484 static void
DbgRewriteSalvageableDVIs(llvm::Loop * L,ScalarEvolution & SE,llvm::PHINode * LSRInductionVar,SmallVector<std::unique_ptr<DVIRecoveryRec>,2> & DVIToUpdate)6485 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6486 llvm::PHINode *LSRInductionVar,
6487 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6488 if (DVIToUpdate.empty())
6489 return;
6490
6491 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6492 assert(SCEVInductionVar &&
6493 "Anticipated a SCEV for the post-LSR induction variable");
6494
6495 if (const SCEVAddRecExpr *IVAddRec =
6496 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6497 if (!IVAddRec->isAffine())
6498 return;
6499
6500 // Prevent translation using excessive resources.
6501 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6502 return;
6503
6504 // The iteration count is required to recover location values.
6505 SCEVDbgValueBuilder IterCountExpr;
6506 IterCountExpr.pushLocation(LSRInductionVar);
6507 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6508 return;
6509
6510 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6511 << '\n');
6512
6513 for (auto &DVIRec : DVIToUpdate) {
6514 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6515 IterCountExpr);
6516 }
6517 }
6518 }
6519
6520 /// Identify and cache salvageable DVI locations and expressions along with the
6521 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6522 /// cacheing and salvaging.
DbgGatherSalvagableDVI(Loop * L,ScalarEvolution & SE,SmallVector<std::unique_ptr<DVIRecoveryRec>,2> & SalvageableDVISCEVs,SmallSet<AssertingVH<DbgValueInst>,2> & DVIHandles)6523 static void DbgGatherSalvagableDVI(
6524 Loop *L, ScalarEvolution &SE,
6525 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6526 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6527 for (const auto &B : L->getBlocks()) {
6528 for (auto &I : *B) {
6529 auto DVI = dyn_cast<DbgValueInst>(&I);
6530 if (!DVI)
6531 continue;
6532 // Ensure that if any location op is undef that the dbg.vlue is not
6533 // cached.
6534 if (DVI->isKillLocation())
6535 continue;
6536
6537 // Check that the location op SCEVs are suitable for translation to
6538 // DIExpression.
6539 const auto &HasTranslatableLocationOps =
6540 [&](const DbgValueInst *DVI) -> bool {
6541 for (const auto LocOp : DVI->location_ops()) {
6542 if (!LocOp)
6543 return false;
6544
6545 if (!SE.isSCEVable(LocOp->getType()))
6546 return false;
6547
6548 const SCEV *S = SE.getSCEV(LocOp);
6549 if (SE.containsUndefs(S))
6550 return false;
6551 }
6552 return true;
6553 };
6554
6555 if (!HasTranslatableLocationOps(DVI))
6556 continue;
6557
6558 std::unique_ptr<DVIRecoveryRec> NewRec =
6559 std::make_unique<DVIRecoveryRec>(DVI);
6560 // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6561 // Pre-allocating a vector will enable quick lookups of the builder later
6562 // during the salvage.
6563 NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6564 for (const auto LocOp : DVI->location_ops()) {
6565 NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6566 NewRec->LocationOps.push_back(LocOp);
6567 NewRec->HadLocationArgList = DVI->hasArgList();
6568 }
6569 SalvageableDVISCEVs.push_back(std::move(NewRec));
6570 DVIHandles.insert(DVI);
6571 }
6572 }
6573 }
6574
6575 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6576 /// any PHi from the loop header is usable, but may have less chance of
6577 /// surviving subsequent transforms.
GetInductionVariable(const Loop & L,ScalarEvolution & SE,const LSRInstance & LSR)6578 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6579 const LSRInstance &LSR) {
6580
6581 auto IsSuitableIV = [&](PHINode *P) {
6582 if (!SE.isSCEVable(P->getType()))
6583 return false;
6584 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6585 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6586 return false;
6587 };
6588
6589 // For now, just pick the first IV that was generated and inserted by
6590 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6591 // by subsequent transforms.
6592 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6593 if (!IV)
6594 continue;
6595
6596 // There should only be PHI node IVs.
6597 PHINode *P = cast<PHINode>(&*IV);
6598
6599 if (IsSuitableIV(P))
6600 return P;
6601 }
6602
6603 for (PHINode &P : L.getHeader()->phis()) {
6604 if (IsSuitableIV(&P))
6605 return &P;
6606 }
6607 return nullptr;
6608 }
6609
6610 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *>>
canFoldTermCondOfLoop(Loop * L,ScalarEvolution & SE,DominatorTree & DT,const LoopInfo & LI)6611 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6612 const LoopInfo &LI) {
6613 if (!L->isInnermost()) {
6614 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
6615 return std::nullopt;
6616 }
6617 // Only inspect on simple loop structure
6618 if (!L->isLoopSimplifyForm()) {
6619 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
6620 return std::nullopt;
6621 }
6622
6623 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6624 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
6625 return std::nullopt;
6626 }
6627
6628 BasicBlock *LoopLatch = L->getLoopLatch();
6629
6630 // TODO: Can we do something for greater than and less than?
6631 // Terminating condition is foldable when it is an eq/ne icmp
6632 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
6633 if (BI->isUnconditional())
6634 return std::nullopt;
6635 Value *TermCond = BI->getCondition();
6636 if (!isa<ICmpInst>(TermCond) || !cast<ICmpInst>(TermCond)->isEquality()) {
6637 LLVM_DEBUG(dbgs() << "Cannot fold on branching condition that is not an "
6638 "ICmpInst::eq / ICmpInst::ne\n");
6639 return std::nullopt;
6640 }
6641 if (!TermCond->hasOneUse()) {
6642 LLVM_DEBUG(
6643 dbgs()
6644 << "Cannot replace terminating condition with more than one use\n");
6645 return std::nullopt;
6646 }
6647
6648 // For `IsToFold`, a primary IV can be replaced by other affine AddRec when it
6649 // is only used by the terminating condition. To check for this, we may need
6650 // to traverse through a chain of use-def until we can examine the final
6651 // usage.
6652 // *----------------------*
6653 // *---->| LoopHeader: |
6654 // | | PrimaryIV = phi ... |
6655 // | *----------------------*
6656 // | |
6657 // | |
6658 // | chain of
6659 // | single use
6660 // used by |
6661 // phi |
6662 // | Value
6663 // | / \
6664 // | chain of chain of
6665 // | single use single use
6666 // | / \
6667 // | / \
6668 // *- Value Value --> used by terminating condition
6669 auto IsToFold = [&](PHINode &PN) -> bool {
6670 Value *V = &PN;
6671
6672 while (V->getNumUses() == 1)
6673 V = *V->user_begin();
6674
6675 if (V->getNumUses() != 2)
6676 return false;
6677
6678 Value *VToPN = nullptr;
6679 Value *VToTermCond = nullptr;
6680 for (User *U : V->users()) {
6681 while (U->getNumUses() == 1) {
6682 if (isa<PHINode>(U))
6683 VToPN = U;
6684 if (U == TermCond)
6685 VToTermCond = U;
6686 U = *U->user_begin();
6687 }
6688 }
6689 return VToPN && VToTermCond;
6690 };
6691
6692 // If this is an IV which we could replace the terminating condition, return
6693 // the final value of the alternative IV on the last iteration.
6694 auto getAlternateIVEnd = [&](PHINode &PN) -> const SCEV * {
6695 // FIXME: This does not properly account for overflow.
6696 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6697 const SCEV *BECount = SE.getBackedgeTakenCount(L);
6698 const SCEV *TermValueS = SE.getAddExpr(
6699 AddRec->getOperand(0),
6700 SE.getTruncateOrZeroExtend(
6701 SE.getMulExpr(
6702 AddRec->getOperand(1),
6703 SE.getTruncateOrZeroExtend(
6704 SE.getAddExpr(BECount, SE.getOne(BECount->getType())),
6705 AddRec->getOperand(1)->getType())),
6706 AddRec->getOperand(0)->getType()));
6707 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6708 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6709 if (!Expander.isSafeToExpand(TermValueS)) {
6710 LLVM_DEBUG(
6711 dbgs() << "Is not safe to expand terminating value for phi node" << PN
6712 << "\n");
6713 return nullptr;
6714 }
6715 return TermValueS;
6716 };
6717
6718 PHINode *ToFold = nullptr;
6719 PHINode *ToHelpFold = nullptr;
6720 const SCEV *TermValueS = nullptr;
6721
6722 for (PHINode &PN : L->getHeader()->phis()) {
6723 if (!SE.isSCEVable(PN.getType())) {
6724 LLVM_DEBUG(dbgs() << "IV of phi '" << PN
6725 << "' is not SCEV-able, not qualified for the "
6726 "terminating condition folding.\n");
6727 continue;
6728 }
6729 const SCEV *S = SE.getSCEV(&PN);
6730 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
6731 // Only speculate on affine AddRec
6732 if (!AddRec || !AddRec->isAffine()) {
6733 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
6734 << "' is not an affine add recursion, not qualified "
6735 "for the terminating condition folding.\n");
6736 continue;
6737 }
6738
6739 if (IsToFold(PN))
6740 ToFold = &PN;
6741 else if (auto P = getAlternateIVEnd(PN)) {
6742 ToHelpFold = &PN;
6743 TermValueS = P;
6744 }
6745 }
6746
6747 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
6748 << "Cannot find other AddRec IV to help folding\n";);
6749
6750 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
6751 << "\nFound loop that can fold terminating condition\n"
6752 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
6753 << " TermCond: " << *TermCond << "\n"
6754 << " BrandInst: " << *BI << "\n"
6755 << " ToFold: " << *ToFold << "\n"
6756 << " ToHelpFold: " << *ToHelpFold << "\n");
6757
6758 if (!ToFold || !ToHelpFold)
6759 return std::nullopt;
6760 return std::make_tuple(ToFold, ToHelpFold, TermValueS);
6761 }
6762
ReduceLoopStrength(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSA * MSSA)6763 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6764 DominatorTree &DT, LoopInfo &LI,
6765 const TargetTransformInfo &TTI,
6766 AssumptionCache &AC, TargetLibraryInfo &TLI,
6767 MemorySSA *MSSA) {
6768
6769 // Debug preservation - before we start removing anything identify which DVI
6770 // meet the salvageable criteria and store their DIExpression and SCEVs.
6771 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6772 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6773 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6774
6775 bool Changed = false;
6776 std::unique_ptr<MemorySSAUpdater> MSSAU;
6777 if (MSSA)
6778 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6779
6780 // Run the main LSR transformation.
6781 const LSRInstance &Reducer =
6782 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6783 Changed |= Reducer.getChanged();
6784
6785 // Remove any extra phis created by processing inner loops.
6786 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6787 if (EnablePhiElim && L->isLoopSimplifyForm()) {
6788 SmallVector<WeakTrackingVH, 16> DeadInsts;
6789 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6790 SCEVExpander Rewriter(SE, DL, "lsr", false);
6791 #ifndef NDEBUG
6792 Rewriter.setDebugType(DEBUG_TYPE);
6793 #endif
6794 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6795 if (numFolded) {
6796 Changed = true;
6797 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6798 MSSAU.get());
6799 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6800 }
6801 }
6802 // LSR may at times remove all uses of an induction variable from a loop.
6803 // The only remaining use is the PHI in the exit block.
6804 // When this is the case, if the exit value of the IV can be calculated using
6805 // SCEV, we can replace the exit block PHI with the final value of the IV and
6806 // skip the updates in each loop iteration.
6807 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6808 SmallVector<WeakTrackingVH, 16> DeadInsts;
6809 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6810 SCEVExpander Rewriter(SE, DL, "lsr", true);
6811 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6812 UnusedIndVarInLoop, DeadInsts);
6813 if (Rewrites) {
6814 Changed = true;
6815 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6816 MSSAU.get());
6817 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6818 }
6819 }
6820
6821 if (AllowTerminatingConditionFoldingAfterLSR) {
6822 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) {
6823 auto [ToFold, ToHelpFold, TermValueS] = *Opt;
6824
6825 Changed = true;
6826 NumTermFold++;
6827
6828 BasicBlock *LoopPreheader = L->getLoopPreheader();
6829 BasicBlock *LoopLatch = L->getLoopLatch();
6830
6831 (void)ToFold;
6832 LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
6833 << *ToFold << "\n"
6834 << "New term-cond phi-node:\n"
6835 << *ToHelpFold << "\n");
6836
6837 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
6838 (void)StartValue;
6839 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
6840
6841 // SCEVExpander for both use in preheader and latch
6842 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6843 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6844 SCEVExpanderCleaner ExpCleaner(Expander);
6845
6846 assert(Expander.isSafeToExpand(TermValueS) &&
6847 "Terminating value was checked safe in canFoldTerminatingCondition");
6848
6849 // Create new terminating value at loop header
6850 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
6851 LoopPreheader->getTerminator());
6852
6853 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
6854 << *StartValue << "\n"
6855 << "Terminating value of new term-cond phi-node:\n"
6856 << *TermValue << "\n");
6857
6858 // Create new terminating condition at loop latch
6859 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
6860 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
6861 IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
6862 // FIXME: We are adding a use of an IV here without account for poison safety.
6863 // This is incorrect.
6864 Value *NewTermCond = LatchBuilder.CreateICmp(
6865 OldTermCond->getPredicate(), LoopValue, TermValue,
6866 "lsr_fold_term_cond.replaced_term_cond");
6867
6868 LLVM_DEBUG(dbgs() << "Old term-cond:\n"
6869 << *OldTermCond << "\n"
6870 << "New term-cond:\b" << *NewTermCond << "\n");
6871
6872 BI->setCondition(NewTermCond);
6873
6874 OldTermCond->eraseFromParent();
6875 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6876
6877 ExpCleaner.markResultUsed();
6878 }
6879 }
6880
6881 if (SalvageableDVIRecords.empty())
6882 return Changed;
6883
6884 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6885 // expressions composed using the derived iteration count.
6886 // TODO: Allow for multiple IV references for nested AddRecSCEVs
6887 for (const auto &L : LI) {
6888 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6889 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
6890 else {
6891 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6892 "could not be identified.\n");
6893 }
6894 }
6895
6896 for (auto &Rec : SalvageableDVIRecords)
6897 Rec->clear();
6898 SalvageableDVIRecords.clear();
6899 DVIHandles.clear();
6900 return Changed;
6901 }
6902
runOnLoop(Loop * L,LPPassManager &)6903 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6904 if (skipLoop(L))
6905 return false;
6906
6907 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6908 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6909 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6910 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6911 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6912 *L->getHeader()->getParent());
6913 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6914 *L->getHeader()->getParent());
6915 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6916 *L->getHeader()->getParent());
6917 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6918 MemorySSA *MSSA = nullptr;
6919 if (MSSAAnalysis)
6920 MSSA = &MSSAAnalysis->getMSSA();
6921 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6922 }
6923
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)6924 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6925 LoopStandardAnalysisResults &AR,
6926 LPMUpdater &) {
6927 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6928 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6929 return PreservedAnalyses::all();
6930
6931 auto PA = getLoopPassPreservedAnalyses();
6932 if (AR.MSSA)
6933 PA.preserve<MemorySSAAnalysis>();
6934 return PA;
6935 }
6936
6937 char LoopStrengthReduce::ID = 0;
6938
6939 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6940 "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)6941 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6942 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6943 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6944 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6945 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6946 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6947 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6948 "Loop Strength Reduction", false, false)
6949
6950 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6951