1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/GlobalsModRef.h" 51 #include "llvm/Analysis/InstructionSimplify.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/MemorySSA.h" 54 #include "llvm/Analysis/MemorySSAUpdater.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 57 #include "llvm/IR/CFG.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/LoopUtils.h" 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-simplify" 74 75 STATISTIC(NumNested , "Number of nested loops split out"); 76 77 // If the block isn't already, move the new block to right after some 'outside 78 // block' block. This prevents the preheader from being placed inside the loop 79 // body, e.g. when the loop hasn't been rotated. 80 static void placeSplitBlockCarefully(BasicBlock *NewBB, 81 SmallVectorImpl<BasicBlock *> &SplitPreds, 82 Loop *L) { 83 // Check to see if NewBB is already well placed. 84 Function::iterator BBI = --NewBB->getIterator(); 85 if (llvm::is_contained(SplitPreds, &*BBI)) 86 return; 87 88 // If it isn't already after an outside block, move it after one. This is 89 // always good as it makes the uncond branch from the outside block into a 90 // fall-through. 91 92 // Figure out *which* outside block to put this after. Prefer an outside 93 // block that neighbors a BB actually in the loop. 94 BasicBlock *FoundBB = nullptr; 95 for (BasicBlock *Pred : SplitPreds) { 96 Function::iterator BBI = Pred->getIterator(); 97 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 98 FoundBB = Pred; 99 break; 100 } 101 } 102 103 // If our heuristic for a *good* bb to place this after doesn't find 104 // anything, just pick something. It's likely better than leaving it within 105 // the loop. 106 if (!FoundBB) 107 FoundBB = SplitPreds[0]; 108 NewBB->moveAfter(FoundBB); 109 } 110 111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 112 /// preheader, this method is called to insert one. This method has two phases: 113 /// preheader insertion and analysis updating. 114 /// 115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 116 LoopInfo *LI, MemorySSAUpdater *MSSAU, 117 bool PreserveLCSSA) { 118 BasicBlock *Header = L->getHeader(); 119 120 // Compute the set of predecessors of the loop that are not in the loop. 121 SmallVector<BasicBlock*, 8> OutsideBlocks; 122 for (BasicBlock *P : predecessors(Header)) { 123 if (!L->contains(P)) { // Coming in from outside the loop? 124 // If the loop is branched to from an indirect terminator, we won't 125 // be able to fully transform the loop, because it prohibits 126 // edge splitting. 127 if (isa<IndirectBrInst>(P->getTerminator())) 128 return nullptr; 129 130 // Keep track of it. 131 OutsideBlocks.push_back(P); 132 } 133 } 134 135 // Split out the loop pre-header. 136 BasicBlock *PreheaderBB; 137 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 138 LI, MSSAU, PreserveLCSSA); 139 if (!PreheaderBB) 140 return nullptr; 141 142 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 143 << PreheaderBB->getName() << "\n"); 144 145 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 146 // code layout too horribly. 147 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 148 149 return PreheaderBB; 150 } 151 152 /// Add the specified block, and all of its predecessors, to the specified set, 153 /// if it's not already in there. Stop predecessor traversal when we reach 154 /// StopBlock. 155 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 156 SmallPtrSetImpl<BasicBlock *> &Blocks) { 157 SmallVector<BasicBlock *, 8> Worklist; 158 Worklist.push_back(InputBB); 159 do { 160 BasicBlock *BB = Worklist.pop_back_val(); 161 if (Blocks.insert(BB).second && BB != StopBlock) 162 // If BB is not already processed and it is not a stop block then 163 // insert its predecessor in the work list 164 append_range(Worklist, predecessors(BB)); 165 } while (!Worklist.empty()); 166 } 167 168 /// The first part of loop-nestification is to find a PHI node that tells 169 /// us how to partition the loops. 170 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 171 AssumptionCache *AC) { 172 const DataLayout &DL = L->getHeader()->getDataLayout(); 173 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 174 PHINode *PN = cast<PHINode>(I); 175 ++I; 176 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) { 177 // This is a degenerate PHI already, don't modify it! 178 PN->replaceAllUsesWith(V); 179 PN->eraseFromParent(); 180 continue; 181 } 182 183 // Scan this PHI node looking for a use of the PHI node by itself. 184 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 185 if (PN->getIncomingValue(i) == PN && 186 L->contains(PN->getIncomingBlock(i))) 187 // We found something tasty to remove. 188 return PN; 189 } 190 return nullptr; 191 } 192 193 /// If this loop has multiple backedges, try to pull one of them out into 194 /// a nested loop. 195 /// 196 /// This is important for code that looks like 197 /// this: 198 /// 199 /// Loop: 200 /// ... 201 /// br cond, Loop, Next 202 /// ... 203 /// br cond2, Loop, Out 204 /// 205 /// To identify this common case, we look at the PHI nodes in the header of the 206 /// loop. PHI nodes with unchanging values on one backedge correspond to values 207 /// that change in the "outer" loop, but not in the "inner" loop. 208 /// 209 /// If we are able to separate out a loop, return the new outer loop that was 210 /// created. 211 /// 212 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 213 DominatorTree *DT, LoopInfo *LI, 214 ScalarEvolution *SE, bool PreserveLCSSA, 215 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 216 // Don't try to separate loops without a preheader. 217 if (!Preheader) 218 return nullptr; 219 220 // Treat the presence of convergent functions conservatively. The 221 // transformation is invalid if calls to certain convergent 222 // functions (like an AMDGPU barrier) get included in the resulting 223 // inner loop. But blocks meant for the inner loop will be 224 // identified later at a point where it's too late to abort the 225 // transformation. Also, the convergent attribute is not really 226 // sufficient to express the semantics of functions that are 227 // affected by this transformation. So we choose to back off if such 228 // a function call is present until a better alternative becomes 229 // available. This is similar to the conservative treatment of 230 // convergent function calls in GVNHoist and JumpThreading. 231 for (auto *BB : L->blocks()) { 232 for (auto &II : *BB) { 233 if (auto CI = dyn_cast<CallBase>(&II)) { 234 if (CI->isConvergent()) { 235 return nullptr; 236 } 237 } 238 } 239 } 240 241 // The header is not a landing pad; preheader insertion should ensure this. 242 BasicBlock *Header = L->getHeader(); 243 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 244 245 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 246 if (!PN) return nullptr; // No known way to partition. 247 248 // Pull out all predecessors that have varying values in the loop. This 249 // handles the case when a PHI node has multiple instances of itself as 250 // arguments. 251 SmallVector<BasicBlock*, 8> OuterLoopPreds; 252 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 253 if (PN->getIncomingValue(i) != PN || 254 !L->contains(PN->getIncomingBlock(i))) { 255 // We can't split indirect control flow edges. 256 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 257 return nullptr; 258 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 259 } 260 } 261 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 262 263 // If ScalarEvolution is around and knows anything about values in 264 // this loop, tell it to forget them, because we're about to 265 // substantially change it. 266 if (SE) 267 SE->forgetLoop(L); 268 269 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 270 DT, LI, MSSAU, PreserveLCSSA); 271 272 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 273 // code layout too horribly. 274 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 275 276 // Create the new outer loop. 277 Loop *NewOuter = LI->AllocateLoop(); 278 279 // Change the parent loop to use the outer loop as its child now. 280 if (Loop *Parent = L->getParentLoop()) 281 Parent->replaceChildLoopWith(L, NewOuter); 282 else 283 LI->changeTopLevelLoop(L, NewOuter); 284 285 // L is now a subloop of our outer loop. 286 NewOuter->addChildLoop(L); 287 288 for (BasicBlock *BB : L->blocks()) 289 NewOuter->addBlockEntry(BB); 290 291 // Now reset the header in L, which had been moved by 292 // SplitBlockPredecessors for the outer loop. 293 L->moveToHeader(Header); 294 295 // Determine which blocks should stay in L and which should be moved out to 296 // the Outer loop now. 297 SmallPtrSet<BasicBlock *, 4> BlocksInL; 298 for (BasicBlock *P : predecessors(Header)) { 299 if (DT->dominates(Header, P)) 300 addBlockAndPredsToSet(P, Header, BlocksInL); 301 } 302 303 // Scan all of the loop children of L, moving them to OuterLoop if they are 304 // not part of the inner loop. 305 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 306 for (size_t I = 0; I != SubLoops.size(); ) 307 if (BlocksInL.count(SubLoops[I]->getHeader())) 308 ++I; // Loop remains in L 309 else 310 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 311 312 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 313 OuterLoopBlocks.push_back(NewBB); 314 // Now that we know which blocks are in L and which need to be moved to 315 // OuterLoop, move any blocks that need it. 316 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 317 BasicBlock *BB = L->getBlocks()[i]; 318 if (!BlocksInL.count(BB)) { 319 // Move this block to the parent, updating the exit blocks sets 320 L->removeBlockFromLoop(BB); 321 if ((*LI)[BB] == L) { 322 LI->changeLoopFor(BB, NewOuter); 323 OuterLoopBlocks.push_back(BB); 324 } 325 --i; 326 } 327 } 328 329 // Split edges to exit blocks from the inner loop, if they emerged in the 330 // process of separating the outer one. 331 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 332 333 if (PreserveLCSSA) { 334 // Fix LCSSA form for L. Some values, which previously were only used inside 335 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 336 // in corresponding exit blocks. 337 // We don't need to form LCSSA recursively, because there cannot be uses 338 // inside a newly created loop of defs from inner loops as those would 339 // already be a use of an LCSSA phi node. 340 formLCSSA(*L, *DT, LI, SE); 341 342 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 343 "LCSSA is broken after separating nested loops!"); 344 } 345 346 return NewOuter; 347 } 348 349 /// This method is called when the specified loop has more than one 350 /// backedge in it. 351 /// 352 /// If this occurs, revector all of these backedges to target a new basic block 353 /// and have that block branch to the loop header. This ensures that loops 354 /// have exactly one backedge. 355 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 356 DominatorTree *DT, LoopInfo *LI, 357 MemorySSAUpdater *MSSAU) { 358 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 359 360 // Get information about the loop 361 BasicBlock *Header = L->getHeader(); 362 Function *F = Header->getParent(); 363 364 // Unique backedge insertion currently depends on having a preheader. 365 if (!Preheader) 366 return nullptr; 367 368 // The header is not an EH pad; preheader insertion should ensure this. 369 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 370 371 // Figure out which basic blocks contain back-edges to the loop header. 372 std::vector<BasicBlock*> BackedgeBlocks; 373 for (BasicBlock *P : predecessors(Header)) { 374 // Indirect edges cannot be split, so we must fail if we find one. 375 if (isa<IndirectBrInst>(P->getTerminator())) 376 return nullptr; 377 378 if (P != Preheader) BackedgeBlocks.push_back(P); 379 } 380 381 // Create and insert the new backedge block... 382 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 383 Header->getName() + ".backedge", F); 384 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 385 BETerminator->setDebugLoc(Header->getFirstNonPHIIt()->getDebugLoc()); 386 387 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 388 << BEBlock->getName() << "\n"); 389 390 // Move the new backedge block to right after the last backedge block. 391 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 392 F->splice(InsertPos, F, BEBlock->getIterator()); 393 394 // Now that the block has been inserted into the function, create PHI nodes in 395 // the backedge block which correspond to any PHI nodes in the header block. 396 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 397 PHINode *PN = cast<PHINode>(I); 398 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 399 PN->getName()+".be", BETerminator->getIterator()); 400 401 // Loop over the PHI node, moving all entries except the one for the 402 // preheader over to the new PHI node. 403 unsigned PreheaderIdx = ~0U; 404 bool HasUniqueIncomingValue = true; 405 Value *UniqueValue = nullptr; 406 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 407 BasicBlock *IBB = PN->getIncomingBlock(i); 408 Value *IV = PN->getIncomingValue(i); 409 if (IBB == Preheader) { 410 PreheaderIdx = i; 411 } else { 412 NewPN->addIncoming(IV, IBB); 413 if (HasUniqueIncomingValue) { 414 if (!UniqueValue) 415 UniqueValue = IV; 416 else if (UniqueValue != IV) 417 HasUniqueIncomingValue = false; 418 } 419 } 420 } 421 422 // Delete all of the incoming values from the old PN except the preheader's 423 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 424 if (PreheaderIdx != 0) { 425 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 426 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 427 } 428 // Nuke all entries except the zero'th. 429 PN->removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 430 /* DeletePHIIfEmpty */ false); 431 432 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 433 PN->addIncoming(NewPN, BEBlock); 434 435 // As an optimization, if all incoming values in the new PhiNode (which is a 436 // subset of the incoming values of the old PHI node) have the same value, 437 // eliminate the PHI Node. 438 if (HasUniqueIncomingValue) { 439 NewPN->replaceAllUsesWith(UniqueValue); 440 NewPN->eraseFromParent(); 441 } 442 } 443 444 // Now that all of the PHI nodes have been inserted and adjusted, modify the 445 // backedge blocks to jump to the BEBlock instead of the header. 446 // If one of the backedges has llvm.loop metadata attached, we remove 447 // it from the backedge and add it to BEBlock. 448 MDNode *LoopMD = nullptr; 449 for (BasicBlock *BB : BackedgeBlocks) { 450 Instruction *TI = BB->getTerminator(); 451 if (!LoopMD) 452 LoopMD = TI->getMetadata(LLVMContext::MD_loop); 453 TI->setMetadata(LLVMContext::MD_loop, nullptr); 454 TI->replaceSuccessorWith(Header, BEBlock); 455 } 456 BEBlock->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 457 458 //===--- Update all analyses which we must preserve now -----------------===// 459 460 // Update Loop Information - we know that this block is now in the current 461 // loop and all parent loops. 462 L->addBasicBlockToLoop(BEBlock, *LI); 463 464 // Update dominator information 465 DT->splitBlock(BEBlock); 466 467 if (MSSAU) 468 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 469 BEBlock); 470 471 return BEBlock; 472 } 473 474 /// Simplify one loop and queue further loops for simplification. 475 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 476 DominatorTree *DT, LoopInfo *LI, 477 ScalarEvolution *SE, AssumptionCache *AC, 478 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 479 bool Changed = false; 480 if (MSSAU && VerifyMemorySSA) 481 MSSAU->getMemorySSA()->verifyMemorySSA(); 482 483 ReprocessLoop: 484 485 // Check to see that no blocks (other than the header) in this loop have 486 // predecessors that are not in the loop. This is not valid for natural 487 // loops, but can occur if the blocks are unreachable. Since they are 488 // unreachable we can just shamelessly delete those CFG edges! 489 for (BasicBlock *BB : L->blocks()) { 490 if (BB == L->getHeader()) 491 continue; 492 493 SmallPtrSet<BasicBlock*, 4> BadPreds; 494 for (BasicBlock *P : predecessors(BB)) 495 if (!L->contains(P)) 496 BadPreds.insert(P); 497 498 // Delete each unique out-of-loop (and thus dead) predecessor. 499 for (BasicBlock *P : BadPreds) { 500 501 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 502 << P->getName() << "\n"); 503 504 // Zap the dead pred's terminator and replace it with unreachable. 505 Instruction *TI = P->getTerminator(); 506 changeToUnreachable(TI, PreserveLCSSA, 507 /*DTU=*/nullptr, MSSAU); 508 Changed = true; 509 } 510 } 511 512 if (MSSAU && VerifyMemorySSA) 513 MSSAU->getMemorySSA()->verifyMemorySSA(); 514 515 // If there are exiting blocks with branches on undef, resolve the undef in 516 // the direction which will exit the loop. This will help simplify loop 517 // trip count computations. 518 SmallVector<BasicBlock*, 8> ExitingBlocks; 519 L->getExitingBlocks(ExitingBlocks); 520 for (BasicBlock *ExitingBlock : ExitingBlocks) 521 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 522 if (BI->isConditional()) { 523 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 524 525 LLVM_DEBUG(dbgs() 526 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 527 << ExitingBlock->getName() << "\n"); 528 529 BI->setCondition(ConstantInt::get(Cond->getType(), 530 !L->contains(BI->getSuccessor(0)))); 531 532 Changed = true; 533 } 534 } 535 536 // Does the loop already have a preheader? If so, don't insert one. 537 BasicBlock *Preheader = L->getLoopPreheader(); 538 if (!Preheader) { 539 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 540 if (Preheader) 541 Changed = true; 542 } 543 544 // Next, check to make sure that all exit nodes of the loop only have 545 // predecessors that are inside of the loop. This check guarantees that the 546 // loop preheader/header will dominate the exit blocks. If the exit block has 547 // predecessors from outside of the loop, split the edge now. 548 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 549 Changed = true; 550 551 if (MSSAU && VerifyMemorySSA) 552 MSSAU->getMemorySSA()->verifyMemorySSA(); 553 554 // If the header has more than two predecessors at this point (from the 555 // preheader and from multiple backedges), we must adjust the loop. 556 BasicBlock *LoopLatch = L->getLoopLatch(); 557 if (!LoopLatch) { 558 // If this is really a nested loop, rip it out into a child loop. Don't do 559 // this for loops with a giant number of backedges, just factor them into a 560 // common backedge instead. 561 if (L->getNumBackEdges() < 8) { 562 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 563 PreserveLCSSA, AC, MSSAU)) { 564 ++NumNested; 565 // Enqueue the outer loop as it should be processed next in our 566 // depth-first nest walk. 567 Worklist.push_back(OuterL); 568 569 // This is a big restructuring change, reprocess the whole loop. 570 Changed = true; 571 // GCC doesn't tail recursion eliminate this. 572 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 573 goto ReprocessLoop; 574 } 575 } 576 577 // If we either couldn't, or didn't want to, identify nesting of the loops, 578 // insert a new block that all backedges target, then make it jump to the 579 // loop header. 580 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 581 if (LoopLatch) 582 Changed = true; 583 } 584 585 if (MSSAU && VerifyMemorySSA) 586 MSSAU->getMemorySSA()->verifyMemorySSA(); 587 588 const DataLayout &DL = L->getHeader()->getDataLayout(); 589 590 // Scan over the PHI nodes in the loop header. Since they now have only two 591 // incoming values (the loop is canonicalized), we may have simplified the PHI 592 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 593 PHINode *PN; 594 for (BasicBlock::iterator I = L->getHeader()->begin(); 595 (PN = dyn_cast<PHINode>(I++)); ) 596 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) { 597 if (SE) SE->forgetValue(PN); 598 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 599 PN->replaceAllUsesWith(V); 600 PN->eraseFromParent(); 601 Changed = true; 602 } 603 } 604 605 // If this loop has multiple exits and the exits all go to the same 606 // block, attempt to merge the exits. This helps several passes, such 607 // as LoopRotation, which do not support loops with multiple exits. 608 // SimplifyCFG also does this (and this code uses the same utility 609 // function), however this code is loop-aware, where SimplifyCFG is 610 // not. That gives it the advantage of being able to hoist 611 // loop-invariant instructions out of the way to open up more 612 // opportunities, and the disadvantage of having the responsibility 613 // to preserve dominator information. 614 auto HasUniqueExitBlock = [&]() { 615 BasicBlock *UniqueExit = nullptr; 616 for (auto *ExitingBB : ExitingBlocks) 617 for (auto *SuccBB : successors(ExitingBB)) { 618 if (L->contains(SuccBB)) 619 continue; 620 621 if (!UniqueExit) 622 UniqueExit = SuccBB; 623 else if (UniqueExit != SuccBB) 624 return false; 625 } 626 627 return true; 628 }; 629 if (HasUniqueExitBlock()) { 630 for (BasicBlock *ExitingBlock : ExitingBlocks) { 631 if (!ExitingBlock->getSinglePredecessor()) continue; 632 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 633 if (!BI || !BI->isConditional()) continue; 634 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 635 if (!CI || CI->getParent() != ExitingBlock) continue; 636 637 // Attempt to hoist out all instructions except for the 638 // comparison and the branch. 639 bool AllInvariant = true; 640 bool AnyInvariant = false; 641 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 642 Instruction *Inst = &*I++; 643 if (Inst == CI) 644 continue; 645 if (!L->makeLoopInvariant( 646 Inst, AnyInvariant, 647 Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) { 648 AllInvariant = false; 649 break; 650 } 651 } 652 if (AnyInvariant) 653 Changed = true; 654 if (!AllInvariant) continue; 655 656 // The block has now been cleared of all instructions except for 657 // a comparison and a conditional branch. SimplifyCFG may be able 658 // to fold it now. 659 if (!foldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU)) 660 continue; 661 662 // Success. The block is now dead, so remove it from the loop, 663 // update the dominator tree and delete it. 664 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 665 << ExitingBlock->getName() << "\n"); 666 667 assert(pred_empty(ExitingBlock)); 668 Changed = true; 669 LI->removeBlock(ExitingBlock); 670 671 DomTreeNode *Node = DT->getNode(ExitingBlock); 672 while (!Node->isLeaf()) { 673 DomTreeNode *Child = Node->back(); 674 DT->changeImmediateDominator(Child, Node->getIDom()); 675 } 676 DT->eraseNode(ExitingBlock); 677 if (MSSAU) { 678 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 679 ExitBlockSet.insert(ExitingBlock); 680 MSSAU->removeBlocks(ExitBlockSet); 681 } 682 683 BI->getSuccessor(0)->removePredecessor( 684 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 685 BI->getSuccessor(1)->removePredecessor( 686 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 687 ExitingBlock->eraseFromParent(); 688 } 689 } 690 691 if (MSSAU && VerifyMemorySSA) 692 MSSAU->getMemorySSA()->verifyMemorySSA(); 693 694 return Changed; 695 } 696 697 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 698 ScalarEvolution *SE, AssumptionCache *AC, 699 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 700 bool Changed = false; 701 702 #ifndef NDEBUG 703 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 704 // form. 705 if (PreserveLCSSA) { 706 assert(DT && "DT not available."); 707 assert(LI && "LI not available."); 708 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 709 "Requested to preserve LCSSA, but it's already broken."); 710 } 711 #endif 712 713 // Worklist maintains our depth-first queue of loops in this nest to process. 714 SmallVector<Loop *, 4> Worklist; 715 Worklist.push_back(L); 716 717 // Walk the worklist from front to back, pushing newly found sub loops onto 718 // the back. This will let us process loops from back to front in depth-first 719 // order. We can use this simple process because loops form a tree. 720 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 721 Loop *L2 = Worklist[Idx]; 722 Worklist.append(L2->begin(), L2->end()); 723 } 724 725 while (!Worklist.empty()) 726 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 727 AC, MSSAU, PreserveLCSSA); 728 729 // Changing exit conditions for blocks may affect exit counts of this loop and 730 // any of its parents, so we must invalidate the entire subtree if we've made 731 // any changes. Do this here rather than in simplifyOneLoop() as the top-most 732 // loop is going to be the same for all child loops. 733 if (Changed && SE) 734 SE->forgetTopmostLoop(L); 735 736 return Changed; 737 } 738 739 namespace { 740 struct LoopSimplify : public FunctionPass { 741 static char ID; // Pass identification, replacement for typeid 742 LoopSimplify() : FunctionPass(ID) { 743 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 744 } 745 746 bool runOnFunction(Function &F) override; 747 748 void getAnalysisUsage(AnalysisUsage &AU) const override { 749 AU.addRequired<AssumptionCacheTracker>(); 750 751 // We need loop information to identify the loops... 752 AU.addRequired<DominatorTreeWrapperPass>(); 753 AU.addPreserved<DominatorTreeWrapperPass>(); 754 755 AU.addRequired<LoopInfoWrapperPass>(); 756 AU.addPreserved<LoopInfoWrapperPass>(); 757 758 AU.addPreserved<BasicAAWrapperPass>(); 759 AU.addPreserved<AAResultsWrapperPass>(); 760 AU.addPreserved<GlobalsAAWrapperPass>(); 761 AU.addPreserved<ScalarEvolutionWrapperPass>(); 762 AU.addPreserved<SCEVAAWrapperPass>(); 763 AU.addPreservedID(LCSSAID); 764 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 765 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 766 AU.addPreserved<MemorySSAWrapperPass>(); 767 } 768 769 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 770 void verifyAnalysis() const override; 771 }; 772 } 773 774 char LoopSimplify::ID = 0; 775 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 776 "Canonicalize natural loops", false, false) 777 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 779 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 780 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", "Canonicalize natural loops", 781 false, false) 782 783 // Publicly exposed interface to pass... 784 char &llvm::LoopSimplifyID = LoopSimplify::ID; 785 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 786 787 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 788 /// it in any convenient order) inserting preheaders... 789 /// 790 bool LoopSimplify::runOnFunction(Function &F) { 791 bool Changed = false; 792 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 793 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 794 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 795 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 796 AssumptionCache *AC = 797 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 798 MemorySSA *MSSA = nullptr; 799 std::unique_ptr<MemorySSAUpdater> MSSAU; 800 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 801 if (MSSAAnalysis) { 802 MSSA = &MSSAAnalysis->getMSSA(); 803 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 804 } 805 806 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 807 808 // Simplify each loop nest in the function. 809 for (auto *L : *LI) 810 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 811 812 #ifndef NDEBUG 813 if (PreserveLCSSA) { 814 bool InLCSSA = all_of( 815 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 816 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 817 } 818 #endif 819 return Changed; 820 } 821 822 PreservedAnalyses LoopSimplifyPass::run(Function &F, 823 FunctionAnalysisManager &AM) { 824 bool Changed = false; 825 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 826 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 827 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 828 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 829 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 830 std::unique_ptr<MemorySSAUpdater> MSSAU; 831 if (MSSAAnalysis) { 832 auto *MSSA = &MSSAAnalysis->getMSSA(); 833 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 834 } 835 836 837 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 838 // after simplifying the loops. MemorySSA is preserved if it exists. 839 for (auto *L : *LI) 840 Changed |= 841 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 842 843 if (!Changed) 844 return PreservedAnalyses::all(); 845 846 PreservedAnalyses PA; 847 PA.preserve<DominatorTreeAnalysis>(); 848 PA.preserve<LoopAnalysis>(); 849 PA.preserve<ScalarEvolutionAnalysis>(); 850 if (MSSAAnalysis) 851 PA.preserve<MemorySSAAnalysis>(); 852 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 853 // blocks, but it does so only by splitting existing blocks and edges. This 854 // results in the interesting property that all new terminators inserted are 855 // unconditional branches which do not appear in BPI. All deletions are 856 // handled via ValueHandle callbacks w/in BPI. 857 PA.preserve<BranchProbabilityAnalysis>(); 858 return PA; 859 } 860 861 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 862 // below. 863 #if 0 864 static void verifyLoop(Loop *L) { 865 // Verify subloops. 866 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 867 verifyLoop(*I); 868 869 // It used to be possible to just assert L->isLoopSimplifyForm(), however 870 // with the introduction of indirectbr, there are now cases where it's 871 // not possible to transform a loop as necessary. We can at least check 872 // that there is an indirectbr near any time there's trouble. 873 874 // Indirectbr can interfere with preheader and unique backedge insertion. 875 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 876 bool HasIndBrPred = false; 877 for (BasicBlock *Pred : predecessors(L->getHeader())) 878 if (isa<IndirectBrInst>(Pred->getTerminator())) { 879 HasIndBrPred = true; 880 break; 881 } 882 assert(HasIndBrPred && 883 "LoopSimplify has no excuse for missing loop header info!"); 884 (void)HasIndBrPred; 885 } 886 887 // Indirectbr can interfere with exit block canonicalization. 888 if (!L->hasDedicatedExits()) { 889 bool HasIndBrExiting = false; 890 SmallVector<BasicBlock*, 8> ExitingBlocks; 891 L->getExitingBlocks(ExitingBlocks); 892 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 893 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 894 HasIndBrExiting = true; 895 break; 896 } 897 } 898 899 assert(HasIndBrExiting && 900 "LoopSimplify has no excuse for missing exit block info!"); 901 (void)HasIndBrExiting; 902 } 903 } 904 #endif 905 906 void LoopSimplify::verifyAnalysis() const { 907 // FIXME: This routine is being called mid-way through the loop pass manager 908 // as loop passes destroy this analysis. That's actually fine, but we have no 909 // way of expressing that here. Once all of the passes that destroy this are 910 // hoisted out of the loop pass manager we can add back verification here. 911 #if 0 912 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 913 verifyLoop(*I); 914 #endif 915 } 916