1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores. Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited. So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures. It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
27 // "vector load" loads directly into a series of scalar registers. In effect,
28 // extracting the elements of the vector is free. It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code. This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40
41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/AssumptionCache.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/TargetTransformInfo.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GetElementPtrTypeIterator.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/InstrTypes.h"
68 #include "llvm/IR/Instruction.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 #include "llvm/Transforms/Vectorize.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <cstdlib>
85 #include <tuple>
86 #include <utility>
87
88 using namespace llvm;
89
90 #define DEBUG_TYPE "load-store-vectorizer"
91
92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
94
95 // FIXME: Assuming stack alignment of 4 is always good enough
96 static const unsigned StackAdjustedAlignment = 4;
97
98 namespace {
99
100 /// ChainID is an arbitrary token that is allowed to be different only for the
101 /// accesses that are guaranteed to be considered non-consecutive by
102 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
103 /// together and reducing the number of instructions the main search operates on
104 /// at a time, i.e. this is to reduce compile time and nothing else as the main
105 /// search has O(n^2) time complexity. The underlying type of ChainID should not
106 /// be relied upon.
107 using ChainID = const Value *;
108 using InstrList = SmallVector<Instruction *, 8>;
109 using InstrListMap = MapVector<ChainID, InstrList>;
110
111 class Vectorizer {
112 Function &F;
113 AliasAnalysis &AA;
114 AssumptionCache &AC;
115 DominatorTree &DT;
116 ScalarEvolution &SE;
117 TargetTransformInfo &TTI;
118 const DataLayout &DL;
119 IRBuilder<> Builder;
120
121 public:
Vectorizer(Function & F,AliasAnalysis & AA,AssumptionCache & AC,DominatorTree & DT,ScalarEvolution & SE,TargetTransformInfo & TTI)122 Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
123 DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
124 : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
125 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
126
127 bool run();
128
129 private:
130 unsigned getPointerAddressSpace(Value *I);
131
132 static const unsigned MaxDepth = 3;
133
134 bool isConsecutiveAccess(Value *A, Value *B);
135 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
136 unsigned Depth = 0) const;
137 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
138 unsigned Depth) const;
139 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
140 unsigned Depth) const;
141
142 /// After vectorization, reorder the instructions that I depends on
143 /// (the instructions defining its operands), to ensure they dominate I.
144 void reorder(Instruction *I);
145
146 /// Returns the first and the last instructions in Chain.
147 std::pair<BasicBlock::iterator, BasicBlock::iterator>
148 getBoundaryInstrs(ArrayRef<Instruction *> Chain);
149
150 /// Erases the original instructions after vectorizing.
151 void eraseInstructions(ArrayRef<Instruction *> Chain);
152
153 /// "Legalize" the vector type that would be produced by combining \p
154 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
155 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
156 /// expected to have more than 4 elements.
157 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
158 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
159
160 /// Finds the largest prefix of Chain that's vectorizable, checking for
161 /// intervening instructions which may affect the memory accessed by the
162 /// instructions within Chain.
163 ///
164 /// The elements of \p Chain must be all loads or all stores and must be in
165 /// address order.
166 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
167
168 /// Collects load and store instructions to vectorize.
169 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
170
171 /// Processes the collected instructions, the \p Map. The values of \p Map
172 /// should be all loads or all stores.
173 bool vectorizeChains(InstrListMap &Map);
174
175 /// Finds the load/stores to consecutive memory addresses and vectorizes them.
176 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
177
178 /// Vectorizes the load instructions in Chain.
179 bool
180 vectorizeLoadChain(ArrayRef<Instruction *> Chain,
181 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
182
183 /// Vectorizes the store instructions in Chain.
184 bool
185 vectorizeStoreChain(ArrayRef<Instruction *> Chain,
186 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
187
188 /// Check if this load/store access is misaligned accesses.
189 /// Returns a \p RelativeSpeed of an operation if allowed suitable to
190 /// compare to another result for the same \p AddressSpace and potentially
191 /// different \p Alignment and \p SzInBytes.
192 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
193 Align Alignment, unsigned &RelativeSpeed);
194 };
195
196 class LoadStoreVectorizerLegacyPass : public FunctionPass {
197 public:
198 static char ID;
199
LoadStoreVectorizerLegacyPass()200 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
201 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
202 }
203
204 bool runOnFunction(Function &F) override;
205
getPassName() const206 StringRef getPassName() const override {
207 return "GPU Load and Store Vectorizer";
208 }
209
getAnalysisUsage(AnalysisUsage & AU) const210 void getAnalysisUsage(AnalysisUsage &AU) const override {
211 AU.addRequired<AAResultsWrapperPass>();
212 AU.addRequired<AssumptionCacheTracker>();
213 AU.addRequired<ScalarEvolutionWrapperPass>();
214 AU.addRequired<DominatorTreeWrapperPass>();
215 AU.addRequired<TargetTransformInfoWrapperPass>();
216 AU.setPreservesCFG();
217 }
218 };
219
220 } // end anonymous namespace
221
222 char LoadStoreVectorizerLegacyPass::ID = 0;
223
224 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
225 "Vectorize load and Store instructions", false, false)
226 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
228 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)229 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
230 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
231 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
232 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
233 "Vectorize load and store instructions", false, false)
234
235 Pass *llvm::createLoadStoreVectorizerPass() {
236 return new LoadStoreVectorizerLegacyPass();
237 }
238
runOnFunction(Function & F)239 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
240 // Don't vectorize when the attribute NoImplicitFloat is used.
241 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
242 return false;
243
244 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
245 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
246 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
247 TargetTransformInfo &TTI =
248 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
249
250 AssumptionCache &AC =
251 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
252
253 Vectorizer V(F, AA, AC, DT, SE, TTI);
254 return V.run();
255 }
256
run(Function & F,FunctionAnalysisManager & AM)257 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
258 // Don't vectorize when the attribute NoImplicitFloat is used.
259 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
260 return PreservedAnalyses::all();
261
262 AliasAnalysis &AA = AM.getResult<AAManager>(F);
263 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
264 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
265 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
266 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
267
268 Vectorizer V(F, AA, AC, DT, SE, TTI);
269 bool Changed = V.run();
270 PreservedAnalyses PA;
271 PA.preserveSet<CFGAnalyses>();
272 return Changed ? PA : PreservedAnalyses::all();
273 }
274
275 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
276 // vectors of Instructions.
propagateMetadata(Instruction * I,ArrayRef<Instruction * > IL)277 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
278 SmallVector<Value *, 8> VL(IL.begin(), IL.end());
279 propagateMetadata(I, VL);
280 }
281
282 // Vectorizer Implementation
run()283 bool Vectorizer::run() {
284 bool Changed = false;
285
286 // Scan the blocks in the function in post order.
287 for (BasicBlock *BB : post_order(&F)) {
288 InstrListMap LoadRefs, StoreRefs;
289 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
290 Changed |= vectorizeChains(LoadRefs);
291 Changed |= vectorizeChains(StoreRefs);
292 }
293
294 return Changed;
295 }
296
getPointerAddressSpace(Value * I)297 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
298 if (LoadInst *L = dyn_cast<LoadInst>(I))
299 return L->getPointerAddressSpace();
300 if (StoreInst *S = dyn_cast<StoreInst>(I))
301 return S->getPointerAddressSpace();
302 return -1;
303 }
304
305 // FIXME: Merge with llvm::isConsecutiveAccess
isConsecutiveAccess(Value * A,Value * B)306 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
307 Value *PtrA = getLoadStorePointerOperand(A);
308 Value *PtrB = getLoadStorePointerOperand(B);
309 unsigned ASA = getPointerAddressSpace(A);
310 unsigned ASB = getPointerAddressSpace(B);
311
312 // Check that the address spaces match and that the pointers are valid.
313 if (!PtrA || !PtrB || (ASA != ASB))
314 return false;
315
316 // Make sure that A and B are different pointers of the same size type.
317 Type *PtrATy = getLoadStoreType(A);
318 Type *PtrBTy = getLoadStoreType(B);
319 if (PtrA == PtrB ||
320 PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
321 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
322 DL.getTypeStoreSize(PtrATy->getScalarType()) !=
323 DL.getTypeStoreSize(PtrBTy->getScalarType()))
324 return false;
325
326 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
327 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
328
329 return areConsecutivePointers(PtrA, PtrB, Size);
330 }
331
areConsecutivePointers(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const332 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
333 APInt PtrDelta, unsigned Depth) const {
334 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
335 APInt OffsetA(PtrBitWidth, 0);
336 APInt OffsetB(PtrBitWidth, 0);
337 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
338 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
339
340 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
341
342 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
343 return false;
344
345 // In case if we have to shrink the pointer
346 // stripAndAccumulateInBoundsConstantOffsets should properly handle a
347 // possible overflow and the value should fit into a smallest data type
348 // used in the cast/gep chain.
349 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
350 OffsetB.getMinSignedBits() <= NewPtrBitWidth);
351
352 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
353 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
354 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
355
356 APInt OffsetDelta = OffsetB - OffsetA;
357
358 // Check if they are based on the same pointer. That makes the offsets
359 // sufficient.
360 if (PtrA == PtrB)
361 return OffsetDelta == PtrDelta;
362
363 // Compute the necessary base pointer delta to have the necessary final delta
364 // equal to the pointer delta requested.
365 APInt BaseDelta = PtrDelta - OffsetDelta;
366
367 // Compute the distance with SCEV between the base pointers.
368 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
369 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
370 const SCEV *C = SE.getConstant(BaseDelta);
371 const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
372 if (X == PtrSCEVB)
373 return true;
374
375 // The above check will not catch the cases where one of the pointers is
376 // factorized but the other one is not, such as (C + (S * (A + B))) vs
377 // (AS + BS). Get the minus scev. That will allow re-combining the expresions
378 // and getting the simplified difference.
379 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
380 if (C == Dist)
381 return true;
382
383 // Sometimes even this doesn't work, because SCEV can't always see through
384 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
385 // things the hard way.
386 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
387 }
388
checkNoWrapFlags(Instruction * I,bool Signed)389 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
390 BinaryOperator *BinOpI = cast<BinaryOperator>(I);
391 return (Signed && BinOpI->hasNoSignedWrap()) ||
392 (!Signed && BinOpI->hasNoUnsignedWrap());
393 }
394
checkIfSafeAddSequence(const APInt & IdxDiff,Instruction * AddOpA,unsigned MatchingOpIdxA,Instruction * AddOpB,unsigned MatchingOpIdxB,bool Signed)395 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
396 unsigned MatchingOpIdxA, Instruction *AddOpB,
397 unsigned MatchingOpIdxB, bool Signed) {
398 // If both OpA and OpB is an add with NSW/NUW and with
399 // one of the operands being the same, we can guarantee that the
400 // transformation is safe if we can prove that OpA won't overflow when
401 // IdxDiff added to the other operand of OpA.
402 // For example:
403 // %tmp7 = add nsw i32 %tmp2, %v0
404 // %tmp8 = sext i32 %tmp7 to i64
405 // ...
406 // %tmp11 = add nsw i32 %v0, 1
407 // %tmp12 = add nsw i32 %tmp2, %tmp11
408 // %tmp13 = sext i32 %tmp12 to i64
409 //
410 // Both %tmp7 and %tmp2 has the nsw flag and the first operand
411 // is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
412 // because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
413 // nsw flag.
414 assert(AddOpA->getOpcode() == Instruction::Add &&
415 AddOpB->getOpcode() == Instruction::Add &&
416 checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
417 if (AddOpA->getOperand(MatchingOpIdxA) ==
418 AddOpB->getOperand(MatchingOpIdxB)) {
419 Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
420 Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
421 Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
422 Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
423 // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
424 if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
425 checkNoWrapFlags(OtherInstrB, Signed) &&
426 isa<ConstantInt>(OtherInstrB->getOperand(1))) {
427 int64_t CstVal =
428 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
429 if (OtherInstrB->getOperand(0) == OtherOperandA &&
430 IdxDiff.getSExtValue() == CstVal)
431 return true;
432 }
433 // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
434 if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
435 checkNoWrapFlags(OtherInstrA, Signed) &&
436 isa<ConstantInt>(OtherInstrA->getOperand(1))) {
437 int64_t CstVal =
438 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
439 if (OtherInstrA->getOperand(0) == OtherOperandB &&
440 IdxDiff.getSExtValue() == -CstVal)
441 return true;
442 }
443 // Match `x +nsw/nuw (y +nsw/nuw c)` and
444 // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
445 if (OtherInstrA && OtherInstrB &&
446 OtherInstrA->getOpcode() == Instruction::Add &&
447 OtherInstrB->getOpcode() == Instruction::Add &&
448 checkNoWrapFlags(OtherInstrA, Signed) &&
449 checkNoWrapFlags(OtherInstrB, Signed) &&
450 isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
451 isa<ConstantInt>(OtherInstrB->getOperand(1))) {
452 int64_t CstValA =
453 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
454 int64_t CstValB =
455 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
456 if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
457 IdxDiff.getSExtValue() == (CstValB - CstValA))
458 return true;
459 }
460 }
461 return false;
462 }
463
lookThroughComplexAddresses(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const464 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
465 APInt PtrDelta,
466 unsigned Depth) const {
467 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
468 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
469 if (!GEPA || !GEPB)
470 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
471
472 // Look through GEPs after checking they're the same except for the last
473 // index.
474 if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
475 GEPA->getPointerOperand() != GEPB->getPointerOperand())
476 return false;
477 gep_type_iterator GTIA = gep_type_begin(GEPA);
478 gep_type_iterator GTIB = gep_type_begin(GEPB);
479 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
480 if (GTIA.getOperand() != GTIB.getOperand())
481 return false;
482 ++GTIA;
483 ++GTIB;
484 }
485
486 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
487 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
488 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
489 OpA->getType() != OpB->getType())
490 return false;
491
492 if (PtrDelta.isNegative()) {
493 if (PtrDelta.isMinSignedValue())
494 return false;
495 PtrDelta.negate();
496 std::swap(OpA, OpB);
497 }
498 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
499 if (PtrDelta.urem(Stride) != 0)
500 return false;
501 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
502 APInt IdxDiff = PtrDelta.udiv(Stride).zext(IdxBitWidth);
503
504 // Only look through a ZExt/SExt.
505 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
506 return false;
507
508 bool Signed = isa<SExtInst>(OpA);
509
510 // At this point A could be a function parameter, i.e. not an instruction
511 Value *ValA = OpA->getOperand(0);
512 OpB = dyn_cast<Instruction>(OpB->getOperand(0));
513 if (!OpB || ValA->getType() != OpB->getType())
514 return false;
515
516 // Now we need to prove that adding IdxDiff to ValA won't overflow.
517 bool Safe = false;
518
519 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
520 // ValA, we're okay.
521 if (OpB->getOpcode() == Instruction::Add &&
522 isa<ConstantInt>(OpB->getOperand(1)) &&
523 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
524 checkNoWrapFlags(OpB, Signed))
525 Safe = true;
526
527 // Second attempt: check if we have eligible add NSW/NUW instruction
528 // sequences.
529 OpA = dyn_cast<Instruction>(ValA);
530 if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
531 OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
532 checkNoWrapFlags(OpB, Signed)) {
533 // In the checks below a matching operand in OpA and OpB is
534 // an operand which is the same in those two instructions.
535 // Below we account for possible orders of the operands of
536 // these add instructions.
537 for (unsigned MatchingOpIdxA : {0, 1})
538 for (unsigned MatchingOpIdxB : {0, 1})
539 if (!Safe)
540 Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
541 MatchingOpIdxB, Signed);
542 }
543
544 unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
545
546 // Third attempt:
547 // If all set bits of IdxDiff or any higher order bit other than the sign bit
548 // are known to be zero in ValA, we can add Diff to it while guaranteeing no
549 // overflow of any sort.
550 if (!Safe) {
551 KnownBits Known(BitWidth);
552 computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT);
553 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
554 if (Signed)
555 BitsAllowedToBeSet.clearBit(BitWidth - 1);
556 if (BitsAllowedToBeSet.ult(IdxDiff))
557 return false;
558 }
559
560 const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
561 const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
562 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
563 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
564 return X == OffsetSCEVB;
565 }
566
lookThroughSelects(Value * PtrA,Value * PtrB,const APInt & PtrDelta,unsigned Depth) const567 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
568 const APInt &PtrDelta,
569 unsigned Depth) const {
570 if (Depth++ == MaxDepth)
571 return false;
572
573 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
574 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
575 return SelectA->getCondition() == SelectB->getCondition() &&
576 areConsecutivePointers(SelectA->getTrueValue(),
577 SelectB->getTrueValue(), PtrDelta, Depth) &&
578 areConsecutivePointers(SelectA->getFalseValue(),
579 SelectB->getFalseValue(), PtrDelta, Depth);
580 }
581 }
582 return false;
583 }
584
reorder(Instruction * I)585 void Vectorizer::reorder(Instruction *I) {
586 SmallPtrSet<Instruction *, 16> InstructionsToMove;
587 SmallVector<Instruction *, 16> Worklist;
588
589 Worklist.push_back(I);
590 while (!Worklist.empty()) {
591 Instruction *IW = Worklist.pop_back_val();
592 int NumOperands = IW->getNumOperands();
593 for (int i = 0; i < NumOperands; i++) {
594 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
595 if (!IM || IM->getOpcode() == Instruction::PHI)
596 continue;
597
598 // If IM is in another BB, no need to move it, because this pass only
599 // vectorizes instructions within one BB.
600 if (IM->getParent() != I->getParent())
601 continue;
602
603 if (!IM->comesBefore(I)) {
604 InstructionsToMove.insert(IM);
605 Worklist.push_back(IM);
606 }
607 }
608 }
609
610 // All instructions to move should follow I. Start from I, not from begin().
611 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
612 ++BBI) {
613 if (!InstructionsToMove.count(&*BBI))
614 continue;
615 Instruction *IM = &*BBI;
616 --BBI;
617 IM->removeFromParent();
618 IM->insertBefore(I);
619 }
620 }
621
622 std::pair<BasicBlock::iterator, BasicBlock::iterator>
getBoundaryInstrs(ArrayRef<Instruction * > Chain)623 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
624 Instruction *C0 = Chain[0];
625 BasicBlock::iterator FirstInstr = C0->getIterator();
626 BasicBlock::iterator LastInstr = C0->getIterator();
627
628 BasicBlock *BB = C0->getParent();
629 unsigned NumFound = 0;
630 for (Instruction &I : *BB) {
631 if (!is_contained(Chain, &I))
632 continue;
633
634 ++NumFound;
635 if (NumFound == 1) {
636 FirstInstr = I.getIterator();
637 }
638 if (NumFound == Chain.size()) {
639 LastInstr = I.getIterator();
640 break;
641 }
642 }
643
644 // Range is [first, last).
645 return std::make_pair(FirstInstr, ++LastInstr);
646 }
647
eraseInstructions(ArrayRef<Instruction * > Chain)648 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
649 SmallVector<Instruction *, 16> Instrs;
650 for (Instruction *I : Chain) {
651 Value *PtrOperand = getLoadStorePointerOperand(I);
652 assert(PtrOperand && "Instruction must have a pointer operand.");
653 Instrs.push_back(I);
654 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
655 Instrs.push_back(GEP);
656 }
657
658 // Erase instructions.
659 for (Instruction *I : Instrs)
660 if (I->use_empty())
661 I->eraseFromParent();
662 }
663
664 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
splitOddVectorElts(ArrayRef<Instruction * > Chain,unsigned ElementSizeBits)665 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
666 unsigned ElementSizeBits) {
667 unsigned ElementSizeBytes = ElementSizeBits / 8;
668 unsigned SizeBytes = ElementSizeBytes * Chain.size();
669 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
670 if (NumLeft == Chain.size()) {
671 if ((NumLeft & 1) == 0)
672 NumLeft /= 2; // Split even in half
673 else
674 --NumLeft; // Split off last element
675 } else if (NumLeft == 0)
676 NumLeft = 1;
677 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
678 }
679
680 ArrayRef<Instruction *>
getVectorizablePrefix(ArrayRef<Instruction * > Chain)681 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
682 // These are in BB order, unlike Chain, which is in address order.
683 SmallVector<Instruction *, 16> MemoryInstrs;
684 SmallVector<Instruction *, 16> ChainInstrs;
685
686 bool IsLoadChain = isa<LoadInst>(Chain[0]);
687 LLVM_DEBUG({
688 for (Instruction *I : Chain) {
689 if (IsLoadChain)
690 assert(isa<LoadInst>(I) &&
691 "All elements of Chain must be loads, or all must be stores.");
692 else
693 assert(isa<StoreInst>(I) &&
694 "All elements of Chain must be loads, or all must be stores.");
695 }
696 });
697
698 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
699 if ((isa<LoadInst>(I) || isa<StoreInst>(I)) && is_contained(Chain, &I)) {
700 ChainInstrs.push_back(&I);
701 continue;
702 }
703 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) {
704 LLVM_DEBUG(dbgs() << "LSV: Found instruction may not transfer execution: "
705 << I << '\n');
706 break;
707 }
708 if (I.mayReadOrWriteMemory())
709 MemoryInstrs.push_back(&I);
710 }
711
712 // Loop until we find an instruction in ChainInstrs that we can't vectorize.
713 unsigned ChainInstrIdx = 0;
714 Instruction *BarrierMemoryInstr = nullptr;
715
716 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
717 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
718
719 // If a barrier memory instruction was found, chain instructions that follow
720 // will not be added to the valid prefix.
721 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
722 break;
723
724 // Check (in BB order) if any instruction prevents ChainInstr from being
725 // vectorized. Find and store the first such "conflicting" instruction.
726 for (Instruction *MemInstr : MemoryInstrs) {
727 // If a barrier memory instruction was found, do not check past it.
728 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
729 break;
730
731 auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
732 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
733 if (MemLoad && ChainLoad)
734 continue;
735
736 // We can ignore the alias if the we have a load store pair and the load
737 // is known to be invariant. The load cannot be clobbered by the store.
738 auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
739 return LI->hasMetadata(LLVMContext::MD_invariant_load);
740 };
741
742 if (IsLoadChain) {
743 // We can ignore the alias as long as the load comes before the store,
744 // because that means we won't be moving the load past the store to
745 // vectorize it (the vectorized load is inserted at the location of the
746 // first load in the chain).
747 if (ChainInstr->comesBefore(MemInstr) ||
748 (ChainLoad && IsInvariantLoad(ChainLoad)))
749 continue;
750 } else {
751 // Same case, but in reverse.
752 if (MemInstr->comesBefore(ChainInstr) ||
753 (MemLoad && IsInvariantLoad(MemLoad)))
754 continue;
755 }
756
757 ModRefInfo MR =
758 AA.getModRefInfo(MemInstr, MemoryLocation::get(ChainInstr));
759 if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
760 LLVM_DEBUG({
761 dbgs() << "LSV: Found alias:\n"
762 " Aliasing instruction:\n"
763 << " " << *MemInstr << '\n'
764 << " Aliased instruction and pointer:\n"
765 << " " << *ChainInstr << '\n'
766 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n';
767 });
768 // Save this aliasing memory instruction as a barrier, but allow other
769 // instructions that precede the barrier to be vectorized with this one.
770 BarrierMemoryInstr = MemInstr;
771 break;
772 }
773 }
774 // Continue the search only for store chains, since vectorizing stores that
775 // precede an aliasing load is valid. Conversely, vectorizing loads is valid
776 // up to an aliasing store, but should not pull loads from further down in
777 // the basic block.
778 if (IsLoadChain && BarrierMemoryInstr) {
779 // The BarrierMemoryInstr is a store that precedes ChainInstr.
780 assert(BarrierMemoryInstr->comesBefore(ChainInstr));
781 break;
782 }
783 }
784
785 // Find the largest prefix of Chain whose elements are all in
786 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
787 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
788 // order.)
789 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
790 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
791 unsigned ChainIdx = 0;
792 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
793 if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
794 break;
795 }
796 return Chain.slice(0, ChainIdx);
797 }
798
getChainID(const Value * Ptr)799 static ChainID getChainID(const Value *Ptr) {
800 const Value *ObjPtr = getUnderlyingObject(Ptr);
801 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
802 // The select's themselves are distinct instructions even if they share the
803 // same condition and evaluate to consecutive pointers for true and false
804 // values of the condition. Therefore using the select's themselves for
805 // grouping instructions would put consecutive accesses into different lists
806 // and they won't be even checked for being consecutive, and won't be
807 // vectorized.
808 return Sel->getCondition();
809 }
810 return ObjPtr;
811 }
812
813 std::pair<InstrListMap, InstrListMap>
collectInstructions(BasicBlock * BB)814 Vectorizer::collectInstructions(BasicBlock *BB) {
815 InstrListMap LoadRefs;
816 InstrListMap StoreRefs;
817
818 for (Instruction &I : *BB) {
819 if (!I.mayReadOrWriteMemory())
820 continue;
821
822 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
823 if (!LI->isSimple())
824 continue;
825
826 // Skip if it's not legal.
827 if (!TTI.isLegalToVectorizeLoad(LI))
828 continue;
829
830 Type *Ty = LI->getType();
831 if (!VectorType::isValidElementType(Ty->getScalarType()))
832 continue;
833
834 // Skip weird non-byte sizes. They probably aren't worth the effort of
835 // handling correctly.
836 unsigned TySize = DL.getTypeSizeInBits(Ty);
837 if ((TySize % 8) != 0)
838 continue;
839
840 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
841 // functions are currently using an integer type for the vectorized
842 // load/store, and does not support casting between the integer type and a
843 // vector of pointers (e.g. i64 to <2 x i16*>)
844 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
845 continue;
846
847 Value *Ptr = LI->getPointerOperand();
848 unsigned AS = Ptr->getType()->getPointerAddressSpace();
849 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
850
851 unsigned VF = VecRegSize / TySize;
852 VectorType *VecTy = dyn_cast<VectorType>(Ty);
853
854 // No point in looking at these if they're too big to vectorize.
855 if (TySize > VecRegSize / 2 ||
856 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
857 continue;
858
859 // Save the load locations.
860 const ChainID ID = getChainID(Ptr);
861 LoadRefs[ID].push_back(LI);
862 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
863 if (!SI->isSimple())
864 continue;
865
866 // Skip if it's not legal.
867 if (!TTI.isLegalToVectorizeStore(SI))
868 continue;
869
870 Type *Ty = SI->getValueOperand()->getType();
871 if (!VectorType::isValidElementType(Ty->getScalarType()))
872 continue;
873
874 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
875 // functions are currently using an integer type for the vectorized
876 // load/store, and does not support casting between the integer type and a
877 // vector of pointers (e.g. i64 to <2 x i16*>)
878 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
879 continue;
880
881 // Skip weird non-byte sizes. They probably aren't worth the effort of
882 // handling correctly.
883 unsigned TySize = DL.getTypeSizeInBits(Ty);
884 if ((TySize % 8) != 0)
885 continue;
886
887 Value *Ptr = SI->getPointerOperand();
888 unsigned AS = Ptr->getType()->getPointerAddressSpace();
889 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
890
891 unsigned VF = VecRegSize / TySize;
892 VectorType *VecTy = dyn_cast<VectorType>(Ty);
893
894 // No point in looking at these if they're too big to vectorize.
895 if (TySize > VecRegSize / 2 ||
896 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
897 continue;
898
899 // Save store location.
900 const ChainID ID = getChainID(Ptr);
901 StoreRefs[ID].push_back(SI);
902 }
903 }
904
905 return {LoadRefs, StoreRefs};
906 }
907
vectorizeChains(InstrListMap & Map)908 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
909 bool Changed = false;
910
911 for (const std::pair<ChainID, InstrList> &Chain : Map) {
912 unsigned Size = Chain.second.size();
913 if (Size < 2)
914 continue;
915
916 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
917
918 // Process the stores in chunks of 64.
919 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
920 unsigned Len = std::min<unsigned>(CE - CI, 64);
921 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
922 Changed |= vectorizeInstructions(Chunk);
923 }
924 }
925
926 return Changed;
927 }
928
vectorizeInstructions(ArrayRef<Instruction * > Instrs)929 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
930 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
931 << " instructions.\n");
932 SmallVector<int, 16> Heads, Tails;
933 int ConsecutiveChain[64];
934
935 // Do a quadratic search on all of the given loads/stores and find all of the
936 // pairs of loads/stores that follow each other.
937 for (int i = 0, e = Instrs.size(); i < e; ++i) {
938 ConsecutiveChain[i] = -1;
939 for (int j = e - 1; j >= 0; --j) {
940 if (i == j)
941 continue;
942
943 if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
944 if (ConsecutiveChain[i] != -1) {
945 int CurDistance = std::abs(ConsecutiveChain[i] - i);
946 int NewDistance = std::abs(ConsecutiveChain[i] - j);
947 if (j < i || NewDistance > CurDistance)
948 continue; // Should not insert.
949 }
950
951 Tails.push_back(j);
952 Heads.push_back(i);
953 ConsecutiveChain[i] = j;
954 }
955 }
956 }
957
958 bool Changed = false;
959 SmallPtrSet<Instruction *, 16> InstructionsProcessed;
960
961 for (int Head : Heads) {
962 if (InstructionsProcessed.count(Instrs[Head]))
963 continue;
964 bool LongerChainExists = false;
965 for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
966 if (Head == Tails[TIt] &&
967 !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
968 LongerChainExists = true;
969 break;
970 }
971 if (LongerChainExists)
972 continue;
973
974 // We found an instr that starts a chain. Now follow the chain and try to
975 // vectorize it.
976 SmallVector<Instruction *, 16> Operands;
977 int I = Head;
978 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
979 if (InstructionsProcessed.count(Instrs[I]))
980 break;
981
982 Operands.push_back(Instrs[I]);
983 I = ConsecutiveChain[I];
984 }
985
986 bool Vectorized = false;
987 if (isa<LoadInst>(*Operands.begin()))
988 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
989 else
990 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
991
992 Changed |= Vectorized;
993 }
994
995 return Changed;
996 }
997
vectorizeStoreChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)998 bool Vectorizer::vectorizeStoreChain(
999 ArrayRef<Instruction *> Chain,
1000 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1001 StoreInst *S0 = cast<StoreInst>(Chain[0]);
1002
1003 // If the vector has an int element, default to int for the whole store.
1004 Type *StoreTy = nullptr;
1005 for (Instruction *I : Chain) {
1006 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
1007 if (StoreTy->isIntOrIntVectorTy())
1008 break;
1009
1010 if (StoreTy->isPtrOrPtrVectorTy()) {
1011 StoreTy = Type::getIntNTy(F.getParent()->getContext(),
1012 DL.getTypeSizeInBits(StoreTy));
1013 break;
1014 }
1015 }
1016 assert(StoreTy && "Failed to find store type");
1017
1018 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
1019 unsigned AS = S0->getPointerAddressSpace();
1020 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1021 unsigned VF = VecRegSize / Sz;
1022 unsigned ChainSize = Chain.size();
1023 Align Alignment = S0->getAlign();
1024
1025 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1026 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1027 return false;
1028 }
1029
1030 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1031 if (NewChain.empty()) {
1032 // No vectorization possible.
1033 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1034 return false;
1035 }
1036 if (NewChain.size() == 1) {
1037 // Failed after the first instruction. Discard it and try the smaller chain.
1038 InstructionsProcessed->insert(NewChain.front());
1039 return false;
1040 }
1041
1042 // Update Chain to the valid vectorizable subchain.
1043 Chain = NewChain;
1044 ChainSize = Chain.size();
1045
1046 // Check if it's legal to vectorize this chain. If not, split the chain and
1047 // try again.
1048 unsigned EltSzInBytes = Sz / 8;
1049 unsigned SzInBytes = EltSzInBytes * ChainSize;
1050
1051 FixedVectorType *VecTy;
1052 auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy);
1053 if (VecStoreTy)
1054 VecTy = FixedVectorType::get(StoreTy->getScalarType(),
1055 Chain.size() * VecStoreTy->getNumElements());
1056 else
1057 VecTy = FixedVectorType::get(StoreTy, Chain.size());
1058
1059 // If it's more than the max vector size or the target has a better
1060 // vector factor, break it into two pieces.
1061 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1062 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1063 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1064 " Creating two separate arrays.\n");
1065 bool Vectorized = false;
1066 Vectorized |=
1067 vectorizeStoreChain(Chain.slice(0, TargetVF), InstructionsProcessed);
1068 Vectorized |=
1069 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1070 return Vectorized;
1071 }
1072
1073 LLVM_DEBUG({
1074 dbgs() << "LSV: Stores to vectorize:\n";
1075 for (Instruction *I : Chain)
1076 dbgs() << " " << *I << "\n";
1077 });
1078
1079 // We won't try again to vectorize the elements of the chain, regardless of
1080 // whether we succeed below.
1081 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1082
1083 // If the store is going to be misaligned, don't vectorize it.
1084 unsigned RelativeSpeed;
1085 if (accessIsMisaligned(SzInBytes, AS, Alignment, RelativeSpeed)) {
1086 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1087 unsigned SpeedBefore;
1088 accessIsMisaligned(EltSzInBytes, AS, Alignment, SpeedBefore);
1089 if (SpeedBefore > RelativeSpeed)
1090 return false;
1091
1092 auto Chains = splitOddVectorElts(Chain, Sz);
1093 bool Vectorized = false;
1094 Vectorized |= vectorizeStoreChain(Chains.first, InstructionsProcessed);
1095 Vectorized |= vectorizeStoreChain(Chains.second, InstructionsProcessed);
1096 return Vectorized;
1097 }
1098
1099 Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1100 Align(StackAdjustedAlignment),
1101 DL, S0, nullptr, &DT);
1102 if (NewAlign >= Alignment)
1103 Alignment = NewAlign;
1104 else
1105 return false;
1106 }
1107
1108 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1109 auto Chains = splitOddVectorElts(Chain, Sz);
1110 bool Vectorized = false;
1111 Vectorized |= vectorizeStoreChain(Chains.first, InstructionsProcessed);
1112 Vectorized |= vectorizeStoreChain(Chains.second, InstructionsProcessed);
1113 return Vectorized;
1114 }
1115
1116 BasicBlock::iterator First, Last;
1117 std::tie(First, Last) = getBoundaryInstrs(Chain);
1118 Builder.SetInsertPoint(&*Last);
1119
1120 Value *Vec = PoisonValue::get(VecTy);
1121
1122 if (VecStoreTy) {
1123 unsigned VecWidth = VecStoreTy->getNumElements();
1124 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1125 StoreInst *Store = cast<StoreInst>(Chain[I]);
1126 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1127 unsigned NewIdx = J + I * VecWidth;
1128 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1129 Builder.getInt32(J));
1130 if (Extract->getType() != StoreTy->getScalarType())
1131 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1132
1133 Value *Insert =
1134 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1135 Vec = Insert;
1136 }
1137 }
1138 } else {
1139 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1140 StoreInst *Store = cast<StoreInst>(Chain[I]);
1141 Value *Extract = Store->getValueOperand();
1142 if (Extract->getType() != StoreTy->getScalarType())
1143 Extract =
1144 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1145
1146 Value *Insert =
1147 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1148 Vec = Insert;
1149 }
1150 }
1151
1152 StoreInst *SI = Builder.CreateAlignedStore(
1153 Vec,
1154 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1155 Alignment);
1156 propagateMetadata(SI, Chain);
1157
1158 eraseInstructions(Chain);
1159 ++NumVectorInstructions;
1160 NumScalarsVectorized += Chain.size();
1161 return true;
1162 }
1163
vectorizeLoadChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)1164 bool Vectorizer::vectorizeLoadChain(
1165 ArrayRef<Instruction *> Chain,
1166 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1167 LoadInst *L0 = cast<LoadInst>(Chain[0]);
1168
1169 // If the vector has an int element, default to int for the whole load.
1170 Type *LoadTy = nullptr;
1171 for (const auto &V : Chain) {
1172 LoadTy = cast<LoadInst>(V)->getType();
1173 if (LoadTy->isIntOrIntVectorTy())
1174 break;
1175
1176 if (LoadTy->isPtrOrPtrVectorTy()) {
1177 LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1178 DL.getTypeSizeInBits(LoadTy));
1179 break;
1180 }
1181 }
1182 assert(LoadTy && "Can't determine LoadInst type from chain");
1183
1184 unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1185 unsigned AS = L0->getPointerAddressSpace();
1186 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1187 unsigned VF = VecRegSize / Sz;
1188 unsigned ChainSize = Chain.size();
1189 Align Alignment = L0->getAlign();
1190
1191 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1192 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1193 return false;
1194 }
1195
1196 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1197 if (NewChain.empty()) {
1198 // No vectorization possible.
1199 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1200 return false;
1201 }
1202 if (NewChain.size() == 1) {
1203 // Failed after the first instruction. Discard it and try the smaller chain.
1204 InstructionsProcessed->insert(NewChain.front());
1205 return false;
1206 }
1207
1208 // Update Chain to the valid vectorizable subchain.
1209 Chain = NewChain;
1210 ChainSize = Chain.size();
1211
1212 // Check if it's legal to vectorize this chain. If not, split the chain and
1213 // try again.
1214 unsigned EltSzInBytes = Sz / 8;
1215 unsigned SzInBytes = EltSzInBytes * ChainSize;
1216 VectorType *VecTy;
1217 auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy);
1218 if (VecLoadTy)
1219 VecTy = FixedVectorType::get(LoadTy->getScalarType(),
1220 Chain.size() * VecLoadTy->getNumElements());
1221 else
1222 VecTy = FixedVectorType::get(LoadTy, Chain.size());
1223
1224 // If it's more than the max vector size or the target has a better
1225 // vector factor, break it into two pieces.
1226 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1227 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1228 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1229 " Creating two separate arrays.\n");
1230 bool Vectorized = false;
1231 Vectorized |=
1232 vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed);
1233 Vectorized |=
1234 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1235 return Vectorized;
1236 }
1237
1238 // We won't try again to vectorize the elements of the chain, regardless of
1239 // whether we succeed below.
1240 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1241
1242 // If the load is going to be misaligned, don't vectorize it.
1243 unsigned RelativeSpeed;
1244 if (accessIsMisaligned(SzInBytes, AS, Alignment, RelativeSpeed)) {
1245 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1246 unsigned SpeedBefore;
1247 accessIsMisaligned(EltSzInBytes, AS, Alignment, SpeedBefore);
1248 if (SpeedBefore > RelativeSpeed)
1249 return false;
1250
1251 auto Chains = splitOddVectorElts(Chain, Sz);
1252 bool Vectorized = false;
1253 Vectorized |= vectorizeLoadChain(Chains.first, InstructionsProcessed);
1254 Vectorized |= vectorizeLoadChain(Chains.second, InstructionsProcessed);
1255 return Vectorized;
1256 }
1257
1258 Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
1259 Align(StackAdjustedAlignment),
1260 DL, L0, nullptr, &DT);
1261 if (NewAlign >= Alignment)
1262 Alignment = NewAlign;
1263 else
1264 return false;
1265 }
1266
1267 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1268 auto Chains = splitOddVectorElts(Chain, Sz);
1269 bool Vectorized = false;
1270 Vectorized |= vectorizeLoadChain(Chains.first, InstructionsProcessed);
1271 Vectorized |= vectorizeLoadChain(Chains.second, InstructionsProcessed);
1272 return Vectorized;
1273 }
1274
1275 LLVM_DEBUG({
1276 dbgs() << "LSV: Loads to vectorize:\n";
1277 for (Instruction *I : Chain)
1278 I->dump();
1279 });
1280
1281 // getVectorizablePrefix already computed getBoundaryInstrs. The value of
1282 // Last may have changed since then, but the value of First won't have. If it
1283 // matters, we could compute getBoundaryInstrs only once and reuse it here.
1284 BasicBlock::iterator First, Last;
1285 std::tie(First, Last) = getBoundaryInstrs(Chain);
1286 Builder.SetInsertPoint(&*First);
1287
1288 Value *Bitcast =
1289 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1290 LoadInst *LI =
1291 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
1292 propagateMetadata(LI, Chain);
1293
1294 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1295 Value *CV = Chain[I];
1296 Value *V;
1297 if (VecLoadTy) {
1298 // Extract a subvector using shufflevector.
1299 unsigned VecWidth = VecLoadTy->getNumElements();
1300 auto Mask =
1301 llvm::to_vector<8>(llvm::seq<int>(I * VecWidth, (I + 1) * VecWidth));
1302 V = Builder.CreateShuffleVector(LI, Mask, CV->getName());
1303 } else {
1304 V = Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1305 }
1306
1307 if (V->getType() != CV->getType()) {
1308 V = Builder.CreateBitOrPointerCast(V, CV->getType());
1309 }
1310
1311 // Replace the old instruction.
1312 CV->replaceAllUsesWith(V);
1313 }
1314
1315 // Since we might have opaque pointers we might end up using the pointer
1316 // operand of the first load (wrt. memory loaded) for the vector load. Since
1317 // this first load might not be the first in the block we potentially need to
1318 // reorder the pointer operand (and its operands). If we have a bitcast though
1319 // it might be before the load and should be the reorder start instruction.
1320 // "Might" because for opaque pointers the "bitcast" is just the first loads
1321 // pointer operand, as oppposed to something we inserted at the right position
1322 // ourselves.
1323 Instruction *BCInst = dyn_cast<Instruction>(Bitcast);
1324 reorder((BCInst && BCInst != L0->getPointerOperand()) ? BCInst : LI);
1325
1326 eraseInstructions(Chain);
1327
1328 ++NumVectorInstructions;
1329 NumScalarsVectorized += Chain.size();
1330 return true;
1331 }
1332
accessIsMisaligned(unsigned SzInBytes,unsigned AddressSpace,Align Alignment,unsigned & RelativeSpeed)1333 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1334 Align Alignment, unsigned &RelativeSpeed) {
1335 RelativeSpeed = 0;
1336 if (Alignment.value() % SzInBytes == 0)
1337 return false;
1338
1339 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1340 SzInBytes * 8, AddressSpace,
1341 Alignment, &RelativeSpeed);
1342 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1343 << " with relative speed = " << RelativeSpeed << '\n';);
1344 return !Allows || !RelativeSpeed;
1345 }
1346