1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LiveRangeCalc.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17
18 using namespace llvm;
19
20 #define DEBUG_TYPE "regalloc"
21
resetLiveOutMap()22 void LiveRangeCalc::resetLiveOutMap() {
23 unsigned NumBlocks = MF->getNumBlockIDs();
24 Seen.clear();
25 Seen.resize(NumBlocks);
26 Map.resize(NumBlocks);
27 }
28
reset(const MachineFunction * mf,SlotIndexes * SI,MachineDominatorTree * MDT,VNInfo::Allocator * VNIA)29 void LiveRangeCalc::reset(const MachineFunction *mf,
30 SlotIndexes *SI,
31 MachineDominatorTree *MDT,
32 VNInfo::Allocator *VNIA) {
33 MF = mf;
34 MRI = &MF->getRegInfo();
35 Indexes = SI;
36 DomTree = MDT;
37 Alloc = VNIA;
38 resetLiveOutMap();
39 LiveIn.clear();
40 }
41
42
createDeadDef(SlotIndexes & Indexes,VNInfo::Allocator & Alloc,LiveRange & LR,const MachineOperand & MO)43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44 LiveRange &LR, const MachineOperand &MO) {
45 const MachineInstr *MI = MO.getParent();
46 SlotIndex DefIdx;
47 if (MI->isPHI())
48 DefIdx = Indexes.getMBBStartIdx(MI->getParent());
49 else
50 DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
51
52 // Create the def in LR. This may find an existing def.
53 LR.createDeadDef(DefIdx, Alloc);
54 }
55
calculate(LiveInterval & LI)56 void LiveRangeCalc::calculate(LiveInterval &LI) {
57 assert(MRI && Indexes && "call reset() first");
58
59 // Step 1: Create minimal live segments for every definition of Reg.
60 // Visit all def operands. If the same instruction has multiple defs of Reg,
61 // createDeadDef() will deduplicate.
62 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
63 unsigned Reg = LI.reg;
64 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
65 if (!MO.isDef() && !MO.readsReg())
66 continue;
67
68 unsigned SubReg = MO.getSubReg();
69 if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
70 unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
71 : MRI->getMaxLaneMaskForVReg(Reg);
72
73 // If this is the first time we see a subregister def, initialize
74 // subranges by creating a copy of the main range.
75 if (!LI.hasSubRanges() && !LI.empty()) {
76 unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
77 LI.createSubRangeFrom(*Alloc, ClassMask, LI);
78 }
79
80 for (LiveInterval::SubRange &S : LI.subranges()) {
81 // A Mask for subregs common to the existing subrange and current def.
82 unsigned Common = S.LaneMask & Mask;
83 if (Common == 0)
84 continue;
85 // A Mask for subregs covered by the subrange but not the current def.
86 unsigned LRest = S.LaneMask & ~Mask;
87 LiveInterval::SubRange *CommonRange;
88 if (LRest != 0) {
89 // Split current subrange into Common and LRest ranges.
90 S.LaneMask = LRest;
91 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
92 } else {
93 assert(Common == S.LaneMask);
94 CommonRange = &S;
95 }
96 if (MO.isDef())
97 createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
98 Mask &= ~Common;
99 }
100 // Create a new SubRange for subregs we did not cover yet.
101 if (Mask != 0) {
102 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
103 if (MO.isDef())
104 createDeadDef(*Indexes, *Alloc, *NewRange, MO);
105 }
106 }
107
108 // Create the def in the main liverange. We do not have to do this if
109 // subranges are tracked as we recreate the main range later in this case.
110 if (MO.isDef() && !LI.hasSubRanges())
111 createDeadDef(*Indexes, *Alloc, LI, MO);
112 }
113
114 // We may have created empty live ranges for partially undefined uses, we
115 // can't keep them because we won't find defs in them later.
116 LI.removeEmptySubRanges();
117
118 // Step 2: Extend live segments to all uses, constructing SSA form as
119 // necessary.
120 if (LI.hasSubRanges()) {
121 for (LiveInterval::SubRange &S : LI.subranges()) {
122 resetLiveOutMap();
123 extendToUses(S, Reg, S.LaneMask);
124 }
125 LI.clear();
126 LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
127 } else {
128 resetLiveOutMap();
129 extendToUses(LI, Reg, ~0u);
130 }
131 }
132
133
createDeadDefs(LiveRange & LR,unsigned Reg)134 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
135 assert(MRI && Indexes && "call reset() first");
136
137 // Visit all def operands. If the same instruction has multiple defs of Reg,
138 // LR.createDeadDef() will deduplicate.
139 for (MachineOperand &MO : MRI->def_operands(Reg))
140 createDeadDef(*Indexes, *Alloc, LR, MO);
141 }
142
143
extendToUses(LiveRange & LR,unsigned Reg,unsigned Mask)144 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
145 // Visit all operands that read Reg. This may include partial defs.
146 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
147 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
148 // Clear all kill flags. They will be reinserted after register allocation
149 // by LiveIntervalAnalysis::addKillFlags().
150 if (MO.isUse())
151 MO.setIsKill(false);
152 else {
153 // We only care about uses, but on the main range (mask ~0u) this includes
154 // the "virtual" reads happening for subregister defs.
155 if (Mask != ~0u)
156 continue;
157 }
158
159 if (!MO.readsReg())
160 continue;
161 unsigned SubReg = MO.getSubReg();
162 if (SubReg != 0) {
163 unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
164 // Ignore uses not covering the current subrange.
165 if ((SubRegMask & Mask) == 0)
166 continue;
167 }
168
169 // Determine the actual place of the use.
170 const MachineInstr *MI = MO.getParent();
171 unsigned OpNo = (&MO - &MI->getOperand(0));
172 SlotIndex UseIdx;
173 if (MI->isPHI()) {
174 assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
175 // The actual place where a phi operand is used is the end of the pred
176 // MBB. PHI operands are paired: (Reg, PredMBB).
177 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
178 } else {
179 // Check for early-clobber redefs.
180 bool isEarlyClobber = false;
181 unsigned DefIdx;
182 if (MO.isDef())
183 isEarlyClobber = MO.isEarlyClobber();
184 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
185 // FIXME: This would be a lot easier if tied early-clobber uses also
186 // had an early-clobber flag.
187 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
188 }
189 UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
190 }
191
192 // MI is reading Reg. We may have visited MI before if it happens to be
193 // reading Reg multiple times. That is OK, extend() is idempotent.
194 extend(LR, UseIdx, Reg);
195 }
196 }
197
198
updateFromLiveIns()199 void LiveRangeCalc::updateFromLiveIns() {
200 LiveRangeUpdater Updater;
201 for (const LiveInBlock &I : LiveIn) {
202 if (!I.DomNode)
203 continue;
204 MachineBasicBlock *MBB = I.DomNode->getBlock();
205 assert(I.Value && "No live-in value found");
206 SlotIndex Start, End;
207 std::tie(Start, End) = Indexes->getMBBRange(MBB);
208
209 if (I.Kill.isValid())
210 // Value is killed inside this block.
211 End = I.Kill;
212 else {
213 // The value is live-through, update LiveOut as well.
214 // Defer the Domtree lookup until it is needed.
215 assert(Seen.test(MBB->getNumber()));
216 Map[MBB] = LiveOutPair(I.Value, nullptr);
217 }
218 Updater.setDest(&I.LR);
219 Updater.add(Start, End, I.Value);
220 }
221 LiveIn.clear();
222 }
223
224
extend(LiveRange & LR,SlotIndex Kill,unsigned PhysReg)225 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
226 assert(Kill.isValid() && "Invalid SlotIndex");
227 assert(Indexes && "Missing SlotIndexes");
228 assert(DomTree && "Missing dominator tree");
229
230 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot());
231 assert(KillMBB && "No MBB at Kill");
232
233 // Is there a def in the same MBB we can extend?
234 if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
235 return;
236
237 // Find the single reaching def, or determine if Kill is jointly dominated by
238 // multiple values, and we may need to create even more phi-defs to preserve
239 // VNInfo SSA form. Perform a search for all predecessor blocks where we
240 // know the dominating VNInfo.
241 if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
242 return;
243
244 // When there were multiple different values, we may need new PHIs.
245 calculateValues();
246 }
247
248
249 // This function is called by a client after using the low-level API to add
250 // live-out and live-in blocks. The unique value optimization is not
251 // available, SplitEditor::transferValues handles that case directly anyway.
calculateValues()252 void LiveRangeCalc::calculateValues() {
253 assert(Indexes && "Missing SlotIndexes");
254 assert(DomTree && "Missing dominator tree");
255 updateSSA();
256 updateFromLiveIns();
257 }
258
259
findReachingDefs(LiveRange & LR,MachineBasicBlock & KillMBB,SlotIndex Kill,unsigned PhysReg)260 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
261 SlotIndex Kill, unsigned PhysReg) {
262 unsigned KillMBBNum = KillMBB.getNumber();
263
264 // Block numbers where LR should be live-in.
265 SmallVector<unsigned, 16> WorkList(1, KillMBBNum);
266
267 // Remember if we have seen more than one value.
268 bool UniqueVNI = true;
269 VNInfo *TheVNI = nullptr;
270
271 // Using Seen as a visited set, perform a BFS for all reaching defs.
272 for (unsigned i = 0; i != WorkList.size(); ++i) {
273 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
274
275 #ifndef NDEBUG
276 if (MBB->pred_empty()) {
277 MBB->getParent()->verify();
278 llvm_unreachable("Use not jointly dominated by defs.");
279 }
280
281 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
282 !MBB->isLiveIn(PhysReg)) {
283 MBB->getParent()->verify();
284 errs() << "The register needs to be live in to BB#" << MBB->getNumber()
285 << ", but is missing from the live-in list.\n";
286 llvm_unreachable("Invalid global physical register");
287 }
288 #endif
289
290 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
291 PE = MBB->pred_end(); PI != PE; ++PI) {
292 MachineBasicBlock *Pred = *PI;
293
294 // Is this a known live-out block?
295 if (Seen.test(Pred->getNumber())) {
296 if (VNInfo *VNI = Map[Pred].first) {
297 if (TheVNI && TheVNI != VNI)
298 UniqueVNI = false;
299 TheVNI = VNI;
300 }
301 continue;
302 }
303
304 SlotIndex Start, End;
305 std::tie(Start, End) = Indexes->getMBBRange(Pred);
306
307 // First time we see Pred. Try to determine the live-out value, but set
308 // it as null if Pred is live-through with an unknown value.
309 VNInfo *VNI = LR.extendInBlock(Start, End);
310 setLiveOutValue(Pred, VNI);
311 if (VNI) {
312 if (TheVNI && TheVNI != VNI)
313 UniqueVNI = false;
314 TheVNI = VNI;
315 continue;
316 }
317
318 // No, we need a live-in value for Pred as well
319 if (Pred != &KillMBB)
320 WorkList.push_back(Pred->getNumber());
321 else
322 // Loopback to KillMBB, so value is really live through.
323 Kill = SlotIndex();
324 }
325 }
326
327 LiveIn.clear();
328
329 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
330 // neither require it. Skip the sorting overhead for small updates.
331 if (WorkList.size() > 4)
332 array_pod_sort(WorkList.begin(), WorkList.end());
333
334 // If a unique reaching def was found, blit in the live ranges immediately.
335 if (UniqueVNI) {
336 LiveRangeUpdater Updater(&LR);
337 for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
338 E = WorkList.end(); I != E; ++I) {
339 SlotIndex Start, End;
340 std::tie(Start, End) = Indexes->getMBBRange(*I);
341 // Trim the live range in KillMBB.
342 if (*I == KillMBBNum && Kill.isValid())
343 End = Kill;
344 else
345 Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
346 Updater.add(Start, End, TheVNI);
347 }
348 return true;
349 }
350
351 // Multiple values were found, so transfer the work list to the LiveIn array
352 // where UpdateSSA will use it as a work list.
353 LiveIn.reserve(WorkList.size());
354 for (SmallVectorImpl<unsigned>::const_iterator
355 I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
356 MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
357 addLiveInBlock(LR, DomTree->getNode(MBB));
358 if (MBB == &KillMBB)
359 LiveIn.back().Kill = Kill;
360 }
361
362 return false;
363 }
364
365
366 // This is essentially the same iterative algorithm that SSAUpdater uses,
367 // except we already have a dominator tree, so we don't have to recompute it.
updateSSA()368 void LiveRangeCalc::updateSSA() {
369 assert(Indexes && "Missing SlotIndexes");
370 assert(DomTree && "Missing dominator tree");
371
372 // Interate until convergence.
373 unsigned Changes;
374 do {
375 Changes = 0;
376 // Propagate live-out values down the dominator tree, inserting phi-defs
377 // when necessary.
378 for (LiveInBlock &I : LiveIn) {
379 MachineDomTreeNode *Node = I.DomNode;
380 // Skip block if the live-in value has already been determined.
381 if (!Node)
382 continue;
383 MachineBasicBlock *MBB = Node->getBlock();
384 MachineDomTreeNode *IDom = Node->getIDom();
385 LiveOutPair IDomValue;
386
387 // We need a live-in value to a block with no immediate dominator?
388 // This is probably an unreachable block that has survived somehow.
389 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
390
391 // IDom dominates all of our predecessors, but it may not be their
392 // immediate dominator. Check if any of them have live-out values that are
393 // properly dominated by IDom. If so, we need a phi-def here.
394 if (!needPHI) {
395 IDomValue = Map[IDom->getBlock()];
396
397 // Cache the DomTree node that defined the value.
398 if (IDomValue.first && !IDomValue.second)
399 Map[IDom->getBlock()].second = IDomValue.second =
400 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
401
402 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
403 PE = MBB->pred_end(); PI != PE; ++PI) {
404 LiveOutPair &Value = Map[*PI];
405 if (!Value.first || Value.first == IDomValue.first)
406 continue;
407
408 // Cache the DomTree node that defined the value.
409 if (!Value.second)
410 Value.second =
411 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
412
413 // This predecessor is carrying something other than IDomValue.
414 // It could be because IDomValue hasn't propagated yet, or it could be
415 // because MBB is in the dominance frontier of that value.
416 if (DomTree->dominates(IDom, Value.second)) {
417 needPHI = true;
418 break;
419 }
420 }
421 }
422
423 // The value may be live-through even if Kill is set, as can happen when
424 // we are called from extendRange. In that case LiveOutSeen is true, and
425 // LiveOut indicates a foreign or missing value.
426 LiveOutPair &LOP = Map[MBB];
427
428 // Create a phi-def if required.
429 if (needPHI) {
430 ++Changes;
431 assert(Alloc && "Need VNInfo allocator to create PHI-defs");
432 SlotIndex Start, End;
433 std::tie(Start, End) = Indexes->getMBBRange(MBB);
434 LiveRange &LR = I.LR;
435 VNInfo *VNI = LR.getNextValue(Start, *Alloc);
436 I.Value = VNI;
437 // This block is done, we know the final value.
438 I.DomNode = nullptr;
439
440 // Add liveness since updateFromLiveIns now skips this node.
441 if (I.Kill.isValid())
442 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
443 else {
444 LR.addSegment(LiveInterval::Segment(Start, End, VNI));
445 LOP = LiveOutPair(VNI, Node);
446 }
447 } else if (IDomValue.first) {
448 // No phi-def here. Remember incoming value.
449 I.Value = IDomValue.first;
450
451 // If the IDomValue is killed in the block, don't propagate through.
452 if (I.Kill.isValid())
453 continue;
454
455 // Propagate IDomValue if it isn't killed:
456 // MBB is live-out and doesn't define its own value.
457 if (LOP.first == IDomValue.first)
458 continue;
459 ++Changes;
460 LOP = IDomValue;
461 }
462 }
463 } while (Changes);
464 }
465