1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "legalizevectorops"
50
51 namespace {
52
53 class VectorLegalizer {
54 SelectionDAG& DAG;
55 const TargetLowering &TLI;
56 bool Changed = false; // Keep track of whether anything changed
57
58 /// For nodes that are of legal width, and that have more than one use, this
59 /// map indicates what regularized operand to use. This allows us to avoid
60 /// legalizing the same thing more than once.
61 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
62
63 /// Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)64 void AddLegalizedOperand(SDValue From, SDValue To) {
65 LegalizedNodes.insert(std::make_pair(From, To));
66 // If someone requests legalization of the new node, return itself.
67 if (From != To)
68 LegalizedNodes.insert(std::make_pair(To, To));
69 }
70
71 /// Legalizes the given node.
72 SDValue LegalizeOp(SDValue Op);
73
74 /// Assuming the node is legal, "legalize" the results.
75 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
76
77 /// Make sure Results are legal and update the translation cache.
78 SDValue RecursivelyLegalizeResults(SDValue Op,
79 MutableArrayRef<SDValue> Results);
80
81 /// Wrapper to interface LowerOperation with a vector of Results.
82 /// Returns false if the target wants to use default expansion. Otherwise
83 /// returns true. If return is true and the Results are empty, then the
84 /// target wants to keep the input node as is.
85 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
86
87 /// Implements unrolling a VSETCC.
88 SDValue UnrollVSETCC(SDNode *Node);
89
90 /// Implement expand-based legalization of vector operations.
91 ///
92 /// This is just a high-level routine to dispatch to specific code paths for
93 /// operations to legalize them.
94 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
95
96 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
97 /// FP_TO_SINT isn't legal.
98 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
99
100 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
101 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
102 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
103
104 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
105 SDValue ExpandSEXTINREG(SDNode *Node);
106
107 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
108 ///
109 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
110 /// type. The contents of the bits in the extended part of each element are
111 /// undef.
112 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
113
114 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
115 ///
116 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
117 /// type, then shifts left and arithmetic shifts right to introduce a sign
118 /// extension.
119 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
120
121 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
122 ///
123 /// Shuffles the low lanes of the operand into place and blends zeros into
124 /// the remaining lanes, finally bitcasting to the proper type.
125 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
126
127 /// Expand bswap of vectors into a shuffle if legal.
128 SDValue ExpandBSWAP(SDNode *Node);
129
130 /// Implement vselect in terms of XOR, AND, OR when blend is not
131 /// supported by the target.
132 SDValue ExpandVSELECT(SDNode *Node);
133 SDValue ExpandVP_SELECT(SDNode *Node);
134 SDValue ExpandVP_MERGE(SDNode *Node);
135 SDValue ExpandVP_REM(SDNode *Node);
136 SDValue ExpandSELECT(SDNode *Node);
137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138 SDValue ExpandStore(SDNode *N);
139 SDValue ExpandFNEG(SDNode *Node);
140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149
150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151
152 /// Implements vector promotion.
153 ///
154 /// This is essentially just bitcasting the operands to a different type and
155 /// bitcasting the result back to the original type.
156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157
158 /// Implements [SU]INT_TO_FP vector promotion.
159 ///
160 /// This is a [zs]ext of the input operand to a larger integer type.
161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162
163 /// Implements FP_TO_[SU]INT vector promotion of the result type.
164 ///
165 /// It is promoted to a larger integer type. The result is then
166 /// truncated back to the original type.
167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168
169 public:
VectorLegalizer(SelectionDAG & dag)170 VectorLegalizer(SelectionDAG& dag) :
171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172
173 /// Begin legalizer the vector operations in the DAG.
174 bool Run();
175 };
176
177 } // end anonymous namespace
178
Run()179 bool VectorLegalizer::Run() {
180 // Before we start legalizing vector nodes, check if there are any vectors.
181 bool HasVectors = false;
182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184 // Check if the values of the nodes contain vectors. We don't need to check
185 // the operands because we are going to check their values at some point.
186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187
188 // If we found a vector node we can start the legalization.
189 if (HasVectors)
190 break;
191 }
192
193 // If this basic block has no vectors then no need to legalize vectors.
194 if (!HasVectors)
195 return false;
196
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206 LegalizeOp(SDValue(&*I, 0));
207
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot = DAG.getRoot();
210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211 DAG.setRoot(LegalizedNodes[OldRoot]);
212
213 LegalizedNodes.clear();
214
215 // Remove dead nodes now.
216 DAG.RemoveDeadNodes();
217
218 return Changed;
219 }
220
TranslateLegalizeResults(SDValue Op,SDNode * Result)221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222 assert(Op->getNumValues() == Result->getNumValues() &&
223 "Unexpected number of results");
224 // Generic legalization: just pass the operand through.
225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227 return SDValue(Result, Op.getResNo());
228 }
229
230 SDValue
RecursivelyLegalizeResults(SDValue Op,MutableArrayRef<SDValue> Results)231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232 MutableArrayRef<SDValue> Results) {
233 assert(Results.size() == Op->getNumValues() &&
234 "Unexpected number of results");
235 // Make sure that the generated code is itself legal.
236 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237 Results[i] = LegalizeOp(Results[i]);
238 AddLegalizedOperand(Op.getValue(i), Results[i]);
239 }
240
241 return Results[Op.getResNo()];
242 }
243
LegalizeOp(SDValue Op)244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245 // Note that LegalizeOp may be reentered even from single-use nodes, which
246 // means that we always must cache transformed nodes.
247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248 if (I != LegalizedNodes.end()) return I->second;
249
250 // Legalize the operands
251 SmallVector<SDValue, 8> Ops;
252 for (const SDValue &Oper : Op->op_values())
253 Ops.push_back(LegalizeOp(Oper));
254
255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256
257 bool HasVectorValueOrOp =
258 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
259 llvm::any_of(Node->op_values(),
260 [](SDValue O) { return O.getValueType().isVector(); });
261 if (!HasVectorValueOrOp)
262 return TranslateLegalizeResults(Op, Node);
263
264 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
265 EVT ValVT;
266 switch (Op.getOpcode()) {
267 default:
268 return TranslateLegalizeResults(Op, Node);
269 case ISD::LOAD: {
270 LoadSDNode *LD = cast<LoadSDNode>(Node);
271 ISD::LoadExtType ExtType = LD->getExtensionType();
272 EVT LoadedVT = LD->getMemoryVT();
273 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
274 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
275 break;
276 }
277 case ISD::STORE: {
278 StoreSDNode *ST = cast<StoreSDNode>(Node);
279 EVT StVT = ST->getMemoryVT();
280 MVT ValVT = ST->getValue().getSimpleValueType();
281 if (StVT.isVector() && ST->isTruncatingStore())
282 Action = TLI.getTruncStoreAction(ValVT, StVT);
283 break;
284 }
285 case ISD::MERGE_VALUES:
286 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
287 // This operation lies about being legal: when it claims to be legal,
288 // it should actually be expanded.
289 if (Action == TargetLowering::Legal)
290 Action = TargetLowering::Expand;
291 break;
292 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
293 case ISD::STRICT_##DAGN:
294 #include "llvm/IR/ConstrainedOps.def"
295 ValVT = Node->getValueType(0);
296 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
297 Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
298 ValVT = Node->getOperand(1).getValueType();
299 Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
300 // If we're asked to expand a strict vector floating-point operation,
301 // by default we're going to simply unroll it. That is usually the
302 // best approach, except in the case where the resulting strict (scalar)
303 // operations would themselves use the fallback mutation to non-strict.
304 // In that specific case, just do the fallback on the vector op.
305 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
306 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
307 TargetLowering::Legal) {
308 EVT EltVT = ValVT.getVectorElementType();
309 if (TLI.getOperationAction(Node->getOpcode(), EltVT)
310 == TargetLowering::Expand &&
311 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
312 == TargetLowering::Legal)
313 Action = TargetLowering::Legal;
314 }
315 break;
316 case ISD::ADD:
317 case ISD::SUB:
318 case ISD::MUL:
319 case ISD::MULHS:
320 case ISD::MULHU:
321 case ISD::SDIV:
322 case ISD::UDIV:
323 case ISD::SREM:
324 case ISD::UREM:
325 case ISD::SDIVREM:
326 case ISD::UDIVREM:
327 case ISD::FADD:
328 case ISD::FSUB:
329 case ISD::FMUL:
330 case ISD::FDIV:
331 case ISD::FREM:
332 case ISD::AND:
333 case ISD::OR:
334 case ISD::XOR:
335 case ISD::SHL:
336 case ISD::SRA:
337 case ISD::SRL:
338 case ISD::FSHL:
339 case ISD::FSHR:
340 case ISD::ROTL:
341 case ISD::ROTR:
342 case ISD::ABS:
343 case ISD::BSWAP:
344 case ISD::BITREVERSE:
345 case ISD::CTLZ:
346 case ISD::CTTZ:
347 case ISD::CTLZ_ZERO_UNDEF:
348 case ISD::CTTZ_ZERO_UNDEF:
349 case ISD::CTPOP:
350 case ISD::SELECT:
351 case ISD::VSELECT:
352 case ISD::SELECT_CC:
353 case ISD::ZERO_EXTEND:
354 case ISD::ANY_EXTEND:
355 case ISD::TRUNCATE:
356 case ISD::SIGN_EXTEND:
357 case ISD::FP_TO_SINT:
358 case ISD::FP_TO_UINT:
359 case ISD::FNEG:
360 case ISD::FABS:
361 case ISD::FMINNUM:
362 case ISD::FMAXNUM:
363 case ISD::FMINNUM_IEEE:
364 case ISD::FMAXNUM_IEEE:
365 case ISD::FMINIMUM:
366 case ISD::FMAXIMUM:
367 case ISD::FCOPYSIGN:
368 case ISD::FSQRT:
369 case ISD::FSIN:
370 case ISD::FCOS:
371 case ISD::FPOWI:
372 case ISD::FPOW:
373 case ISD::FLOG:
374 case ISD::FLOG2:
375 case ISD::FLOG10:
376 case ISD::FEXP:
377 case ISD::FEXP2:
378 case ISD::FCEIL:
379 case ISD::FTRUNC:
380 case ISD::FRINT:
381 case ISD::FNEARBYINT:
382 case ISD::FROUND:
383 case ISD::FROUNDEVEN:
384 case ISD::FFLOOR:
385 case ISD::FP_ROUND:
386 case ISD::FP_EXTEND:
387 case ISD::FMA:
388 case ISD::SIGN_EXTEND_INREG:
389 case ISD::ANY_EXTEND_VECTOR_INREG:
390 case ISD::SIGN_EXTEND_VECTOR_INREG:
391 case ISD::ZERO_EXTEND_VECTOR_INREG:
392 case ISD::SMIN:
393 case ISD::SMAX:
394 case ISD::UMIN:
395 case ISD::UMAX:
396 case ISD::SMUL_LOHI:
397 case ISD::UMUL_LOHI:
398 case ISD::SADDO:
399 case ISD::UADDO:
400 case ISD::SSUBO:
401 case ISD::USUBO:
402 case ISD::SMULO:
403 case ISD::UMULO:
404 case ISD::FCANONICALIZE:
405 case ISD::SADDSAT:
406 case ISD::UADDSAT:
407 case ISD::SSUBSAT:
408 case ISD::USUBSAT:
409 case ISD::SSHLSAT:
410 case ISD::USHLSAT:
411 case ISD::FP_TO_SINT_SAT:
412 case ISD::FP_TO_UINT_SAT:
413 case ISD::MGATHER:
414 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
415 break;
416 case ISD::SMULFIX:
417 case ISD::SMULFIXSAT:
418 case ISD::UMULFIX:
419 case ISD::UMULFIXSAT:
420 case ISD::SDIVFIX:
421 case ISD::SDIVFIXSAT:
422 case ISD::UDIVFIX:
423 case ISD::UDIVFIXSAT: {
424 unsigned Scale = Node->getConstantOperandVal(2);
425 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
426 Node->getValueType(0), Scale);
427 break;
428 }
429 case ISD::SINT_TO_FP:
430 case ISD::UINT_TO_FP:
431 case ISD::VECREDUCE_ADD:
432 case ISD::VECREDUCE_MUL:
433 case ISD::VECREDUCE_AND:
434 case ISD::VECREDUCE_OR:
435 case ISD::VECREDUCE_XOR:
436 case ISD::VECREDUCE_SMAX:
437 case ISD::VECREDUCE_SMIN:
438 case ISD::VECREDUCE_UMAX:
439 case ISD::VECREDUCE_UMIN:
440 case ISD::VECREDUCE_FADD:
441 case ISD::VECREDUCE_FMUL:
442 case ISD::VECREDUCE_FMAX:
443 case ISD::VECREDUCE_FMIN:
444 Action = TLI.getOperationAction(Node->getOpcode(),
445 Node->getOperand(0).getValueType());
446 break;
447 case ISD::VECREDUCE_SEQ_FADD:
448 case ISD::VECREDUCE_SEQ_FMUL:
449 Action = TLI.getOperationAction(Node->getOpcode(),
450 Node->getOperand(1).getValueType());
451 break;
452 case ISD::SETCC: {
453 MVT OpVT = Node->getOperand(0).getSimpleValueType();
454 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
455 Action = TLI.getCondCodeAction(CCCode, OpVT);
456 if (Action == TargetLowering::Legal)
457 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
458 break;
459 }
460
461 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \
462 case ISD::VPID: { \
463 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \
464 : Node->getOperand(LEGALPOS).getValueType(); \
465 if (ISD::VPID == ISD::VP_SETCC) { \
466 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
467 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \
468 if (Action != TargetLowering::Legal) \
469 break; \
470 } \
471 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \
472 } break;
473 #include "llvm/IR/VPIntrinsics.def"
474 }
475
476 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
477
478 SmallVector<SDValue, 8> ResultVals;
479 switch (Action) {
480 default: llvm_unreachable("This action is not supported yet!");
481 case TargetLowering::Promote:
482 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
483 "This action is not supported yet!");
484 LLVM_DEBUG(dbgs() << "Promoting\n");
485 Promote(Node, ResultVals);
486 assert(!ResultVals.empty() && "No results for promotion?");
487 break;
488 case TargetLowering::Legal:
489 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
490 break;
491 case TargetLowering::Custom:
492 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
493 if (LowerOperationWrapper(Node, ResultVals))
494 break;
495 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
496 [[fallthrough]];
497 case TargetLowering::Expand:
498 LLVM_DEBUG(dbgs() << "Expanding\n");
499 Expand(Node, ResultVals);
500 break;
501 }
502
503 if (ResultVals.empty())
504 return TranslateLegalizeResults(Op, Node);
505
506 Changed = true;
507 return RecursivelyLegalizeResults(Op, ResultVals);
508 }
509
510 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
511 // merge them somehow?
LowerOperationWrapper(SDNode * Node,SmallVectorImpl<SDValue> & Results)512 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
513 SmallVectorImpl<SDValue> &Results) {
514 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
515
516 if (!Res.getNode())
517 return false;
518
519 if (Res == SDValue(Node, 0))
520 return true;
521
522 // If the original node has one result, take the return value from
523 // LowerOperation as is. It might not be result number 0.
524 if (Node->getNumValues() == 1) {
525 Results.push_back(Res);
526 return true;
527 }
528
529 // If the original node has multiple results, then the return node should
530 // have the same number of results.
531 assert((Node->getNumValues() == Res->getNumValues()) &&
532 "Lowering returned the wrong number of results!");
533
534 // Places new result values base on N result number.
535 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
536 Results.push_back(Res.getValue(I));
537
538 return true;
539 }
540
Promote(SDNode * Node,SmallVectorImpl<SDValue> & Results)541 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
542 // For a few operations there is a specific concept for promotion based on
543 // the operand's type.
544 switch (Node->getOpcode()) {
545 case ISD::SINT_TO_FP:
546 case ISD::UINT_TO_FP:
547 case ISD::STRICT_SINT_TO_FP:
548 case ISD::STRICT_UINT_TO_FP:
549 // "Promote" the operation by extending the operand.
550 PromoteINT_TO_FP(Node, Results);
551 return;
552 case ISD::FP_TO_UINT:
553 case ISD::FP_TO_SINT:
554 case ISD::STRICT_FP_TO_UINT:
555 case ISD::STRICT_FP_TO_SINT:
556 // Promote the operation by extending the operand.
557 PromoteFP_TO_INT(Node, Results);
558 return;
559 case ISD::FP_ROUND:
560 case ISD::FP_EXTEND:
561 // These operations are used to do promotion so they can't be promoted
562 // themselves.
563 llvm_unreachable("Don't know how to promote this operation!");
564 }
565
566 // There are currently two cases of vector promotion:
567 // 1) Bitcasting a vector of integers to a different type to a vector of the
568 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
569 // 2) Extending a vector of floats to a vector of the same number of larger
570 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
571 assert(Node->getNumValues() == 1 &&
572 "Can't promote a vector with multiple results!");
573 MVT VT = Node->getSimpleValueType(0);
574 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
575 SDLoc dl(Node);
576 SmallVector<SDValue, 4> Operands(Node->getNumOperands());
577
578 for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
579 if (Node->getOperand(j).getValueType().isVector())
580 if (Node->getOperand(j)
581 .getValueType()
582 .getVectorElementType()
583 .isFloatingPoint() &&
584 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
585 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
586 else
587 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
588 else
589 Operands[j] = Node->getOperand(j);
590 }
591
592 SDValue Res =
593 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
594
595 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
596 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
597 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
598 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
599 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
600 else
601 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
602
603 Results.push_back(Res);
604 }
605
PromoteINT_TO_FP(SDNode * Node,SmallVectorImpl<SDValue> & Results)606 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
607 SmallVectorImpl<SDValue> &Results) {
608 // INT_TO_FP operations may require the input operand be promoted even
609 // when the type is otherwise legal.
610 bool IsStrict = Node->isStrictFPOpcode();
611 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
612 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
613 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
614 "Vectors have different number of elements!");
615
616 SDLoc dl(Node);
617 SmallVector<SDValue, 4> Operands(Node->getNumOperands());
618
619 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
620 Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
621 ? ISD::ZERO_EXTEND
622 : ISD::SIGN_EXTEND;
623 for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
624 if (Node->getOperand(j).getValueType().isVector())
625 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
626 else
627 Operands[j] = Node->getOperand(j);
628 }
629
630 if (IsStrict) {
631 SDValue Res = DAG.getNode(Node->getOpcode(), dl,
632 {Node->getValueType(0), MVT::Other}, Operands);
633 Results.push_back(Res);
634 Results.push_back(Res.getValue(1));
635 return;
636 }
637
638 SDValue Res =
639 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
640 Results.push_back(Res);
641 }
642
643 // For FP_TO_INT we promote the result type to a vector type with wider
644 // elements and then truncate the result. This is different from the default
645 // PromoteVector which uses bitcast to promote thus assumning that the
646 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDNode * Node,SmallVectorImpl<SDValue> & Results)647 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
648 SmallVectorImpl<SDValue> &Results) {
649 MVT VT = Node->getSimpleValueType(0);
650 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
651 bool IsStrict = Node->isStrictFPOpcode();
652 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
653 "Vectors have different number of elements!");
654
655 unsigned NewOpc = Node->getOpcode();
656 // Change FP_TO_UINT to FP_TO_SINT if possible.
657 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
658 if (NewOpc == ISD::FP_TO_UINT &&
659 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
660 NewOpc = ISD::FP_TO_SINT;
661
662 if (NewOpc == ISD::STRICT_FP_TO_UINT &&
663 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
664 NewOpc = ISD::STRICT_FP_TO_SINT;
665
666 SDLoc dl(Node);
667 SDValue Promoted, Chain;
668 if (IsStrict) {
669 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
670 {Node->getOperand(0), Node->getOperand(1)});
671 Chain = Promoted.getValue(1);
672 } else
673 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
674
675 // Assert that the converted value fits in the original type. If it doesn't
676 // (eg: because the value being converted is too big), then the result of the
677 // original operation was undefined anyway, so the assert is still correct.
678 if (Node->getOpcode() == ISD::FP_TO_UINT ||
679 Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
680 NewOpc = ISD::AssertZext;
681 else
682 NewOpc = ISD::AssertSext;
683
684 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
685 DAG.getValueType(VT.getScalarType()));
686 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
687 Results.push_back(Promoted);
688 if (IsStrict)
689 Results.push_back(Chain);
690 }
691
ExpandLoad(SDNode * N)692 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
693 LoadSDNode *LD = cast<LoadSDNode>(N);
694 return TLI.scalarizeVectorLoad(LD, DAG);
695 }
696
ExpandStore(SDNode * N)697 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
698 StoreSDNode *ST = cast<StoreSDNode>(N);
699 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
700 return TF;
701 }
702
Expand(SDNode * Node,SmallVectorImpl<SDValue> & Results)703 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
704 switch (Node->getOpcode()) {
705 case ISD::LOAD: {
706 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
707 Results.push_back(Tmp.first);
708 Results.push_back(Tmp.second);
709 return;
710 }
711 case ISD::STORE:
712 Results.push_back(ExpandStore(Node));
713 return;
714 case ISD::MERGE_VALUES:
715 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
716 Results.push_back(Node->getOperand(i));
717 return;
718 case ISD::SIGN_EXTEND_INREG:
719 Results.push_back(ExpandSEXTINREG(Node));
720 return;
721 case ISD::ANY_EXTEND_VECTOR_INREG:
722 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
723 return;
724 case ISD::SIGN_EXTEND_VECTOR_INREG:
725 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
726 return;
727 case ISD::ZERO_EXTEND_VECTOR_INREG:
728 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
729 return;
730 case ISD::BSWAP:
731 Results.push_back(ExpandBSWAP(Node));
732 return;
733 case ISD::VP_BSWAP:
734 Results.push_back(TLI.expandVPBSWAP(Node, DAG));
735 return;
736 case ISD::VSELECT:
737 Results.push_back(ExpandVSELECT(Node));
738 return;
739 case ISD::VP_SELECT:
740 Results.push_back(ExpandVP_SELECT(Node));
741 return;
742 case ISD::VP_SREM:
743 case ISD::VP_UREM:
744 if (SDValue Expanded = ExpandVP_REM(Node)) {
745 Results.push_back(Expanded);
746 return;
747 }
748 break;
749 case ISD::SELECT:
750 Results.push_back(ExpandSELECT(Node));
751 return;
752 case ISD::SELECT_CC: {
753 if (Node->getValueType(0).isScalableVector()) {
754 EVT CondVT = TLI.getSetCCResultType(
755 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
756 SDValue SetCC =
757 DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
758 Node->getOperand(1), Node->getOperand(4));
759 Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
760 Node->getOperand(2),
761 Node->getOperand(3)));
762 return;
763 }
764 break;
765 }
766 case ISD::FP_TO_UINT:
767 ExpandFP_TO_UINT(Node, Results);
768 return;
769 case ISD::UINT_TO_FP:
770 ExpandUINT_TO_FLOAT(Node, Results);
771 return;
772 case ISD::FNEG:
773 Results.push_back(ExpandFNEG(Node));
774 return;
775 case ISD::FSUB:
776 ExpandFSUB(Node, Results);
777 return;
778 case ISD::SETCC:
779 case ISD::VP_SETCC:
780 ExpandSETCC(Node, Results);
781 return;
782 case ISD::ABS:
783 if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
784 Results.push_back(Expanded);
785 return;
786 }
787 break;
788 case ISD::BITREVERSE:
789 ExpandBITREVERSE(Node, Results);
790 return;
791 case ISD::VP_BITREVERSE:
792 if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
793 Results.push_back(Expanded);
794 return;
795 }
796 break;
797 case ISD::CTPOP:
798 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
799 Results.push_back(Expanded);
800 return;
801 }
802 break;
803 case ISD::VP_CTPOP:
804 if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
805 Results.push_back(Expanded);
806 return;
807 }
808 break;
809 case ISD::CTLZ:
810 case ISD::CTLZ_ZERO_UNDEF:
811 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
812 Results.push_back(Expanded);
813 return;
814 }
815 break;
816 case ISD::VP_CTLZ:
817 case ISD::VP_CTLZ_ZERO_UNDEF:
818 if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
819 Results.push_back(Expanded);
820 return;
821 }
822 break;
823 case ISD::CTTZ:
824 case ISD::CTTZ_ZERO_UNDEF:
825 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
826 Results.push_back(Expanded);
827 return;
828 }
829 break;
830 case ISD::VP_CTTZ:
831 case ISD::VP_CTTZ_ZERO_UNDEF:
832 if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
833 Results.push_back(Expanded);
834 return;
835 }
836 break;
837 case ISD::FSHL:
838 case ISD::VP_FSHL:
839 case ISD::FSHR:
840 case ISD::VP_FSHR:
841 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
842 Results.push_back(Expanded);
843 return;
844 }
845 break;
846 case ISD::ROTL:
847 case ISD::ROTR:
848 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
849 Results.push_back(Expanded);
850 return;
851 }
852 break;
853 case ISD::FMINNUM:
854 case ISD::FMAXNUM:
855 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
856 Results.push_back(Expanded);
857 return;
858 }
859 break;
860 case ISD::SMIN:
861 case ISD::SMAX:
862 case ISD::UMIN:
863 case ISD::UMAX:
864 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
865 Results.push_back(Expanded);
866 return;
867 }
868 break;
869 case ISD::UADDO:
870 case ISD::USUBO:
871 ExpandUADDSUBO(Node, Results);
872 return;
873 case ISD::SADDO:
874 case ISD::SSUBO:
875 ExpandSADDSUBO(Node, Results);
876 return;
877 case ISD::UMULO:
878 case ISD::SMULO:
879 ExpandMULO(Node, Results);
880 return;
881 case ISD::USUBSAT:
882 case ISD::SSUBSAT:
883 case ISD::UADDSAT:
884 case ISD::SADDSAT:
885 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
886 Results.push_back(Expanded);
887 return;
888 }
889 break;
890 case ISD::USHLSAT:
891 case ISD::SSHLSAT:
892 if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
893 Results.push_back(Expanded);
894 return;
895 }
896 break;
897 case ISD::FP_TO_SINT_SAT:
898 case ISD::FP_TO_UINT_SAT:
899 // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
900 if (Node->getValueType(0).isScalableVector()) {
901 if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
902 Results.push_back(Expanded);
903 return;
904 }
905 }
906 break;
907 case ISD::SMULFIX:
908 case ISD::UMULFIX:
909 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
910 Results.push_back(Expanded);
911 return;
912 }
913 break;
914 case ISD::SMULFIXSAT:
915 case ISD::UMULFIXSAT:
916 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
917 // why. Maybe it results in worse codegen compared to the unroll for some
918 // targets? This should probably be investigated. And if we still prefer to
919 // unroll an explanation could be helpful.
920 break;
921 case ISD::SDIVFIX:
922 case ISD::UDIVFIX:
923 ExpandFixedPointDiv(Node, Results);
924 return;
925 case ISD::SDIVFIXSAT:
926 case ISD::UDIVFIXSAT:
927 break;
928 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
929 case ISD::STRICT_##DAGN:
930 #include "llvm/IR/ConstrainedOps.def"
931 ExpandStrictFPOp(Node, Results);
932 return;
933 case ISD::VECREDUCE_ADD:
934 case ISD::VECREDUCE_MUL:
935 case ISD::VECREDUCE_AND:
936 case ISD::VECREDUCE_OR:
937 case ISD::VECREDUCE_XOR:
938 case ISD::VECREDUCE_SMAX:
939 case ISD::VECREDUCE_SMIN:
940 case ISD::VECREDUCE_UMAX:
941 case ISD::VECREDUCE_UMIN:
942 case ISD::VECREDUCE_FADD:
943 case ISD::VECREDUCE_FMUL:
944 case ISD::VECREDUCE_FMAX:
945 case ISD::VECREDUCE_FMIN:
946 Results.push_back(TLI.expandVecReduce(Node, DAG));
947 return;
948 case ISD::VECREDUCE_SEQ_FADD:
949 case ISD::VECREDUCE_SEQ_FMUL:
950 Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
951 return;
952 case ISD::SREM:
953 case ISD::UREM:
954 ExpandREM(Node, Results);
955 return;
956 case ISD::VP_MERGE:
957 Results.push_back(ExpandVP_MERGE(Node));
958 return;
959 }
960
961 Results.push_back(DAG.UnrollVectorOp(Node));
962 }
963
ExpandSELECT(SDNode * Node)964 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
965 // Lower a select instruction where the condition is a scalar and the
966 // operands are vectors. Lower this select to VSELECT and implement it
967 // using XOR AND OR. The selector bit is broadcasted.
968 EVT VT = Node->getValueType(0);
969 SDLoc DL(Node);
970
971 SDValue Mask = Node->getOperand(0);
972 SDValue Op1 = Node->getOperand(1);
973 SDValue Op2 = Node->getOperand(2);
974
975 assert(VT.isVector() && !Mask.getValueType().isVector()
976 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
977
978 // If we can't even use the basic vector operations of
979 // AND,OR,XOR, we will have to scalarize the op.
980 // Notice that the operation may be 'promoted' which means that it is
981 // 'bitcasted' to another type which is handled.
982 // Also, we need to be able to construct a splat vector using either
983 // BUILD_VECTOR or SPLAT_VECTOR.
984 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
985 // BUILD_VECTOR?
986 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
987 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
988 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
989 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
990 : ISD::SPLAT_VECTOR,
991 VT) == TargetLowering::Expand)
992 return DAG.UnrollVectorOp(Node);
993
994 // Generate a mask operand.
995 EVT MaskTy = VT.changeVectorElementTypeToInteger();
996
997 // What is the size of each element in the vector mask.
998 EVT BitTy = MaskTy.getScalarType();
999
1000 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1001 DAG.getConstant(0, DL, BitTy));
1002
1003 // Broadcast the mask so that the entire vector is all one or all zero.
1004 Mask = DAG.getSplat(MaskTy, DL, Mask);
1005
1006 // Bitcast the operands to be the same type as the mask.
1007 // This is needed when we select between FP types because
1008 // the mask is a vector of integers.
1009 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1010 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1011
1012 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1013
1014 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1015 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1016 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1017 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1018 }
1019
ExpandSEXTINREG(SDNode * Node)1020 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1021 EVT VT = Node->getValueType(0);
1022
1023 // Make sure that the SRA and SHL instructions are available.
1024 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1025 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1026 return DAG.UnrollVectorOp(Node);
1027
1028 SDLoc DL(Node);
1029 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1030
1031 unsigned BW = VT.getScalarSizeInBits();
1032 unsigned OrigBW = OrigTy.getScalarSizeInBits();
1033 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1034
1035 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1036 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1037 }
1038
1039 // Generically expand a vector anyext in register to a shuffle of the relevant
1040 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDNode * Node)1041 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1042 SDLoc DL(Node);
1043 EVT VT = Node->getValueType(0);
1044 int NumElements = VT.getVectorNumElements();
1045 SDValue Src = Node->getOperand(0);
1046 EVT SrcVT = Src.getValueType();
1047 int NumSrcElements = SrcVT.getVectorNumElements();
1048
1049 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1050 // into a larger vector type.
1051 if (SrcVT.bitsLE(VT)) {
1052 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1053 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1054 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1055 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1056 NumSrcElements);
1057 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1058 Src, DAG.getVectorIdxConstant(0, DL));
1059 }
1060
1061 // Build a base mask of undef shuffles.
1062 SmallVector<int, 16> ShuffleMask;
1063 ShuffleMask.resize(NumSrcElements, -1);
1064
1065 // Place the extended lanes into the correct locations.
1066 int ExtLaneScale = NumSrcElements / NumElements;
1067 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1068 for (int i = 0; i < NumElements; ++i)
1069 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1070
1071 return DAG.getNode(
1072 ISD::BITCAST, DL, VT,
1073 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1074 }
1075
ExpandSIGN_EXTEND_VECTOR_INREG(SDNode * Node)1076 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1077 SDLoc DL(Node);
1078 EVT VT = Node->getValueType(0);
1079 SDValue Src = Node->getOperand(0);
1080 EVT SrcVT = Src.getValueType();
1081
1082 // First build an any-extend node which can be legalized above when we
1083 // recurse through it.
1084 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1085
1086 // Now we need sign extend. Do this by shifting the elements. Even if these
1087 // aren't legal operations, they have a better chance of being legalized
1088 // without full scalarization than the sign extension does.
1089 unsigned EltWidth = VT.getScalarSizeInBits();
1090 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1091 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1092 return DAG.getNode(ISD::SRA, DL, VT,
1093 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1094 ShiftAmount);
1095 }
1096
1097 // Generically expand a vector zext in register to a shuffle of the relevant
1098 // lanes into the appropriate locations, a blend of zero into the high bits,
1099 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDNode * Node)1100 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1101 SDLoc DL(Node);
1102 EVT VT = Node->getValueType(0);
1103 int NumElements = VT.getVectorNumElements();
1104 SDValue Src = Node->getOperand(0);
1105 EVT SrcVT = Src.getValueType();
1106 int NumSrcElements = SrcVT.getVectorNumElements();
1107
1108 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1109 // into a larger vector type.
1110 if (SrcVT.bitsLE(VT)) {
1111 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1112 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1113 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1114 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1115 NumSrcElements);
1116 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1117 Src, DAG.getVectorIdxConstant(0, DL));
1118 }
1119
1120 // Build up a zero vector to blend into this one.
1121 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1122
1123 // Shuffle the incoming lanes into the correct position, and pull all other
1124 // lanes from the zero vector.
1125 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1126
1127 int ExtLaneScale = NumSrcElements / NumElements;
1128 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1129 for (int i = 0; i < NumElements; ++i)
1130 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1131
1132 return DAG.getNode(ISD::BITCAST, DL, VT,
1133 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1134 }
1135
createBSWAPShuffleMask(EVT VT,SmallVectorImpl<int> & ShuffleMask)1136 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1137 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1138 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1139 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1140 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1141 }
1142
ExpandBSWAP(SDNode * Node)1143 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1144 EVT VT = Node->getValueType(0);
1145
1146 // Scalable vectors can't use shuffle expansion.
1147 if (VT.isScalableVector())
1148 return TLI.expandBSWAP(Node, DAG);
1149
1150 // Generate a byte wise shuffle mask for the BSWAP.
1151 SmallVector<int, 16> ShuffleMask;
1152 createBSWAPShuffleMask(VT, ShuffleMask);
1153 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1154
1155 // Only emit a shuffle if the mask is legal.
1156 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1157 SDLoc DL(Node);
1158 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1159 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1160 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1161 }
1162
1163 // If we have the appropriate vector bit operations, it is better to use them
1164 // than unrolling and expanding each component.
1165 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1166 TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1167 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1168 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1169 return TLI.expandBSWAP(Node, DAG);
1170
1171 // Otherwise unroll.
1172 return DAG.UnrollVectorOp(Node);
1173 }
1174
ExpandBITREVERSE(SDNode * Node,SmallVectorImpl<SDValue> & Results)1175 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1176 SmallVectorImpl<SDValue> &Results) {
1177 EVT VT = Node->getValueType(0);
1178
1179 // We can't unroll or use shuffles for scalable vectors.
1180 if (VT.isScalableVector()) {
1181 Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1182 return;
1183 }
1184
1185 // If we have the scalar operation, it's probably cheaper to unroll it.
1186 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1187 SDValue Tmp = DAG.UnrollVectorOp(Node);
1188 Results.push_back(Tmp);
1189 return;
1190 }
1191
1192 // If the vector element width is a whole number of bytes, test if its legal
1193 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1194 // vector. This greatly reduces the number of bit shifts necessary.
1195 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1196 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1197 SmallVector<int, 16> BSWAPMask;
1198 createBSWAPShuffleMask(VT, BSWAPMask);
1199
1200 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1201 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1202 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1203 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1204 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1205 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1206 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1207 SDLoc DL(Node);
1208 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1209 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1210 BSWAPMask);
1211 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1212 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1213 Results.push_back(Op);
1214 return;
1215 }
1216 }
1217
1218 // If we have the appropriate vector bit operations, it is better to use them
1219 // than unrolling and expanding each component.
1220 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1221 TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1222 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1223 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1224 Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1225 return;
1226 }
1227
1228 // Otherwise unroll.
1229 SDValue Tmp = DAG.UnrollVectorOp(Node);
1230 Results.push_back(Tmp);
1231 }
1232
ExpandVSELECT(SDNode * Node)1233 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1234 // Implement VSELECT in terms of XOR, AND, OR
1235 // on platforms which do not support blend natively.
1236 SDLoc DL(Node);
1237
1238 SDValue Mask = Node->getOperand(0);
1239 SDValue Op1 = Node->getOperand(1);
1240 SDValue Op2 = Node->getOperand(2);
1241
1242 EVT VT = Mask.getValueType();
1243
1244 // If we can't even use the basic vector operations of
1245 // AND,OR,XOR, we will have to scalarize the op.
1246 // Notice that the operation may be 'promoted' which means that it is
1247 // 'bitcasted' to another type which is handled.
1248 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1249 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1250 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1251 return DAG.UnrollVectorOp(Node);
1252
1253 // This operation also isn't safe with AND, OR, XOR when the boolean type is
1254 // 0/1 and the select operands aren't also booleans, as we need an all-ones
1255 // vector constant to mask with.
1256 // FIXME: Sign extend 1 to all ones if that's legal on the target.
1257 auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1258 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1259 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1260 Op1.getValueType().getVectorElementType() == MVT::i1))
1261 return DAG.UnrollVectorOp(Node);
1262
1263 // If the mask and the type are different sizes, unroll the vector op. This
1264 // can occur when getSetCCResultType returns something that is different in
1265 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1266 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1267 return DAG.UnrollVectorOp(Node);
1268
1269 // Bitcast the operands to be the same type as the mask.
1270 // This is needed when we select between FP types because
1271 // the mask is a vector of integers.
1272 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1273 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1274
1275 SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1276
1277 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1278 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1279 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1280 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1281 }
1282
ExpandVP_SELECT(SDNode * Node)1283 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1284 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1285 // do not support it natively.
1286 SDLoc DL(Node);
1287
1288 SDValue Mask = Node->getOperand(0);
1289 SDValue Op1 = Node->getOperand(1);
1290 SDValue Op2 = Node->getOperand(2);
1291 SDValue EVL = Node->getOperand(3);
1292
1293 EVT VT = Mask.getValueType();
1294
1295 // If we can't even use the basic vector operations of
1296 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1297 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1298 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1299 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1300 return DAG.UnrollVectorOp(Node);
1301
1302 // This operation also isn't safe when the operands aren't also booleans.
1303 if (Op1.getValueType().getVectorElementType() != MVT::i1)
1304 return DAG.UnrollVectorOp(Node);
1305
1306 SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1307 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
1308
1309 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
1310 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
1311 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
1312 }
1313
ExpandVP_MERGE(SDNode * Node)1314 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1315 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1316 // indices less than the EVL/pivot are true. Combine that with the original
1317 // mask for a full-length mask. Use a full-length VSELECT to select between
1318 // the true and false values.
1319 SDLoc DL(Node);
1320
1321 SDValue Mask = Node->getOperand(0);
1322 SDValue Op1 = Node->getOperand(1);
1323 SDValue Op2 = Node->getOperand(2);
1324 SDValue EVL = Node->getOperand(3);
1325
1326 EVT MaskVT = Mask.getValueType();
1327 bool IsFixedLen = MaskVT.isFixedLengthVector();
1328
1329 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1330 MaskVT.getVectorElementCount());
1331
1332 // If we can't construct the EVL mask efficiently, it's better to unroll.
1333 if ((IsFixedLen &&
1334 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1335 (!IsFixedLen &&
1336 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1337 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1338 return DAG.UnrollVectorOp(Node);
1339
1340 // If using a SETCC would result in a different type than the mask type,
1341 // unroll.
1342 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1343 EVLVecVT) != MaskVT)
1344 return DAG.UnrollVectorOp(Node);
1345
1346 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1347 SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1348 SDValue EVLMask =
1349 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1350
1351 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1352 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1353 }
1354
ExpandVP_REM(SDNode * Node)1355 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1356 // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1357 EVT VT = Node->getValueType(0);
1358
1359 unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1360
1361 if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1362 !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1363 !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1364 return SDValue();
1365
1366 SDLoc DL(Node);
1367
1368 SDValue Dividend = Node->getOperand(0);
1369 SDValue Divisor = Node->getOperand(1);
1370 SDValue Mask = Node->getOperand(2);
1371 SDValue EVL = Node->getOperand(3);
1372
1373 // X % Y -> X-X/Y*Y
1374 SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1375 SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1376 return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1377 }
1378
ExpandFP_TO_UINT(SDNode * Node,SmallVectorImpl<SDValue> & Results)1379 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1380 SmallVectorImpl<SDValue> &Results) {
1381 // Attempt to expand using TargetLowering.
1382 SDValue Result, Chain;
1383 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1384 Results.push_back(Result);
1385 if (Node->isStrictFPOpcode())
1386 Results.push_back(Chain);
1387 return;
1388 }
1389
1390 // Otherwise go ahead and unroll.
1391 if (Node->isStrictFPOpcode()) {
1392 UnrollStrictFPOp(Node, Results);
1393 return;
1394 }
1395
1396 Results.push_back(DAG.UnrollVectorOp(Node));
1397 }
1398
ExpandUINT_TO_FLOAT(SDNode * Node,SmallVectorImpl<SDValue> & Results)1399 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1400 SmallVectorImpl<SDValue> &Results) {
1401 bool IsStrict = Node->isStrictFPOpcode();
1402 unsigned OpNo = IsStrict ? 1 : 0;
1403 SDValue Src = Node->getOperand(OpNo);
1404 EVT VT = Src.getValueType();
1405 SDLoc DL(Node);
1406
1407 // Attempt to expand using TargetLowering.
1408 SDValue Result;
1409 SDValue Chain;
1410 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1411 Results.push_back(Result);
1412 if (IsStrict)
1413 Results.push_back(Chain);
1414 return;
1415 }
1416
1417 // Make sure that the SINT_TO_FP and SRL instructions are available.
1418 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1419 TargetLowering::Expand) ||
1420 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1421 TargetLowering::Expand)) ||
1422 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1423 if (IsStrict) {
1424 UnrollStrictFPOp(Node, Results);
1425 return;
1426 }
1427
1428 Results.push_back(DAG.UnrollVectorOp(Node));
1429 return;
1430 }
1431
1432 unsigned BW = VT.getScalarSizeInBits();
1433 assert((BW == 64 || BW == 32) &&
1434 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1435
1436 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1437
1438 // Constants to clear the upper part of the word.
1439 // Notice that we can also use SHL+SHR, but using a constant is slightly
1440 // faster on x86.
1441 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1442 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1443
1444 // Two to the power of half-word-size.
1445 SDValue TWOHW =
1446 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1447
1448 // Clear upper part of LO, lower HI
1449 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1450 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1451
1452 if (IsStrict) {
1453 // Convert hi and lo to floats
1454 // Convert the hi part back to the upper values
1455 // TODO: Can any fast-math-flags be set on these nodes?
1456 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1457 {Node->getValueType(0), MVT::Other},
1458 {Node->getOperand(0), HI});
1459 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1460 {fHI.getValue(1), fHI, TWOHW});
1461 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1462 {Node->getValueType(0), MVT::Other},
1463 {Node->getOperand(0), LO});
1464
1465 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1466 fLO.getValue(1));
1467
1468 // Add the two halves
1469 SDValue Result =
1470 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1471 {TF, fHI, fLO});
1472
1473 Results.push_back(Result);
1474 Results.push_back(Result.getValue(1));
1475 return;
1476 }
1477
1478 // Convert hi and lo to floats
1479 // Convert the hi part back to the upper values
1480 // TODO: Can any fast-math-flags be set on these nodes?
1481 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1482 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1483 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1484
1485 // Add the two halves
1486 Results.push_back(
1487 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1488 }
1489
ExpandFNEG(SDNode * Node)1490 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1491 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1492 SDLoc DL(Node);
1493 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1494 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1495 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1496 Node->getOperand(0));
1497 }
1498 return DAG.UnrollVectorOp(Node);
1499 }
1500
ExpandFSUB(SDNode * Node,SmallVectorImpl<SDValue> & Results)1501 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1502 SmallVectorImpl<SDValue> &Results) {
1503 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1504 // we can defer this to operation legalization where it will be lowered as
1505 // a+(-b).
1506 EVT VT = Node->getValueType(0);
1507 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1508 TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1509 return; // Defer to LegalizeDAG
1510
1511 SDValue Tmp = DAG.UnrollVectorOp(Node);
1512 Results.push_back(Tmp);
1513 }
1514
ExpandSETCC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1515 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1516 SmallVectorImpl<SDValue> &Results) {
1517 bool NeedInvert = false;
1518 bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1519 SDLoc dl(Node);
1520 MVT OpVT = Node->getOperand(0).getSimpleValueType();
1521 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1522
1523 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1524 Results.push_back(UnrollVSETCC(Node));
1525 return;
1526 }
1527
1528 SDValue Chain;
1529 SDValue LHS = Node->getOperand(0);
1530 SDValue RHS = Node->getOperand(1);
1531 SDValue CC = Node->getOperand(2);
1532 SDValue Mask, EVL;
1533 if (IsVP) {
1534 Mask = Node->getOperand(3);
1535 EVL = Node->getOperand(4);
1536 }
1537
1538 bool Legalized =
1539 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
1540 EVL, NeedInvert, dl, Chain);
1541
1542 if (Legalized) {
1543 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1544 // condition code, create a new SETCC node.
1545 if (CC.getNode()) {
1546 if (!IsVP)
1547 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1548 Node->getFlags());
1549 else
1550 LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
1551 {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
1552 }
1553
1554 // If we expanded the SETCC by inverting the condition code, then wrap
1555 // the existing SETCC in a NOT to restore the intended condition.
1556 if (NeedInvert) {
1557 if (!IsVP)
1558 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1559 else
1560 LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
1561 }
1562 } else {
1563 // Otherwise, SETCC for the given comparison type must be completely
1564 // illegal; expand it into a SELECT_CC.
1565 EVT VT = Node->getValueType(0);
1566 LHS =
1567 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1568 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1569 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1570 LHS->setFlags(Node->getFlags());
1571 }
1572
1573 Results.push_back(LHS);
1574 }
1575
ExpandUADDSUBO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1576 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1577 SmallVectorImpl<SDValue> &Results) {
1578 SDValue Result, Overflow;
1579 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1580 Results.push_back(Result);
1581 Results.push_back(Overflow);
1582 }
1583
ExpandSADDSUBO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1584 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1585 SmallVectorImpl<SDValue> &Results) {
1586 SDValue Result, Overflow;
1587 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1588 Results.push_back(Result);
1589 Results.push_back(Overflow);
1590 }
1591
ExpandMULO(SDNode * Node,SmallVectorImpl<SDValue> & Results)1592 void VectorLegalizer::ExpandMULO(SDNode *Node,
1593 SmallVectorImpl<SDValue> &Results) {
1594 SDValue Result, Overflow;
1595 if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1596 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1597
1598 Results.push_back(Result);
1599 Results.push_back(Overflow);
1600 }
1601
ExpandFixedPointDiv(SDNode * Node,SmallVectorImpl<SDValue> & Results)1602 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1603 SmallVectorImpl<SDValue> &Results) {
1604 SDNode *N = Node;
1605 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1606 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1607 Results.push_back(Expanded);
1608 }
1609
ExpandStrictFPOp(SDNode * Node,SmallVectorImpl<SDValue> & Results)1610 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1611 SmallVectorImpl<SDValue> &Results) {
1612 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1613 ExpandUINT_TO_FLOAT(Node, Results);
1614 return;
1615 }
1616 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1617 ExpandFP_TO_UINT(Node, Results);
1618 return;
1619 }
1620
1621 UnrollStrictFPOp(Node, Results);
1622 }
1623
ExpandREM(SDNode * Node,SmallVectorImpl<SDValue> & Results)1624 void VectorLegalizer::ExpandREM(SDNode *Node,
1625 SmallVectorImpl<SDValue> &Results) {
1626 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1627 "Expected REM node");
1628
1629 SDValue Result;
1630 if (!TLI.expandREM(Node, Result, DAG))
1631 Result = DAG.UnrollVectorOp(Node);
1632 Results.push_back(Result);
1633 }
1634
UnrollStrictFPOp(SDNode * Node,SmallVectorImpl<SDValue> & Results)1635 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1636 SmallVectorImpl<SDValue> &Results) {
1637 EVT VT = Node->getValueType(0);
1638 EVT EltVT = VT.getVectorElementType();
1639 unsigned NumElems = VT.getVectorNumElements();
1640 unsigned NumOpers = Node->getNumOperands();
1641 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1642
1643 EVT TmpEltVT = EltVT;
1644 if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1645 Node->getOpcode() == ISD::STRICT_FSETCCS)
1646 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1647 *DAG.getContext(), TmpEltVT);
1648
1649 EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1650 SDValue Chain = Node->getOperand(0);
1651 SDLoc dl(Node);
1652
1653 SmallVector<SDValue, 32> OpValues;
1654 SmallVector<SDValue, 32> OpChains;
1655 for (unsigned i = 0; i < NumElems; ++i) {
1656 SmallVector<SDValue, 4> Opers;
1657 SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1658
1659 // The Chain is the first operand.
1660 Opers.push_back(Chain);
1661
1662 // Now process the remaining operands.
1663 for (unsigned j = 1; j < NumOpers; ++j) {
1664 SDValue Oper = Node->getOperand(j);
1665 EVT OperVT = Oper.getValueType();
1666
1667 if (OperVT.isVector())
1668 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1669 OperVT.getVectorElementType(), Oper, Idx);
1670
1671 Opers.push_back(Oper);
1672 }
1673
1674 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1675 SDValue ScalarResult = ScalarOp.getValue(0);
1676 SDValue ScalarChain = ScalarOp.getValue(1);
1677
1678 if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1679 Node->getOpcode() == ISD::STRICT_FSETCCS)
1680 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1681 DAG.getAllOnesConstant(dl, EltVT),
1682 DAG.getConstant(0, dl, EltVT));
1683
1684 OpValues.push_back(ScalarResult);
1685 OpChains.push_back(ScalarChain);
1686 }
1687
1688 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1689 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1690
1691 Results.push_back(Result);
1692 Results.push_back(NewChain);
1693 }
1694
UnrollVSETCC(SDNode * Node)1695 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1696 EVT VT = Node->getValueType(0);
1697 unsigned NumElems = VT.getVectorNumElements();
1698 EVT EltVT = VT.getVectorElementType();
1699 SDValue LHS = Node->getOperand(0);
1700 SDValue RHS = Node->getOperand(1);
1701 SDValue CC = Node->getOperand(2);
1702 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1703 SDLoc dl(Node);
1704 SmallVector<SDValue, 8> Ops(NumElems);
1705 for (unsigned i = 0; i < NumElems; ++i) {
1706 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1707 DAG.getVectorIdxConstant(i, dl));
1708 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1709 DAG.getVectorIdxConstant(i, dl));
1710 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1711 TLI.getSetCCResultType(DAG.getDataLayout(),
1712 *DAG.getContext(), TmpEltVT),
1713 LHSElem, RHSElem, CC);
1714 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1715 DAG.getConstant(0, dl, EltVT));
1716 }
1717 return DAG.getBuildVector(VT, dl, Ops);
1718 }
1719
LegalizeVectors()1720 bool SelectionDAG::LegalizeVectors() {
1721 return VectorLegalizer(*this).Run();
1722 }
1723