xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/LICM.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/SetOperations.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/GuardUtils.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/Loads.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopIterator.h"
54 #include "llvm/Analysis/LoopPass.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/MustExecute.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62 #include "llvm/Analysis/TargetLibraryInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/LLVMContext.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/PredIteratorCache.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include "llvm/Transforms/Utils/LoopUtils.h"
86 #include "llvm/Transforms/Utils/SSAUpdater.h"
87 #include <algorithm>
88 #include <utility>
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "licm"
92 
93 STATISTIC(NumCreatedBlocks, "Number of blocks created");
94 STATISTIC(NumClonedBranches, "Number of branches cloned");
95 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
96 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
97 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
98 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
99 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
100 
101 /// Memory promotion is enabled by default.
102 static cl::opt<bool>
103     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104                      cl::desc("Disable memory promotion in LICM pass"));
105 
106 static cl::opt<bool> ControlFlowHoisting(
107     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109 
110 static cl::opt<unsigned> HoistSinkColdnessThreshold(
111     "licm-coldness-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113              "block for LICM to be considered beneficial"));
114 
115 static cl::opt<uint32_t> MaxNumUsesTraversed(
116     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117     cl::desc("Max num uses visited for identifying load "
118              "invariance in loop using invariant start (default = 8)"));
119 
120 // Default value of zero implies we use the regular alias set tracker mechanism
121 // instead of the cross product using AA to identify aliasing of the memory
122 // location we are interested in.
123 static cl::opt<int>
124 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
125                cl::desc("How many instruction to cross product using AA"));
126 
127 // Experimental option to allow imprecision in LICM in pathological cases, in
128 // exchange for faster compile. This is to be removed if MemorySSA starts to
129 // address the same issue. This flag applies only when LICM uses MemorySSA
130 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
131 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
132 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
133 // which may not be precise, since optimizeUses is capped. The result is
134 // correct, but we may not get as "far up" as possible to get which access is
135 // clobbering the one queried.
136 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
137     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
138     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
139              "for faster compile. Caps the MemorySSA clobbering calls."));
140 
141 // Experimentally, memory promotion carries less importance than sinking and
142 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
143 // compile time.
144 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
145     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
146     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
147              "effect. When MSSA in LICM is enabled, then this is the maximum "
148              "number of accesses allowed to be present in a loop in order to "
149              "enable memory promotion."));
150 
151 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
152 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
153                                   const LoopSafetyInfo *SafetyInfo,
154                                   TargetTransformInfo *TTI, bool &FreeInLoop);
155 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
156                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
157                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
158                   OptimizationRemarkEmitter *ORE);
159 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
160                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
161                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
162                  OptimizationRemarkEmitter *ORE);
163 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
164                                            const DominatorTree *DT,
165                                            const TargetLibraryInfo *TLI,
166                                            const Loop *CurLoop,
167                                            const LoopSafetyInfo *SafetyInfo,
168                                            OptimizationRemarkEmitter *ORE,
169                                            const Instruction *CtxI = nullptr);
170 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
171                                      AliasSetTracker *CurAST, Loop *CurLoop,
172                                      AAResults *AA);
173 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
174                                              Loop *CurLoop, Instruction &I,
175                                              SinkAndHoistLICMFlags &Flags);
176 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
177                                               MemoryUse &MU);
178 static Instruction *cloneInstructionInExitBlock(
179     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
180     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
181 
182 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
183                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
184 
185 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
186                                   ICFLoopSafetyInfo &SafetyInfo,
187                                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
188 
189 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
190                                 function_ref<void(Instruction *)> Fn);
191 static SmallVector<SmallSetVector<Value *, 8>, 0>
192 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
193 
194 namespace {
195 struct LoopInvariantCodeMotion {
196   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
197                  BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
198                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
199                  OptimizationRemarkEmitter *ORE);
200 
LoopInvariantCodeMotion__anonfba5b0a30111::LoopInvariantCodeMotion201   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
202                           unsigned LicmMssaNoAccForPromotionCap)
203       : LicmMssaOptCap(LicmMssaOptCap),
204         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
205 
206 private:
207   unsigned LicmMssaOptCap;
208   unsigned LicmMssaNoAccForPromotionCap;
209 
210   std::unique_ptr<AliasSetTracker>
211   collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
212 };
213 
214 struct LegacyLICMPass : public LoopPass {
215   static char ID; // Pass identification, replacement for typeid
LegacyLICMPass__anonfba5b0a30111::LegacyLICMPass216   LegacyLICMPass(
217       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
218       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
219       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
220     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
221   }
222 
runOnLoop__anonfba5b0a30111::LegacyLICMPass223   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
224     if (skipLoop(L))
225       return false;
226 
227     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
228                       << L->getHeader()->getNameOrAsOperand() << "\n");
229 
230     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
231     MemorySSA *MSSA = EnableMSSALoopDependency
232                           ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
233                           : nullptr;
234     bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
235     BlockFrequencyInfo *BFI =
236         hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
237                        : nullptr;
238     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
239     // pass. Function analyses need to be preserved across loop transformations
240     // but ORE cannot be preserved (see comment before the pass definition).
241     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
242     return LICM.runOnLoop(
243         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
244         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
245         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
246         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
247             *L->getHeader()->getParent()),
248         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
249             *L->getHeader()->getParent()),
250         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
251   }
252 
253   /// This transformation requires natural loop information & requires that
254   /// loop preheaders be inserted into the CFG...
255   ///
getAnalysisUsage__anonfba5b0a30111::LegacyLICMPass256   void getAnalysisUsage(AnalysisUsage &AU) const override {
257     AU.addPreserved<DominatorTreeWrapperPass>();
258     AU.addPreserved<LoopInfoWrapperPass>();
259     AU.addRequired<TargetLibraryInfoWrapperPass>();
260     if (EnableMSSALoopDependency) {
261       AU.addRequired<MemorySSAWrapperPass>();
262       AU.addPreserved<MemorySSAWrapperPass>();
263     }
264     AU.addRequired<TargetTransformInfoWrapperPass>();
265     getLoopAnalysisUsage(AU);
266     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
267     AU.addPreserved<LazyBlockFrequencyInfoPass>();
268     AU.addPreserved<LazyBranchProbabilityInfoPass>();
269   }
270 
271 private:
272   LoopInvariantCodeMotion LICM;
273 };
274 } // namespace
275 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)276 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
277                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
278   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
279   // pass.  Function analyses need to be preserved across loop transformations
280   // but ORE cannot be preserved (see comment before the pass definition).
281   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
282 
283   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
284   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
285                       &AR.SE, AR.MSSA, &ORE))
286     return PreservedAnalyses::all();
287 
288   auto PA = getLoopPassPreservedAnalyses();
289 
290   PA.preserve<DominatorTreeAnalysis>();
291   PA.preserve<LoopAnalysis>();
292   if (AR.MSSA)
293     PA.preserve<MemorySSAAnalysis>();
294 
295   return PA;
296 }
297 
298 char LegacyLICMPass::ID = 0;
299 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
300                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)301 INITIALIZE_PASS_DEPENDENCY(LoopPass)
302 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
303 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
304 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
305 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
306 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
307                     false)
308 
309 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
createLICMPass(unsigned LicmMssaOptCap,unsigned LicmMssaNoAccForPromotionCap)310 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
311                            unsigned LicmMssaNoAccForPromotionCap) {
312   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
313 }
314 
SinkAndHoistLICMFlags(bool IsSink,Loop * L,MemorySSA * MSSA)315 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
316                                                    MemorySSA *MSSA)
317     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
318                             IsSink, L, MSSA) {}
319 
SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,unsigned LicmMssaNoAccForPromotionCap,bool IsSink,Loop * L,MemorySSA * MSSA)320 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
321     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
322     Loop *L, MemorySSA *MSSA)
323     : LicmMssaOptCap(LicmMssaOptCap),
324       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
325       IsSink(IsSink) {
326   assert(((L != nullptr) == (MSSA != nullptr)) &&
327          "Unexpected values for SinkAndHoistLICMFlags");
328   if (!MSSA)
329     return;
330 
331   unsigned AccessCapCount = 0;
332   for (auto *BB : L->getBlocks())
333     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
334       for (const auto &MA : *Accesses) {
335         (void)MA;
336         ++AccessCapCount;
337         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
338           NoOfMemAccTooLarge = true;
339           return;
340         }
341       }
342 }
343 
344 /// Hoist expressions out of the specified loop. Note, alias info for inner
345 /// loop is not preserved so it is not a good idea to run LICM multiple
346 /// times on one loop.
runOnLoop(Loop * L,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,ScalarEvolution * SE,MemorySSA * MSSA,OptimizationRemarkEmitter * ORE)347 bool LoopInvariantCodeMotion::runOnLoop(
348     Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
349     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
350     ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
351   bool Changed = false;
352 
353   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
354 
355   // If this loop has metadata indicating that LICM is not to be performed then
356   // just exit.
357   if (hasDisableLICMTransformsHint(L)) {
358     return false;
359   }
360 
361   std::unique_ptr<AliasSetTracker> CurAST;
362   std::unique_ptr<MemorySSAUpdater> MSSAU;
363   std::unique_ptr<SinkAndHoistLICMFlags> Flags;
364 
365   // Don't sink stores from loops with coroutine suspend instructions.
366   // LICM would sink instructions into the default destination of
367   // the coroutine switch. The default destination of the switch is to
368   // handle the case where the coroutine is suspended, by which point the
369   // coroutine frame may have been destroyed. No instruction can be sunk there.
370   // FIXME: This would unfortunately hurt the performance of coroutines, however
371   // there is currently no general solution for this. Similar issues could also
372   // potentially happen in other passes where instructions are being moved
373   // across that edge.
374   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
375     return llvm::any_of(*BB, [](Instruction &I) {
376       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
377       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
378     });
379   });
380 
381   if (!MSSA) {
382     LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
383     CurAST = collectAliasInfoForLoop(L, LI, AA);
384     Flags = std::make_unique<SinkAndHoistLICMFlags>(
385         LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
386   } else {
387     LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
388     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
389     Flags = std::make_unique<SinkAndHoistLICMFlags>(
390         LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
391   }
392 
393   // Get the preheader block to move instructions into...
394   BasicBlock *Preheader = L->getLoopPreheader();
395 
396   // Compute loop safety information.
397   ICFLoopSafetyInfo SafetyInfo;
398   SafetyInfo.computeLoopSafetyInfo(L);
399 
400   // We want to visit all of the instructions in this loop... that are not parts
401   // of our subloops (they have already had their invariants hoisted out of
402   // their loop, into this loop, so there is no need to process the BODIES of
403   // the subloops).
404   //
405   // Traverse the body of the loop in depth first order on the dominator tree so
406   // that we are guaranteed to see definitions before we see uses.  This allows
407   // us to sink instructions in one pass, without iteration.  After sinking
408   // instructions, we perform another pass to hoist them out of the loop.
409   if (L->hasDedicatedExits())
410     Changed |=
411         sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
412                    CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
413   Flags->setIsSink(false);
414   if (Preheader)
415     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
416                            CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
417                            *Flags.get(), ORE);
418 
419   // Now that all loop invariants have been removed from the loop, promote any
420   // memory references to scalars that we can.
421   // Don't sink stores from loops without dedicated block exits. Exits
422   // containing indirect branches are not transformed by loop simplify,
423   // make sure we catch that. An additional load may be generated in the
424   // preheader for SSA updater, so also avoid sinking when no preheader
425   // is available.
426   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
427       !Flags->tooManyMemoryAccesses() && !HasCoroSuspendInst) {
428     // Figure out the loop exits and their insertion points
429     SmallVector<BasicBlock *, 8> ExitBlocks;
430     L->getUniqueExitBlocks(ExitBlocks);
431 
432     // We can't insert into a catchswitch.
433     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
434       return isa<CatchSwitchInst>(Exit->getTerminator());
435     });
436 
437     if (!HasCatchSwitch) {
438       SmallVector<Instruction *, 8> InsertPts;
439       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
440       InsertPts.reserve(ExitBlocks.size());
441       if (MSSAU)
442         MSSAInsertPts.reserve(ExitBlocks.size());
443       for (BasicBlock *ExitBlock : ExitBlocks) {
444         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
445         if (MSSAU)
446           MSSAInsertPts.push_back(nullptr);
447       }
448 
449       PredIteratorCache PIC;
450 
451       bool Promoted = false;
452       if (CurAST.get()) {
453         // Loop over all of the alias sets in the tracker object.
454         for (AliasSet &AS : *CurAST) {
455           // We can promote this alias set if it has a store, if it is a "Must"
456           // alias set, if the pointer is loop invariant, and if we are not
457           // eliminating any volatile loads or stores.
458           if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
459               !L->isLoopInvariant(AS.begin()->getValue()))
460             continue;
461 
462           assert(
463               !AS.empty() &&
464               "Must alias set should have at least one pointer element in it!");
465 
466           SmallSetVector<Value *, 8> PointerMustAliases;
467           for (const auto &ASI : AS)
468             PointerMustAliases.insert(ASI.getValue());
469 
470           Promoted |= promoteLoopAccessesToScalars(
471               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
472               DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
473         }
474       } else {
475         // Promoting one set of accesses may make the pointers for another set
476         // loop invariant, so run this in a loop (with the MaybePromotable set
477         // decreasing in size over time).
478         bool LocalPromoted;
479         do {
480           LocalPromoted = false;
481           for (const SmallSetVector<Value *, 8> &PointerMustAliases :
482                collectPromotionCandidates(MSSA, AA, L)) {
483             LocalPromoted |= promoteLoopAccessesToScalars(
484                 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
485                 LI, DT, TLI, L, /*AST*/nullptr, MSSAU.get(), &SafetyInfo, ORE);
486           }
487           Promoted |= LocalPromoted;
488         } while (LocalPromoted);
489       }
490 
491       // Once we have promoted values across the loop body we have to
492       // recursively reform LCSSA as any nested loop may now have values defined
493       // within the loop used in the outer loop.
494       // FIXME: This is really heavy handed. It would be a bit better to use an
495       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
496       // it as it went.
497       if (Promoted)
498         formLCSSARecursively(*L, *DT, LI, SE);
499 
500       Changed |= Promoted;
501     }
502   }
503 
504   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
505   // specifically moving instructions across the loop boundary and so it is
506   // especially in need of sanity checking here.
507   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
508   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
509          "Parent loop not left in LCSSA form after LICM!");
510 
511   if (MSSAU.get() && VerifyMemorySSA)
512     MSSAU->getMemorySSA()->verifyMemorySSA();
513 
514   if (Changed && SE)
515     SE->forgetLoopDispositions(L);
516   return Changed;
517 }
518 
519 /// Walk the specified region of the CFG (defined by all blocks dominated by
520 /// the specified block, and that are in the current loop) in reverse depth
521 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
522 /// definitions, allowing us to sink a loop body in one pass without iteration.
523 ///
sinkRegion(DomTreeNode * N,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)524 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
525                       DominatorTree *DT, BlockFrequencyInfo *BFI,
526                       TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
527                       Loop *CurLoop, AliasSetTracker *CurAST,
528                       MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
529                       SinkAndHoistLICMFlags &Flags,
530                       OptimizationRemarkEmitter *ORE) {
531 
532   // Verify inputs.
533   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
534          CurLoop != nullptr && SafetyInfo != nullptr &&
535          "Unexpected input to sinkRegion.");
536   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
537          "Either AliasSetTracker or MemorySSA should be initialized.");
538 
539   // We want to visit children before parents. We will enque all the parents
540   // before their children in the worklist and process the worklist in reverse
541   // order.
542   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
543 
544   bool Changed = false;
545   for (DomTreeNode *DTN : reverse(Worklist)) {
546     BasicBlock *BB = DTN->getBlock();
547     // Only need to process the contents of this block if it is not part of a
548     // subloop (which would already have been processed).
549     if (inSubLoop(BB, CurLoop, LI))
550       continue;
551 
552     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
553       Instruction &I = *--II;
554 
555       // The instruction is not used in the loop if it is dead.  In this case,
556       // we just delete it instead of sinking it.
557       if (isInstructionTriviallyDead(&I, TLI)) {
558         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
559         salvageKnowledge(&I);
560         salvageDebugInfo(I);
561         ++II;
562         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
563         Changed = true;
564         continue;
565       }
566 
567       // Check to see if we can sink this instruction to the exit blocks
568       // of the loop.  We can do this if the all users of the instruction are
569       // outside of the loop.  In this case, it doesn't even matter if the
570       // operands of the instruction are loop invariant.
571       //
572       bool FreeInLoop = false;
573       if (!I.mayHaveSideEffects() &&
574           isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
575           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
576                              ORE)) {
577         if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
578           if (!FreeInLoop) {
579             ++II;
580             salvageDebugInfo(I);
581             eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
582           }
583           Changed = true;
584         }
585       }
586     }
587   }
588   if (MSSAU && VerifyMemorySSA)
589     MSSAU->getMemorySSA()->verifyMemorySSA();
590   return Changed;
591 }
592 
593 namespace {
594 // This is a helper class for hoistRegion to make it able to hoist control flow
595 // in order to be able to hoist phis. The way this works is that we initially
596 // start hoisting to the loop preheader, and when we see a loop invariant branch
597 // we make note of this. When we then come to hoist an instruction that's
598 // conditional on such a branch we duplicate the branch and the relevant control
599 // flow, then hoist the instruction into the block corresponding to its original
600 // block in the duplicated control flow.
601 class ControlFlowHoister {
602 private:
603   // Information about the loop we are hoisting from
604   LoopInfo *LI;
605   DominatorTree *DT;
606   Loop *CurLoop;
607   MemorySSAUpdater *MSSAU;
608 
609   // A map of blocks in the loop to the block their instructions will be hoisted
610   // to.
611   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
612 
613   // The branches that we can hoist, mapped to the block that marks a
614   // convergence point of their control flow.
615   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
616 
617 public:
ControlFlowHoister(LoopInfo * LI,DominatorTree * DT,Loop * CurLoop,MemorySSAUpdater * MSSAU)618   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
619                      MemorySSAUpdater *MSSAU)
620       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
621 
registerPossiblyHoistableBranch(BranchInst * BI)622   void registerPossiblyHoistableBranch(BranchInst *BI) {
623     // We can only hoist conditional branches with loop invariant operands.
624     if (!ControlFlowHoisting || !BI->isConditional() ||
625         !CurLoop->hasLoopInvariantOperands(BI))
626       return;
627 
628     // The branch destinations need to be in the loop, and we don't gain
629     // anything by duplicating conditional branches with duplicate successors,
630     // as it's essentially the same as an unconditional branch.
631     BasicBlock *TrueDest = BI->getSuccessor(0);
632     BasicBlock *FalseDest = BI->getSuccessor(1);
633     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
634         TrueDest == FalseDest)
635       return;
636 
637     // We can hoist BI if one branch destination is the successor of the other,
638     // or both have common successor which we check by seeing if the
639     // intersection of their successors is non-empty.
640     // TODO: This could be expanded to allowing branches where both ends
641     // eventually converge to a single block.
642     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
643     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
644     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
645     BasicBlock *CommonSucc = nullptr;
646     if (TrueDestSucc.count(FalseDest)) {
647       CommonSucc = FalseDest;
648     } else if (FalseDestSucc.count(TrueDest)) {
649       CommonSucc = TrueDest;
650     } else {
651       set_intersect(TrueDestSucc, FalseDestSucc);
652       // If there's one common successor use that.
653       if (TrueDestSucc.size() == 1)
654         CommonSucc = *TrueDestSucc.begin();
655       // If there's more than one pick whichever appears first in the block list
656       // (we can't use the value returned by TrueDestSucc.begin() as it's
657       // unpredicatable which element gets returned).
658       else if (!TrueDestSucc.empty()) {
659         Function *F = TrueDest->getParent();
660         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
661         auto It = llvm::find_if(*F, IsSucc);
662         assert(It != F->end() && "Could not find successor in function");
663         CommonSucc = &*It;
664       }
665     }
666     // The common successor has to be dominated by the branch, as otherwise
667     // there will be some other path to the successor that will not be
668     // controlled by this branch so any phi we hoist would be controlled by the
669     // wrong condition. This also takes care of avoiding hoisting of loop back
670     // edges.
671     // TODO: In some cases this could be relaxed if the successor is dominated
672     // by another block that's been hoisted and we can guarantee that the
673     // control flow has been replicated exactly.
674     if (CommonSucc && DT->dominates(BI, CommonSucc))
675       HoistableBranches[BI] = CommonSucc;
676   }
677 
canHoistPHI(PHINode * PN)678   bool canHoistPHI(PHINode *PN) {
679     // The phi must have loop invariant operands.
680     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
681       return false;
682     // We can hoist phis if the block they are in is the target of hoistable
683     // branches which cover all of the predecessors of the block.
684     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
685     BasicBlock *BB = PN->getParent();
686     for (BasicBlock *PredBB : predecessors(BB))
687       PredecessorBlocks.insert(PredBB);
688     // If we have less predecessor blocks than predecessors then the phi will
689     // have more than one incoming value for the same block which we can't
690     // handle.
691     // TODO: This could be handled be erasing some of the duplicate incoming
692     // values.
693     if (PredecessorBlocks.size() != pred_size(BB))
694       return false;
695     for (auto &Pair : HoistableBranches) {
696       if (Pair.second == BB) {
697         // Which blocks are predecessors via this branch depends on if the
698         // branch is triangle-like or diamond-like.
699         if (Pair.first->getSuccessor(0) == BB) {
700           PredecessorBlocks.erase(Pair.first->getParent());
701           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
702         } else if (Pair.first->getSuccessor(1) == BB) {
703           PredecessorBlocks.erase(Pair.first->getParent());
704           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
705         } else {
706           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
707           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
708         }
709       }
710     }
711     // PredecessorBlocks will now be empty if for every predecessor of BB we
712     // found a hoistable branch source.
713     return PredecessorBlocks.empty();
714   }
715 
getOrCreateHoistedBlock(BasicBlock * BB)716   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
717     if (!ControlFlowHoisting)
718       return CurLoop->getLoopPreheader();
719     // If BB has already been hoisted, return that
720     if (HoistDestinationMap.count(BB))
721       return HoistDestinationMap[BB];
722 
723     // Check if this block is conditional based on a pending branch
724     auto HasBBAsSuccessor =
725         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
726           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
727                                        Pair.first->getSuccessor(1) == BB);
728         };
729     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
730 
731     // If not involved in a pending branch, hoist to preheader
732     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
733     if (It == HoistableBranches.end()) {
734       LLVM_DEBUG(dbgs() << "LICM using "
735                         << InitialPreheader->getNameOrAsOperand()
736                         << " as hoist destination for "
737                         << BB->getNameOrAsOperand() << "\n");
738       HoistDestinationMap[BB] = InitialPreheader;
739       return InitialPreheader;
740     }
741     BranchInst *BI = It->first;
742     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
743                HoistableBranches.end() &&
744            "BB is expected to be the target of at most one branch");
745 
746     LLVMContext &C = BB->getContext();
747     BasicBlock *TrueDest = BI->getSuccessor(0);
748     BasicBlock *FalseDest = BI->getSuccessor(1);
749     BasicBlock *CommonSucc = HoistableBranches[BI];
750     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
751 
752     // Create hoisted versions of blocks that currently don't have them
753     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
754       if (HoistDestinationMap.count(Orig))
755         return HoistDestinationMap[Orig];
756       BasicBlock *New =
757           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
758       HoistDestinationMap[Orig] = New;
759       DT->addNewBlock(New, HoistTarget);
760       if (CurLoop->getParentLoop())
761         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
762       ++NumCreatedBlocks;
763       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
764                         << " as hoist destination for " << Orig->getName()
765                         << "\n");
766       return New;
767     };
768     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
769     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
770     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
771 
772     // Link up these blocks with branches.
773     if (!HoistCommonSucc->getTerminator()) {
774       // The new common successor we've generated will branch to whatever that
775       // hoist target branched to.
776       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
777       assert(TargetSucc && "Expected hoist target to have a single successor");
778       HoistCommonSucc->moveBefore(TargetSucc);
779       BranchInst::Create(TargetSucc, HoistCommonSucc);
780     }
781     if (!HoistTrueDest->getTerminator()) {
782       HoistTrueDest->moveBefore(HoistCommonSucc);
783       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
784     }
785     if (!HoistFalseDest->getTerminator()) {
786       HoistFalseDest->moveBefore(HoistCommonSucc);
787       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
788     }
789 
790     // If BI is being cloned to what was originally the preheader then
791     // HoistCommonSucc will now be the new preheader.
792     if (HoistTarget == InitialPreheader) {
793       // Phis in the loop header now need to use the new preheader.
794       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
795       if (MSSAU)
796         MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
797             HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
798       // The new preheader dominates the loop header.
799       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
800       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
801       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
802       // The preheader hoist destination is now the new preheader, with the
803       // exception of the hoist destination of this branch.
804       for (auto &Pair : HoistDestinationMap)
805         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
806           Pair.second = HoistCommonSucc;
807     }
808 
809     // Now finally clone BI.
810     ReplaceInstWithInst(
811         HoistTarget->getTerminator(),
812         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
813     ++NumClonedBranches;
814 
815     assert(CurLoop->getLoopPreheader() &&
816            "Hoisting blocks should not have destroyed preheader");
817     return HoistDestinationMap[BB];
818   }
819 };
820 } // namespace
821 
822 // Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
823 // only worthwhile if the destination block is actually colder than current
824 // block.
worthSinkOrHoistInst(Instruction & I,BasicBlock * DstBlock,OptimizationRemarkEmitter * ORE,BlockFrequencyInfo * BFI)825 static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
826                                  OptimizationRemarkEmitter *ORE,
827                                  BlockFrequencyInfo *BFI) {
828   // Check block frequency only when runtime profile is available
829   // to avoid pathological cases. With static profile, lean towards
830   // hosting because it helps canonicalize the loop for vectorizer.
831   if (!DstBlock->getParent()->hasProfileData())
832     return true;
833 
834   if (!HoistSinkColdnessThreshold || !BFI)
835     return true;
836 
837   BasicBlock *SrcBlock = I.getParent();
838   if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
839       BFI->getBlockFreq(SrcBlock).getFrequency()) {
840     ORE->emit([&]() {
841       return OptimizationRemarkMissed(DEBUG_TYPE, "SinkHoistInst", &I)
842              << "failed to sink or hoist instruction because containing block "
843                 "has lower frequency than destination block";
844     });
845     return false;
846   }
847 
848   return true;
849 }
850 
851 /// Walk the specified region of the CFG (defined by all blocks dominated by
852 /// the specified block, and that are in the current loop) in depth first
853 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
854 /// uses, allowing us to hoist a loop body in one pass without iteration.
855 ///
hoistRegion(DomTreeNode * N,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ScalarEvolution * SE,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)856 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
857                        DominatorTree *DT, BlockFrequencyInfo *BFI,
858                        TargetLibraryInfo *TLI, Loop *CurLoop,
859                        AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
860                        ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
861                        SinkAndHoistLICMFlags &Flags,
862                        OptimizationRemarkEmitter *ORE) {
863   // Verify inputs.
864   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
865          CurLoop != nullptr && SafetyInfo != nullptr &&
866          "Unexpected input to hoistRegion.");
867   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
868          "Either AliasSetTracker or MemorySSA should be initialized.");
869 
870   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
871 
872   // Keep track of instructions that have been hoisted, as they may need to be
873   // re-hoisted if they end up not dominating all of their uses.
874   SmallVector<Instruction *, 16> HoistedInstructions;
875 
876   // For PHI hoisting to work we need to hoist blocks before their successors.
877   // We can do this by iterating through the blocks in the loop in reverse
878   // post-order.
879   LoopBlocksRPO Worklist(CurLoop);
880   Worklist.perform(LI);
881   bool Changed = false;
882   for (BasicBlock *BB : Worklist) {
883     // Only need to process the contents of this block if it is not part of a
884     // subloop (which would already have been processed).
885     if (inSubLoop(BB, CurLoop, LI))
886       continue;
887 
888     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
889       Instruction &I = *II++;
890       // Try constant folding this instruction.  If all the operands are
891       // constants, it is technically hoistable, but it would be better to
892       // just fold it.
893       if (Constant *C = ConstantFoldInstruction(
894               &I, I.getModule()->getDataLayout(), TLI)) {
895         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
896                           << '\n');
897         if (CurAST)
898           CurAST->copyValue(&I, C);
899         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
900         I.replaceAllUsesWith(C);
901         if (isInstructionTriviallyDead(&I, TLI))
902           eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
903         Changed = true;
904         continue;
905       }
906 
907       // Try hoisting the instruction out to the preheader.  We can only do
908       // this if all of the operands of the instruction are loop invariant and
909       // if it is safe to hoist the instruction. We also check block frequency
910       // to make sure instruction only gets hoisted into colder blocks.
911       // TODO: It may be safe to hoist if we are hoisting to a conditional block
912       // and we have accurately duplicated the control flow from the loop header
913       // to that block.
914       if (CurLoop->hasLoopInvariantOperands(&I) &&
915           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
916                              ORE) &&
917           worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
918           isSafeToExecuteUnconditionally(
919               I, DT, TLI, CurLoop, SafetyInfo, ORE,
920               CurLoop->getLoopPreheader()->getTerminator())) {
921         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
922               MSSAU, SE, ORE);
923         HoistedInstructions.push_back(&I);
924         Changed = true;
925         continue;
926       }
927 
928       // Attempt to remove floating point division out of the loop by
929       // converting it to a reciprocal multiplication.
930       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
931           CurLoop->isLoopInvariant(I.getOperand(1))) {
932         auto Divisor = I.getOperand(1);
933         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
934         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
935         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
936         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
937         ReciprocalDivisor->insertBefore(&I);
938 
939         auto Product =
940             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
941         Product->setFastMathFlags(I.getFastMathFlags());
942         SafetyInfo->insertInstructionTo(Product, I.getParent());
943         Product->insertAfter(&I);
944         I.replaceAllUsesWith(Product);
945         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
946 
947         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
948               SafetyInfo, MSSAU, SE, ORE);
949         HoistedInstructions.push_back(ReciprocalDivisor);
950         Changed = true;
951         continue;
952       }
953 
954       auto IsInvariantStart = [&](Instruction &I) {
955         using namespace PatternMatch;
956         return I.use_empty() &&
957                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
958       };
959       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
960         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
961                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
962       };
963       if ((IsInvariantStart(I) || isGuard(&I)) &&
964           CurLoop->hasLoopInvariantOperands(&I) &&
965           MustExecuteWithoutWritesBefore(I)) {
966         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
967               MSSAU, SE, ORE);
968         HoistedInstructions.push_back(&I);
969         Changed = true;
970         continue;
971       }
972 
973       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
974         if (CFH.canHoistPHI(PN)) {
975           // Redirect incoming blocks first to ensure that we create hoisted
976           // versions of those blocks before we hoist the phi.
977           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
978             PN->setIncomingBlock(
979                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
980           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
981                 MSSAU, SE, ORE);
982           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
983           Changed = true;
984           continue;
985         }
986       }
987 
988       // Remember possibly hoistable branches so we can actually hoist them
989       // later if needed.
990       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
991         CFH.registerPossiblyHoistableBranch(BI);
992     }
993   }
994 
995   // If we hoisted instructions to a conditional block they may not dominate
996   // their uses that weren't hoisted (such as phis where some operands are not
997   // loop invariant). If so make them unconditional by moving them to their
998   // immediate dominator. We iterate through the instructions in reverse order
999   // which ensures that when we rehoist an instruction we rehoist its operands,
1000   // and also keep track of where in the block we are rehoisting to to make sure
1001   // that we rehoist instructions before the instructions that use them.
1002   Instruction *HoistPoint = nullptr;
1003   if (ControlFlowHoisting) {
1004     for (Instruction *I : reverse(HoistedInstructions)) {
1005       if (!llvm::all_of(I->uses(),
1006                         [&](Use &U) { return DT->dominates(I, U); })) {
1007         BasicBlock *Dominator =
1008             DT->getNode(I->getParent())->getIDom()->getBlock();
1009         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1010           if (HoistPoint)
1011             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
1012                    "New hoist point expected to dominate old hoist point");
1013           HoistPoint = Dominator->getTerminator();
1014         }
1015         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
1016                           << HoistPoint->getParent()->getNameOrAsOperand()
1017                           << ": " << *I << "\n");
1018         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1019         HoistPoint = I;
1020         Changed = true;
1021       }
1022     }
1023   }
1024   if (MSSAU && VerifyMemorySSA)
1025     MSSAU->getMemorySSA()->verifyMemorySSA();
1026 
1027     // Now that we've finished hoisting make sure that LI and DT are still
1028     // valid.
1029 #ifdef EXPENSIVE_CHECKS
1030   if (Changed) {
1031     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1032            "Dominator tree verification failed");
1033     LI->verify(*DT);
1034   }
1035 #endif
1036 
1037   return Changed;
1038 }
1039 
1040 // Return true if LI is invariant within scope of the loop. LI is invariant if
1041 // CurLoop is dominated by an invariant.start representing the same memory
1042 // location and size as the memory location LI loads from, and also the
1043 // invariant.start has no uses.
isLoadInvariantInLoop(LoadInst * LI,DominatorTree * DT,Loop * CurLoop)1044 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1045                                   Loop *CurLoop) {
1046   Value *Addr = LI->getOperand(0);
1047   const DataLayout &DL = LI->getModule()->getDataLayout();
1048   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1049 
1050   // It is not currently possible for clang to generate an invariant.start
1051   // intrinsic with scalable vector types because we don't support thread local
1052   // sizeless types and we don't permit sizeless types in structs or classes.
1053   // Furthermore, even if support is added for this in future the intrinsic
1054   // itself is defined to have a size of -1 for variable sized objects. This
1055   // makes it impossible to verify if the intrinsic envelops our region of
1056   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1057   // types would have a -1 parameter, but the former is clearly double the size
1058   // of the latter.
1059   if (LocSizeInBits.isScalable())
1060     return false;
1061 
1062   // if the type is i8 addrspace(x)*, we know this is the type of
1063   // llvm.invariant.start operand
1064   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1065                                      LI->getPointerAddressSpace());
1066   unsigned BitcastsVisited = 0;
1067   // Look through bitcasts until we reach the i8* type (this is invariant.start
1068   // operand type).
1069   while (Addr->getType() != PtrInt8Ty) {
1070     auto *BC = dyn_cast<BitCastInst>(Addr);
1071     // Avoid traversing high number of bitcast uses.
1072     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1073       return false;
1074     Addr = BC->getOperand(0);
1075   }
1076 
1077   unsigned UsesVisited = 0;
1078   // Traverse all uses of the load operand value, to see if invariant.start is
1079   // one of the uses, and whether it dominates the load instruction.
1080   for (auto *U : Addr->users()) {
1081     // Avoid traversing for Load operand with high number of users.
1082     if (++UsesVisited > MaxNumUsesTraversed)
1083       return false;
1084     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1085     // If there are escaping uses of invariant.start instruction, the load maybe
1086     // non-invariant.
1087     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1088         !II->use_empty())
1089       continue;
1090     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1091     // The intrinsic supports having a -1 argument for variable sized objects
1092     // so we should check for that here.
1093     if (InvariantSize->isNegative())
1094       continue;
1095     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1096     // Confirm the invariant.start location size contains the load operand size
1097     // in bits. Also, the invariant.start should dominate the load, and we
1098     // should not hoist the load out of a loop that contains this dominating
1099     // invariant.start.
1100     if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1101         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1102       return true;
1103   }
1104 
1105   return false;
1106 }
1107 
1108 namespace {
1109 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1110 /// sink a given instruction out of a loop.  Does not address legality
1111 /// concerns such as aliasing or speculation safety.
isHoistableAndSinkableInst(Instruction & I)1112 bool isHoistableAndSinkableInst(Instruction &I) {
1113   // Only these instructions are hoistable/sinkable.
1114   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1115           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1116           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1117           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1118           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1119           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1120           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1121 }
1122 /// Return true if all of the alias sets within this AST are known not to
1123 /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
isReadOnly(AliasSetTracker * CurAST,const MemorySSAUpdater * MSSAU,const Loop * L)1124 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1125                 const Loop *L) {
1126   if (CurAST) {
1127     for (AliasSet &AS : *CurAST) {
1128       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1129         return false;
1130       }
1131     }
1132     return true;
1133   } else { /*MSSAU*/
1134     for (auto *BB : L->getBlocks())
1135       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1136         return false;
1137     return true;
1138   }
1139 }
1140 
1141 /// Return true if I is the only Instruction with a MemoryAccess in L.
isOnlyMemoryAccess(const Instruction * I,const Loop * L,const MemorySSAUpdater * MSSAU)1142 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1143                         const MemorySSAUpdater *MSSAU) {
1144   for (auto *BB : L->getBlocks())
1145     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1146       int NotAPhi = 0;
1147       for (const auto &Acc : *Accs) {
1148         if (isa<MemoryPhi>(&Acc))
1149           continue;
1150         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1151         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1152           return false;
1153       }
1154     }
1155   return true;
1156 }
1157 }
1158 
canSinkOrHoistInst(Instruction & I,AAResults * AA,DominatorTree * DT,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,bool TargetExecutesOncePerLoop,SinkAndHoistLICMFlags * Flags,OptimizationRemarkEmitter * ORE)1159 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1160                               Loop *CurLoop, AliasSetTracker *CurAST,
1161                               MemorySSAUpdater *MSSAU,
1162                               bool TargetExecutesOncePerLoop,
1163                               SinkAndHoistLICMFlags *Flags,
1164                               OptimizationRemarkEmitter *ORE) {
1165   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
1166          "Either AliasSetTracker or MemorySSA should be initialized.");
1167 
1168   // If we don't understand the instruction, bail early.
1169   if (!isHoistableAndSinkableInst(I))
1170     return false;
1171 
1172   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1173   if (MSSA)
1174     assert(Flags != nullptr && "Flags cannot be null.");
1175 
1176   // Loads have extra constraints we have to verify before we can hoist them.
1177   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1178     if (!LI->isUnordered())
1179       return false; // Don't sink/hoist volatile or ordered atomic loads!
1180 
1181     // Loads from constant memory are always safe to move, even if they end up
1182     // in the same alias set as something that ends up being modified.
1183     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1184       return true;
1185     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1186       return true;
1187 
1188     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1189       return false; // Don't risk duplicating unordered loads
1190 
1191     // This checks for an invariant.start dominating the load.
1192     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1193       return true;
1194 
1195     bool Invalidated;
1196     if (CurAST)
1197       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1198                                              CurLoop, AA);
1199     else
1200       Invalidated = pointerInvalidatedByLoopWithMSSA(
1201           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1202     // Check loop-invariant address because this may also be a sinkable load
1203     // whose address is not necessarily loop-invariant.
1204     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1205       ORE->emit([&]() {
1206         return OptimizationRemarkMissed(
1207                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1208                << "failed to move load with loop-invariant address "
1209                   "because the loop may invalidate its value";
1210       });
1211 
1212     return !Invalidated;
1213   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1214     // Don't sink or hoist dbg info; it's legal, but not useful.
1215     if (isa<DbgInfoIntrinsic>(I))
1216       return false;
1217 
1218     // Don't sink calls which can throw.
1219     if (CI->mayThrow())
1220       return false;
1221 
1222     // Convergent attribute has been used on operations that involve
1223     // inter-thread communication which results are implicitly affected by the
1224     // enclosing control flows. It is not safe to hoist or sink such operations
1225     // across control flow.
1226     if (CI->isConvergent())
1227       return false;
1228 
1229     using namespace PatternMatch;
1230     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1231       // Assumes don't actually alias anything or throw
1232       return true;
1233 
1234     if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1235       // Widenable conditions don't actually alias anything or throw
1236       return true;
1237 
1238     // Handle simple cases by querying alias analysis.
1239     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1240     if (Behavior == FMRB_DoesNotAccessMemory)
1241       return true;
1242     if (AAResults::onlyReadsMemory(Behavior)) {
1243       // A readonly argmemonly function only reads from memory pointed to by
1244       // it's arguments with arbitrary offsets.  If we can prove there are no
1245       // writes to this memory in the loop, we can hoist or sink.
1246       if (AAResults::onlyAccessesArgPointees(Behavior)) {
1247         // TODO: expand to writeable arguments
1248         for (Value *Op : CI->arg_operands())
1249           if (Op->getType()->isPointerTy()) {
1250             bool Invalidated;
1251             if (CurAST)
1252               Invalidated = pointerInvalidatedByLoop(
1253                   MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1254             else
1255               Invalidated = pointerInvalidatedByLoopWithMSSA(
1256                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1257                   *Flags);
1258             if (Invalidated)
1259               return false;
1260           }
1261         return true;
1262       }
1263 
1264       // If this call only reads from memory and there are no writes to memory
1265       // in the loop, we can hoist or sink the call as appropriate.
1266       if (isReadOnly(CurAST, MSSAU, CurLoop))
1267         return true;
1268     }
1269 
1270     // FIXME: This should use mod/ref information to see if we can hoist or
1271     // sink the call.
1272 
1273     return false;
1274   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1275     // Fences alias (most) everything to provide ordering.  For the moment,
1276     // just give up if there are any other memory operations in the loop.
1277     if (CurAST) {
1278       auto Begin = CurAST->begin();
1279       assert(Begin != CurAST->end() && "must contain FI");
1280       if (std::next(Begin) != CurAST->end())
1281         // constant memory for instance, TODO: handle better
1282         return false;
1283       auto *UniqueI = Begin->getUniqueInstruction();
1284       if (!UniqueI)
1285         // other memory op, give up
1286         return false;
1287       (void)FI; // suppress unused variable warning
1288       assert(UniqueI == FI && "AS must contain FI");
1289       return true;
1290     } else // MSSAU
1291       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1292   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1293     if (!SI->isUnordered())
1294       return false; // Don't sink/hoist volatile or ordered atomic store!
1295 
1296     // We can only hoist a store that we can prove writes a value which is not
1297     // read or overwritten within the loop.  For those cases, we fallback to
1298     // load store promotion instead.  TODO: We can extend this to cases where
1299     // there is exactly one write to the location and that write dominates an
1300     // arbitrary number of reads in the loop.
1301     if (CurAST) {
1302       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1303 
1304       if (AS.isRef() || !AS.isMustAlias())
1305         // Quick exit test, handled by the full path below as well.
1306         return false;
1307       auto *UniqueI = AS.getUniqueInstruction();
1308       if (!UniqueI)
1309         // other memory op, give up
1310         return false;
1311       assert(UniqueI == SI && "AS must contain SI");
1312       return true;
1313     } else { // MSSAU
1314       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1315         return true;
1316       // If there are more accesses than the Promotion cap or no "quota" to
1317       // check clobber, then give up as we're not walking a list that long.
1318       if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1319         return false;
1320       // If there are interfering Uses (i.e. their defining access is in the
1321       // loop), or ordered loads (stored as Defs!), don't move this store.
1322       // Could do better here, but this is conservatively correct.
1323       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1324       // moving accesses. Can also extend to dominating uses.
1325       auto *SIMD = MSSA->getMemoryAccess(SI);
1326       for (auto *BB : CurLoop->getBlocks())
1327         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1328           for (const auto &MA : *Accesses)
1329             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1330               auto *MD = MU->getDefiningAccess();
1331               if (!MSSA->isLiveOnEntryDef(MD) &&
1332                   CurLoop->contains(MD->getBlock()))
1333                 return false;
1334               // Disable hoisting past potentially interfering loads. Optimized
1335               // Uses may point to an access outside the loop, as getClobbering
1336               // checks the previous iteration when walking the backedge.
1337               // FIXME: More precise: no Uses that alias SI.
1338               if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1339                 return false;
1340             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1341               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1342                 (void)LI; // Silence warning.
1343                 assert(!LI->isUnordered() && "Expected unordered load");
1344                 return false;
1345               }
1346               // Any call, while it may not be clobbering SI, it may be a use.
1347               if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1348                 // Check if the call may read from the memory location written
1349                 // to by SI. Check CI's attributes and arguments; the number of
1350                 // such checks performed is limited above by NoOfMemAccTooLarge.
1351                 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1352                 if (isModOrRefSet(MRI))
1353                   return false;
1354               }
1355             }
1356         }
1357       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1358       Flags->incrementClobberingCalls();
1359       // If there are no clobbering Defs in the loop, store is safe to hoist.
1360       return MSSA->isLiveOnEntryDef(Source) ||
1361              !CurLoop->contains(Source->getBlock());
1362     }
1363   }
1364 
1365   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1366 
1367   // We've established mechanical ability and aliasing, it's up to the caller
1368   // to check fault safety
1369   return true;
1370 }
1371 
1372 /// Returns true if a PHINode is a trivially replaceable with an
1373 /// Instruction.
1374 /// This is true when all incoming values are that instruction.
1375 /// This pattern occurs most often with LCSSA PHI nodes.
1376 ///
isTriviallyReplaceablePHI(const PHINode & PN,const Instruction & I)1377 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1378   for (const Value *IncValue : PN.incoming_values())
1379     if (IncValue != &I)
1380       return false;
1381 
1382   return true;
1383 }
1384 
1385 /// Return true if the instruction is free in the loop.
isFreeInLoop(const Instruction & I,const Loop * CurLoop,const TargetTransformInfo * TTI)1386 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1387                          const TargetTransformInfo *TTI) {
1388 
1389   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1390     if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1391         TargetTransformInfo::TCC_Free)
1392       return false;
1393     // For a GEP, we cannot simply use getUserCost because currently it
1394     // optimistically assume that a GEP will fold into addressing mode
1395     // regardless of its users.
1396     const BasicBlock *BB = GEP->getParent();
1397     for (const User *U : GEP->users()) {
1398       const Instruction *UI = cast<Instruction>(U);
1399       if (CurLoop->contains(UI) &&
1400           (BB != UI->getParent() ||
1401            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1402         return false;
1403     }
1404     return true;
1405   } else
1406     return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1407            TargetTransformInfo::TCC_Free;
1408 }
1409 
1410 /// Return true if the only users of this instruction are outside of
1411 /// the loop. If this is true, we can sink the instruction to the exit
1412 /// blocks of the loop.
1413 ///
1414 /// We also return true if the instruction could be folded away in lowering.
1415 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
isNotUsedOrFreeInLoop(const Instruction & I,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,TargetTransformInfo * TTI,bool & FreeInLoop)1416 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1417                                   const LoopSafetyInfo *SafetyInfo,
1418                                   TargetTransformInfo *TTI, bool &FreeInLoop) {
1419   const auto &BlockColors = SafetyInfo->getBlockColors();
1420   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1421   for (const User *U : I.users()) {
1422     const Instruction *UI = cast<Instruction>(U);
1423     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1424       const BasicBlock *BB = PN->getParent();
1425       // We cannot sink uses in catchswitches.
1426       if (isa<CatchSwitchInst>(BB->getTerminator()))
1427         return false;
1428 
1429       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1430       // phi use is too muddled.
1431       if (isa<CallInst>(I))
1432         if (!BlockColors.empty() &&
1433             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1434           return false;
1435     }
1436 
1437     if (CurLoop->contains(UI)) {
1438       if (IsFree) {
1439         FreeInLoop = true;
1440         continue;
1441       }
1442       return false;
1443     }
1444   }
1445   return true;
1446 }
1447 
cloneInstructionInExitBlock(Instruction & I,BasicBlock & ExitBlock,PHINode & PN,const LoopInfo * LI,const LoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU)1448 static Instruction *cloneInstructionInExitBlock(
1449     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1450     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1451   Instruction *New;
1452   if (auto *CI = dyn_cast<CallInst>(&I)) {
1453     const auto &BlockColors = SafetyInfo->getBlockColors();
1454 
1455     // Sinking call-sites need to be handled differently from other
1456     // instructions.  The cloned call-site needs a funclet bundle operand
1457     // appropriate for its location in the CFG.
1458     SmallVector<OperandBundleDef, 1> OpBundles;
1459     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1460          BundleIdx != BundleEnd; ++BundleIdx) {
1461       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1462       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1463         continue;
1464 
1465       OpBundles.emplace_back(Bundle);
1466     }
1467 
1468     if (!BlockColors.empty()) {
1469       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1470       assert(CV.size() == 1 && "non-unique color for exit block!");
1471       BasicBlock *BBColor = CV.front();
1472       Instruction *EHPad = BBColor->getFirstNonPHI();
1473       if (EHPad->isEHPad())
1474         OpBundles.emplace_back("funclet", EHPad);
1475     }
1476 
1477     New = CallInst::Create(CI, OpBundles);
1478   } else {
1479     New = I.clone();
1480   }
1481 
1482   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1483   if (!I.getName().empty())
1484     New->setName(I.getName() + ".le");
1485 
1486   if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1487     // Create a new MemoryAccess and let MemorySSA set its defining access.
1488     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1489         New, nullptr, New->getParent(), MemorySSA::Beginning);
1490     if (NewMemAcc) {
1491       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1492         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1493       else {
1494         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1495         MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1496       }
1497     }
1498   }
1499 
1500   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1501   // this is particularly cheap because we can rip off the PHI node that we're
1502   // replacing for the number and blocks of the predecessors.
1503   // OPT: If this shows up in a profile, we can instead finish sinking all
1504   // invariant instructions, and then walk their operands to re-establish
1505   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1506   // sinking bottom-up.
1507   for (Use &Op : New->operands())
1508     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1509       auto *OInst = cast<Instruction>(Op.get());
1510       PHINode *OpPN =
1511         PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1512                         OInst->getName() + ".lcssa", &ExitBlock.front());
1513       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1514         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1515       Op = OpPN;
1516     }
1517   return New;
1518 }
1519 
eraseInstruction(Instruction & I,ICFLoopSafetyInfo & SafetyInfo,AliasSetTracker * AST,MemorySSAUpdater * MSSAU)1520 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1521                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1522   if (AST)
1523     AST->deleteValue(&I);
1524   if (MSSAU)
1525     MSSAU->removeMemoryAccess(&I);
1526   SafetyInfo.removeInstruction(&I);
1527   I.eraseFromParent();
1528 }
1529 
moveInstructionBefore(Instruction & I,Instruction & Dest,ICFLoopSafetyInfo & SafetyInfo,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)1530 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1531                                   ICFLoopSafetyInfo &SafetyInfo,
1532                                   MemorySSAUpdater *MSSAU,
1533                                   ScalarEvolution *SE) {
1534   SafetyInfo.removeInstruction(&I);
1535   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1536   I.moveBefore(&Dest);
1537   if (MSSAU)
1538     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1539             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1540       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1541                          MemorySSA::BeforeTerminator);
1542   if (SE)
1543     SE->forgetValue(&I);
1544 }
1545 
sinkThroughTriviallyReplaceablePHI(PHINode * TPN,Instruction * I,LoopInfo * LI,SmallDenseMap<BasicBlock *,Instruction *,32> & SunkCopies,const LoopSafetyInfo * SafetyInfo,const Loop * CurLoop,MemorySSAUpdater * MSSAU)1546 static Instruction *sinkThroughTriviallyReplaceablePHI(
1547     PHINode *TPN, Instruction *I, LoopInfo *LI,
1548     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1549     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1550     MemorySSAUpdater *MSSAU) {
1551   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1552          "Expect only trivially replaceable PHI");
1553   BasicBlock *ExitBlock = TPN->getParent();
1554   Instruction *New;
1555   auto It = SunkCopies.find(ExitBlock);
1556   if (It != SunkCopies.end())
1557     New = It->second;
1558   else
1559     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1560         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1561   return New;
1562 }
1563 
canSplitPredecessors(PHINode * PN,LoopSafetyInfo * SafetyInfo)1564 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1565   BasicBlock *BB = PN->getParent();
1566   if (!BB->canSplitPredecessors())
1567     return false;
1568   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1569   // it require updating BlockColors for all offspring blocks accordingly. By
1570   // skipping such corner case, we can make updating BlockColors after splitting
1571   // predecessor fairly simple.
1572   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1573     return false;
1574   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1575     BasicBlock *BBPred = *PI;
1576     if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1577         isa<CallBrInst>(BBPred->getTerminator()))
1578       return false;
1579   }
1580   return true;
1581 }
1582 
splitPredecessorsOfLoopExit(PHINode * PN,DominatorTree * DT,LoopInfo * LI,const Loop * CurLoop,LoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU)1583 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1584                                         LoopInfo *LI, const Loop *CurLoop,
1585                                         LoopSafetyInfo *SafetyInfo,
1586                                         MemorySSAUpdater *MSSAU) {
1587 #ifndef NDEBUG
1588   SmallVector<BasicBlock *, 32> ExitBlocks;
1589   CurLoop->getUniqueExitBlocks(ExitBlocks);
1590   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1591                                              ExitBlocks.end());
1592 #endif
1593   BasicBlock *ExitBB = PN->getParent();
1594   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1595 
1596   // Split predecessors of the loop exit to make instructions in the loop are
1597   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1598   // loop in the canonical form where each predecessor of each exit block should
1599   // be contained within the loop. For example, this will convert the loop below
1600   // from
1601   //
1602   // LB1:
1603   //   %v1 =
1604   //   br %LE, %LB2
1605   // LB2:
1606   //   %v2 =
1607   //   br %LE, %LB1
1608   // LE:
1609   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1610   //
1611   // to
1612   //
1613   // LB1:
1614   //   %v1 =
1615   //   br %LE.split, %LB2
1616   // LB2:
1617   //   %v2 =
1618   //   br %LE.split2, %LB1
1619   // LE.split:
1620   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1621   //   br %LE
1622   // LE.split2:
1623   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1624   //   br %LE
1625   // LE:
1626   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1627   //
1628   const auto &BlockColors = SafetyInfo->getBlockColors();
1629   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1630   while (!PredBBs.empty()) {
1631     BasicBlock *PredBB = *PredBBs.begin();
1632     assert(CurLoop->contains(PredBB) &&
1633            "Expect all predecessors are in the loop");
1634     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1635       BasicBlock *NewPred = SplitBlockPredecessors(
1636           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1637       // Since we do not allow splitting EH-block with BlockColors in
1638       // canSplitPredecessors(), we can simply assign predecessor's color to
1639       // the new block.
1640       if (!BlockColors.empty())
1641         // Grab a reference to the ColorVector to be inserted before getting the
1642         // reference to the vector we are copying because inserting the new
1643         // element in BlockColors might cause the map to be reallocated.
1644         SafetyInfo->copyColors(NewPred, PredBB);
1645     }
1646     PredBBs.remove(PredBB);
1647   }
1648 }
1649 
1650 /// When an instruction is found to only be used outside of the loop, this
1651 /// function moves it to the exit blocks and patches up SSA form as needed.
1652 /// This method is guaranteed to remove the original instruction from its
1653 /// position, and may either delete it or move it to outside of the loop.
1654 ///
sink(Instruction & I,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,const Loop * CurLoop,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU,OptimizationRemarkEmitter * ORE)1655 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1656                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
1657                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1658                  OptimizationRemarkEmitter *ORE) {
1659   bool Changed = false;
1660   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1661 
1662   // Iterate over users to be ready for actual sinking. Replace users via
1663   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1664   SmallPtrSet<Instruction *, 8> VisitedUsers;
1665   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1666     auto *User = cast<Instruction>(*UI);
1667     Use &U = UI.getUse();
1668     ++UI;
1669 
1670     if (VisitedUsers.count(User) || CurLoop->contains(User))
1671       continue;
1672 
1673     if (!DT->isReachableFromEntry(User->getParent())) {
1674       U = UndefValue::get(I.getType());
1675       Changed = true;
1676       continue;
1677     }
1678 
1679     // The user must be a PHI node.
1680     PHINode *PN = cast<PHINode>(User);
1681 
1682     // Surprisingly, instructions can be used outside of loops without any
1683     // exits.  This can only happen in PHI nodes if the incoming block is
1684     // unreachable.
1685     BasicBlock *BB = PN->getIncomingBlock(U);
1686     if (!DT->isReachableFromEntry(BB)) {
1687       U = UndefValue::get(I.getType());
1688       Changed = true;
1689       continue;
1690     }
1691 
1692     VisitedUsers.insert(PN);
1693     if (isTriviallyReplaceablePHI(*PN, I))
1694       continue;
1695 
1696     if (!canSplitPredecessors(PN, SafetyInfo))
1697       return Changed;
1698 
1699     // Split predecessors of the PHI so that we can make users trivially
1700     // replaceable.
1701     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1702 
1703     // Should rebuild the iterators, as they may be invalidated by
1704     // splitPredecessorsOfLoopExit().
1705     UI = I.user_begin();
1706     UE = I.user_end();
1707   }
1708 
1709   if (VisitedUsers.empty())
1710     return Changed;
1711 
1712   ORE->emit([&]() {
1713     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1714            << "sinking " << ore::NV("Inst", &I);
1715   });
1716   if (isa<LoadInst>(I))
1717     ++NumMovedLoads;
1718   else if (isa<CallInst>(I))
1719     ++NumMovedCalls;
1720   ++NumSunk;
1721 
1722 #ifndef NDEBUG
1723   SmallVector<BasicBlock *, 32> ExitBlocks;
1724   CurLoop->getUniqueExitBlocks(ExitBlocks);
1725   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1726                                              ExitBlocks.end());
1727 #endif
1728 
1729   // Clones of this instruction. Don't create more than one per exit block!
1730   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1731 
1732   // If this instruction is only used outside of the loop, then all users are
1733   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1734   // the instruction.
1735   // First check if I is worth sinking for all uses. Sink only when it is worth
1736   // across all uses.
1737   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1738   SmallVector<PHINode *, 8> ExitPNs;
1739   for (auto *UI : Users) {
1740     auto *User = cast<Instruction>(UI);
1741 
1742     if (CurLoop->contains(User))
1743       continue;
1744 
1745     PHINode *PN = cast<PHINode>(User);
1746     assert(ExitBlockSet.count(PN->getParent()) &&
1747            "The LCSSA PHI is not in an exit block!");
1748     if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1749       return Changed;
1750     }
1751 
1752     ExitPNs.push_back(PN);
1753   }
1754 
1755   for (auto *PN : ExitPNs) {
1756 
1757     // The PHI must be trivially replaceable.
1758     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1759         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1760     PN->replaceAllUsesWith(New);
1761     eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1762     Changed = true;
1763   }
1764   return Changed;
1765 }
1766 
1767 /// When an instruction is found to only use loop invariant operands that
1768 /// is safe to hoist, this instruction is called to do the dirty work.
1769 ///
hoist(Instruction & I,const DominatorTree * DT,const Loop * CurLoop,BasicBlock * Dest,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)1770 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1771                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1772                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1773                   OptimizationRemarkEmitter *ORE) {
1774   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1775                     << I << "\n");
1776   ORE->emit([&]() {
1777     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1778                                                          << ore::NV("Inst", &I);
1779   });
1780 
1781   // Metadata can be dependent on conditions we are hoisting above.
1782   // Conservatively strip all metadata on the instruction unless we were
1783   // guaranteed to execute I if we entered the loop, in which case the metadata
1784   // is valid in the loop preheader.
1785   if (I.hasMetadataOtherThanDebugLoc() &&
1786       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1787       // time in isGuaranteedToExecute if we don't actually have anything to
1788       // drop.  It is a compile time optimization, not required for correctness.
1789       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1790     I.dropUnknownNonDebugMetadata();
1791 
1792   if (isa<PHINode>(I))
1793     // Move the new node to the end of the phi list in the destination block.
1794     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1795   else
1796     // Move the new node to the destination block, before its terminator.
1797     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1798 
1799   I.updateLocationAfterHoist();
1800 
1801   if (isa<LoadInst>(I))
1802     ++NumMovedLoads;
1803   else if (isa<CallInst>(I))
1804     ++NumMovedCalls;
1805   ++NumHoisted;
1806 }
1807 
1808 /// Only sink or hoist an instruction if it is not a trapping instruction,
1809 /// or if the instruction is known not to trap when moved to the preheader.
1810 /// or if it is a trapping instruction and is guaranteed to execute.
isSafeToExecuteUnconditionally(Instruction & Inst,const DominatorTree * DT,const TargetLibraryInfo * TLI,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE,const Instruction * CtxI)1811 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1812                                            const DominatorTree *DT,
1813                                            const TargetLibraryInfo *TLI,
1814                                            const Loop *CurLoop,
1815                                            const LoopSafetyInfo *SafetyInfo,
1816                                            OptimizationRemarkEmitter *ORE,
1817                                            const Instruction *CtxI) {
1818   if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1819     return true;
1820 
1821   bool GuaranteedToExecute =
1822       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1823 
1824   if (!GuaranteedToExecute) {
1825     auto *LI = dyn_cast<LoadInst>(&Inst);
1826     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1827       ORE->emit([&]() {
1828         return OptimizationRemarkMissed(
1829                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1830                << "failed to hoist load with loop-invariant address "
1831                   "because load is conditionally executed";
1832       });
1833   }
1834 
1835   return GuaranteedToExecute;
1836 }
1837 
1838 namespace {
1839 class LoopPromoter : public LoadAndStorePromoter {
1840   Value *SomePtr; // Designated pointer to store to.
1841   const SmallSetVector<Value *, 8> &PointerMustAliases;
1842   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1843   SmallVectorImpl<Instruction *> &LoopInsertPts;
1844   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1845   PredIteratorCache &PredCache;
1846   AliasSetTracker *AST;
1847   MemorySSAUpdater *MSSAU;
1848   LoopInfo &LI;
1849   DebugLoc DL;
1850   int Alignment;
1851   bool UnorderedAtomic;
1852   AAMDNodes AATags;
1853   ICFLoopSafetyInfo &SafetyInfo;
1854 
1855   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1856   // (if legal) if doing so would add an out-of-loop use to an instruction
1857   // defined in-loop.
maybeInsertLCSSAPHI(Value * V,BasicBlock * BB) const1858   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1859     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1860       return V;
1861 
1862     Instruction *I = cast<Instruction>(V);
1863     // We need to create an LCSSA PHI node for the incoming value and
1864     // store that.
1865     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1866                                   I->getName() + ".lcssa", &BB->front());
1867     for (BasicBlock *Pred : PredCache.get(BB))
1868       PN->addIncoming(I, Pred);
1869     return PN;
1870   }
1871 
1872 public:
LoopPromoter(Value * SP,ArrayRef<const Instruction * > Insts,SSAUpdater & S,const SmallSetVector<Value *,8> & PMA,SmallVectorImpl<BasicBlock * > & LEB,SmallVectorImpl<Instruction * > & LIP,SmallVectorImpl<MemoryAccess * > & MSSAIP,PredIteratorCache & PIC,AliasSetTracker * ast,MemorySSAUpdater * MSSAU,LoopInfo & li,DebugLoc dl,int alignment,bool UnorderedAtomic,const AAMDNodes & AATags,ICFLoopSafetyInfo & SafetyInfo)1873   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1874                const SmallSetVector<Value *, 8> &PMA,
1875                SmallVectorImpl<BasicBlock *> &LEB,
1876                SmallVectorImpl<Instruction *> &LIP,
1877                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1878                AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1879                DebugLoc dl, int alignment, bool UnorderedAtomic,
1880                const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1881       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1882         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1883         PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1884         Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1885         SafetyInfo(SafetyInfo) {}
1886 
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const1887   bool isInstInList(Instruction *I,
1888                     const SmallVectorImpl<Instruction *> &) const override {
1889     Value *Ptr;
1890     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1891       Ptr = LI->getOperand(0);
1892     else
1893       Ptr = cast<StoreInst>(I)->getPointerOperand();
1894     return PointerMustAliases.count(Ptr);
1895   }
1896 
doExtraRewritesBeforeFinalDeletion()1897   void doExtraRewritesBeforeFinalDeletion() override {
1898     // Insert stores after in the loop exit blocks.  Each exit block gets a
1899     // store of the live-out values that feed them.  Since we've already told
1900     // the SSA updater about the defs in the loop and the preheader
1901     // definition, it is all set and we can start using it.
1902     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1903       BasicBlock *ExitBlock = LoopExitBlocks[i];
1904       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1905       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1906       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1907       Instruction *InsertPos = LoopInsertPts[i];
1908       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1909       if (UnorderedAtomic)
1910         NewSI->setOrdering(AtomicOrdering::Unordered);
1911       NewSI->setAlignment(Align(Alignment));
1912       NewSI->setDebugLoc(DL);
1913       if (AATags)
1914         NewSI->setAAMetadata(AATags);
1915 
1916       if (MSSAU) {
1917         MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1918         MemoryAccess *NewMemAcc;
1919         if (!MSSAInsertPoint) {
1920           NewMemAcc = MSSAU->createMemoryAccessInBB(
1921               NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1922         } else {
1923           NewMemAcc =
1924               MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1925         }
1926         MSSAInsertPts[i] = NewMemAcc;
1927         MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1928         // FIXME: true for safety, false may still be correct.
1929       }
1930     }
1931   }
1932 
replaceLoadWithValue(LoadInst * LI,Value * V) const1933   void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1934     // Update alias analysis.
1935     if (AST)
1936       AST->copyValue(LI, V);
1937   }
instructionDeleted(Instruction * I) const1938   void instructionDeleted(Instruction *I) const override {
1939     SafetyInfo.removeInstruction(I);
1940     if (AST)
1941       AST->deleteValue(I);
1942     if (MSSAU)
1943       MSSAU->removeMemoryAccess(I);
1944   }
1945 };
1946 
isNotCapturedBeforeOrInLoop(const Value * V,const Loop * L,DominatorTree * DT)1947 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1948                                  DominatorTree *DT) {
1949   // We can perform the captured-before check against any instruction in the
1950   // loop header, as the loop header is reachable from any instruction inside
1951   // the loop.
1952   // TODO: ReturnCaptures=true shouldn't be necessary here.
1953   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1954                                      /* StoreCaptures */ true,
1955                                      L->getHeader()->getTerminator(), DT);
1956 }
1957 
1958 /// Return true iff we can prove that a caller of this function can not inspect
1959 /// the contents of the provided object in a well defined program.
isKnownNonEscaping(Value * Object,const Loop * L,const TargetLibraryInfo * TLI,DominatorTree * DT)1960 bool isKnownNonEscaping(Value *Object, const Loop *L,
1961                         const TargetLibraryInfo *TLI, DominatorTree *DT) {
1962   if (isa<AllocaInst>(Object))
1963     // Since the alloca goes out of scope, we know the caller can't retain a
1964     // reference to it and be well defined.  Thus, we don't need to check for
1965     // capture.
1966     return true;
1967 
1968   // For all other objects we need to know that the caller can't possibly
1969   // have gotten a reference to the object.  There are two components of
1970   // that:
1971   //   1) Object can't be escaped by this function.  This is what
1972   //      PointerMayBeCaptured checks.
1973   //   2) Object can't have been captured at definition site.  For this, we
1974   //      need to know the return value is noalias.  At the moment, we use a
1975   //      weaker condition and handle only AllocLikeFunctions (which are
1976   //      known to be noalias).  TODO
1977   return isAllocLikeFn(Object, TLI) &&
1978          isNotCapturedBeforeOrInLoop(Object, L, DT);
1979 }
1980 
1981 } // namespace
1982 
1983 /// Try to promote memory values to scalars by sinking stores out of the
1984 /// loop and moving loads to before the loop.  We do this by looping over
1985 /// the stores in the loop, looking for stores to Must pointers which are
1986 /// loop invariant.
1987 ///
promoteLoopAccessesToScalars(const SmallSetVector<Value *,8> & PointerMustAliases,SmallVectorImpl<BasicBlock * > & ExitBlocks,SmallVectorImpl<Instruction * > & InsertPts,SmallVectorImpl<MemoryAccess * > & MSSAInsertPts,PredIteratorCache & PIC,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,Loop * CurLoop,AliasSetTracker * CurAST,MemorySSAUpdater * MSSAU,ICFLoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE)1988 bool llvm::promoteLoopAccessesToScalars(
1989     const SmallSetVector<Value *, 8> &PointerMustAliases,
1990     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1991     SmallVectorImpl<Instruction *> &InsertPts,
1992     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1993     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1994     Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1995     ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1996   // Verify inputs.
1997   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1998          SafetyInfo != nullptr &&
1999          "Unexpected Input to promoteLoopAccessesToScalars");
2000 
2001   Value *SomePtr = *PointerMustAliases.begin();
2002   BasicBlock *Preheader = CurLoop->getLoopPreheader();
2003 
2004   // It is not safe to promote a load/store from the loop if the load/store is
2005   // conditional.  For example, turning:
2006   //
2007   //    for () { if (c) *P += 1; }
2008   //
2009   // into:
2010   //
2011   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
2012   //
2013   // is not safe, because *P may only be valid to access if 'c' is true.
2014   //
2015   // The safety property divides into two parts:
2016   // p1) The memory may not be dereferenceable on entry to the loop.  In this
2017   //    case, we can't insert the required load in the preheader.
2018   // p2) The memory model does not allow us to insert a store along any dynamic
2019   //    path which did not originally have one.
2020   //
2021   // If at least one store is guaranteed to execute, both properties are
2022   // satisfied, and promotion is legal.
2023   //
2024   // This, however, is not a necessary condition. Even if no store/load is
2025   // guaranteed to execute, we can still establish these properties.
2026   // We can establish (p1) by proving that hoisting the load into the preheader
2027   // is safe (i.e. proving dereferenceability on all paths through the loop). We
2028   // can use any access within the alias set to prove dereferenceability,
2029   // since they're all must alias.
2030   //
2031   // There are two ways establish (p2):
2032   // a) Prove the location is thread-local. In this case the memory model
2033   // requirement does not apply, and stores are safe to insert.
2034   // b) Prove a store dominates every exit block. In this case, if an exit
2035   // blocks is reached, the original dynamic path would have taken us through
2036   // the store, so inserting a store into the exit block is safe. Note that this
2037   // is different from the store being guaranteed to execute. For instance,
2038   // if an exception is thrown on the first iteration of the loop, the original
2039   // store is never executed, but the exit blocks are not executed either.
2040 
2041   bool DereferenceableInPH = false;
2042   bool SafeToInsertStore = false;
2043 
2044   SmallVector<Instruction *, 64> LoopUses;
2045 
2046   // We start with an alignment of one and try to find instructions that allow
2047   // us to prove better alignment.
2048   Align Alignment;
2049   // Keep track of which types of access we see
2050   bool SawUnorderedAtomic = false;
2051   bool SawNotAtomic = false;
2052   AAMDNodes AATags;
2053 
2054   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2055 
2056   bool IsKnownThreadLocalObject = false;
2057   if (SafetyInfo->anyBlockMayThrow()) {
2058     // If a loop can throw, we have to insert a store along each unwind edge.
2059     // That said, we can't actually make the unwind edge explicit. Therefore,
2060     // we have to prove that the store is dead along the unwind edge.  We do
2061     // this by proving that the caller can't have a reference to the object
2062     // after return and thus can't possibly load from the object.
2063     Value *Object = getUnderlyingObject(SomePtr);
2064     if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2065       return false;
2066     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2067     // visible to other threads if captured and used during their lifetimes.
2068     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2069   }
2070 
2071   // Check that all of the pointers in the alias set have the same type.  We
2072   // cannot (yet) promote a memory location that is loaded and stored in
2073   // different sizes.  While we are at it, collect alignment and AA info.
2074   for (Value *ASIV : PointerMustAliases) {
2075     // Check that all of the pointers in the alias set have the same type.  We
2076     // cannot (yet) promote a memory location that is loaded and stored in
2077     // different sizes.
2078     if (SomePtr->getType() != ASIV->getType())
2079       return false;
2080 
2081     for (User *U : ASIV->users()) {
2082       // Ignore instructions that are outside the loop.
2083       Instruction *UI = dyn_cast<Instruction>(U);
2084       if (!UI || !CurLoop->contains(UI))
2085         continue;
2086 
2087       // If there is an non-load/store instruction in the loop, we can't promote
2088       // it.
2089       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2090         if (!Load->isUnordered())
2091           return false;
2092 
2093         SawUnorderedAtomic |= Load->isAtomic();
2094         SawNotAtomic |= !Load->isAtomic();
2095 
2096         Align InstAlignment = Load->getAlign();
2097 
2098         // Note that proving a load safe to speculate requires proving
2099         // sufficient alignment at the target location.  Proving it guaranteed
2100         // to execute does as well.  Thus we can increase our guaranteed
2101         // alignment as well.
2102         if (!DereferenceableInPH || (InstAlignment > Alignment))
2103           if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2104                                              SafetyInfo, ORE,
2105                                              Preheader->getTerminator())) {
2106             DereferenceableInPH = true;
2107             Alignment = std::max(Alignment, InstAlignment);
2108           }
2109       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2110         // Stores *of* the pointer are not interesting, only stores *to* the
2111         // pointer.
2112         if (UI->getOperand(1) != ASIV)
2113           continue;
2114         if (!Store->isUnordered())
2115           return false;
2116 
2117         SawUnorderedAtomic |= Store->isAtomic();
2118         SawNotAtomic |= !Store->isAtomic();
2119 
2120         // If the store is guaranteed to execute, both properties are satisfied.
2121         // We may want to check if a store is guaranteed to execute even if we
2122         // already know that promotion is safe, since it may have higher
2123         // alignment than any other guaranteed stores, in which case we can
2124         // raise the alignment on the promoted store.
2125         Align InstAlignment = Store->getAlign();
2126 
2127         if (!DereferenceableInPH || !SafeToInsertStore ||
2128             (InstAlignment > Alignment)) {
2129           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2130             DereferenceableInPH = true;
2131             SafeToInsertStore = true;
2132             Alignment = std::max(Alignment, InstAlignment);
2133           }
2134         }
2135 
2136         // If a store dominates all exit blocks, it is safe to sink.
2137         // As explained above, if an exit block was executed, a dominating
2138         // store must have been executed at least once, so we are not
2139         // introducing stores on paths that did not have them.
2140         // Note that this only looks at explicit exit blocks. If we ever
2141         // start sinking stores into unwind edges (see above), this will break.
2142         if (!SafeToInsertStore)
2143           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2144             return DT->dominates(Store->getParent(), Exit);
2145           });
2146 
2147         // If the store is not guaranteed to execute, we may still get
2148         // deref info through it.
2149         if (!DereferenceableInPH) {
2150           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2151               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2152               Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2153         }
2154       } else
2155         return false; // Not a load or store.
2156 
2157       // Merge the AA tags.
2158       if (LoopUses.empty()) {
2159         // On the first load/store, just take its AA tags.
2160         UI->getAAMetadata(AATags);
2161       } else if (AATags) {
2162         UI->getAAMetadata(AATags, /* Merge = */ true);
2163       }
2164 
2165       LoopUses.push_back(UI);
2166     }
2167   }
2168 
2169   // If we found both an unordered atomic instruction and a non-atomic memory
2170   // access, bail.  We can't blindly promote non-atomic to atomic since we
2171   // might not be able to lower the result.  We can't downgrade since that
2172   // would violate memory model.  Also, align 0 is an error for atomics.
2173   if (SawUnorderedAtomic && SawNotAtomic)
2174     return false;
2175 
2176   // If we're inserting an atomic load in the preheader, we must be able to
2177   // lower it.  We're only guaranteed to be able to lower naturally aligned
2178   // atomics.
2179   auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2180   if (SawUnorderedAtomic &&
2181       Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2182     return false;
2183 
2184   // If we couldn't prove we can hoist the load, bail.
2185   if (!DereferenceableInPH)
2186     return false;
2187 
2188   // We know we can hoist the load, but don't have a guaranteed store.
2189   // Check whether the location is thread-local. If it is, then we can insert
2190   // stores along paths which originally didn't have them without violating the
2191   // memory model.
2192   if (!SafeToInsertStore) {
2193     if (IsKnownThreadLocalObject)
2194       SafeToInsertStore = true;
2195     else {
2196       Value *Object = getUnderlyingObject(SomePtr);
2197       SafeToInsertStore =
2198           (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2199           isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2200     }
2201   }
2202 
2203   // If we've still failed to prove we can sink the store, give up.
2204   if (!SafeToInsertStore)
2205     return false;
2206 
2207   // Otherwise, this is safe to promote, lets do it!
2208   LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2209                     << '\n');
2210   ORE->emit([&]() {
2211     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2212                               LoopUses[0])
2213            << "Moving accesses to memory location out of the loop";
2214   });
2215   ++NumPromoted;
2216 
2217   // Look at all the loop uses, and try to merge their locations.
2218   std::vector<const DILocation *> LoopUsesLocs;
2219   for (auto U : LoopUses)
2220     LoopUsesLocs.push_back(U->getDebugLoc().get());
2221   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2222 
2223   // We use the SSAUpdater interface to insert phi nodes as required.
2224   SmallVector<PHINode *, 16> NewPHIs;
2225   SSAUpdater SSA(&NewPHIs);
2226   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2227                         InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
2228                         Alignment.value(), SawUnorderedAtomic, AATags,
2229                         *SafetyInfo);
2230 
2231   // Set up the preheader to have a definition of the value.  It is the live-out
2232   // value from the preheader that uses in the loop will use.
2233   LoadInst *PreheaderLoad = new LoadInst(
2234       SomePtr->getType()->getPointerElementType(), SomePtr,
2235       SomePtr->getName() + ".promoted", Preheader->getTerminator());
2236   if (SawUnorderedAtomic)
2237     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2238   PreheaderLoad->setAlignment(Alignment);
2239   PreheaderLoad->setDebugLoc(DebugLoc());
2240   if (AATags)
2241     PreheaderLoad->setAAMetadata(AATags);
2242   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2243 
2244   if (MSSAU) {
2245     MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2246         PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2247     MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2248     MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2249   }
2250 
2251   if (MSSAU && VerifyMemorySSA)
2252     MSSAU->getMemorySSA()->verifyMemorySSA();
2253   // Rewrite all the loads in the loop and remember all the definitions from
2254   // stores in the loop.
2255   Promoter.run(LoopUses);
2256 
2257   if (MSSAU && VerifyMemorySSA)
2258     MSSAU->getMemorySSA()->verifyMemorySSA();
2259   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2260   if (PreheaderLoad->use_empty())
2261     eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2262 
2263   return true;
2264 }
2265 
foreachMemoryAccess(MemorySSA * MSSA,Loop * L,function_ref<void (Instruction *)> Fn)2266 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2267                                 function_ref<void(Instruction *)> Fn) {
2268   for (const BasicBlock *BB : L->blocks())
2269     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2270       for (const auto &Access : *Accesses)
2271         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2272           Fn(MUD->getMemoryInst());
2273 }
2274 
2275 static SmallVector<SmallSetVector<Value *, 8>, 0>
collectPromotionCandidates(MemorySSA * MSSA,AliasAnalysis * AA,Loop * L)2276 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2277   AliasSetTracker AST(*AA);
2278 
2279   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2280     if (const auto *SI = dyn_cast<StoreInst>(I))
2281       return L->isLoopInvariant(SI->getPointerOperand());
2282     if (const auto *LI = dyn_cast<LoadInst>(I))
2283       return L->isLoopInvariant(LI->getPointerOperand());
2284     return false;
2285   };
2286 
2287   // Populate AST with potentially promotable accesses and remove them from
2288   // MaybePromotable, so they will not be checked again on the next iteration.
2289   SmallPtrSet<Value *, 16> AttemptingPromotion;
2290   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2291     if (IsPotentiallyPromotable(I)) {
2292       AttemptingPromotion.insert(I);
2293       AST.add(I);
2294     }
2295   });
2296 
2297   // We're only interested in must-alias sets that contain a mod.
2298   SmallVector<const AliasSet *, 8> Sets;
2299   for (AliasSet &AS : AST)
2300     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2301       Sets.push_back(&AS);
2302 
2303   if (Sets.empty())
2304     return {}; // Nothing to promote...
2305 
2306   // Discard any sets for which there is an aliasing non-promotable access.
2307   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2308     if (AttemptingPromotion.contains(I))
2309       return;
2310 
2311     llvm::erase_if(Sets, [&](const AliasSet *AS) {
2312       return AS->aliasesUnknownInst(I, *AA);
2313     });
2314   });
2315 
2316   SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2317   for (const AliasSet *Set : Sets) {
2318     SmallSetVector<Value *, 8> PointerMustAliases;
2319     for (const auto &ASI : *Set)
2320       PointerMustAliases.insert(ASI.getValue());
2321     Result.push_back(std::move(PointerMustAliases));
2322   }
2323 
2324   return Result;
2325 }
2326 
2327 /// Returns an owning pointer to an alias set which incorporates aliasing info
2328 /// from L and all subloops of L.
2329 std::unique_ptr<AliasSetTracker>
collectAliasInfoForLoop(Loop * L,LoopInfo * LI,AAResults * AA)2330 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2331                                                  AAResults *AA) {
2332   auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2333 
2334   // Add everything from all the sub loops.
2335   for (Loop *InnerL : L->getSubLoops())
2336     for (BasicBlock *BB : InnerL->blocks())
2337       CurAST->add(*BB);
2338 
2339   // And merge in this loop (without anything from inner loops).
2340   for (BasicBlock *BB : L->blocks())
2341     if (LI->getLoopFor(BB) == L)
2342       CurAST->add(*BB);
2343 
2344   return CurAST;
2345 }
2346 
pointerInvalidatedByLoop(MemoryLocation MemLoc,AliasSetTracker * CurAST,Loop * CurLoop,AAResults * AA)2347 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2348                                      AliasSetTracker *CurAST, Loop *CurLoop,
2349                                      AAResults *AA) {
2350   // First check to see if any of the basic blocks in CurLoop invalidate *V.
2351   bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2352 
2353   if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2354     return isInvalidatedAccordingToAST;
2355 
2356   // Check with a diagnostic analysis if we can refine the information above.
2357   // This is to identify the limitations of using the AST.
2358   // The alias set mechanism used by LICM has a major weakness in that it
2359   // combines all things which may alias into a single set *before* asking
2360   // modref questions. As a result, a single readonly call within a loop will
2361   // collapse all loads and stores into a single alias set and report
2362   // invalidation if the loop contains any store. For example, readonly calls
2363   // with deopt states have this form and create a general alias set with all
2364   // loads and stores.  In order to get any LICM in loops containing possible
2365   // deopt states we need a more precise invalidation of checking the mod ref
2366   // info of each instruction within the loop and LI. This has a complexity of
2367   // O(N^2), so currently, it is used only as a diagnostic tool since the
2368   // default value of LICMN2Threshold is zero.
2369 
2370   // Don't look at nested loops.
2371   if (CurLoop->begin() != CurLoop->end())
2372     return true;
2373 
2374   int N = 0;
2375   for (BasicBlock *BB : CurLoop->getBlocks())
2376     for (Instruction &I : *BB) {
2377       if (N >= LICMN2Theshold) {
2378         LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2379                           << *(MemLoc.Ptr) << "\n");
2380         return true;
2381       }
2382       N++;
2383       auto Res = AA->getModRefInfo(&I, MemLoc);
2384       if (isModSet(Res)) {
2385         LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2386                           << *(MemLoc.Ptr) << "\n");
2387         return true;
2388       }
2389     }
2390   LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2391   return false;
2392 }
2393 
pointerInvalidatedByLoopWithMSSA(MemorySSA * MSSA,MemoryUse * MU,Loop * CurLoop,Instruction & I,SinkAndHoistLICMFlags & Flags)2394 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2395                                       Loop *CurLoop, Instruction &I,
2396                                       SinkAndHoistLICMFlags &Flags) {
2397   // For hoisting, use the walker to determine safety
2398   if (!Flags.getIsSink()) {
2399     MemoryAccess *Source;
2400     // See declaration of SetLicmMssaOptCap for usage details.
2401     if (Flags.tooManyClobberingCalls())
2402       Source = MU->getDefiningAccess();
2403     else {
2404       Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2405       Flags.incrementClobberingCalls();
2406     }
2407     return !MSSA->isLiveOnEntryDef(Source) &&
2408            CurLoop->contains(Source->getBlock());
2409   }
2410 
2411   // For sinking, we'd need to check all Defs below this use. The getClobbering
2412   // call will look on the backedge of the loop, but will check aliasing with
2413   // the instructions on the previous iteration.
2414   // For example:
2415   // for (i ... )
2416   //   load a[i] ( Use (LoE)
2417   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2418   //   i++;
2419   // The load sees no clobbering inside the loop, as the backedge alias check
2420   // does phi translation, and will check aliasing against store a[i-1].
2421   // However sinking the load outside the loop, below the store is incorrect.
2422 
2423   // For now, only sink if there are no Defs in the loop, and the existing ones
2424   // precede the use and are in the same block.
2425   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2426   // needs PostDominatorTreeAnalysis.
2427   // FIXME: More precise: no Defs that alias this Use.
2428   if (Flags.tooManyMemoryAccesses())
2429     return true;
2430   for (auto *BB : CurLoop->getBlocks())
2431     if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2432       return true;
2433   // When sinking, the source block may not be part of the loop so check it.
2434   if (!CurLoop->contains(&I))
2435     return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2436 
2437   return false;
2438 }
2439 
pointerInvalidatedByBlockWithMSSA(BasicBlock & BB,MemorySSA & MSSA,MemoryUse & MU)2440 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2441                                        MemoryUse &MU) {
2442   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2443     for (const auto &MA : *Accesses)
2444       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2445         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2446           return true;
2447   return false;
2448 }
2449 
2450 /// Little predicate that returns true if the specified basic block is in
2451 /// a subloop of the current one, not the current one itself.
2452 ///
inSubLoop(BasicBlock * BB,Loop * CurLoop,LoopInfo * LI)2453 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2454   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2455   return LI->getLoopFor(BB) != CurLoop;
2456 }
2457