xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp (revision ff07df6620c32571c7e13ff96ec7976c63ed0ab8)
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/DebugCounter.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <functional>
46 #include <utility>
47 
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "instcombine"
52 
53 STATISTIC(NegatorTotalNegationsAttempted,
54           "Negator: Number of negations attempted to be sinked");
55 STATISTIC(NegatorNumTreesNegated,
56           "Negator: Number of negations successfully sinked");
57 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
58                                   "reached while attempting to sink negation");
59 STATISTIC(NegatorTimesDepthLimitReached,
60           "Negator: How many times did the traversal depth limit was reached "
61           "during sinking");
62 STATISTIC(
63     NegatorNumValuesVisited,
64     "Negator: Total number of values visited during attempts to sink negation");
65 STATISTIC(NegatorNumNegationsFoundInCache,
66           "Negator: How many negations did we retrieve/reuse from cache");
67 STATISTIC(NegatorMaxTotalValuesVisited,
68           "Negator: Maximal number of values ever visited while attempting to "
69           "sink negation");
70 STATISTIC(NegatorNumInstructionsCreatedTotal,
71           "Negator: Number of new negated instructions created, total");
72 STATISTIC(NegatorMaxInstructionsCreated,
73           "Negator: Maximal number of new instructions created during negation "
74           "attempt");
75 STATISTIC(NegatorNumInstructionsNegatedSuccess,
76           "Negator: Number of new negated instructions created in successful "
77           "negation sinking attempts");
78 
79 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
80               "Controls Negator transformations in InstCombine pass");
81 
82 static cl::opt<bool>
83     NegatorEnabled("instcombine-negator-enabled", cl::init(true),
84                    cl::desc("Should we attempt to sink negations?"));
85 
86 static cl::opt<unsigned>
87     NegatorMaxDepth("instcombine-negator-max-depth",
88                     cl::init(NegatorDefaultMaxDepth),
89                     cl::desc("What is the maximal lookup depth when trying to "
90                              "check for viability of negation sinking."));
91 
92 Negator::Negator(LLVMContext &C, const DataLayout &DL, const DominatorTree &DT_,
93                  bool IsTrulyNegation_)
94     : Builder(C, TargetFolder(DL),
95               IRBuilderCallbackInserter([&](Instruction *I) {
96                 ++NegatorNumInstructionsCreatedTotal;
97                 NewInstructions.push_back(I);
98               })),
99       DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
100 
101 #if LLVM_ENABLE_STATS
102 Negator::~Negator() {
103   NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
104 }
105 #endif
106 
107 // Due to the InstCombine's worklist management, there are no guarantees that
108 // each instruction we'll encounter has been visited by InstCombine already.
109 // In particular, most importantly for us, that means we have to canonicalize
110 // constants to RHS ourselves, since that is helpful sometimes.
111 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
112   assert(I->getNumOperands() == 2 && "Only for binops!");
113   std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
114   if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
115                                 InstCombiner::getComplexity(I->getOperand(1)))
116     std::swap(Ops[0], Ops[1]);
117   return Ops;
118 }
119 
120 // FIXME: can this be reworked into a worklist-based algorithm while preserving
121 // the depth-first, early bailout traversal?
122 [[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
123   // -(undef) -> undef.
124   if (match(V, m_Undef()))
125     return V;
126 
127   // In i1, negation can simply be ignored.
128   if (V->getType()->isIntOrIntVectorTy(1))
129     return V;
130 
131   Value *X;
132 
133   // -(-(X)) -> X.
134   if (match(V, m_Neg(m_Value(X))))
135     return X;
136 
137   // Integral constants can be freely negated.
138   if (match(V, m_AnyIntegralConstant()))
139     return ConstantExpr::getNeg(cast<Constant>(V),
140                                 /*HasNSW=*/false);
141 
142   // If we have a non-instruction, then give up.
143   if (!isa<Instruction>(V))
144     return nullptr;
145 
146   // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
147   // got instruction that does not require recursive reasoning, we can still
148   // negate it even if it has other uses, without increasing instruction count.
149   if (!V->hasOneUse() && !IsTrulyNegation)
150     return nullptr;
151 
152   auto *I = cast<Instruction>(V);
153   unsigned BitWidth = I->getType()->getScalarSizeInBits();
154 
155   // We must preserve the insertion point and debug info that is set in the
156   // builder at the time this function is called.
157   InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
158   // And since we are trying to negate instruction I, that tells us about the
159   // insertion point and the debug info that we need to keep.
160   Builder.SetInsertPoint(I);
161 
162   // In some cases we can give the answer without further recursion.
163   switch (I->getOpcode()) {
164   case Instruction::Add: {
165     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
166     // `inc` is always negatible.
167     if (match(Ops[1], m_One()))
168       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
169     break;
170   }
171   case Instruction::Xor:
172     // `not` is always negatible.
173     if (match(I, m_Not(m_Value(X))))
174       return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
175                                I->getName() + ".neg");
176     break;
177   case Instruction::AShr:
178   case Instruction::LShr: {
179     // Right-shift sign bit smear is negatible.
180     const APInt *Op1Val;
181     if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
182       Value *BO = I->getOpcode() == Instruction::AShr
183                       ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
184                       : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
185       if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
186         NewInstr->copyIRFlags(I);
187         NewInstr->setName(I->getName() + ".neg");
188       }
189       return BO;
190     }
191     // While we could negate exact arithmetic shift:
192     //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
193     // iff C != 0 and C u< bitwidth(%x), we don't want to,
194     // because division is *THAT* much worse than a shift.
195     break;
196   }
197   case Instruction::SExt:
198   case Instruction::ZExt:
199     // `*ext` of i1 is always negatible
200     if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
201       return I->getOpcode() == Instruction::SExt
202                  ? Builder.CreateZExt(I->getOperand(0), I->getType(),
203                                       I->getName() + ".neg")
204                  : Builder.CreateSExt(I->getOperand(0), I->getType(),
205                                       I->getName() + ".neg");
206     break;
207   case Instruction::Select: {
208     // If both arms of the select are constants, we don't need to recurse.
209     // Therefore, this transform is not limited by uses.
210     auto *Sel = cast<SelectInst>(I);
211     Constant *TrueC, *FalseC;
212     if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
213         match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
214       Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
215       Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
216       return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
217                                   I->getName() + ".neg", /*MDFrom=*/I);
218     }
219     break;
220   }
221   case Instruction::Call:
222     if (auto *CI = dyn_cast<CmpIntrinsic>(I); CI && CI->hasOneUse())
223       return Builder.CreateIntrinsic(CI->getType(), CI->getIntrinsicID(),
224                                      {CI->getRHS(), CI->getLHS()});
225     break;
226   default:
227     break; // Other instructions require recursive reasoning.
228   }
229 
230   if (I->getOpcode() == Instruction::Sub &&
231       (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
232     // `sub` is always negatible.
233     // However, only do this either if the old `sub` doesn't stick around, or
234     // it was subtracting from a constant. Otherwise, this isn't profitable.
235     return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
236                              I->getName() + ".neg", /* HasNUW */ false,
237                              IsNSW && I->hasNoSignedWrap());
238   }
239 
240   // Some other cases, while still don't require recursion,
241   // are restricted to the one-use case.
242   if (!V->hasOneUse())
243     return nullptr;
244 
245   switch (I->getOpcode()) {
246   case Instruction::ZExt: {
247     // Negation of zext of signbit is signbit splat:
248     // 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
249     Value *SrcOp = I->getOperand(0);
250     unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
251     const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
252     if (IsTrulyNegation &&
253         match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowPoison(FullShift)))) {
254       Value *Ashr = Builder.CreateAShr(X, FullShift);
255       return Builder.CreateSExt(Ashr, I->getType());
256     }
257     break;
258   }
259   case Instruction::And: {
260     Constant *ShAmt;
261     // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
262     if (match(I, m_And(m_OneUse(m_TruncOrSelf(
263                            m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
264                        m_One()))) {
265       unsigned BW = X->getType()->getScalarSizeInBits();
266       Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
267       Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
268       R = Builder.CreateAShr(R, BWMinusOne);
269       return Builder.CreateTruncOrBitCast(R, I->getType());
270     }
271     break;
272   }
273   case Instruction::SDiv:
274     // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
275     // While this is normally not behind a use-check,
276     // let's consider division to be special since it's costly.
277     if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
278       if (!Op1C->containsUndefOrPoisonElement() &&
279           Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
280         Value *BO =
281             Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
282                                I->getName() + ".neg");
283         if (auto *NewInstr = dyn_cast<Instruction>(BO))
284           NewInstr->setIsExact(I->isExact());
285         return BO;
286       }
287     }
288     break;
289   }
290 
291   // Rest of the logic is recursive, so if it's time to give up then it's time.
292   if (Depth > NegatorMaxDepth) {
293     LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
294                       << *V << ". Giving up.\n");
295     ++NegatorTimesDepthLimitReached;
296     return nullptr;
297   }
298 
299   switch (I->getOpcode()) {
300   case Instruction::Freeze: {
301     // `freeze` is negatible if its operand is negatible.
302     Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
303     if (!NegOp) // Early return.
304       return nullptr;
305     return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
306   }
307   case Instruction::PHI: {
308     // `phi` is negatible if all the incoming values are negatible.
309     auto *PHI = cast<PHINode>(I);
310     SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
311     for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
312       // Don't negate indvars to avoid infinite loops.
313       if (DT.dominates(PHI->getParent(), std::get<0>(I)))
314         return nullptr;
315       if (!(std::get<1>(I) =
316                 negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
317         return nullptr;
318     }
319     // All incoming values are indeed negatible. Create negated PHI node.
320     PHINode *NegatedPHI = Builder.CreatePHI(
321         PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
322     for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
323       NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
324     return NegatedPHI;
325   }
326   case Instruction::Select: {
327     if (isKnownNegation(I->getOperand(1), I->getOperand(2), /*NeedNSW=*/false,
328                         /*AllowPoison=*/false)) {
329       // Of one hand of select is known to be negation of another hand,
330       // just swap the hands around.
331       auto *NewSelect = cast<SelectInst>(I->clone());
332       // Just swap the operands of the select.
333       NewSelect->swapValues();
334       // Don't swap prof metadata, we didn't change the branch behavior.
335       NewSelect->setName(I->getName() + ".neg");
336       // Poison-generating flags should be dropped
337       Value *TV = NewSelect->getTrueValue();
338       Value *FV = NewSelect->getFalseValue();
339       if (match(TV, m_Neg(m_Specific(FV))))
340         cast<Instruction>(TV)->dropPoisonGeneratingFlags();
341       else if (match(FV, m_Neg(m_Specific(TV))))
342         cast<Instruction>(FV)->dropPoisonGeneratingFlags();
343       else {
344         cast<Instruction>(TV)->dropPoisonGeneratingFlags();
345         cast<Instruction>(FV)->dropPoisonGeneratingFlags();
346       }
347       Builder.Insert(NewSelect);
348       return NewSelect;
349     }
350     // `select` is negatible if both hands of `select` are negatible.
351     Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
352     if (!NegOp1) // Early return.
353       return nullptr;
354     Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
355     if (!NegOp2)
356       return nullptr;
357     // Do preserve the metadata!
358     return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
359                                 I->getName() + ".neg", /*MDFrom=*/I);
360   }
361   case Instruction::ShuffleVector: {
362     // `shufflevector` is negatible if both operands are negatible.
363     auto *Shuf = cast<ShuffleVectorInst>(I);
364     Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
365     if (!NegOp0) // Early return.
366       return nullptr;
367     Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
368     if (!NegOp1)
369       return nullptr;
370     return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
371                                        I->getName() + ".neg");
372   }
373   case Instruction::ExtractElement: {
374     // `extractelement` is negatible if source operand is negatible.
375     auto *EEI = cast<ExtractElementInst>(I);
376     Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
377     if (!NegVector) // Early return.
378       return nullptr;
379     return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
380                                         I->getName() + ".neg");
381   }
382   case Instruction::InsertElement: {
383     // `insertelement` is negatible if both the source vector and
384     // element-to-be-inserted are negatible.
385     auto *IEI = cast<InsertElementInst>(I);
386     Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
387     if (!NegVector) // Early return.
388       return nullptr;
389     Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
390     if (!NegNewElt) // Early return.
391       return nullptr;
392     return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
393                                        I->getName() + ".neg");
394   }
395   case Instruction::Trunc: {
396     // `trunc` is negatible if its operand is negatible.
397     Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
398     if (!NegOp) // Early return.
399       return nullptr;
400     return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
401   }
402   case Instruction::Shl: {
403     // `shl` is negatible if the first operand is negatible.
404     IsNSW &= I->hasNoSignedWrap();
405     if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
406       return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
407                                /* HasNUW */ false, IsNSW);
408     // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
409     Constant *Op1C;
410     if (!match(I->getOperand(1), m_ImmConstant(Op1C)) || !IsTrulyNegation)
411       return nullptr;
412     return Builder.CreateMul(
413         I->getOperand(0),
414         Builder.CreateShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
415         I->getName() + ".neg", /* HasNUW */ false, IsNSW);
416   }
417   case Instruction::Or: {
418     if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
419       return nullptr; // Don't know how to handle `or` in general.
420     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
421     // `or`/`add` are interchangeable when operands have no common bits set.
422     // `inc` is always negatible.
423     if (match(Ops[1], m_One()))
424       return Builder.CreateNot(Ops[0], I->getName() + ".neg");
425     // Else, just defer to Instruction::Add handling.
426     [[fallthrough]];
427   }
428   case Instruction::Add: {
429     // `add` is negatible if both of its operands are negatible.
430     SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
431     for (Value *Op : I->operands()) {
432       // Can we sink the negation into this operand?
433       if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
434         NegatedOps.emplace_back(NegOp); // Successfully negated operand!
435         continue;
436       }
437       // Failed to sink negation into this operand. IFF we started from negation
438       // and we manage to sink negation into one operand, we can still do this.
439       if (!IsTrulyNegation)
440         return nullptr;
441       NonNegatedOps.emplace_back(Op); // Just record which operand that was.
442     }
443     assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
444            "Internal consistency check failed.");
445     // Did we manage to sink negation into both of the operands?
446     if (NegatedOps.size() == 2) // Then we get to keep the `add`!
447       return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
448                                I->getName() + ".neg");
449     assert(IsTrulyNegation && "We should have early-exited then.");
450     // Completely failed to sink negation?
451     if (NonNegatedOps.size() == 2)
452       return nullptr;
453     // 0-(a+b) --> (-a)-b
454     return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
455                              I->getName() + ".neg");
456   }
457   case Instruction::Xor: {
458     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
459     // `xor` is negatible if one of its operands is invertible.
460     // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
461     if (auto *C = dyn_cast<Constant>(Ops[1])) {
462       if (IsTrulyNegation) {
463         Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
464         return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
465                                  I->getName() + ".neg");
466       }
467     }
468     return nullptr;
469   }
470   case Instruction::Mul: {
471     std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
472     // `mul` is negatible if one of its operands is negatible.
473     Value *NegatedOp, *OtherOp;
474     // First try the second operand, in case it's a constant it will be best to
475     // just invert it instead of sinking the `neg` deeper.
476     if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
477       NegatedOp = NegOp1;
478       OtherOp = Ops[0];
479     } else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
480       NegatedOp = NegOp0;
481       OtherOp = Ops[1];
482     } else
483       // Can't negate either of them.
484       return nullptr;
485     return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
486                              /* HasNUW */ false, IsNSW && I->hasNoSignedWrap());
487   }
488   default:
489     return nullptr; // Don't know, likely not negatible for free.
490   }
491 
492   llvm_unreachable("Can't get here. We always return from switch.");
493 }
494 
495 [[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
496   NegatorMaxDepthVisited.updateMax(Depth);
497   ++NegatorNumValuesVisited;
498 
499 #if LLVM_ENABLE_STATS
500   ++NumValuesVisitedInThisNegator;
501 #endif
502 
503 #ifndef NDEBUG
504   // We can't ever have a Value with such an address.
505   Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
506 #endif
507 
508   // Did we already try to negate this value?
509   auto NegationsCacheIterator = NegationsCache.find(V);
510   if (NegationsCacheIterator != NegationsCache.end()) {
511     ++NegatorNumNegationsFoundInCache;
512     Value *NegatedV = NegationsCacheIterator->second;
513     assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
514     return NegatedV;
515   }
516 
517 #ifndef NDEBUG
518   // We did not find a cached result for negation of V. While there,
519   // let's temporairly cache a placeholder value, with the idea that if later
520   // during negation we fetch it from cache, we'll know we're in a cycle.
521   NegationsCache[V] = Placeholder;
522 #endif
523 
524   // No luck. Try negating it for real.
525   Value *NegatedV = visitImpl(V, IsNSW, Depth);
526   // And cache the (real) result for the future.
527   NegationsCache[V] = NegatedV;
528 
529   return NegatedV;
530 }
531 
532 [[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
533                                                           bool IsNSW) {
534   Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
535   if (!Negated) {
536     // We must cleanup newly-inserted instructions, to avoid any potential
537     // endless combine looping.
538     for (Instruction *I : llvm::reverse(NewInstructions))
539       I->eraseFromParent();
540     return std::nullopt;
541   }
542   return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
543 }
544 
545 [[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
546                                      InstCombinerImpl &IC) {
547   ++NegatorTotalNegationsAttempted;
548   LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
549                     << "\n");
550 
551   if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
552     return nullptr;
553 
554   Negator N(Root->getContext(), IC.getDataLayout(), IC.getDominatorTree(),
555             LHSIsZero);
556   std::optional<Result> Res = N.run(Root, IsNSW);
557   if (!Res) { // Negation failed.
558     LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
559                       << "\n");
560     return nullptr;
561   }
562 
563   LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
564                     << "\n         NEW: " << *Res->second << "\n");
565   ++NegatorNumTreesNegated;
566 
567   // We must temporarily unset the 'current' insertion point and DebugLoc of the
568   // InstCombine's IRBuilder so that it won't interfere with the ones we have
569   // already specified when producing negated instructions.
570   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
571   IC.Builder.ClearInsertionPoint();
572   IC.Builder.SetCurrentDebugLocation(DebugLoc());
573 
574   // And finally, we must add newly-created instructions into the InstCombine's
575   // worklist (in a proper order!) so it can attempt to combine them.
576   LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
577                     << " instrs to InstCombine\n");
578   NegatorMaxInstructionsCreated.updateMax(Res->first.size());
579   NegatorNumInstructionsNegatedSuccess += Res->first.size();
580 
581   // They are in def-use order, so nothing fancy, just insert them in order.
582   for (Instruction *I : Res->first)
583     IC.Builder.Insert(I, I->getName());
584 
585   // And return the new root.
586   return Res->second;
587 }
588