xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp (revision 304a99091c84f303ff5037dc6bf5455e4cfde7a1)
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Transforms/InstCombine/InstCombiner.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 
38 #define DEBUG_TYPE "instcombine"
39 #include "llvm/Transforms/Utils/InstructionWorklist.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 /// The specific integer value is used in a context where it is known to be
45 /// non-zero.  If this allows us to simplify the computation, do so and return
46 /// the new operand, otherwise return null.
47 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
48                                         Instruction &CxtI) {
49   // If V has multiple uses, then we would have to do more analysis to determine
50   // if this is safe.  For example, the use could be in dynamically unreached
51   // code.
52   if (!V->hasOneUse()) return nullptr;
53 
54   bool MadeChange = false;
55 
56   // ((1 << A) >>u B) --> (1 << (A-B))
57   // Because V cannot be zero, we know that B is less than A.
58   Value *A = nullptr, *B = nullptr, *One = nullptr;
59   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
60       match(One, m_One())) {
61     A = IC.Builder.CreateSub(A, B);
62     return IC.Builder.CreateShl(One, A);
63   }
64 
65   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
66   // inexact.  Similarly for <<.
67   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
68   if (I && I->isLogicalShift() &&
69       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
70     // We know that this is an exact/nuw shift and that the input is a
71     // non-zero context as well.
72     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
73       IC.replaceOperand(*I, 0, V2);
74       MadeChange = true;
75     }
76 
77     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
78       I->setIsExact();
79       MadeChange = true;
80     }
81 
82     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
83       I->setHasNoUnsignedWrap();
84       MadeChange = true;
85     }
86   }
87 
88   // TODO: Lots more we could do here:
89   //    If V is a phi node, we can call this on each of its operands.
90   //    "select cond, X, 0" can simplify to "X".
91 
92   return MadeChange ? V : nullptr;
93 }
94 
95 // TODO: This is a specific form of a much more general pattern.
96 //       We could detect a select with any binop identity constant, or we
97 //       could use SimplifyBinOp to see if either arm of the select reduces.
98 //       But that needs to be done carefully and/or while removing potential
99 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
100 static Value *foldMulSelectToNegate(BinaryOperator &I,
101                                     InstCombiner::BuilderTy &Builder) {
102   Value *Cond, *OtherOp;
103 
104   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
105   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
106   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
107                         m_Value(OtherOp)))) {
108     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
109     Value *Neg = Builder.CreateNeg(OtherOp, "", HasAnyNoWrap);
110     return Builder.CreateSelect(Cond, OtherOp, Neg);
111   }
112   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
113   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
114   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
115                         m_Value(OtherOp)))) {
116     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
117     Value *Neg = Builder.CreateNeg(OtherOp, "", HasAnyNoWrap);
118     return Builder.CreateSelect(Cond, Neg, OtherOp);
119   }
120 
121   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
122   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
123   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
124                                            m_SpecificFP(-1.0))),
125                          m_Value(OtherOp))))
126     return Builder.CreateSelectFMF(Cond, OtherOp,
127                                    Builder.CreateFNegFMF(OtherOp, &I), &I);
128 
129   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132                                            m_SpecificFP(1.0))),
133                          m_Value(OtherOp))))
134     return Builder.CreateSelectFMF(Cond, Builder.CreateFNegFMF(OtherOp, &I),
135                                    OtherOp, &I);
136 
137   return nullptr;
138 }
139 
140 /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
141 /// Callers are expected to call this twice to handle commuted patterns.
142 static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
143                           InstCombiner::BuilderTy &Builder) {
144   Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
145   if (CommuteOperands)
146     std::swap(X, Y);
147 
148   const bool HasNSW = Mul.hasNoSignedWrap();
149   const bool HasNUW = Mul.hasNoUnsignedWrap();
150 
151   // X * (1 << Z) --> X << Z
152   Value *Z;
153   if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
154     bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
155     return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
156   }
157 
158   // Similar to above, but an increment of the shifted value becomes an add:
159   // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
160   // This increases uses of X, so it may require a freeze, but that is still
161   // expected to be an improvement because it removes the multiply.
162   BinaryOperator *Shift;
163   if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
164       match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
165     bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
166     Value *FrX = X;
167     if (!isGuaranteedNotToBeUndef(X))
168       FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
169     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
170     return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
171   }
172 
173   // Similar to above, but a decrement of the shifted value is disguised as
174   // 'not' and becomes a sub:
175   // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
176   // This increases uses of X, so it may require a freeze, but that is still
177   // expected to be an improvement because it removes the multiply.
178   if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
179     Value *FrX = X;
180     if (!isGuaranteedNotToBeUndef(X))
181       FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
182     Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
183     return Builder.CreateSub(Shl, FrX, Mul.getName());
184   }
185 
186   return nullptr;
187 }
188 
189 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
190   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
191   if (Value *V =
192           simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
193                           SQ.getWithInstruction(&I)))
194     return replaceInstUsesWith(I, V);
195 
196   if (SimplifyAssociativeOrCommutative(I))
197     return &I;
198 
199   if (Instruction *X = foldVectorBinop(I))
200     return X;
201 
202   if (Instruction *Phi = foldBinopWithPhiOperands(I))
203     return Phi;
204 
205   if (Value *V = foldUsingDistributiveLaws(I))
206     return replaceInstUsesWith(I, V);
207 
208   Type *Ty = I.getType();
209   const unsigned BitWidth = Ty->getScalarSizeInBits();
210   const bool HasNSW = I.hasNoSignedWrap();
211   const bool HasNUW = I.hasNoUnsignedWrap();
212 
213   // X * -1 --> 0 - X
214   if (match(Op1, m_AllOnes())) {
215     return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
216                   : BinaryOperator::CreateNeg(Op0);
217   }
218 
219   // Also allow combining multiply instructions on vectors.
220   {
221     Value *NewOp;
222     Constant *C1, *C2;
223     const APInt *IVal;
224     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_ImmConstant(C2)),
225                         m_ImmConstant(C1))) &&
226         match(C1, m_APInt(IVal))) {
227       // ((X << C2)*C1) == (X * (C1 << C2))
228       Constant *Shl =
229           ConstantFoldBinaryOpOperands(Instruction::Shl, C1, C2, DL);
230       assert(Shl && "Constant folding of immediate constants failed");
231       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
232       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
233       if (HasNUW && Mul->hasNoUnsignedWrap())
234         BO->setHasNoUnsignedWrap();
235       if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
236         BO->setHasNoSignedWrap();
237       return BO;
238     }
239 
240     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
241       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
242       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
243         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
244 
245         if (HasNUW)
246           Shl->setHasNoUnsignedWrap();
247         if (HasNSW) {
248           const APInt *V;
249           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
250             Shl->setHasNoSignedWrap();
251         }
252 
253         return Shl;
254       }
255     }
256   }
257 
258   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
259     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
260     // The "* (1<<C)" thus becomes a potential shifting opportunity.
261     if (Value *NegOp0 =
262             Negator::Negate(/*IsNegation*/ true, HasNSW, Op0, *this)) {
263       auto *Op1C = cast<Constant>(Op1);
264       return replaceInstUsesWith(
265           I, Builder.CreateMul(NegOp0, ConstantExpr::getNeg(Op1C), "",
266                                /* HasNUW */ false,
267                                HasNSW && Op1C->isNotMinSignedValue()));
268     }
269 
270     // Try to convert multiply of extended operand to narrow negate and shift
271     // for better analysis.
272     // This is valid if the shift amount (trailing zeros in the multiplier
273     // constant) clears more high bits than the bitwidth difference between
274     // source and destination types:
275     // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
276     const APInt *NegPow2C;
277     Value *X;
278     if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
279         match(Op1, m_APIntAllowPoison(NegPow2C))) {
280       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
281       unsigned ShiftAmt = NegPow2C->countr_zero();
282       if (ShiftAmt >= BitWidth - SrcWidth) {
283         Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
284         Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
285         return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
286       }
287     }
288   }
289 
290   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
291     return FoldedMul;
292 
293   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
294     return replaceInstUsesWith(I, FoldedMul);
295 
296   // Simplify mul instructions with a constant RHS.
297   Constant *MulC;
298   if (match(Op1, m_ImmConstant(MulC))) {
299     // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
300     // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
301     Value *X;
302     Constant *C1;
303     if (match(Op0, m_OneUse(m_AddLike(m_Value(X), m_ImmConstant(C1))))) {
304       // C1*MulC simplifies to a tidier constant.
305       Value *NewC = Builder.CreateMul(C1, MulC);
306       auto *BOp0 = cast<BinaryOperator>(Op0);
307       bool Op0NUW =
308           (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
309       Value *NewMul = Builder.CreateMul(X, MulC);
310       auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
311       if (HasNUW && Op0NUW) {
312         // If NewMulBO is constant we also can set BO to nuw.
313         if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
314           NewMulBO->setHasNoUnsignedWrap();
315         BO->setHasNoUnsignedWrap();
316       }
317       return BO;
318     }
319   }
320 
321   // abs(X) * abs(X) -> X * X
322   Value *X;
323   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
324     return BinaryOperator::CreateMul(X, X);
325 
326   {
327     Value *Y;
328     // abs(X) * abs(Y) -> abs(X * Y)
329     if (I.hasNoSignedWrap() &&
330         match(Op0,
331               m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One()))) &&
332         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(Y), m_One()))))
333       return replaceInstUsesWith(
334           I, Builder.CreateBinaryIntrinsic(Intrinsic::abs,
335                                            Builder.CreateNSWMul(X, Y),
336                                            Builder.getTrue()));
337   }
338 
339   // -X * C --> X * -C
340   Value *Y;
341   Constant *Op1C;
342   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
343     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
344 
345   // -X * -Y --> X * Y
346   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
347     auto *NewMul = BinaryOperator::CreateMul(X, Y);
348     if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
349         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
350       NewMul->setHasNoSignedWrap();
351     return NewMul;
352   }
353 
354   // -X * Y --> -(X * Y)
355   // X * -Y --> -(X * Y)
356   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
357     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
358 
359   // (-X * Y) * -X --> (X * Y) * X
360   // (-X << Y) * -X --> (X << Y) * X
361   if (match(Op1, m_Neg(m_Value(X)))) {
362     if (Value *NegOp0 = Negator::Negate(false, /*IsNSW*/ false, Op0, *this))
363       return BinaryOperator::CreateMul(NegOp0, X);
364   }
365 
366   if (Op0->hasOneUse()) {
367     // (mul (div exact X, C0), C1)
368     //    -> (div exact X, C0 / C1)
369     // iff C0 % C1 == 0 and X / (C0 / C1) doesn't create UB.
370     const APInt *C1;
371     auto UDivCheck = [&C1](const APInt &C) { return C.urem(*C1).isZero(); };
372     auto SDivCheck = [&C1](const APInt &C) {
373       APInt Quot, Rem;
374       APInt::sdivrem(C, *C1, Quot, Rem);
375       return Rem.isZero() && !Quot.isAllOnes();
376     };
377     if (match(Op1, m_APInt(C1)) &&
378         (match(Op0, m_Exact(m_UDiv(m_Value(X), m_CheckedInt(UDivCheck)))) ||
379          match(Op0, m_Exact(m_SDiv(m_Value(X), m_CheckedInt(SDivCheck)))))) {
380       auto BOpc = cast<BinaryOperator>(Op0)->getOpcode();
381       return BinaryOperator::CreateExact(
382           BOpc, X,
383           Builder.CreateBinOp(BOpc, cast<BinaryOperator>(Op0)->getOperand(1),
384                               Op1));
385     }
386   }
387 
388   // (X / Y) *  Y = X - (X % Y)
389   // (X / Y) * -Y = (X % Y) - X
390   {
391     Value *Y = Op1;
392     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
393     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
394                  Div->getOpcode() != Instruction::SDiv)) {
395       Y = Op0;
396       Div = dyn_cast<BinaryOperator>(Op1);
397     }
398     Value *Neg = dyn_castNegVal(Y);
399     if (Div && Div->hasOneUse() &&
400         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
401         (Div->getOpcode() == Instruction::UDiv ||
402          Div->getOpcode() == Instruction::SDiv)) {
403       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
404 
405       // If the division is exact, X % Y is zero, so we end up with X or -X.
406       if (Div->isExact()) {
407         if (DivOp1 == Y)
408           return replaceInstUsesWith(I, X);
409         return BinaryOperator::CreateNeg(X);
410       }
411 
412       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
413                                                           : Instruction::SRem;
414       // X must be frozen because we are increasing its number of uses.
415       Value *XFreeze = X;
416       if (!isGuaranteedNotToBeUndef(X))
417         XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
418       Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
419       if (DivOp1 == Y)
420         return BinaryOperator::CreateSub(XFreeze, Rem);
421       return BinaryOperator::CreateSub(Rem, XFreeze);
422     }
423   }
424 
425   // Fold the following two scenarios:
426   //   1) i1 mul -> i1 and.
427   //   2) X * Y --> X & Y, iff X, Y can be only {0,1}.
428   // Note: We could use known bits to generalize this and related patterns with
429   // shifts/truncs
430   if (Ty->isIntOrIntVectorTy(1) ||
431       (match(Op0, m_And(m_Value(), m_One())) &&
432        match(Op1, m_And(m_Value(), m_One()))))
433     return BinaryOperator::CreateAnd(Op0, Op1);
434 
435   if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
436     return replaceInstUsesWith(I, R);
437   if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
438     return replaceInstUsesWith(I, R);
439 
440   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
441   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
442   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
443   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
444        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
445       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
446       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
447     Value *And = Builder.CreateAnd(X, Y, "mulbool");
448     return CastInst::Create(Instruction::ZExt, And, Ty);
449   }
450   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
451   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
452   // Note: -1 * 1 == 1 * -1  == -1
453   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
454        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
455       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
456       (Op0->hasOneUse() || Op1->hasOneUse())) {
457     Value *And = Builder.CreateAnd(X, Y, "mulbool");
458     return CastInst::Create(Instruction::SExt, And, Ty);
459   }
460 
461   // (zext bool X) * Y --> X ? Y : 0
462   // Y * (zext bool X) --> X ? Y : 0
463   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
464     return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
465   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
466     return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
467 
468   // mul (sext X), Y -> select X, -Y, 0
469   // mul Y, (sext X) -> select X, -Y, 0
470   if (match(&I, m_c_Mul(m_OneUse(m_SExt(m_Value(X))), m_Value(Y))) &&
471       X->getType()->isIntOrIntVectorTy(1))
472     return SelectInst::Create(X, Builder.CreateNeg(Y, "", I.hasNoSignedWrap()),
473                               ConstantInt::getNullValue(Op0->getType()));
474 
475   Constant *ImmC;
476   if (match(Op1, m_ImmConstant(ImmC))) {
477     // (sext bool X) * C --> X ? -C : 0
478     if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
479       Constant *NegC = ConstantExpr::getNeg(ImmC);
480       return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
481     }
482 
483     // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
484     const APInt *C;
485     if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
486         *C == C->getBitWidth() - 1) {
487       Constant *NegC = ConstantExpr::getNeg(ImmC);
488       Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
489       return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
490     }
491   }
492 
493   // (lshr X, 31) * Y --> (X < 0) ? Y : 0
494   // TODO: We are not checking one-use because the elimination of the multiply
495   //       is better for analysis?
496   const APInt *C;
497   if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
498       *C == C->getBitWidth() - 1) {
499     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
500     return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
501   }
502 
503   // (and X, 1) * Y --> (trunc X) ? Y : 0
504   if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
505     Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
506     return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
507   }
508 
509   // ((ashr X, 31) | 1) * X --> abs(X)
510   // X * ((ashr X, 31) | 1) --> abs(X)
511   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
512                                       m_SpecificIntAllowPoison(BitWidth - 1)),
513                                m_One()),
514                           m_Deferred(X)))) {
515     Value *Abs = Builder.CreateBinaryIntrinsic(
516         Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
517     Abs->takeName(&I);
518     return replaceInstUsesWith(I, Abs);
519   }
520 
521   if (Instruction *Ext = narrowMathIfNoOverflow(I))
522     return Ext;
523 
524   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
525     return Res;
526 
527   // (mul Op0 Op1):
528   //    if Log2(Op0) folds away ->
529   //        (shl Op1, Log2(Op0))
530   //    if Log2(Op1) folds away ->
531   //        (shl Op0, Log2(Op1))
532   if (Value *Res = tryGetLog2(Op0, /*AssumeNonZero=*/false)) {
533     BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
534     // We can only propegate nuw flag.
535     Shl->setHasNoUnsignedWrap(HasNUW);
536     return Shl;
537   }
538   if (Value *Res = tryGetLog2(Op1, /*AssumeNonZero=*/false)) {
539     BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
540     // We can only propegate nuw flag.
541     Shl->setHasNoUnsignedWrap(HasNUW);
542     return Shl;
543   }
544 
545   bool Changed = false;
546   if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
547     Changed = true;
548     I.setHasNoSignedWrap(true);
549   }
550 
551   if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I, I.hasNoSignedWrap())) {
552     Changed = true;
553     I.setHasNoUnsignedWrap(true);
554   }
555 
556   return Changed ? &I : nullptr;
557 }
558 
559 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
560   BinaryOperator::BinaryOps Opcode = I.getOpcode();
561   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
562          "Expected fmul or fdiv");
563 
564   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
565   Value *X, *Y;
566 
567   // -X * -Y --> X * Y
568   // -X / -Y --> X / Y
569   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
570     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
571 
572   // fabs(X) * fabs(X) -> X * X
573   // fabs(X) / fabs(X) -> X / X
574   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
575     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
576 
577   // fabs(X) * fabs(Y) --> fabs(X * Y)
578   // fabs(X) / fabs(Y) --> fabs(X / Y)
579   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
580       (Op0->hasOneUse() || Op1->hasOneUse())) {
581     Value *XY = Builder.CreateBinOpFMF(Opcode, X, Y, &I);
582     Value *Fabs =
583         Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY, &I, I.getName());
584     return replaceInstUsesWith(I, Fabs);
585   }
586 
587   return nullptr;
588 }
589 
590 Instruction *InstCombinerImpl::foldPowiReassoc(BinaryOperator &I) {
591   auto createPowiExpr = [](BinaryOperator &I, InstCombinerImpl &IC, Value *X,
592                            Value *Y, Value *Z) {
593     InstCombiner::BuilderTy &Builder = IC.Builder;
594     Value *YZ = Builder.CreateAdd(Y, Z);
595     Instruction *NewPow = Builder.CreateIntrinsic(
596         Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
597 
598     return NewPow;
599   };
600 
601   Value *X, *Y, *Z;
602   unsigned Opcode = I.getOpcode();
603   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
604          "Unexpected opcode");
605 
606   // powi(X, Y) * X --> powi(X, Y+1)
607   // X * powi(X, Y) --> powi(X, Y+1)
608   if (match(&I, m_c_FMul(m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
609                              m_Value(X), m_Value(Y)))),
610                          m_Deferred(X)))) {
611     Constant *One = ConstantInt::get(Y->getType(), 1);
612     if (willNotOverflowSignedAdd(Y, One, I)) {
613       Instruction *NewPow = createPowiExpr(I, *this, X, Y, One);
614       return replaceInstUsesWith(I, NewPow);
615     }
616   }
617 
618   // powi(x, y) * powi(x, z) -> powi(x, y + z)
619   Value *Op0 = I.getOperand(0);
620   Value *Op1 = I.getOperand(1);
621   if (Opcode == Instruction::FMul && I.isOnlyUserOfAnyOperand() &&
622       match(Op0, m_AllowReassoc(
623                      m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y)))) &&
624       match(Op1, m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(m_Specific(X),
625                                                              m_Value(Z)))) &&
626       Y->getType() == Z->getType()) {
627     Instruction *NewPow = createPowiExpr(I, *this, X, Y, Z);
628     return replaceInstUsesWith(I, NewPow);
629   }
630 
631   if (Opcode == Instruction::FDiv && I.hasAllowReassoc() && I.hasNoNaNs()) {
632     // powi(X, Y) / X --> powi(X, Y-1)
633     // This is legal when (Y - 1) can't wraparound, in which case reassoc and
634     // nnan are required.
635     // TODO: Multi-use may be also better off creating Powi(x,y-1)
636     if (match(Op0, m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
637                        m_Specific(Op1), m_Value(Y))))) &&
638         willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
639       Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
640       Instruction *NewPow = createPowiExpr(I, *this, Op1, Y, NegOne);
641       return replaceInstUsesWith(I, NewPow);
642     }
643 
644     // powi(X, Y) / (X * Z) --> powi(X, Y-1) / Z
645     // This is legal when (Y - 1) can't wraparound, in which case reassoc and
646     // nnan are required.
647     // TODO: Multi-use may be also better off creating Powi(x,y-1)
648     if (match(Op0, m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
649                        m_Value(X), m_Value(Y))))) &&
650         match(Op1, m_AllowReassoc(m_c_FMul(m_Specific(X), m_Value(Z)))) &&
651         willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
652       Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
653       auto *NewPow = createPowiExpr(I, *this, X, Y, NegOne);
654       return BinaryOperator::CreateFDivFMF(NewPow, Z, &I);
655     }
656   }
657 
658   return nullptr;
659 }
660 
661 // If we have the following pattern,
662 // X = 1.0/sqrt(a)
663 // R1 = X * X
664 // R2 = a/sqrt(a)
665 // then this method collects all the instructions that match R1 and R2.
666 static bool getFSqrtDivOptPattern(Instruction *Div,
667                                   SmallPtrSetImpl<Instruction *> &R1,
668                                   SmallPtrSetImpl<Instruction *> &R2) {
669   Value *A;
670   if (match(Div, m_FDiv(m_FPOne(), m_Sqrt(m_Value(A)))) ||
671       match(Div, m_FDiv(m_SpecificFP(-1.0), m_Sqrt(m_Value(A))))) {
672     for (User *U : Div->users()) {
673       Instruction *I = cast<Instruction>(U);
674       if (match(I, m_FMul(m_Specific(Div), m_Specific(Div))))
675         R1.insert(I);
676     }
677 
678     CallInst *CI = cast<CallInst>(Div->getOperand(1));
679     for (User *U : CI->users()) {
680       Instruction *I = cast<Instruction>(U);
681       if (match(I, m_FDiv(m_Specific(A), m_Sqrt(m_Specific(A)))))
682         R2.insert(I);
683     }
684   }
685   return !R1.empty() && !R2.empty();
686 }
687 
688 // Check legality for transforming
689 // x = 1.0/sqrt(a)
690 // r1 = x * x;
691 // r2 = a/sqrt(a);
692 //
693 // TO
694 //
695 // r1 = 1/a
696 // r2 = sqrt(a)
697 // x = r1 * r2
698 // This transform works only when 'a' is known positive.
699 static bool isFSqrtDivToFMulLegal(Instruction *X,
700                                   SmallPtrSetImpl<Instruction *> &R1,
701                                   SmallPtrSetImpl<Instruction *> &R2) {
702   // Check if the required pattern for the transformation exists.
703   if (!getFSqrtDivOptPattern(X, R1, R2))
704     return false;
705 
706   BasicBlock *BBx = X->getParent();
707   BasicBlock *BBr1 = (*R1.begin())->getParent();
708   BasicBlock *BBr2 = (*R2.begin())->getParent();
709 
710   CallInst *FSqrt = cast<CallInst>(X->getOperand(1));
711   if (!FSqrt->hasAllowReassoc() || !FSqrt->hasNoNaNs() ||
712       !FSqrt->hasNoSignedZeros() || !FSqrt->hasNoInfs())
713     return false;
714 
715   // We change x = 1/sqrt(a) to x = sqrt(a) * 1/a . This change isn't allowed
716   // by recip fp as it is strictly meant to transform ops of type a/b to
717   // a * 1/b. So, this can be considered as algebraic rewrite and reassoc flag
718   // has been used(rather abused)in the past for algebraic rewrites.
719   if (!X->hasAllowReassoc() || !X->hasAllowReciprocal() || !X->hasNoInfs())
720     return false;
721 
722   // Check the constraints on X, R1 and R2 combined.
723   // fdiv instruction and one of the multiplications must reside in the same
724   // block. If not, the optimized code may execute more ops than before and
725   // this may hamper the performance.
726   if (BBx != BBr1 && BBx != BBr2)
727     return false;
728 
729   // Check the constraints on instructions in R1.
730   if (any_of(R1, [BBr1](Instruction *I) {
731         // When you have multiple instructions residing in R1 and R2
732         // respectively, it's difficult to generate combinations of (R1,R2) and
733         // then check if we have the required pattern. So, for now, just be
734         // conservative.
735         return (I->getParent() != BBr1 || !I->hasAllowReassoc());
736       }))
737     return false;
738 
739   // Check the constraints on instructions in R2.
740   return all_of(R2, [BBr2](Instruction *I) {
741     // When you have multiple instructions residing in R1 and R2
742     // respectively, it's difficult to generate combination of (R1,R2) and
743     // then check if we have the required pattern. So, for now, just be
744     // conservative.
745     return (I->getParent() == BBr2 && I->hasAllowReassoc());
746   });
747 }
748 
749 Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
750   Value *Op0 = I.getOperand(0);
751   Value *Op1 = I.getOperand(1);
752   Value *X, *Y;
753   Constant *C;
754   BinaryOperator *Op0BinOp;
755 
756   // Reassociate constant RHS with another constant to form constant
757   // expression.
758   if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP() &&
759       match(Op0, m_AllowReassoc(m_BinOp(Op0BinOp)))) {
760     // Everything in this scope folds I with Op0, intersecting their FMF.
761     FastMathFlags FMF = I.getFastMathFlags() & Op0BinOp->getFastMathFlags();
762     Constant *C1;
763     if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
764       // (C1 / X) * C --> (C * C1) / X
765       Constant *CC1 =
766           ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
767       if (CC1 && CC1->isNormalFP())
768         return BinaryOperator::CreateFDivFMF(CC1, X, FMF);
769     }
770     if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
771       // FIXME: This seems like it should also be checking for arcp
772       // (X / C1) * C --> X * (C / C1)
773       Constant *CDivC1 =
774           ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
775       if (CDivC1 && CDivC1->isNormalFP())
776         return BinaryOperator::CreateFMulFMF(X, CDivC1, FMF);
777 
778       // If the constant was a denormal, try reassociating differently.
779       // (X / C1) * C --> X / (C1 / C)
780       Constant *C1DivC =
781           ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
782       if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
783         return BinaryOperator::CreateFDivFMF(X, C1DivC, FMF);
784     }
785 
786     // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
787     // canonicalized to 'fadd X, C'. Distributing the multiply may allow
788     // further folds and (X * C) + C2 is 'fma'.
789     if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
790       // (X + C1) * C --> (X * C) + (C * C1)
791       if (Constant *CC1 =
792               ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
793         Value *XC = Builder.CreateFMulFMF(X, C, FMF);
794         return BinaryOperator::CreateFAddFMF(XC, CC1, FMF);
795       }
796     }
797     if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
798       // (C1 - X) * C --> (C * C1) - (X * C)
799       if (Constant *CC1 =
800               ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
801         Value *XC = Builder.CreateFMulFMF(X, C, FMF);
802         return BinaryOperator::CreateFSubFMF(CC1, XC, FMF);
803       }
804     }
805   }
806 
807   Value *Z;
808   if (match(&I,
809             m_c_FMul(m_AllowReassoc(m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))),
810                      m_Value(Z)))) {
811     BinaryOperator *DivOp = cast<BinaryOperator>(((Z == Op0) ? Op1 : Op0));
812     FastMathFlags FMF = I.getFastMathFlags() & DivOp->getFastMathFlags();
813     if (FMF.allowReassoc()) {
814       // Sink division: (X / Y) * Z --> (X * Z) / Y
815       auto *NewFMul = Builder.CreateFMulFMF(X, Z, FMF);
816       return BinaryOperator::CreateFDivFMF(NewFMul, Y, FMF);
817     }
818   }
819 
820   // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
821   // nnan disallows the possibility of returning a number if both operands are
822   // negative (in that case, we should return NaN).
823   if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
824       match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
825     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
826     Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
827     return replaceInstUsesWith(I, Sqrt);
828   }
829 
830   // The following transforms are done irrespective of the number of uses
831   // for the expression "1.0/sqrt(X)".
832   //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
833   //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
834   // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
835   // has the necessary (reassoc) fast-math-flags.
836   if (I.hasNoSignedZeros() &&
837       match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
838       match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
839     return BinaryOperator::CreateFDivFMF(X, Y, &I);
840   if (I.hasNoSignedZeros() &&
841       match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
842       match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
843     return BinaryOperator::CreateFDivFMF(X, Y, &I);
844 
845   // Like the similar transform in instsimplify, this requires 'nsz' because
846   // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
847   if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
848     // Peek through fdiv to find squaring of square root:
849     // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
850     if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
851       Value *XX = Builder.CreateFMulFMF(X, X, &I);
852       return BinaryOperator::CreateFDivFMF(XX, Y, &I);
853     }
854     // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
855     if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
856       Value *XX = Builder.CreateFMulFMF(X, X, &I);
857       return BinaryOperator::CreateFDivFMF(Y, XX, &I);
858     }
859   }
860 
861   // pow(X, Y) * X --> pow(X, Y+1)
862   // X * pow(X, Y) --> pow(X, Y+1)
863   if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
864                                                               m_Value(Y))),
865                          m_Deferred(X)))) {
866     Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
867     Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
868     return replaceInstUsesWith(I, Pow);
869   }
870 
871   if (Instruction *FoldedPowi = foldPowiReassoc(I))
872     return FoldedPowi;
873 
874   if (I.isOnlyUserOfAnyOperand()) {
875     // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
876     if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
877         match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
878       auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
879       auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
880       return replaceInstUsesWith(I, NewPow);
881     }
882     // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
883     if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
884         match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
885       auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
886       auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
887       return replaceInstUsesWith(I, NewPow);
888     }
889 
890     // exp(X) * exp(Y) -> exp(X + Y)
891     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
892         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
893       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
894       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
895       return replaceInstUsesWith(I, Exp);
896     }
897 
898     // exp2(X) * exp2(Y) -> exp2(X + Y)
899     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
900         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
901       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
902       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
903       return replaceInstUsesWith(I, Exp2);
904     }
905   }
906 
907   // (X*Y) * X => (X*X) * Y where Y != X
908   //  The purpose is two-fold:
909   //   1) to form a power expression (of X).
910   //   2) potentially shorten the critical path: After transformation, the
911   //  latency of the instruction Y is amortized by the expression of X*X,
912   //  and therefore Y is in a "less critical" position compared to what it
913   //  was before the transformation.
914   if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
915     Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
916     return BinaryOperator::CreateFMulFMF(XX, Y, &I);
917   }
918   if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
919     Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
920     return BinaryOperator::CreateFMulFMF(XX, Y, &I);
921   }
922 
923   return nullptr;
924 }
925 
926 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
927   if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
928                                   I.getFastMathFlags(),
929                                   SQ.getWithInstruction(&I)))
930     return replaceInstUsesWith(I, V);
931 
932   if (SimplifyAssociativeOrCommutative(I))
933     return &I;
934 
935   if (Instruction *X = foldVectorBinop(I))
936     return X;
937 
938   if (Instruction *Phi = foldBinopWithPhiOperands(I))
939     return Phi;
940 
941   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
942     return FoldedMul;
943 
944   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
945     return replaceInstUsesWith(I, FoldedMul);
946 
947   if (Instruction *R = foldFPSignBitOps(I))
948     return R;
949 
950   if (Instruction *R = foldFBinOpOfIntCasts(I))
951     return R;
952 
953   // X * -1.0 --> -X
954   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
955   if (match(Op1, m_SpecificFP(-1.0)))
956     return UnaryOperator::CreateFNegFMF(Op0, &I);
957 
958   // With no-nans/no-infs:
959   // X * 0.0 --> copysign(0.0, X)
960   // X * -0.0 --> copysign(0.0, -X)
961   const APFloat *FPC;
962   if (match(Op1, m_APFloatAllowPoison(FPC)) && FPC->isZero() &&
963       ((I.hasNoInfs() &&
964         isKnownNeverNaN(Op0, /*Depth=*/0, SQ.getWithInstruction(&I))) ||
965        isKnownNeverNaN(&I, /*Depth=*/0, SQ.getWithInstruction(&I)))) {
966     if (FPC->isNegative())
967       Op0 = Builder.CreateFNegFMF(Op0, &I);
968     CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
969                                                  {I.getType()}, {Op1, Op0}, &I);
970     return replaceInstUsesWith(I, CopySign);
971   }
972 
973   // -X * C --> X * -C
974   Value *X, *Y;
975   Constant *C;
976   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
977     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
978       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
979 
980   if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
981     // (uitofp bool X) * Y --> X ? Y : 0
982     // Y * (uitofp bool X) --> X ? Y : 0
983     // Note INF * 0 is NaN.
984     if (match(Op0, m_UIToFP(m_Value(X))) &&
985         X->getType()->isIntOrIntVectorTy(1)) {
986       auto *SI = SelectInst::Create(X, Op1, ConstantFP::get(I.getType(), 0.0));
987       SI->copyFastMathFlags(I.getFastMathFlags());
988       return SI;
989     }
990     if (match(Op1, m_UIToFP(m_Value(X))) &&
991         X->getType()->isIntOrIntVectorTy(1)) {
992       auto *SI = SelectInst::Create(X, Op0, ConstantFP::get(I.getType(), 0.0));
993       SI->copyFastMathFlags(I.getFastMathFlags());
994       return SI;
995     }
996   }
997 
998   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
999   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1000     return replaceInstUsesWith(I, V);
1001 
1002   if (I.hasAllowReassoc())
1003     if (Instruction *FoldedMul = foldFMulReassoc(I))
1004       return FoldedMul;
1005 
1006   // log2(X * 0.5) * Y = log2(X) * Y - Y
1007   if (I.isFast()) {
1008     IntrinsicInst *Log2 = nullptr;
1009     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
1010             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
1011       Log2 = cast<IntrinsicInst>(Op0);
1012       Y = Op1;
1013     }
1014     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
1015             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
1016       Log2 = cast<IntrinsicInst>(Op1);
1017       Y = Op0;
1018     }
1019     if (Log2) {
1020       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
1021       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
1022       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
1023     }
1024   }
1025 
1026   // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
1027   // Given a phi node with entry value as 0 and it used in fmul operation,
1028   // we can replace fmul with 0 safely and eleminate loop operation.
1029   PHINode *PN = nullptr;
1030   Value *Start = nullptr, *Step = nullptr;
1031   if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
1032       I.hasNoSignedZeros() && match(Start, m_Zero()))
1033     return replaceInstUsesWith(I, Start);
1034 
1035   // minimum(X, Y) * maximum(X, Y) => X * Y.
1036   if (match(&I,
1037             m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
1038                      m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
1039                                                        m_Deferred(Y))))) {
1040     BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I);
1041     // We cannot preserve ninf if nnan flag is not set.
1042     // If X is NaN and Y is Inf then in original program we had NaN * NaN,
1043     // while in optimized version NaN * Inf and this is a poison with ninf flag.
1044     if (!Result->hasNoNaNs())
1045       Result->setHasNoInfs(false);
1046     return Result;
1047   }
1048 
1049   return nullptr;
1050 }
1051 
1052 /// Fold a divide or remainder with a select instruction divisor when one of the
1053 /// select operands is zero. In that case, we can use the other select operand
1054 /// because div/rem by zero is undefined.
1055 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
1056   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
1057   if (!SI)
1058     return false;
1059 
1060   int NonNullOperand;
1061   if (match(SI->getTrueValue(), m_Zero()))
1062     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
1063     NonNullOperand = 2;
1064   else if (match(SI->getFalseValue(), m_Zero()))
1065     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
1066     NonNullOperand = 1;
1067   else
1068     return false;
1069 
1070   // Change the div/rem to use 'Y' instead of the select.
1071   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
1072 
1073   // Okay, we know we replace the operand of the div/rem with 'Y' with no
1074   // problem.  However, the select, or the condition of the select may have
1075   // multiple uses.  Based on our knowledge that the operand must be non-zero,
1076   // propagate the known value for the select into other uses of it, and
1077   // propagate a known value of the condition into its other users.
1078 
1079   // If the select and condition only have a single use, don't bother with this,
1080   // early exit.
1081   Value *SelectCond = SI->getCondition();
1082   if (SI->use_empty() && SelectCond->hasOneUse())
1083     return true;
1084 
1085   // Scan the current block backward, looking for other uses of SI.
1086   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
1087   Type *CondTy = SelectCond->getType();
1088   while (BBI != BBFront) {
1089     --BBI;
1090     // If we found an instruction that we can't assume will return, so
1091     // information from below it cannot be propagated above it.
1092     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
1093       break;
1094 
1095     // Replace uses of the select or its condition with the known values.
1096     for (Use &Op : BBI->operands()) {
1097       if (Op == SI) {
1098         replaceUse(Op, SI->getOperand(NonNullOperand));
1099         Worklist.push(&*BBI);
1100       } else if (Op == SelectCond) {
1101         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
1102                                            : ConstantInt::getFalse(CondTy));
1103         Worklist.push(&*BBI);
1104       }
1105     }
1106 
1107     // If we past the instruction, quit looking for it.
1108     if (&*BBI == SI)
1109       SI = nullptr;
1110     if (&*BBI == SelectCond)
1111       SelectCond = nullptr;
1112 
1113     // If we ran out of things to eliminate, break out of the loop.
1114     if (!SelectCond && !SI)
1115       break;
1116 
1117   }
1118   return true;
1119 }
1120 
1121 /// True if the multiply can not be expressed in an int this size.
1122 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
1123                               bool IsSigned) {
1124   bool Overflow;
1125   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
1126   return Overflow;
1127 }
1128 
1129 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
1130 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
1131                        bool IsSigned) {
1132   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
1133 
1134   // Bail if we will divide by zero.
1135   if (C2.isZero())
1136     return false;
1137 
1138   // Bail if we would divide INT_MIN by -1.
1139   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
1140     return false;
1141 
1142   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
1143   if (IsSigned)
1144     APInt::sdivrem(C1, C2, Quotient, Remainder);
1145   else
1146     APInt::udivrem(C1, C2, Quotient, Remainder);
1147 
1148   return Remainder.isMinValue();
1149 }
1150 
1151 static Value *foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder) {
1152   assert((I.getOpcode() == Instruction::SDiv ||
1153           I.getOpcode() == Instruction::UDiv) &&
1154          "Expected integer divide");
1155 
1156   bool IsSigned = I.getOpcode() == Instruction::SDiv;
1157   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1158   Type *Ty = I.getType();
1159 
1160   Value *X, *Y, *Z;
1161 
1162   // With appropriate no-wrap constraints, remove a common factor in the
1163   // dividend and divisor that is disguised as a left-shifted value.
1164   if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
1165       match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
1166     // Both operands must have the matching no-wrap for this kind of division.
1167     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1168     auto *Shl = cast<OverflowingBinaryOperator>(Op1);
1169     bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
1170     bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
1171 
1172     // (X * Y) u/ (X << Z) --> Y u>> Z
1173     if (!IsSigned && HasNUW)
1174       return Builder.CreateLShr(Y, Z, "", I.isExact());
1175 
1176     // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
1177     if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
1178       Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
1179       return Builder.CreateSDiv(Y, Shl, "", I.isExact());
1180     }
1181   }
1182 
1183   // With appropriate no-wrap constraints, remove a common factor in the
1184   // dividend and divisor that is disguised as a left-shift amount.
1185   if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
1186       match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
1187     auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1188     auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1189 
1190     // For unsigned div, we need 'nuw' on both shifts or
1191     // 'nsw' on both shifts + 'nuw' on the dividend.
1192     // (X << Z) / (Y << Z) --> X / Y
1193     if (!IsSigned &&
1194         ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
1195          (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
1196           Shl1->hasNoSignedWrap())))
1197       return Builder.CreateUDiv(X, Y, "", I.isExact());
1198 
1199     // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
1200     // (X << Z) / (Y << Z) --> X / Y
1201     if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
1202         Shl1->hasNoUnsignedWrap())
1203       return Builder.CreateSDiv(X, Y, "", I.isExact());
1204   }
1205 
1206   // If X << Y and X << Z does not overflow, then:
1207   // (X << Y) / (X << Z) -> (1 << Y) / (1 << Z) -> 1 << Y >> Z
1208   if (match(Op0, m_Shl(m_Value(X), m_Value(Y))) &&
1209       match(Op1, m_Shl(m_Specific(X), m_Value(Z)))) {
1210     auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1211     auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1212 
1213     if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1214                  : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1215       Constant *One = ConstantInt::get(X->getType(), 1);
1216       // Only preserve the nsw flag if dividend has nsw
1217       // or divisor has nsw and operator is sdiv.
1218       Value *Dividend = Builder.CreateShl(
1219           One, Y, "shl.dividend",
1220           /*HasNUW*/ true,
1221           /*HasNSW*/
1222           IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1223                    : Shl0->hasNoSignedWrap());
1224       return Builder.CreateLShr(Dividend, Z, "", I.isExact());
1225     }
1226   }
1227 
1228   return nullptr;
1229 }
1230 
1231 /// Common integer divide/remainder transforms
1232 Instruction *InstCombinerImpl::commonIDivRemTransforms(BinaryOperator &I) {
1233   assert(I.isIntDivRem() && "Unexpected instruction");
1234   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1235 
1236   // If any element of a constant divisor fixed width vector is zero or undef
1237   // the behavior is undefined and we can fold the whole op to poison.
1238   auto *Op1C = dyn_cast<Constant>(Op1);
1239   Type *Ty = I.getType();
1240   auto *VTy = dyn_cast<FixedVectorType>(Ty);
1241   if (Op1C && VTy) {
1242     unsigned NumElts = VTy->getNumElements();
1243     for (unsigned i = 0; i != NumElts; ++i) {
1244       Constant *Elt = Op1C->getAggregateElement(i);
1245       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
1246         return replaceInstUsesWith(I, PoisonValue::get(Ty));
1247     }
1248   }
1249 
1250   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1251     return Phi;
1252 
1253   // The RHS is known non-zero.
1254   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1255     return replaceOperand(I, 1, V);
1256 
1257   // Handle cases involving: div/rem X, (select Cond, Y, Z)
1258   if (simplifyDivRemOfSelectWithZeroOp(I))
1259     return &I;
1260 
1261   // If the divisor is a select-of-constants, try to constant fold all div ops:
1262   // C div/rem (select Cond, TrueC, FalseC) --> select Cond, (C div/rem TrueC),
1263   // (C div/rem FalseC)
1264   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1265   if (match(Op0, m_ImmConstant()) &&
1266       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1267     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1268                                           /*FoldWithMultiUse*/ true))
1269       return R;
1270   }
1271 
1272   return nullptr;
1273 }
1274 
1275 /// This function implements the transforms common to both integer division
1276 /// instructions (udiv and sdiv). It is called by the visitors to those integer
1277 /// division instructions.
1278 /// Common integer divide transforms
1279 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
1280   if (Instruction *Res = commonIDivRemTransforms(I))
1281     return Res;
1282 
1283   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1284   bool IsSigned = I.getOpcode() == Instruction::SDiv;
1285   Type *Ty = I.getType();
1286 
1287   const APInt *C2;
1288   if (match(Op1, m_APInt(C2))) {
1289     Value *X;
1290     const APInt *C1;
1291 
1292     // (X / C1) / C2  -> X / (C1*C2)
1293     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
1294         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
1295       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1296       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
1297         return BinaryOperator::Create(I.getOpcode(), X,
1298                                       ConstantInt::get(Ty, Product));
1299     }
1300 
1301     APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
1302     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
1303         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
1304 
1305       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
1306       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
1307         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
1308                                               ConstantInt::get(Ty, Quotient));
1309         NewDiv->setIsExact(I.isExact());
1310         return NewDiv;
1311       }
1312 
1313       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
1314       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
1315         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1316                                            ConstantInt::get(Ty, Quotient));
1317         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1318         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1319         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1320         return Mul;
1321       }
1322     }
1323 
1324     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1325          C1->ult(C1->getBitWidth() - 1)) ||
1326         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1327          C1->ult(C1->getBitWidth()))) {
1328       APInt C1Shifted = APInt::getOneBitSet(
1329           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1330 
1331       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1332       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1333         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1334                                           ConstantInt::get(Ty, Quotient));
1335         BO->setIsExact(I.isExact());
1336         return BO;
1337       }
1338 
1339       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1340       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1341         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1342                                            ConstantInt::get(Ty, Quotient));
1343         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1344         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1345         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1346         return Mul;
1347       }
1348     }
1349 
1350     // Distribute div over add to eliminate a matching div/mul pair:
1351     // ((X * C2) + C1) / C2 --> X + C1/C2
1352     // We need a multiple of the divisor for a signed add constant, but
1353     // unsigned is fine with any constant pair.
1354     if (IsSigned &&
1355         match(Op0, m_NSWAddLike(m_NSWMul(m_Value(X), m_SpecificInt(*C2)),
1356                                 m_APInt(C1))) &&
1357         isMultiple(*C1, *C2, Quotient, IsSigned)) {
1358       return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
1359     }
1360     if (!IsSigned &&
1361         match(Op0, m_NUWAddLike(m_NUWMul(m_Value(X), m_SpecificInt(*C2)),
1362                                 m_APInt(C1)))) {
1363       return BinaryOperator::CreateNUWAdd(X,
1364                                           ConstantInt::get(Ty, C1->udiv(*C2)));
1365     }
1366 
1367     if (!C2->isZero()) // avoid X udiv 0
1368       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1369         return FoldedDiv;
1370   }
1371 
1372   if (match(Op0, m_One())) {
1373     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
1374     if (IsSigned) {
1375       // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1376       // (Op1 + 1) u< 3 ? Op1 : 0
1377       // Op1 must be frozen because we are increasing its number of uses.
1378       Value *F1 = Op1;
1379       if (!isGuaranteedNotToBeUndef(Op1))
1380         F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1381       Value *Inc = Builder.CreateAdd(F1, Op0);
1382       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1383       return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1384     } else {
1385       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1386       // result is one, otherwise it's zero.
1387       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1388     }
1389   }
1390 
1391   // See if we can fold away this div instruction.
1392   if (SimplifyDemandedInstructionBits(I))
1393     return &I;
1394 
1395   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1396   Value *X, *Z;
1397   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1398     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1399         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1400       return BinaryOperator::Create(I.getOpcode(), X, Op1);
1401 
1402   // (X << Y) / X -> 1 << Y
1403   Value *Y;
1404   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1405     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1406   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1407     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1408 
1409   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1410   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1411     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1412     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1413     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1414       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1415       replaceOperand(I, 1, Y);
1416       return &I;
1417     }
1418   }
1419 
1420   // (X << Z) / (X * Y) -> (1 << Z) / Y
1421   // TODO: Handle sdiv.
1422   if (!IsSigned && Op1->hasOneUse() &&
1423       match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1424       match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1425     if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1426       Instruction *NewDiv = BinaryOperator::CreateUDiv(
1427           Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1428       NewDiv->setIsExact(I.isExact());
1429       return NewDiv;
1430     }
1431 
1432   if (Value *R = foldIDivShl(I, Builder))
1433     return replaceInstUsesWith(I, R);
1434 
1435   // With the appropriate no-wrap constraint, remove a multiply by the divisor
1436   // after peeking through another divide:
1437   // ((Op1 * X) / Y) / Op1 --> X / Y
1438   if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1439                          m_Value(Y)))) {
1440     auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1441     auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1442     Instruction *NewDiv = nullptr;
1443     if (!IsSigned && Mul->hasNoUnsignedWrap())
1444       NewDiv = BinaryOperator::CreateUDiv(X, Y);
1445     else if (IsSigned && Mul->hasNoSignedWrap())
1446       NewDiv = BinaryOperator::CreateSDiv(X, Y);
1447 
1448     // Exact propagates only if both of the original divides are exact.
1449     if (NewDiv) {
1450       NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1451       return NewDiv;
1452     }
1453   }
1454 
1455   // (X * Y) / (X * Z) --> Y / Z (and commuted variants)
1456   if (match(Op0, m_Mul(m_Value(X), m_Value(Y)))) {
1457     auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap();
1458     auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap();
1459 
1460     auto CreateDivOrNull = [&](Value *A, Value *B) -> Instruction * {
1461       auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1462       auto OB1HasNUW =
1463           cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1464       const APInt *C1, *C2;
1465       if (IsSigned && OB0HasNSW) {
1466         if (OB1HasNSW && match(B, m_APInt(C1)) && !C1->isAllOnes())
1467           return BinaryOperator::CreateSDiv(A, B);
1468       }
1469       if (!IsSigned && OB0HasNUW) {
1470         if (OB1HasNUW)
1471           return BinaryOperator::CreateUDiv(A, B);
1472         if (match(A, m_APInt(C1)) && match(B, m_APInt(C2)) && C2->ule(*C1))
1473           return BinaryOperator::CreateUDiv(A, B);
1474       }
1475       return nullptr;
1476     };
1477 
1478     if (match(Op1, m_c_Mul(m_Specific(X), m_Value(Z)))) {
1479       if (auto *Val = CreateDivOrNull(Y, Z))
1480         return Val;
1481     }
1482     if (match(Op1, m_c_Mul(m_Specific(Y), m_Value(Z)))) {
1483       if (auto *Val = CreateDivOrNull(X, Z))
1484         return Val;
1485     }
1486   }
1487   return nullptr;
1488 }
1489 
1490 Value *InstCombinerImpl::takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero,
1491                                   bool DoFold) {
1492   auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1493     if (!DoFold)
1494       return reinterpret_cast<Value *>(-1);
1495     return Fn();
1496   };
1497 
1498   // FIXME: assert that Op1 isn't/doesn't contain undef.
1499 
1500   // log2(2^C) -> C
1501   if (match(Op, m_Power2()))
1502     return IfFold([&]() {
1503       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1504       if (!C)
1505         llvm_unreachable("Failed to constant fold udiv -> logbase2");
1506       return C;
1507     });
1508 
1509   // The remaining tests are all recursive, so bail out if we hit the limit.
1510   if (Depth++ == MaxAnalysisRecursionDepth)
1511     return nullptr;
1512 
1513   // log2(zext X) -> zext log2(X)
1514   // FIXME: Require one use?
1515   Value *X, *Y;
1516   if (match(Op, m_ZExt(m_Value(X))))
1517     if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1518       return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1519 
1520   // log2(trunc x) -> trunc log2(X)
1521   // FIXME: Require one use?
1522   if (match(Op, m_Trunc(m_Value(X)))) {
1523     auto *TI = cast<TruncInst>(Op);
1524     if (AssumeNonZero || TI->hasNoUnsignedWrap())
1525       if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1526         return IfFold([&]() {
1527           return Builder.CreateTrunc(LogX, Op->getType(), "",
1528                                      /*IsNUW=*/TI->hasNoUnsignedWrap());
1529         });
1530   }
1531 
1532   // log2(X << Y) -> log2(X) + Y
1533   // FIXME: Require one use unless X is 1?
1534   if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1535     auto *BO = cast<OverflowingBinaryOperator>(Op);
1536     // nuw will be set if the `shl` is trivially non-zero.
1537     if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1538       if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1539         return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1540   }
1541 
1542   // log2(X >>u Y) -> log2(X) - Y
1543   // FIXME: Require one use?
1544   if (match(Op, m_LShr(m_Value(X), m_Value(Y)))) {
1545     auto *PEO = cast<PossiblyExactOperator>(Op);
1546     if (AssumeNonZero || PEO->isExact())
1547       if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1548         return IfFold([&]() { return Builder.CreateSub(LogX, Y); });
1549   }
1550 
1551   // log2(X & Y) -> either log2(X) or log2(Y)
1552   // This requires `AssumeNonZero` as `X & Y` may be zero when X != Y.
1553   if (AssumeNonZero && match(Op, m_And(m_Value(X), m_Value(Y)))) {
1554     if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1555       return IfFold([&]() { return LogX; });
1556     if (Value *LogY = takeLog2(Y, Depth, AssumeNonZero, DoFold))
1557       return IfFold([&]() { return LogY; });
1558   }
1559 
1560   // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1561   // FIXME: Require one use?
1562   if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1563     if (Value *LogX = takeLog2(SI->getOperand(1), Depth, AssumeNonZero, DoFold))
1564       if (Value *LogY =
1565               takeLog2(SI->getOperand(2), Depth, AssumeNonZero, DoFold))
1566         return IfFold([&]() {
1567           return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1568         });
1569 
1570   // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1571   // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1572   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1573   if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1574     // Use AssumeNonZero as false here. Otherwise we can hit case where
1575     // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1576     if (Value *LogX = takeLog2(MinMax->getLHS(), Depth,
1577                                /*AssumeNonZero*/ false, DoFold))
1578       if (Value *LogY = takeLog2(MinMax->getRHS(), Depth,
1579                                  /*AssumeNonZero*/ false, DoFold))
1580         return IfFold([&]() {
1581           return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1582                                                LogY);
1583         });
1584   }
1585 
1586   return nullptr;
1587 }
1588 
1589 /// If we have zero-extended operands of an unsigned div or rem, we may be able
1590 /// to narrow the operation (sink the zext below the math).
1591 static Instruction *narrowUDivURem(BinaryOperator &I,
1592                                    InstCombinerImpl &IC) {
1593   Instruction::BinaryOps Opcode = I.getOpcode();
1594   Value *N = I.getOperand(0);
1595   Value *D = I.getOperand(1);
1596   Type *Ty = I.getType();
1597   Value *X, *Y;
1598   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1599       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1600     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1601     // urem (zext X), (zext Y) --> zext (urem X, Y)
1602     Value *NarrowOp = IC.Builder.CreateBinOp(Opcode, X, Y);
1603     return new ZExtInst(NarrowOp, Ty);
1604   }
1605 
1606   Constant *C;
1607   if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1608       match(D, m_Constant(C))) {
1609     // If the constant is the same in the smaller type, use the narrow version.
1610     Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1611     if (!TruncC)
1612       return nullptr;
1613 
1614     // udiv (zext X), C --> zext (udiv X, C')
1615     // urem (zext X), C --> zext (urem X, C')
1616     return new ZExtInst(IC.Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1617   }
1618   if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1619       match(N, m_Constant(C))) {
1620     // If the constant is the same in the smaller type, use the narrow version.
1621     Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1622     if (!TruncC)
1623       return nullptr;
1624 
1625     // udiv C, (zext X) --> zext (udiv C', X)
1626     // urem C, (zext X) --> zext (urem C', X)
1627     return new ZExtInst(IC.Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1628   }
1629 
1630   return nullptr;
1631 }
1632 
1633 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1634   if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1635                                   SQ.getWithInstruction(&I)))
1636     return replaceInstUsesWith(I, V);
1637 
1638   if (Instruction *X = foldVectorBinop(I))
1639     return X;
1640 
1641   // Handle the integer div common cases
1642   if (Instruction *Common = commonIDivTransforms(I))
1643     return Common;
1644 
1645   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1646   Value *X;
1647   const APInt *C1, *C2;
1648   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1649     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1650     bool Overflow;
1651     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1652     if (!Overflow) {
1653       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1654       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1655           X, ConstantInt::get(X->getType(), C2ShlC1));
1656       if (IsExact)
1657         BO->setIsExact();
1658       return BO;
1659     }
1660   }
1661 
1662   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1663   // TODO: Could use isKnownNegative() to handle non-constant values.
1664   Type *Ty = I.getType();
1665   if (match(Op1, m_Negative())) {
1666     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1667     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1668   }
1669   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1670   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1671     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1672     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1673   }
1674 
1675   if (Instruction *NarrowDiv = narrowUDivURem(I, *this))
1676     return NarrowDiv;
1677 
1678   Value *A, *B;
1679 
1680   // Look through a right-shift to find the common factor:
1681   // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1682   if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1683       match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1684     Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1685     if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1686       Lshr->setIsExact();
1687     return Lshr;
1688   }
1689 
1690   auto GetShiftableDenom = [&](Value *Denom) -> Value * {
1691     // Op0 udiv Op1 -> Op0 lshr log2(Op1), if log2() folds away.
1692     if (Value *Log2 = tryGetLog2(Op1, /*AssumeNonZero=*/true))
1693       return Log2;
1694 
1695     // Op0 udiv Op1 -> Op0 lshr cttz(Op1), if Op1 is a power of 2.
1696     if (isKnownToBeAPowerOfTwo(Denom, /*OrZero=*/true, /*Depth=*/0, &I))
1697       // This will increase instruction count but it's okay
1698       // since bitwise operations are substantially faster than
1699       // division.
1700       return Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Denom,
1701                                            Builder.getTrue());
1702 
1703     return nullptr;
1704   };
1705 
1706   if (auto *Res = GetShiftableDenom(Op1))
1707     return replaceInstUsesWith(
1708         I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1709 
1710   return nullptr;
1711 }
1712 
1713 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1714   if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1715                                   SQ.getWithInstruction(&I)))
1716     return replaceInstUsesWith(I, V);
1717 
1718   if (Instruction *X = foldVectorBinop(I))
1719     return X;
1720 
1721   // Handle the integer div common cases
1722   if (Instruction *Common = commonIDivTransforms(I))
1723     return Common;
1724 
1725   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1726   Type *Ty = I.getType();
1727   Value *X;
1728   // sdiv Op0, -1 --> -Op0
1729   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1730   if (match(Op1, m_AllOnes()) ||
1731       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1732     return BinaryOperator::CreateNSWNeg(Op0);
1733 
1734   // X / INT_MIN --> X == INT_MIN
1735   if (match(Op1, m_SignMask()))
1736     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1737 
1738   if (I.isExact()) {
1739     // sdiv exact X, 1<<C --> ashr exact X, C   iff  1<<C  is non-negative
1740     if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1741       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1742       return BinaryOperator::CreateExactAShr(Op0, C);
1743     }
1744 
1745     // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1746     Value *ShAmt;
1747     if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1748       return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1749 
1750     // sdiv exact X, -1<<C --> -(ashr exact X, C)
1751     if (match(Op1, m_NegatedPower2())) {
1752       Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1753       Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
1754       Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1755       return BinaryOperator::CreateNSWNeg(Ashr);
1756     }
1757   }
1758 
1759   const APInt *Op1C;
1760   if (match(Op1, m_APInt(Op1C))) {
1761     // If the dividend is sign-extended and the constant divisor is small enough
1762     // to fit in the source type, shrink the division to the narrower type:
1763     // (sext X) sdiv C --> sext (X sdiv C)
1764     Value *Op0Src;
1765     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1766         Op0Src->getType()->getScalarSizeInBits() >=
1767             Op1C->getSignificantBits()) {
1768 
1769       // In the general case, we need to make sure that the dividend is not the
1770       // minimum signed value because dividing that by -1 is UB. But here, we
1771       // know that the -1 divisor case is already handled above.
1772 
1773       Constant *NarrowDivisor =
1774           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1775       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1776       return new SExtInst(NarrowOp, Ty);
1777     }
1778 
1779     // -X / C --> X / -C (if the negation doesn't overflow).
1780     // TODO: This could be enhanced to handle arbitrary vector constants by
1781     //       checking if all elements are not the min-signed-val.
1782     if (!Op1C->isMinSignedValue() && match(Op0, m_NSWNeg(m_Value(X)))) {
1783       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1784       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1785       BO->setIsExact(I.isExact());
1786       return BO;
1787     }
1788   }
1789 
1790   // -X / Y --> -(X / Y)
1791   Value *Y;
1792   if (match(&I, m_SDiv(m_OneUse(m_NSWNeg(m_Value(X))), m_Value(Y))))
1793     return BinaryOperator::CreateNSWNeg(
1794         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1795 
1796   // abs(X) / X --> X > -1 ? 1 : -1
1797   // X / abs(X) --> X > -1 ? 1 : -1
1798   if (match(&I, m_c_BinOp(
1799                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1800                     m_Deferred(X)))) {
1801     Value *Cond = Builder.CreateIsNotNeg(X);
1802     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1803                               ConstantInt::getAllOnesValue(Ty));
1804   }
1805 
1806   KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
1807   if (!I.isExact() &&
1808       (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1809       KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
1810     I.setIsExact();
1811     return &I;
1812   }
1813 
1814   if (KnownDividend.isNonNegative()) {
1815     // If both operands are unsigned, turn this into a udiv.
1816     if (isKnownNonNegative(Op1, SQ.getWithInstruction(&I))) {
1817       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1818       BO->setIsExact(I.isExact());
1819       return BO;
1820     }
1821 
1822     if (match(Op1, m_NegatedPower2())) {
1823       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1824       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1825       Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1826           ConstantExpr::getNeg(cast<Constant>(Op1)));
1827       Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1828       return BinaryOperator::CreateNeg(Shr);
1829     }
1830 
1831     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1832       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1833       // Safe because the only negative value (1 << Y) can take on is
1834       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1835       // the sign bit set.
1836       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1837       BO->setIsExact(I.isExact());
1838       return BO;
1839     }
1840   }
1841 
1842   // -X / X --> X == INT_MIN ? 1 : -1
1843   if (isKnownNegation(Op0, Op1)) {
1844     APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1845     Value *Cond = Builder.CreateICmpEQ(Op0, ConstantInt::get(Ty, MinVal));
1846     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1847                               ConstantInt::getAllOnesValue(Ty));
1848   }
1849   return nullptr;
1850 }
1851 
1852 /// Remove negation and try to convert division into multiplication.
1853 Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1854   Constant *C;
1855   if (!match(I.getOperand(1), m_Constant(C)))
1856     return nullptr;
1857 
1858   // -X / C --> X / -C
1859   Value *X;
1860   const DataLayout &DL = I.getDataLayout();
1861   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1862     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1863       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1864 
1865   // nnan X / +0.0 -> copysign(inf, X)
1866   // nnan nsz X / -0.0 -> copysign(inf, X)
1867   if (I.hasNoNaNs() &&
1868       (match(I.getOperand(1), m_PosZeroFP()) ||
1869        (I.hasNoSignedZeros() && match(I.getOperand(1), m_AnyZeroFP())))) {
1870     IRBuilder<> B(&I);
1871     CallInst *CopySign = B.CreateIntrinsic(
1872         Intrinsic::copysign, {C->getType()},
1873         {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1874     CopySign->takeName(&I);
1875     return replaceInstUsesWith(I, CopySign);
1876   }
1877 
1878   // If the constant divisor has an exact inverse, this is always safe. If not,
1879   // then we can still create a reciprocal if fast-math-flags allow it and the
1880   // constant is a regular number (not zero, infinite, or denormal).
1881   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1882     return nullptr;
1883 
1884   // Disallow denormal constants because we don't know what would happen
1885   // on all targets.
1886   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1887   // denorms are flushed?
1888   auto *RecipC = ConstantFoldBinaryOpOperands(
1889       Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1890   if (!RecipC || !RecipC->isNormalFP())
1891     return nullptr;
1892 
1893   // X / C --> X * (1 / C)
1894   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1895 }
1896 
1897 /// Remove negation and try to reassociate constant math.
1898 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1899   Constant *C;
1900   if (!match(I.getOperand(0), m_Constant(C)))
1901     return nullptr;
1902 
1903   // C / -X --> -C / X
1904   Value *X;
1905   const DataLayout &DL = I.getDataLayout();
1906   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1907     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1908       return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1909 
1910   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1911     return nullptr;
1912 
1913   // Try to reassociate C / X expressions where X includes another constant.
1914   Constant *C2, *NewC = nullptr;
1915   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1916     // C / (X * C2) --> (C / C2) / X
1917     NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1918   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1919     // C / (X / C2) --> (C * C2) / X
1920     NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1921   }
1922   // Disallow denormal constants because we don't know what would happen
1923   // on all targets.
1924   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1925   // denorms are flushed?
1926   if (!NewC || !NewC->isNormalFP())
1927     return nullptr;
1928 
1929   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1930 }
1931 
1932 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1933 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1934                                        InstCombiner::BuilderTy &Builder) {
1935   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1936   auto *II = dyn_cast<IntrinsicInst>(Op1);
1937   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1938       !I.hasAllowReciprocal())
1939     return nullptr;
1940 
1941   // Z / pow(X, Y) --> Z * pow(X, -Y)
1942   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1943   // In the general case, this creates an extra instruction, but fmul allows
1944   // for better canonicalization and optimization than fdiv.
1945   Intrinsic::ID IID = II->getIntrinsicID();
1946   SmallVector<Value *> Args;
1947   switch (IID) {
1948   case Intrinsic::pow:
1949     Args.push_back(II->getArgOperand(0));
1950     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1951     break;
1952   case Intrinsic::powi: {
1953     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1954     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1955     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1956     // non-standard results, so this corner case should be acceptable if the
1957     // code rules out INF values.
1958     if (!I.hasNoInfs())
1959       return nullptr;
1960     Args.push_back(II->getArgOperand(0));
1961     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1962     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1963     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1964     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1965   }
1966   case Intrinsic::exp:
1967   case Intrinsic::exp2:
1968     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1969     break;
1970   default:
1971     return nullptr;
1972   }
1973   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1974   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1975 }
1976 
1977 /// Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv
1978 /// instruction.
1979 static Instruction *foldFDivSqrtDivisor(BinaryOperator &I,
1980                                         InstCombiner::BuilderTy &Builder) {
1981   // X / sqrt(Y / Z) -->  X * sqrt(Z / Y)
1982   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1983     return nullptr;
1984   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1985   auto *II = dyn_cast<IntrinsicInst>(Op1);
1986   if (!II || II->getIntrinsicID() != Intrinsic::sqrt || !II->hasOneUse() ||
1987       !II->hasAllowReassoc() || !II->hasAllowReciprocal())
1988     return nullptr;
1989 
1990   Value *Y, *Z;
1991   auto *DivOp = dyn_cast<Instruction>(II->getOperand(0));
1992   if (!DivOp)
1993     return nullptr;
1994   if (!match(DivOp, m_FDiv(m_Value(Y), m_Value(Z))))
1995     return nullptr;
1996   if (!DivOp->hasAllowReassoc() || !I.hasAllowReciprocal() ||
1997       !DivOp->hasOneUse())
1998     return nullptr;
1999   Value *SwapDiv = Builder.CreateFDivFMF(Z, Y, DivOp);
2000   Value *NewSqrt =
2001       Builder.CreateUnaryIntrinsic(II->getIntrinsicID(), SwapDiv, II);
2002   return BinaryOperator::CreateFMulFMF(Op0, NewSqrt, &I);
2003 }
2004 
2005 // Change
2006 // X = 1/sqrt(a)
2007 // R1 = X * X
2008 // R2 = a * X
2009 //
2010 // TO
2011 //
2012 // FDiv = 1/a
2013 // FSqrt = sqrt(a)
2014 // FMul = FDiv * FSqrt
2015 // Replace Uses Of R1 With FDiv
2016 // Replace Uses Of R2 With FSqrt
2017 // Replace Uses Of X With FMul
2018 static Instruction *
2019 convertFSqrtDivIntoFMul(CallInst *CI, Instruction *X,
2020                         const SmallPtrSetImpl<Instruction *> &R1,
2021                         const SmallPtrSetImpl<Instruction *> &R2,
2022                         InstCombiner::BuilderTy &B, InstCombinerImpl *IC) {
2023 
2024   B.SetInsertPoint(X);
2025 
2026   // Have an instruction that is representative of all of instructions in R1 and
2027   // get the most common fpmath metadata and fast-math flags on it.
2028   Value *SqrtOp = CI->getArgOperand(0);
2029   auto *FDiv = cast<Instruction>(
2030       B.CreateFDiv(ConstantFP::get(X->getType(), 1.0), SqrtOp));
2031   auto *R1FPMathMDNode = (*R1.begin())->getMetadata(LLVMContext::MD_fpmath);
2032   FastMathFlags R1FMF = (*R1.begin())->getFastMathFlags(); // Common FMF
2033   for (Instruction *I : R1) {
2034     R1FPMathMDNode = MDNode::getMostGenericFPMath(
2035         R1FPMathMDNode, I->getMetadata(LLVMContext::MD_fpmath));
2036     R1FMF &= I->getFastMathFlags();
2037     IC->replaceInstUsesWith(*I, FDiv);
2038     IC->eraseInstFromFunction(*I);
2039   }
2040   FDiv->setMetadata(LLVMContext::MD_fpmath, R1FPMathMDNode);
2041   FDiv->copyFastMathFlags(R1FMF);
2042 
2043   // Have a single sqrt call instruction that is representative of all of
2044   // instructions in R2 and get the most common fpmath metadata and fast-math
2045   // flags on it.
2046   auto *FSqrt = cast<CallInst>(CI->clone());
2047   FSqrt->insertBefore(CI->getIterator());
2048   auto *R2FPMathMDNode = (*R2.begin())->getMetadata(LLVMContext::MD_fpmath);
2049   FastMathFlags R2FMF = (*R2.begin())->getFastMathFlags(); // Common FMF
2050   for (Instruction *I : R2) {
2051     R2FPMathMDNode = MDNode::getMostGenericFPMath(
2052         R2FPMathMDNode, I->getMetadata(LLVMContext::MD_fpmath));
2053     R2FMF &= I->getFastMathFlags();
2054     IC->replaceInstUsesWith(*I, FSqrt);
2055     IC->eraseInstFromFunction(*I);
2056   }
2057   FSqrt->setMetadata(LLVMContext::MD_fpmath, R2FPMathMDNode);
2058   FSqrt->copyFastMathFlags(R2FMF);
2059 
2060   Instruction *FMul;
2061   // If X = -1/sqrt(a) initially,then FMul = -(FDiv * FSqrt)
2062   if (match(X, m_FDiv(m_SpecificFP(-1.0), m_Specific(CI)))) {
2063     Value *Mul = B.CreateFMul(FDiv, FSqrt);
2064     FMul = cast<Instruction>(B.CreateFNeg(Mul));
2065   } else
2066     FMul = cast<Instruction>(B.CreateFMul(FDiv, FSqrt));
2067   FMul->copyMetadata(*X);
2068   FMul->copyFastMathFlags(FastMathFlags::intersectRewrite(R1FMF, R2FMF) |
2069                           FastMathFlags::unionValue(R1FMF, R2FMF));
2070   return IC->replaceInstUsesWith(*X, FMul);
2071 }
2072 
2073 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
2074   Module *M = I.getModule();
2075 
2076   if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
2077                                   I.getFastMathFlags(),
2078                                   SQ.getWithInstruction(&I)))
2079     return replaceInstUsesWith(I, V);
2080 
2081   if (Instruction *X = foldVectorBinop(I))
2082     return X;
2083 
2084   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2085     return Phi;
2086 
2087   if (Instruction *R = foldFDivConstantDivisor(I))
2088     return R;
2089 
2090   if (Instruction *R = foldFDivConstantDividend(I))
2091     return R;
2092 
2093   if (Instruction *R = foldFPSignBitOps(I))
2094     return R;
2095 
2096   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2097 
2098   // Convert
2099   // x = 1.0/sqrt(a)
2100   // r1 = x * x;
2101   // r2 = a/sqrt(a);
2102   //
2103   // TO
2104   //
2105   // r1 = 1/a
2106   // r2 = sqrt(a)
2107   // x = r1 * r2
2108   SmallPtrSet<Instruction *, 2> R1, R2;
2109   if (isFSqrtDivToFMulLegal(&I, R1, R2)) {
2110     CallInst *CI = cast<CallInst>(I.getOperand(1));
2111     if (Instruction *D = convertFSqrtDivIntoFMul(CI, &I, R1, R2, Builder, this))
2112       return D;
2113   }
2114 
2115   if (isa<Constant>(Op0))
2116     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2117       if (Instruction *R = FoldOpIntoSelect(I, SI))
2118         return R;
2119 
2120   if (isa<Constant>(Op1))
2121     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2122       if (Instruction *R = FoldOpIntoSelect(I, SI))
2123         return R;
2124 
2125   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
2126     Value *X, *Y;
2127     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
2128         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
2129       // (X / Y) / Z => X / (Y * Z)
2130       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
2131       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
2132     }
2133     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
2134         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
2135       // Z / (X / Y) => (Y * Z) / X
2136       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
2137       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
2138     }
2139     // Z / (1.0 / Y) => (Y * Z)
2140     //
2141     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
2142     // m_OneUse check is avoided because even in the case of the multiple uses
2143     // for 1.0/Y, the number of instructions remain the same and a division is
2144     // replaced by a multiplication.
2145     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
2146       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
2147   }
2148 
2149   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
2150     // sin(X) / cos(X) -> tan(X)
2151     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
2152     Value *X;
2153     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
2154                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
2155     bool IsCot =
2156         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
2157                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
2158 
2159     if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
2160                                        LibFunc_tanf, LibFunc_tanl)) {
2161       IRBuilder<> B(&I);
2162       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
2163       B.setFastMathFlags(I.getFastMathFlags());
2164       AttributeList Attrs =
2165           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
2166       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
2167                                         LibFunc_tanl, B, Attrs);
2168       if (IsCot)
2169         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
2170       return replaceInstUsesWith(I, Res);
2171     }
2172   }
2173 
2174   // X / (X * Y) --> 1.0 / Y
2175   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
2176   // We can ignore the possibility that X is infinity because INF/INF is NaN.
2177   Value *X, *Y;
2178   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
2179       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
2180     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
2181     replaceOperand(I, 1, Y);
2182     return &I;
2183   }
2184 
2185   // X / fabs(X) -> copysign(1.0, X)
2186   // fabs(X) / X -> copysign(1.0, X)
2187   if (I.hasNoNaNs() && I.hasNoInfs() &&
2188       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
2189        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
2190     Value *V = Builder.CreateBinaryIntrinsic(
2191         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
2192     return replaceInstUsesWith(I, V);
2193   }
2194 
2195   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
2196     return Mul;
2197 
2198   if (Instruction *Mul = foldFDivSqrtDivisor(I, Builder))
2199     return Mul;
2200 
2201   // pow(X, Y) / X --> pow(X, Y-1)
2202   if (I.hasAllowReassoc() &&
2203       match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
2204                                                       m_Value(Y))))) {
2205     Value *Y1 =
2206         Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
2207     Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
2208     return replaceInstUsesWith(I, Pow);
2209   }
2210 
2211   if (Instruction *FoldedPowi = foldPowiReassoc(I))
2212     return FoldedPowi;
2213 
2214   return nullptr;
2215 }
2216 
2217 // Variety of transform for:
2218 //  (urem/srem (mul X, Y), (mul X, Z))
2219 //  (urem/srem (shl X, Y), (shl X, Z))
2220 //  (urem/srem (shl Y, X), (shl Z, X))
2221 // NB: The shift cases are really just extensions of the mul case. We treat
2222 // shift as Val * (1 << Amt).
2223 static Instruction *simplifyIRemMulShl(BinaryOperator &I,
2224                                        InstCombinerImpl &IC) {
2225   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr;
2226   APInt Y, Z;
2227   bool ShiftByX = false;
2228 
2229   // If V is not nullptr, it will be matched using m_Specific.
2230   auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C,
2231                               bool &PreserveNSW) -> bool {
2232     const APInt *Tmp = nullptr;
2233     if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) ||
2234         (V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp)))))
2235       C = *Tmp;
2236     else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) ||
2237              (V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp))))) {
2238       C = APInt(Tmp->getBitWidth(), 1) << *Tmp;
2239       // We cannot preserve NSW when shifting by BW - 1.
2240       PreserveNSW = Tmp->ult(Tmp->getBitWidth() - 1);
2241     }
2242     if (Tmp != nullptr)
2243       return true;
2244 
2245     // Reset `V` so we don't start with specific value on next match attempt.
2246     V = nullptr;
2247     return false;
2248   };
2249 
2250   auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool {
2251     const APInt *Tmp = nullptr;
2252     if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) ||
2253         (V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) {
2254       C = *Tmp;
2255       return true;
2256     }
2257 
2258     // Reset `V` so we don't start with specific value on next match attempt.
2259     V = nullptr;
2260     return false;
2261   };
2262 
2263   bool Op0PreserveNSW = true, Op1PreserveNSW = true;
2264   if (MatchShiftOrMulXC(Op0, X, Y, Op0PreserveNSW) &&
2265       MatchShiftOrMulXC(Op1, X, Z, Op1PreserveNSW)) {
2266     // pass
2267   } else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) {
2268     ShiftByX = true;
2269   } else {
2270     return nullptr;
2271   }
2272 
2273   bool IsSRem = I.getOpcode() == Instruction::SRem;
2274 
2275   OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
2276   // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
2277   // Z or Z >= Y.
2278   bool BO0HasNSW = Op0PreserveNSW && BO0->hasNoSignedWrap();
2279   bool BO0HasNUW = BO0->hasNoUnsignedWrap();
2280   bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
2281 
2282   APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z);
2283   // (rem (mul nuw/nsw X, Y), (mul X, Z))
2284   //      if (rem Y, Z) == 0
2285   //          -> 0
2286   if (RemYZ.isZero() && BO0NoWrap)
2287     return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
2288 
2289   // Helper function to emit either (RemSimplificationC << X) or
2290   // (RemSimplificationC * X) depending on whether we matched Op0/Op1 as
2291   // (shl V, X) or (mul V, X) respectively.
2292   auto CreateMulOrShift =
2293       [&](const APInt &RemSimplificationC) -> BinaryOperator * {
2294     Value *RemSimplification =
2295         ConstantInt::get(I.getType(), RemSimplificationC);
2296     return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X)
2297                     : BinaryOperator::CreateMul(X, RemSimplification);
2298   };
2299 
2300   OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
2301   bool BO1HasNSW = Op1PreserveNSW && BO1->hasNoSignedWrap();
2302   bool BO1HasNUW = BO1->hasNoUnsignedWrap();
2303   bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
2304   // (rem (mul X, Y), (mul nuw/nsw X, Z))
2305   //      if (rem Y, Z) == Y
2306   //          -> (mul nuw/nsw X, Y)
2307   if (RemYZ == Y && BO1NoWrap) {
2308     BinaryOperator *BO = CreateMulOrShift(Y);
2309     // Copy any overflow flags from Op0.
2310     BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
2311     BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
2312     return BO;
2313   }
2314 
2315   // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
2316   //      if Y >= Z
2317   //          -> (mul {nuw} nsw X, (rem Y, Z))
2318   if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
2319     BinaryOperator *BO = CreateMulOrShift(RemYZ);
2320     BO->setHasNoSignedWrap();
2321     BO->setHasNoUnsignedWrap(BO0HasNUW);
2322     return BO;
2323   }
2324 
2325   return nullptr;
2326 }
2327 
2328 /// This function implements the transforms common to both integer remainder
2329 /// instructions (urem and srem). It is called by the visitors to those integer
2330 /// remainder instructions.
2331 /// Common integer remainder transforms
2332 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
2333   if (Instruction *Res = commonIDivRemTransforms(I))
2334     return Res;
2335 
2336   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2337 
2338   if (isa<Constant>(Op1)) {
2339     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2340       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2341         if (Instruction *R = FoldOpIntoSelect(I, SI))
2342           return R;
2343       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
2344         const APInt *Op1Int;
2345         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
2346             (I.getOpcode() == Instruction::URem ||
2347              !Op1Int->isMinSignedValue())) {
2348           // foldOpIntoPhi will speculate instructions to the end of the PHI's
2349           // predecessor blocks, so do this only if we know the srem or urem
2350           // will not fault.
2351           if (Instruction *NV = foldOpIntoPhi(I, PN))
2352             return NV;
2353         }
2354       }
2355 
2356       // See if we can fold away this rem instruction.
2357       if (SimplifyDemandedInstructionBits(I))
2358         return &I;
2359     }
2360   }
2361 
2362   if (Instruction *R = simplifyIRemMulShl(I, *this))
2363     return R;
2364 
2365   return nullptr;
2366 }
2367 
2368 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
2369   if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
2370                                   SQ.getWithInstruction(&I)))
2371     return replaceInstUsesWith(I, V);
2372 
2373   if (Instruction *X = foldVectorBinop(I))
2374     return X;
2375 
2376   if (Instruction *common = commonIRemTransforms(I))
2377     return common;
2378 
2379   if (Instruction *NarrowRem = narrowUDivURem(I, *this))
2380     return NarrowRem;
2381 
2382   // X urem Y -> X and Y-1, where Y is a power of 2,
2383   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2384   Type *Ty = I.getType();
2385   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
2386     // This may increase instruction count, we don't enforce that Y is a
2387     // constant.
2388     Constant *N1 = Constant::getAllOnesValue(Ty);
2389     Value *Add = Builder.CreateAdd(Op1, N1);
2390     return BinaryOperator::CreateAnd(Op0, Add);
2391   }
2392 
2393   // 1 urem X -> zext(X != 1)
2394   if (match(Op0, m_One())) {
2395     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
2396     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
2397   }
2398 
2399   // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
2400   // Op0 must be frozen because we are increasing its number of uses.
2401   if (match(Op1, m_Negative())) {
2402     Value *F0 = Op0;
2403     if (!isGuaranteedNotToBeUndef(Op0))
2404       F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
2405     Value *Cmp = Builder.CreateICmpULT(F0, Op1);
2406     Value *Sub = Builder.CreateSub(F0, Op1);
2407     return SelectInst::Create(Cmp, F0, Sub);
2408   }
2409 
2410   // If the divisor is a sext of a boolean, then the divisor must be max
2411   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
2412   // max unsigned value. In that case, the remainder is 0:
2413   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
2414   Value *X;
2415   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
2416     Value *FrozenOp0 = Op0;
2417     if (!isGuaranteedNotToBeUndef(Op0))
2418       FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2419     Value *Cmp =
2420         Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty));
2421     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2422   }
2423 
2424   // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
2425   if (match(Op0, m_Add(m_Value(X), m_One()))) {
2426     Value *Val =
2427         simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I));
2428     if (Val && match(Val, m_One())) {
2429       Value *FrozenOp0 = Op0;
2430       if (!isGuaranteedNotToBeUndef(Op0))
2431         FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2432       Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
2433       return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2434     }
2435   }
2436 
2437   return nullptr;
2438 }
2439 
2440 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
2441   if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
2442                                   SQ.getWithInstruction(&I)))
2443     return replaceInstUsesWith(I, V);
2444 
2445   if (Instruction *X = foldVectorBinop(I))
2446     return X;
2447 
2448   // Handle the integer rem common cases
2449   if (Instruction *Common = commonIRemTransforms(I))
2450     return Common;
2451 
2452   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2453   {
2454     const APInt *Y;
2455     // X % -Y -> X % Y
2456     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
2457       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
2458   }
2459 
2460   // -X srem Y --> -(X srem Y)
2461   Value *X, *Y;
2462   if (match(&I, m_SRem(m_OneUse(m_NSWNeg(m_Value(X))), m_Value(Y))))
2463     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
2464 
2465   // If the sign bits of both operands are zero (i.e. we can prove they are
2466   // unsigned inputs), turn this into a urem.
2467   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
2468   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
2469       MaskedValueIsZero(Op0, Mask, 0, &I)) {
2470     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2471     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
2472   }
2473 
2474   // If it's a constant vector, flip any negative values positive.
2475   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
2476     Constant *C = cast<Constant>(Op1);
2477     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
2478 
2479     bool hasNegative = false;
2480     bool hasMissing = false;
2481     for (unsigned i = 0; i != VWidth; ++i) {
2482       Constant *Elt = C->getAggregateElement(i);
2483       if (!Elt) {
2484         hasMissing = true;
2485         break;
2486       }
2487 
2488       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
2489         if (RHS->isNegative())
2490           hasNegative = true;
2491     }
2492 
2493     if (hasNegative && !hasMissing) {
2494       SmallVector<Constant *, 16> Elts(VWidth);
2495       for (unsigned i = 0; i != VWidth; ++i) {
2496         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
2497         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
2498           if (RHS->isNegative())
2499             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2500         }
2501       }
2502 
2503       Constant *NewRHSV = ConstantVector::get(Elts);
2504       if (NewRHSV != C)  // Don't loop on -MININT
2505         return replaceOperand(I, 1, NewRHSV);
2506     }
2507   }
2508 
2509   return nullptr;
2510 }
2511 
2512 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
2513   if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
2514                                   I.getFastMathFlags(),
2515                                   SQ.getWithInstruction(&I)))
2516     return replaceInstUsesWith(I, V);
2517 
2518   if (Instruction *X = foldVectorBinop(I))
2519     return X;
2520 
2521   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2522     return Phi;
2523 
2524   return nullptr;
2525 }
2526