1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 APInt NewC = *C2 + C1->trunc(C2->getBitWidth()); 825 // If the smaller add will fold to zero, we don't need to check one use. 826 if (NewC.isZero()) 827 return new ZExtInst(X, Ty); 828 // Otherwise only do this if the existing zero extend will be removed. 829 if (Op0->hasOneUse()) 830 return new ZExtInst( 831 Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty); 832 } 833 834 // More general combining of constants in the wide type. 835 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 836 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 837 Constant *NarrowC; 838 if (match(Op0, m_OneUse(m_SExtLike( 839 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 840 Value *WideC = Builder.CreateSExt(NarrowC, Ty); 841 Value *NewC = Builder.CreateAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateSExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 846 if (match(Op0, 847 m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) { 848 Value *WideC = Builder.CreateZExt(NarrowC, Ty); 849 Value *NewC = Builder.CreateAdd(WideC, Op1C); 850 Value *WideX = Builder.CreateZExt(X, Ty); 851 return BinaryOperator::CreateAdd(WideX, NewC); 852 } 853 return nullptr; 854 } 855 856 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 858 Type *Ty = Add.getType(); 859 Constant *Op1C; 860 if (!match(Op1, m_ImmConstant(Op1C))) 861 return nullptr; 862 863 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 864 return NV; 865 866 Value *X; 867 Constant *Op00C; 868 869 // add (sub C1, X), C2 --> sub (add C1, C2), X 870 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 871 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 872 873 Value *Y; 874 875 // add (sub X, Y), -1 --> add (not Y), X 876 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 877 match(Op1, m_AllOnes())) 878 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 879 880 // zext(bool) + C -> bool ? C + 1 : C 881 if (match(Op0, m_ZExt(m_Value(X))) && 882 X->getType()->getScalarSizeInBits() == 1) 883 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 884 // sext(bool) + C -> bool ? C - 1 : C 885 if (match(Op0, m_SExt(m_Value(X))) && 886 X->getType()->getScalarSizeInBits() == 1) 887 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 888 889 // ~X + C --> (C-1) - X 890 if (match(Op0, m_Not(m_Value(X)))) { 891 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 892 auto *COne = ConstantInt::get(Op1C->getType(), 1); 893 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 894 BinaryOperator *Res = 895 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 896 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 897 return Res; 898 } 899 900 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 901 const APInt *C; 902 unsigned BitWidth = Ty->getScalarSizeInBits(); 903 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 904 m_SpecificIntAllowPoison(BitWidth - 1)))) && 905 match(Op1, m_One())) 906 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 907 908 if (!match(Op1, m_APInt(C))) 909 return nullptr; 910 911 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 912 Constant *Op01C; 913 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) { 914 BinaryOperator *NewAdd = 915 BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 916 NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() && 917 willNotOverflowSignedAdd(Op01C, Op1C, Add)); 918 NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap()); 919 return NewAdd; 920 } 921 922 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 923 const APInt *C2; 924 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 925 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 926 927 if (C->isSignMask()) { 928 // If wrapping is not allowed, then the addition must set the sign bit: 929 // X + (signmask) --> X | signmask 930 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 931 return BinaryOperator::CreateOr(Op0, Op1); 932 933 // If wrapping is allowed, then the addition flips the sign bit of LHS: 934 // X + (signmask) --> X ^ signmask 935 return BinaryOperator::CreateXor(Op0, Op1); 936 } 937 938 // Is this add the last step in a convoluted sext? 939 // add(zext(xor i16 X, -32768), -32768) --> sext X 940 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 941 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 942 return CastInst::Create(Instruction::SExt, X, Ty); 943 944 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 945 // (X ^ signmask) + C --> (X + (signmask ^ C)) 946 if (C2->isSignMask()) 947 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 948 949 // If X has no high-bits set above an xor mask: 950 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 951 if (C2->isMask()) { 952 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 953 if ((*C2 | LHSKnown.Zero).isAllOnes()) 954 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 955 } 956 957 // Look for a math+logic pattern that corresponds to sext-in-register of a 958 // value with cleared high bits. Convert that into a pair of shifts: 959 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 960 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 961 if (Op0->hasOneUse() && *C2 == -(*C)) { 962 unsigned BitWidth = Ty->getScalarSizeInBits(); 963 unsigned ShAmt = 0; 964 if (C->isPowerOf2()) 965 ShAmt = BitWidth - C->logBase2() - 1; 966 else if (C2->isPowerOf2()) 967 ShAmt = BitWidth - C2->logBase2() - 1; 968 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 969 0, &Add)) { 970 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 971 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 972 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 973 } 974 } 975 } 976 977 if (C->isOne() && Op0->hasOneUse()) { 978 // add (sext i1 X), 1 --> zext (not X) 979 // TODO: The smallest IR representation is (select X, 0, 1), and that would 980 // not require the one-use check. But we need to remove a transform in 981 // visitSelect and make sure that IR value tracking for select is equal or 982 // better than for these ops. 983 if (match(Op0, m_SExt(m_Value(X))) && 984 X->getType()->getScalarSizeInBits() == 1) 985 return new ZExtInst(Builder.CreateNot(X), Ty); 986 987 // Shifts and add used to flip and mask off the low bit: 988 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 989 const APInt *C3; 990 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 991 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 992 Value *NotX = Builder.CreateNot(X); 993 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 994 } 995 } 996 997 // umax(X, C) + -C --> usub.sat(X, C) 998 if (match(Op0, m_OneUse(m_UMax(m_Value(X), m_SpecificInt(-*C))))) 999 return replaceInstUsesWith( 1000 Add, Builder.CreateBinaryIntrinsic( 1001 Intrinsic::usub_sat, X, ConstantInt::get(Add.getType(), -*C))); 1002 1003 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 1004 // TODO: There's a general form for any constant on the outer add. 1005 if (C->isOne()) { 1006 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 1007 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 1008 if (llvm::isKnownNonZero(X, Q)) 1009 return new ZExtInst(X, Ty); 1010 } 1011 } 1012 1013 return nullptr; 1014 } 1015 1016 // match variations of a^2 + 2*a*b + b^2 1017 // 1018 // to reuse the code between the FP and Int versions, the instruction OpCodes 1019 // and constant types have been turned into template parameters. 1020 // 1021 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with; 1022 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int 1023 // (we're matching `X<<1` instead of `X*2` for Int) 1024 template <bool FP, typename Mul2Rhs> 1025 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, 1026 Value *&B) { 1027 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul; 1028 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add; 1029 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl; 1030 1031 // (a * a) + (((a * 2) + b) * b) 1032 if (match(&I, m_c_BinOp( 1033 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))), 1034 m_OneUse(m_c_BinOp( 1035 MulOp, 1036 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs), 1037 m_Value(B)), 1038 m_Deferred(B)))))) 1039 return true; 1040 1041 // ((a * b) * 2) or ((a * 2) * b) 1042 // + 1043 // (a * a + b * b) or (b * b + a * a) 1044 return match( 1045 &I, m_c_BinOp( 1046 AddOp, 1047 m_CombineOr( 1048 m_OneUse(m_BinOp( 1049 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)), 1050 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs), 1051 m_Value(B)))), 1052 m_OneUse( 1053 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)), 1054 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B)))))); 1055 } 1056 1057 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1058 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) { 1059 Value *A, *B; 1060 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) { 1061 Value *AB = Builder.CreateAdd(A, B); 1062 return BinaryOperator::CreateMul(AB, AB); 1063 } 1064 return nullptr; 1065 } 1066 1067 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1068 // Requires `nsz` and `reassoc`. 1069 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) { 1070 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch"); 1071 Value *A, *B; 1072 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) { 1073 Value *AB = Builder.CreateFAddFMF(A, B, &I); 1074 return BinaryOperator::CreateFMulFMF(AB, AB, &I); 1075 } 1076 return nullptr; 1077 } 1078 1079 // Matches multiplication expression Op * C where C is a constant. Returns the 1080 // constant value in C and the other operand in Op. Returns true if such a 1081 // match is found. 1082 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1083 const APInt *AI; 1084 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1085 C = *AI; 1086 return true; 1087 } 1088 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1089 C = APInt(AI->getBitWidth(), 1); 1090 C <<= *AI; 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 // Matches remainder expression Op % C where C is a constant. Returns the 1097 // constant value in C and the other operand in Op. Returns the signedness of 1098 // the remainder operation in IsSigned. Returns true if such a match is 1099 // found. 1100 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1101 const APInt *AI; 1102 IsSigned = false; 1103 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1104 IsSigned = true; 1105 C = *AI; 1106 return true; 1107 } 1108 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1109 C = *AI; 1110 return true; 1111 } 1112 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1113 C = *AI + 1; 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 // Matches division expression Op / C with the given signedness as indicated 1120 // by IsSigned, where C is a constant. Returns the constant value in C and the 1121 // other operand in Op. Returns true if such a match is found. 1122 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1123 const APInt *AI; 1124 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1125 C = *AI; 1126 return true; 1127 } 1128 if (!IsSigned) { 1129 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1130 C = *AI; 1131 return true; 1132 } 1133 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1134 C = APInt(AI->getBitWidth(), 1); 1135 C <<= *AI; 1136 return true; 1137 } 1138 } 1139 return false; 1140 } 1141 1142 // Returns whether C0 * C1 with the given signedness overflows. 1143 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1144 bool overflow; 1145 if (IsSigned) 1146 (void)C0.smul_ov(C1, overflow); 1147 else 1148 (void)C0.umul_ov(C1, overflow); 1149 return overflow; 1150 } 1151 1152 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1153 // does not overflow. 1154 // Simplifies (X / C0) * C1 + (X % C0) * C2 to 1155 // (X / C0) * (C1 - C2 * C0) + X * C2 1156 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1157 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1158 Value *X, *MulOpV; 1159 APInt C0, MulOpC; 1160 bool IsSigned; 1161 // Match I = X % C0 + MulOpV * C0 1162 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1163 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1164 C0 == MulOpC) { 1165 Value *RemOpV; 1166 APInt C1; 1167 bool Rem2IsSigned; 1168 // Match MulOpC = RemOpV % C1 1169 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1170 IsSigned == Rem2IsSigned) { 1171 Value *DivOpV; 1172 APInt DivOpC; 1173 // Match RemOpV = X / C0 1174 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1175 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1176 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1177 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1178 : Builder.CreateURem(X, NewDivisor, "urem"); 1179 } 1180 } 1181 } 1182 1183 // Match I = (X / C0) * C1 + (X % C0) * C2 1184 Value *Div, *Rem; 1185 APInt C1, C2; 1186 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1)) 1187 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1); 1188 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2)) 1189 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1); 1190 if (match(Div, m_IRem(m_Value(), m_Value()))) { 1191 std::swap(Div, Rem); 1192 std::swap(C1, C2); 1193 } 1194 Value *DivOpV; 1195 APInt DivOpC; 1196 if (MatchRem(Rem, X, C0, IsSigned) && 1197 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) { 1198 APInt NewC = C1 - C2 * C0; 1199 if (!NewC.isZero() && !Rem->hasOneUse()) 1200 return nullptr; 1201 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT)) 1202 return nullptr; 1203 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2)); 1204 if (NewC.isZero()) 1205 return MulXC2; 1206 return Builder.CreateAdd( 1207 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2); 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 /// Fold 1214 /// (1 << NBits) - 1 1215 /// Into: 1216 /// ~(-(1 << NBits)) 1217 /// Because a 'not' is better for bit-tracking analysis and other transforms 1218 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1219 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1220 InstCombiner::BuilderTy &Builder) { 1221 Value *NBits; 1222 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1223 return nullptr; 1224 1225 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1226 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1227 // Be wary of constant folding. 1228 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1229 // Always NSW. But NUW propagates from `add`. 1230 BOp->setHasNoSignedWrap(); 1231 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1232 } 1233 1234 return BinaryOperator::CreateNot(NotMask, I.getName()); 1235 } 1236 1237 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1238 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1239 Type *Ty = I.getType(); 1240 auto getUAddSat = [&]() { 1241 return Intrinsic::getOrInsertDeclaration(I.getModule(), Intrinsic::uadd_sat, 1242 Ty); 1243 }; 1244 1245 // add (umin X, ~Y), Y --> uaddsat X, Y 1246 Value *X, *Y; 1247 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1248 m_Deferred(Y)))) 1249 return CallInst::Create(getUAddSat(), { X, Y }); 1250 1251 // add (umin X, ~C), C --> uaddsat X, C 1252 const APInt *C, *NotC; 1253 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1254 *C == ~*NotC) 1255 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1256 1257 return nullptr; 1258 } 1259 1260 // Transform: 1261 // (add A, (shl (neg B), Y)) 1262 // -> (sub A, (shl B, Y)) 1263 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, 1264 const BinaryOperator &I) { 1265 Value *A, *B, *Cnt; 1266 if (match(&I, 1267 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))), 1268 m_Value(A)))) { 1269 Value *NewShl = Builder.CreateShl(B, Cnt); 1270 return BinaryOperator::CreateSub(A, NewShl); 1271 } 1272 return nullptr; 1273 } 1274 1275 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1276 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1277 // Division must be by power-of-2, but not the minimum signed value. 1278 Value *X; 1279 const APInt *DivC; 1280 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1281 DivC->isNegative()) 1282 return nullptr; 1283 1284 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1285 // low bits set. It recognizes two canonical patterns: 1286 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the 1287 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN). 1288 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1). 1289 // Note that, by the time we end up here, if possible, ugt has been 1290 // canonicalized into eq. 1291 const APInt *MaskC, *MaskCCmp; 1292 CmpPredicate Pred; 1293 if (!match(Add.getOperand(1), 1294 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1295 m_APInt(MaskCCmp))))) 1296 return nullptr; 1297 1298 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) && 1299 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC)) 1300 return nullptr; 1301 1302 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1303 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT 1304 ? (*MaskC == (SMin | (*DivC - 1))) 1305 : (*DivC == 2 && *MaskC == SMin + 1); 1306 if (!IsMaskValid) 1307 return nullptr; 1308 1309 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1310 return BinaryOperator::CreateAShr( 1311 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1312 } 1313 1314 Instruction *InstCombinerImpl::foldAddLikeCommutative(Value *LHS, Value *RHS, 1315 bool NSW, bool NUW) { 1316 Value *A, *B, *C; 1317 if (match(LHS, m_Sub(m_Value(A), m_Value(B))) && 1318 match(RHS, m_Sub(m_Value(C), m_Specific(A)))) { 1319 Instruction *R = BinaryOperator::CreateSub(C, B); 1320 bool NSWOut = NSW && match(LHS, m_NSWSub(m_Value(), m_Value())) && 1321 match(RHS, m_NSWSub(m_Value(), m_Value())); 1322 1323 bool NUWOut = match(LHS, m_NUWSub(m_Value(), m_Value())) && 1324 match(RHS, m_NUWSub(m_Value(), m_Value())); 1325 R->setHasNoSignedWrap(NSWOut); 1326 R->setHasNoUnsignedWrap(NUWOut); 1327 return R; 1328 } 1329 1330 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1331 const APInt *C1, *C2; 1332 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1333 APInt One(C2->getBitWidth(), 1); 1334 APInt MinusC1 = -(*C1); 1335 if (MinusC1 == (One << *C2)) { 1336 Constant *NewRHS = ConstantInt::get(RHS->getType(), MinusC1); 1337 return BinaryOperator::CreateSRem(RHS, NewRHS); 1338 } 1339 } 1340 1341 return nullptr; 1342 } 1343 1344 Instruction *InstCombinerImpl:: 1345 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1346 BinaryOperator &I) { 1347 assert((I.getOpcode() == Instruction::Add || 1348 I.getOpcode() == Instruction::Or || 1349 I.getOpcode() == Instruction::Sub) && 1350 "Expecting add/or/sub instruction"); 1351 1352 // We have a subtraction/addition between a (potentially truncated) *logical* 1353 // right-shift of X and a "select". 1354 Value *X, *Select; 1355 Instruction *LowBitsToSkip, *Extract; 1356 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1357 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1358 m_Instruction(Extract))), 1359 m_Value(Select)))) 1360 return nullptr; 1361 1362 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1363 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1364 return nullptr; 1365 1366 Type *XTy = X->getType(); 1367 bool HadTrunc = I.getType() != XTy; 1368 1369 // If there was a truncation of extracted value, then we'll need to produce 1370 // one extra instruction, so we need to ensure one instruction will go away. 1371 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1372 return nullptr; 1373 1374 // Extraction should extract high NBits bits, with shift amount calculated as: 1375 // low bits to skip = shift bitwidth - high bits to extract 1376 // The shift amount itself may be extended, and we need to look past zero-ext 1377 // when matching NBits, that will matter for matching later. 1378 Value *NBits; 1379 if (!match(LowBitsToSkip, 1380 m_ZExtOrSelf(m_Sub(m_SpecificInt(XTy->getScalarSizeInBits()), 1381 m_ZExtOrSelf(m_Value(NBits)))))) 1382 return nullptr; 1383 1384 // Sign-extending value can be zero-extended if we `sub`tract it, 1385 // or sign-extended otherwise. 1386 auto SkipExtInMagic = [&I](Value *&V) { 1387 if (I.getOpcode() == Instruction::Sub) 1388 match(V, m_ZExtOrSelf(m_Value(V))); 1389 else 1390 match(V, m_SExtOrSelf(m_Value(V))); 1391 }; 1392 1393 // Now, finally validate the sign-extending magic. 1394 // `select` itself may be appropriately extended, look past that. 1395 SkipExtInMagic(Select); 1396 1397 CmpPredicate Pred; 1398 const APInt *Thr; 1399 Value *SignExtendingValue, *Zero; 1400 bool ShouldSignext; 1401 // It must be a select between two values we will later establish to be a 1402 // sign-extending value and a zero constant. The condition guarding the 1403 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1404 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1405 m_Value(SignExtendingValue), m_Value(Zero))) || 1406 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1407 return nullptr; 1408 1409 // icmp-select pair is commutative. 1410 if (!ShouldSignext) 1411 std::swap(SignExtendingValue, Zero); 1412 1413 // If we should not perform sign-extension then we must add/or/subtract zero. 1414 if (!match(Zero, m_Zero())) 1415 return nullptr; 1416 // Otherwise, it should be some constant, left-shifted by the same NBits we 1417 // had in `lshr`. Said left-shift can also be appropriately extended. 1418 // Again, we must look past zero-ext when looking for NBits. 1419 SkipExtInMagic(SignExtendingValue); 1420 Constant *SignExtendingValueBaseConstant; 1421 if (!match(SignExtendingValue, 1422 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1423 m_ZExtOrSelf(m_Specific(NBits))))) 1424 return nullptr; 1425 // If we `sub`, then the constant should be one, else it should be all-ones. 1426 if (I.getOpcode() == Instruction::Sub 1427 ? !match(SignExtendingValueBaseConstant, m_One()) 1428 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1429 return nullptr; 1430 1431 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1432 Extract->getName() + ".sext"); 1433 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1434 if (!HadTrunc) 1435 return NewAShr; 1436 1437 Builder.Insert(NewAShr); 1438 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1439 } 1440 1441 /// This is a specialization of a more general transform from 1442 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1443 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1444 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1445 InstCombiner::BuilderTy &Builder) { 1446 // TODO: Also handle mul by doubling the shift amount? 1447 assert((I.getOpcode() == Instruction::Add || 1448 I.getOpcode() == Instruction::Sub) && 1449 "Expected add/sub"); 1450 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1451 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1452 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1453 return nullptr; 1454 1455 Value *X, *Y, *ShAmt; 1456 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1457 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1458 return nullptr; 1459 1460 // No-wrap propagates only when all ops have no-wrap. 1461 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1462 Op1->hasNoSignedWrap(); 1463 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1464 Op1->hasNoUnsignedWrap(); 1465 1466 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1467 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1468 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1469 NewI->setHasNoSignedWrap(HasNSW); 1470 NewI->setHasNoUnsignedWrap(HasNUW); 1471 } 1472 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1473 NewShl->setHasNoSignedWrap(HasNSW); 1474 NewShl->setHasNoUnsignedWrap(HasNUW); 1475 return NewShl; 1476 } 1477 1478 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1479 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1480 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1481 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1482 // Skip the odd bitwidth types. 1483 if ((BitWidth & 0x1)) 1484 return nullptr; 1485 1486 unsigned HalfBits = BitWidth >> 1; 1487 APInt HalfMask = APInt::getMaxValue(HalfBits); 1488 1489 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1490 Value *XLo, *YLo; 1491 Value *CrossSum; 1492 // Require one-use on the multiply to avoid increasing the number of 1493 // multiplications. 1494 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1495 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo)))))) 1496 return nullptr; 1497 1498 // XLo = X & HalfMask 1499 // YLo = Y & HalfMask 1500 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1501 // to enhance robustness 1502 Value *X, *Y; 1503 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1504 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1505 return nullptr; 1506 1507 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1508 // X' can be either X or XLo in the pattern (and the same for Y') 1509 if (match(CrossSum, 1510 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1511 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1512 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1513 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1514 return BinaryOperator::CreateMul(X, Y); 1515 1516 return nullptr; 1517 } 1518 1519 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1520 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1521 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1522 SQ.getWithInstruction(&I))) 1523 return replaceInstUsesWith(I, V); 1524 1525 if (SimplifyAssociativeOrCommutative(I)) 1526 return &I; 1527 1528 if (Instruction *X = foldVectorBinop(I)) 1529 return X; 1530 1531 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1532 return Phi; 1533 1534 // (A*B)+(A*C) -> A*(B+C) etc 1535 if (Value *V = foldUsingDistributiveLaws(I)) 1536 return replaceInstUsesWith(I, V); 1537 1538 if (Instruction *R = foldBoxMultiply(I)) 1539 return R; 1540 1541 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1542 return R; 1543 1544 if (Instruction *X = foldAddWithConstant(I)) 1545 return X; 1546 1547 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1548 return X; 1549 1550 if (Instruction *R = foldBinOpShiftWithShift(I)) 1551 return R; 1552 1553 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I)) 1554 return R; 1555 1556 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1557 if (Instruction *R = foldAddLikeCommutative(LHS, RHS, I.hasNoSignedWrap(), 1558 I.hasNoUnsignedWrap())) 1559 return R; 1560 if (Instruction *R = foldAddLikeCommutative(RHS, LHS, I.hasNoSignedWrap(), 1561 I.hasNoUnsignedWrap())) 1562 return R; 1563 Type *Ty = I.getType(); 1564 if (Ty->isIntOrIntVectorTy(1)) 1565 return BinaryOperator::CreateXor(LHS, RHS); 1566 1567 // X + X --> X << 1 1568 if (LHS == RHS) { 1569 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1570 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1571 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1572 return Shl; 1573 } 1574 1575 Value *A, *B; 1576 if (match(LHS, m_Neg(m_Value(A)))) { 1577 // -A + -B --> -(A + B) 1578 if (match(RHS, m_Neg(m_Value(B)))) 1579 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1580 1581 // -A + B --> B - A 1582 auto *Sub = BinaryOperator::CreateSub(RHS, A); 1583 auto *OB0 = cast<OverflowingBinaryOperator>(LHS); 1584 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap()); 1585 1586 return Sub; 1587 } 1588 1589 // A + -B --> A - B 1590 if (match(RHS, m_Neg(m_Value(B)))) { 1591 auto *Sub = BinaryOperator::CreateSub(LHS, B); 1592 auto *OBO = cast<OverflowingBinaryOperator>(RHS); 1593 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO->hasNoSignedWrap()); 1594 return Sub; 1595 } 1596 1597 if (Value *V = checkForNegativeOperand(I, Builder)) 1598 return replaceInstUsesWith(I, V); 1599 1600 // (A + 1) + ~B --> A - B 1601 // ~B + (A + 1) --> A - B 1602 // (~B + A) + 1 --> A - B 1603 // (A + ~B) + 1 --> A - B 1604 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1605 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1606 return BinaryOperator::CreateSub(A, B); 1607 1608 // (A + RHS) + RHS --> A + (RHS << 1) 1609 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1610 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1611 1612 // LHS + (A + LHS) --> A + (LHS << 1) 1613 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1614 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1615 1616 { 1617 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1618 Constant *C1, *C2; 1619 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1620 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1621 (LHS->hasOneUse() || RHS->hasOneUse())) { 1622 Value *Sub = Builder.CreateSub(A, B); 1623 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1624 } 1625 1626 // Canonicalize a constant sub operand as an add operand for better folding: 1627 // (C1 - A) + B --> (B - A) + C1 1628 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1629 m_Value(B)))) { 1630 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1631 return BinaryOperator::CreateAdd(Sub, C1); 1632 } 1633 } 1634 1635 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1636 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1637 1638 const APInt *C1; 1639 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1640 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1641 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1642 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1643 return BinaryOperator::CreateAnd(A, NewMask); 1644 } 1645 1646 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1647 if ((match(RHS, m_ZExt(m_Value(A))) && 1648 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1649 (match(LHS, m_ZExt(m_Value(A))) && 1650 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1651 return new ZExtInst(B, LHS->getType()); 1652 1653 // zext(A) + sext(A) --> 0 if A is i1 1654 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1655 A->getType()->isIntOrIntVectorTy(1)) 1656 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1657 1658 // sext(A < B) + zext(A > B) => ucmp/scmp(A, B) 1659 CmpPredicate LTPred, GTPred; 1660 if (match(&I, 1661 m_c_Add(m_SExt(m_c_ICmp(LTPred, m_Value(A), m_Value(B))), 1662 m_ZExt(m_c_ICmp(GTPred, m_Deferred(A), m_Deferred(B))))) && 1663 A->getType()->isIntOrIntVectorTy()) { 1664 if (ICmpInst::isGT(LTPred)) { 1665 std::swap(LTPred, GTPred); 1666 std::swap(A, B); 1667 } 1668 1669 if (ICmpInst::isLT(LTPred) && ICmpInst::isGT(GTPred) && 1670 ICmpInst::isSigned(LTPred) == ICmpInst::isSigned(GTPred)) 1671 return replaceInstUsesWith( 1672 I, Builder.CreateIntrinsic( 1673 Ty, 1674 ICmpInst::isSigned(LTPred) ? Intrinsic::scmp : Intrinsic::ucmp, 1675 {A, B})); 1676 } 1677 1678 // A+B --> A|B iff A and B have no bits set in common. 1679 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS); 1680 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I))) 1681 return BinaryOperator::CreateDisjointOr(LHS, RHS); 1682 1683 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1684 return Ext; 1685 1686 // (add (xor A, B) (and A, B)) --> (or A, B) 1687 // (add (and A, B) (xor A, B)) --> (or A, B) 1688 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1689 m_c_And(m_Deferred(A), m_Deferred(B))))) 1690 return BinaryOperator::CreateOr(A, B); 1691 1692 // (add (or A, B) (and A, B)) --> (add A, B) 1693 // (add (and A, B) (or A, B)) --> (add A, B) 1694 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1695 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1696 // Replacing operands in-place to preserve nuw/nsw flags. 1697 replaceOperand(I, 0, A); 1698 replaceOperand(I, 1, B); 1699 return &I; 1700 } 1701 1702 // (add A (or A, -A)) --> (and (add A, -1) A) 1703 // (add A (or -A, A)) --> (and (add A, -1) A) 1704 // (add (or A, -A) A) --> (and (add A, -1) A) 1705 // (add (or -A, A) A) --> (and (add A, -1) A) 1706 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1707 m_Deferred(A)))))) { 1708 Value *Add = 1709 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1710 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1711 return BinaryOperator::CreateAnd(Add, A); 1712 } 1713 1714 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1715 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1716 if (match(&I, 1717 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1718 m_AllOnes()))) { 1719 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1720 Value *Dec = Builder.CreateAdd(A, AllOnes); 1721 Value *Not = Builder.CreateXor(A, AllOnes); 1722 return BinaryOperator::CreateAnd(Dec, Not); 1723 } 1724 1725 // Disguised reassociation/factorization: 1726 // ~(A * C1) + A 1727 // ((A * -C1) - 1) + A 1728 // ((A * -C1) + A) - 1 1729 // (A * (1 - C1)) - 1 1730 if (match(&I, 1731 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1732 m_Deferred(A)))) { 1733 Type *Ty = I.getType(); 1734 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1735 Value *NewMul = Builder.CreateMul(A, NewMulC); 1736 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1737 } 1738 1739 // (A * -2**C) + B --> B - (A << C) 1740 const APInt *NegPow2C; 1741 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1742 m_Value(B)))) { 1743 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1744 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1745 return BinaryOperator::CreateSub(B, Shl); 1746 } 1747 1748 // Canonicalize signum variant that ends in add: 1749 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1750 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1751 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) && 1752 match(RHS, m_OneUse(m_ZExt(m_OneUse(m_SpecificICmp( 1753 CmpInst::ICMP_SGT, m_Specific(A), m_ZeroInt())))))) { 1754 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1755 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1756 return BinaryOperator::CreateOr(LHS, Zext); 1757 } 1758 1759 { 1760 Value *Cond, *Ext; 1761 Constant *C; 1762 // (add X, (sext/zext (icmp eq X, C))) 1763 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X) 1764 auto CondMatcher = m_CombineAnd( 1765 m_Value(Cond), 1766 m_SpecificICmp(ICmpInst::ICMP_EQ, m_Deferred(A), m_ImmConstant(C))); 1767 1768 if (match(&I, 1769 m_c_Add(m_Value(A), 1770 m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) && 1771 Ext->hasOneUse()) { 1772 Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C) 1773 : InstCombiner::SubOne(C); 1774 return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A)); 1775 } 1776 } 1777 1778 // (add (add A, 1), (sext (icmp ne A, 0))) => call umax(A, 1) 1779 if (match(LHS, m_Add(m_Value(A), m_One())) && 1780 match(RHS, m_OneUse(m_SExt(m_OneUse(m_SpecificICmp( 1781 ICmpInst::ICMP_NE, m_Specific(A), m_ZeroInt())))))) { 1782 Value *OneConst = ConstantInt::get(A->getType(), 1); 1783 Value *UMax = Builder.CreateBinaryIntrinsic(Intrinsic::umax, A, OneConst); 1784 return replaceInstUsesWith(I, UMax); 1785 } 1786 1787 if (Instruction *Ashr = foldAddToAshr(I)) 1788 return Ashr; 1789 1790 // (~X) + (~Y) --> -2 - (X + Y) 1791 { 1792 // To ensure we can save instructions we need to ensure that we consume both 1793 // LHS/RHS (i.e they have a `not`). 1794 bool ConsumesLHS, ConsumesRHS; 1795 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS && 1796 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) { 1797 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder); 1798 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder); 1799 assert(NotLHS != nullptr && NotRHS != nullptr && 1800 "isFreeToInvert desynced with getFreelyInverted"); 1801 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS); 1802 return BinaryOperator::CreateSub( 1803 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS); 1804 } 1805 } 1806 1807 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 1808 return R; 1809 1810 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1811 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1812 // computeKnownBits. 1813 bool Changed = false; 1814 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) { 1815 Changed = true; 1816 I.setHasNoSignedWrap(true); 1817 } 1818 if (!I.hasNoUnsignedWrap() && 1819 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) { 1820 Changed = true; 1821 I.setHasNoUnsignedWrap(true); 1822 } 1823 1824 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1825 return V; 1826 1827 if (Instruction *V = 1828 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1829 return V; 1830 1831 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1832 return SatAdd; 1833 1834 // usub.sat(A, B) + B => umax(A, B) 1835 if (match(&I, m_c_BinOp( 1836 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1837 m_Deferred(B)))) { 1838 return replaceInstUsesWith(I, 1839 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1840 } 1841 1842 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1843 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1844 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1845 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I))) 1846 return replaceInstUsesWith( 1847 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1848 {Builder.CreateOr(A, B)})); 1849 1850 // Fold the log2_ceil idiom: 1851 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1)) 1852 // --> 1853 // BW - ctlz(A - 1, false) 1854 const APInt *XorC; 1855 CmpPredicate Pred; 1856 if (match(&I, 1857 m_c_Add( 1858 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)), 1859 m_One())), 1860 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor( 1861 m_OneUse(m_TruncOrSelf(m_OneUse( 1862 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))), 1863 m_APInt(XorC))))))) && 1864 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) && 1865 *XorC == A->getType()->getScalarSizeInBits() - 1) { 1866 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType())); 1867 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()}, 1868 {Sub, Builder.getFalse()}); 1869 Value *Ret = Builder.CreateSub( 1870 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()), 1871 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true); 1872 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType())); 1873 } 1874 1875 if (Instruction *Res = foldSquareSumInt(I)) 1876 return Res; 1877 1878 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1879 return Res; 1880 1881 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1882 return Res; 1883 1884 // Re-enqueue users of the induction variable of add recurrence if we infer 1885 // new nuw/nsw flags. 1886 if (Changed) { 1887 PHINode *PHI; 1888 Value *Start, *Step; 1889 if (matchSimpleRecurrence(&I, PHI, Start, Step)) 1890 Worklist.pushUsersToWorkList(*PHI); 1891 } 1892 1893 return Changed ? &I : nullptr; 1894 } 1895 1896 /// Eliminate an op from a linear interpolation (lerp) pattern. 1897 static Instruction *factorizeLerp(BinaryOperator &I, 1898 InstCombiner::BuilderTy &Builder) { 1899 Value *X, *Y, *Z; 1900 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1901 m_OneUse(m_FSub(m_FPOne(), 1902 m_Value(Z))))), 1903 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1904 return nullptr; 1905 1906 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1907 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1908 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1909 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1910 } 1911 1912 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1913 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1914 InstCombiner::BuilderTy &Builder) { 1915 assert((I.getOpcode() == Instruction::FAdd || 1916 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1917 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1918 "FP factorization requires FMF"); 1919 1920 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1921 return Lerp; 1922 1923 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1924 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1925 return nullptr; 1926 1927 Value *X, *Y, *Z; 1928 bool IsFMul; 1929 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1930 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1931 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1932 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1933 IsFMul = true; 1934 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1935 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1936 IsFMul = false; 1937 else 1938 return nullptr; 1939 1940 // (X * Z) + (Y * Z) --> (X + Y) * Z 1941 // (X * Z) - (Y * Z) --> (X - Y) * Z 1942 // (X / Z) + (Y / Z) --> (X + Y) / Z 1943 // (X / Z) - (Y / Z) --> (X - Y) / Z 1944 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1945 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1946 : Builder.CreateFSubFMF(X, Y, &I); 1947 1948 // Bail out if we just created a denormal constant. 1949 // TODO: This is copied from a previous implementation. Is it necessary? 1950 const APFloat *C; 1951 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1952 return nullptr; 1953 1954 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1955 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1956 } 1957 1958 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1959 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1960 I.getFastMathFlags(), 1961 SQ.getWithInstruction(&I))) 1962 return replaceInstUsesWith(I, V); 1963 1964 if (SimplifyAssociativeOrCommutative(I)) 1965 return &I; 1966 1967 if (Instruction *X = foldVectorBinop(I)) 1968 return X; 1969 1970 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1971 return Phi; 1972 1973 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1974 return FoldedFAdd; 1975 1976 // (-X) + Y --> Y - X 1977 Value *X, *Y; 1978 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1979 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1980 1981 // Similar to above, but look through fmul/fdiv for the negated term. 1982 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1983 Value *Z; 1984 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1985 m_Value(Z)))) { 1986 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1987 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1988 } 1989 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1990 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1991 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1992 m_Value(Z))) || 1993 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1994 m_Value(Z)))) { 1995 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1996 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1997 } 1998 1999 // Check for (fadd double (sitofp x), y), see if we can merge this into an 2000 // integer add followed by a promotion. 2001 if (Instruction *R = foldFBinOpOfIntCasts(I)) 2002 return R; 2003 2004 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 2005 // Handle specials cases for FAdd with selects feeding the operation 2006 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 2007 return replaceInstUsesWith(I, V); 2008 2009 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2010 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2011 return F; 2012 2013 if (Instruction *F = foldSquareSumFP(I)) 2014 return F; 2015 2016 // Try to fold fadd into start value of reduction intrinsic. 2017 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 2018 m_AnyZeroFP(), m_Value(X))), 2019 m_Value(Y)))) { 2020 // fadd (rdx 0.0, X), Y --> rdx Y, X 2021 return replaceInstUsesWith( 2022 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2023 {X->getType()}, {Y, X}, &I)); 2024 } 2025 const APFloat *StartC, *C; 2026 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 2027 m_APFloat(StartC), m_Value(X)))) && 2028 match(RHS, m_APFloat(C))) { 2029 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 2030 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 2031 return replaceInstUsesWith( 2032 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2033 {X->getType()}, {NewStartC, X}, &I)); 2034 } 2035 2036 // (X * MulC) + X --> X * (MulC + 1.0) 2037 Constant *MulC; 2038 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 2039 m_Deferred(X)))) { 2040 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 2041 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 2042 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 2043 } 2044 2045 // (-X - Y) + (X + Z) --> Z - Y 2046 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 2047 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 2048 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 2049 2050 if (Value *V = FAddCombine(Builder).simplify(&I)) 2051 return replaceInstUsesWith(I, V); 2052 } 2053 2054 // minumum(X, Y) + maximum(X, Y) => X + Y. 2055 if (match(&I, 2056 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 2057 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 2058 m_Deferred(Y))))) { 2059 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 2060 // We cannot preserve ninf if nnan flag is not set. 2061 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 2062 // while in optimized version NaN + Inf and this is a poison with ninf flag. 2063 if (!Result->hasNoNaNs()) 2064 Result->setHasNoInfs(false); 2065 return Result; 2066 } 2067 2068 return nullptr; 2069 } 2070 2071 /// Optimize pointer differences into the same array into a size. Consider: 2072 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 2073 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 2074 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 2075 Type *Ty, bool IsNUW) { 2076 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 2077 // this. 2078 bool Swapped = false; 2079 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 2080 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 2081 std::swap(LHS, RHS); 2082 Swapped = true; 2083 } 2084 2085 // Require at least one GEP with a common base pointer on both sides. 2086 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 2087 // (gep X, ...) - X 2088 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2089 RHS->stripPointerCasts()) { 2090 GEP1 = LHSGEP; 2091 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 2092 // (gep X, ...) - (gep X, ...) 2093 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2094 RHSGEP->getOperand(0)->stripPointerCasts()) { 2095 GEP1 = LHSGEP; 2096 GEP2 = RHSGEP; 2097 } 2098 } 2099 } 2100 2101 if (!GEP1) 2102 return nullptr; 2103 2104 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the 2105 // computed offset. This may erase the original GEP, so be sure to cache the 2106 // nowrap flags before emitting the offset. 2107 // TODO: We should probably do this even if there is only one GEP. 2108 bool RewriteGEPs = GEP2 != nullptr; 2109 2110 // Emit the offset of the GEP and an intptr_t. 2111 GEPNoWrapFlags GEP1NW = GEP1->getNoWrapFlags(); 2112 Value *Result = EmitGEPOffset(GEP1, RewriteGEPs); 2113 2114 // If this is a single inbounds GEP and the original sub was nuw, 2115 // then the final multiplication is also nuw. 2116 if (auto *I = dyn_cast<Instruction>(Result)) 2117 if (IsNUW && !GEP2 && !Swapped && GEP1NW.isInBounds() && 2118 I->getOpcode() == Instruction::Mul) 2119 I->setHasNoUnsignedWrap(); 2120 2121 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 2122 // If both GEPs are inbounds, then the subtract does not have signed overflow. 2123 // If both GEPs are nuw and the original sub is nuw, the new sub is also nuw. 2124 if (GEP2) { 2125 GEPNoWrapFlags GEP2NW = GEP2->getNoWrapFlags(); 2126 Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs); 2127 Result = Builder.CreateSub(Result, Offset, "gepdiff", 2128 IsNUW && GEP1NW.hasNoUnsignedWrap() && 2129 GEP2NW.hasNoUnsignedWrap(), 2130 GEP1NW.isInBounds() && GEP2NW.isInBounds()); 2131 } 2132 2133 // If we have p - gep(p, ...) then we have to negate the result. 2134 if (Swapped) 2135 Result = Builder.CreateNeg(Result, "diff.neg"); 2136 2137 return Builder.CreateIntCast(Result, Ty, true); 2138 } 2139 2140 static Instruction *foldSubOfMinMax(BinaryOperator &I, 2141 InstCombiner::BuilderTy &Builder) { 2142 Value *Op0 = I.getOperand(0); 2143 Value *Op1 = I.getOperand(1); 2144 Type *Ty = I.getType(); 2145 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 2146 if (!MinMax) 2147 return nullptr; 2148 2149 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 2150 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 2151 Value *X = MinMax->getLHS(); 2152 Value *Y = MinMax->getRHS(); 2153 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 2154 (Op0->hasOneUse() || Op1->hasOneUse())) { 2155 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2156 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty); 2157 return CallInst::Create(F, {X, Y}); 2158 } 2159 2160 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 2161 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 2162 Value *Z; 2163 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 2164 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 2165 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 2166 return BinaryOperator::CreateAdd(X, USub); 2167 } 2168 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 2169 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 2170 return BinaryOperator::CreateAdd(X, USub); 2171 } 2172 } 2173 2174 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 2175 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 2176 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 2177 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 2178 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2179 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty); 2180 return CallInst::Create(F, {Op0, Z}); 2181 } 2182 2183 return nullptr; 2184 } 2185 2186 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 2187 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 2188 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 2189 SQ.getWithInstruction(&I))) 2190 return replaceInstUsesWith(I, V); 2191 2192 if (Instruction *X = foldVectorBinop(I)) 2193 return X; 2194 2195 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2196 return Phi; 2197 2198 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2199 2200 // If this is a 'B = x-(-A)', change to B = x+A. 2201 // We deal with this without involving Negator to preserve NSW flag. 2202 if (Value *V = dyn_castNegVal(Op1)) { 2203 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 2204 2205 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 2206 assert(BO->getOpcode() == Instruction::Sub && 2207 "Expected a subtraction operator!"); 2208 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2209 Res->setHasNoSignedWrap(true); 2210 } else { 2211 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2212 Res->setHasNoSignedWrap(true); 2213 } 2214 2215 return Res; 2216 } 2217 2218 // Try this before Negator to preserve NSW flag. 2219 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2220 return R; 2221 2222 Constant *C; 2223 if (match(Op0, m_ImmConstant(C))) { 2224 Value *X; 2225 Constant *C2; 2226 2227 // C-(X+C2) --> (C-C2)-X 2228 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2229 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW 2230 // => (C-C2)-X can have NSW/NUW 2231 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2232 BinaryOperator *Res = 2233 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2234 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2235 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2236 WillNotSOV); 2237 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 2238 OBO1->hasNoUnsignedWrap()); 2239 return Res; 2240 } 2241 } 2242 2243 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2244 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2245 return Ext; 2246 2247 bool Changed = false; 2248 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2249 Changed = true; 2250 I.setHasNoSignedWrap(true); 2251 } 2252 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2253 Changed = true; 2254 I.setHasNoUnsignedWrap(true); 2255 } 2256 2257 return Changed ? &I : nullptr; 2258 }; 2259 2260 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2261 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2262 // a pure negation used by a select that looks like abs/nabs. 2263 bool IsNegation = match(Op0, m_ZeroInt()); 2264 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2265 const Instruction *UI = dyn_cast<Instruction>(U); 2266 if (!UI) 2267 return false; 2268 return match(UI, m_c_Select(m_Specific(Op1), m_Specific(&I))); 2269 })) { 2270 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation && 2271 I.hasNoSignedWrap(), 2272 Op1, *this)) 2273 return BinaryOperator::CreateAdd(NegOp1, Op0); 2274 } 2275 if (IsNegation) 2276 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2277 2278 // (A*B)-(A*C) -> A*(B-C) etc 2279 if (Value *V = foldUsingDistributiveLaws(I)) 2280 return replaceInstUsesWith(I, V); 2281 2282 if (I.getType()->isIntOrIntVectorTy(1)) 2283 return BinaryOperator::CreateXor(Op0, Op1); 2284 2285 // Replace (-1 - A) with (~A). 2286 if (match(Op0, m_AllOnes())) 2287 return BinaryOperator::CreateNot(Op1); 2288 2289 // (X + -1) - Y --> ~Y + X 2290 Value *X, *Y; 2291 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2292 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2293 2294 // if (C1 & C2) == C2 then (X & C1) - (X & C2) -> X & (C1 ^ C2) 2295 Constant *C1, *C2; 2296 if (match(Op0, m_And(m_Value(X), m_ImmConstant(C1))) && 2297 match(Op1, m_And(m_Specific(X), m_ImmConstant(C2)))) { 2298 Value *AndC = ConstantFoldBinaryInstruction(Instruction::And, C1, C2); 2299 if (C2->isElementWiseEqual(AndC)) 2300 return BinaryOperator::CreateAnd( 2301 X, ConstantFoldBinaryInstruction(Instruction::Xor, C1, C2)); 2302 } 2303 2304 // Reassociate sub/add sequences to create more add instructions and 2305 // reduce dependency chains: 2306 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2307 Value *Z; 2308 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2309 m_Value(Z))))) { 2310 Value *XZ = Builder.CreateAdd(X, Z); 2311 Value *YW = Builder.CreateAdd(Y, Op1); 2312 return BinaryOperator::CreateSub(XZ, YW); 2313 } 2314 2315 // ((X - Y) - Op1) --> X - (Y + Op1) 2316 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2317 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0); 2318 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap(); 2319 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap(); 2320 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW, 2321 /* HasNSW */ HasNSW); 2322 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add); 2323 Sub->setHasNoUnsignedWrap(HasNUW); 2324 Sub->setHasNoSignedWrap(HasNSW); 2325 return Sub; 2326 } 2327 2328 { 2329 // (X + Z) - (Y + Z) --> (X - Y) 2330 // This is done in other passes, but we want to be able to consume this 2331 // pattern in InstCombine so we can generate it without creating infinite 2332 // loops. 2333 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) && 2334 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z)))) 2335 return BinaryOperator::CreateSub(X, Y); 2336 2337 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1) 2338 Constant *CX, *CY; 2339 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) && 2340 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) { 2341 Value *OpsSub = Builder.CreateSub(X, Y); 2342 Constant *ConstsSub = ConstantExpr::getSub(CX, CY); 2343 return BinaryOperator::CreateAdd(OpsSub, ConstsSub); 2344 } 2345 } 2346 2347 { 2348 Value *W, *Z; 2349 if (match(Op0, m_AddLike(m_Value(W), m_Value(X))) && 2350 match(Op1, m_AddLike(m_Value(Y), m_Value(Z)))) { 2351 Instruction *R = nullptr; 2352 if (W == Y) 2353 R = BinaryOperator::CreateSub(X, Z); 2354 else if (W == Z) 2355 R = BinaryOperator::CreateSub(X, Y); 2356 else if (X == Y) 2357 R = BinaryOperator::CreateSub(W, Z); 2358 else if (X == Z) 2359 R = BinaryOperator::CreateSub(W, Y); 2360 if (R) { 2361 bool NSW = I.hasNoSignedWrap() && 2362 match(Op0, m_NSWAddLike(m_Value(), m_Value())) && 2363 match(Op1, m_NSWAddLike(m_Value(), m_Value())); 2364 2365 bool NUW = I.hasNoUnsignedWrap() && 2366 match(Op1, m_NUWAddLike(m_Value(), m_Value())); 2367 R->setHasNoSignedWrap(NSW); 2368 R->setHasNoUnsignedWrap(NUW); 2369 return R; 2370 } 2371 } 2372 } 2373 2374 // (~X) - (~Y) --> Y - X 2375 { 2376 // Need to ensure we can consume at least one of the `not` instructions, 2377 // otherwise this can inf loop. 2378 bool ConsumesOp0, ConsumesOp1; 2379 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 2380 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 2381 (ConsumesOp0 || ConsumesOp1)) { 2382 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 2383 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 2384 assert(NotOp0 != nullptr && NotOp1 != nullptr && 2385 "isFreeToInvert desynced with getFreelyInverted"); 2386 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2387 } 2388 } 2389 2390 auto m_AddRdx = [](Value *&Vec) { 2391 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2392 }; 2393 Value *V0, *V1; 2394 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2395 V0->getType() == V1->getType()) { 2396 // Difference of sums is sum of differences: 2397 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2398 Value *Sub = Builder.CreateSub(V0, V1); 2399 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2400 {Sub->getType()}, {Sub}); 2401 return replaceInstUsesWith(I, Rdx); 2402 } 2403 2404 if (Constant *C = dyn_cast<Constant>(Op0)) { 2405 Value *X; 2406 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2407 // C - (zext bool) --> bool ? C - 1 : C 2408 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2409 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2410 // C - (sext bool) --> bool ? C + 1 : C 2411 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2412 2413 // C - ~X == X + (1+C) 2414 if (match(Op1, m_Not(m_Value(X)))) 2415 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2416 2417 // Try to fold constant sub into select arguments. 2418 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2419 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2420 return R; 2421 2422 // Try to fold constant sub into PHI values. 2423 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2424 if (Instruction *R = foldOpIntoPhi(I, PN)) 2425 return R; 2426 2427 Constant *C2; 2428 2429 // C-(C2-X) --> X+(C-C2) 2430 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2431 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2432 } 2433 2434 const APInt *Op0C; 2435 if (match(Op0, m_APInt(Op0C))) { 2436 if (Op0C->isMask()) { 2437 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2438 // zero. We don't use information from dominating conditions so this 2439 // transform is easier to reverse if necessary. 2440 KnownBits RHSKnown = llvm::computeKnownBits( 2441 Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache()); 2442 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2443 return BinaryOperator::CreateXor(Op1, Op0); 2444 } 2445 2446 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2447 // (C3 - ((C2 & C3) - 1)) is pow2 2448 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2449 // C2 is negative pow2 || sub nuw 2450 const APInt *C2, *C3; 2451 BinaryOperator *InnerSub; 2452 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2453 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2454 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2455 APInt C2AndC3 = *C2 & *C3; 2456 APInt C2AndC3Minus1 = C2AndC3 - 1; 2457 APInt C2AddC3 = *C2 + *C3; 2458 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2459 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2460 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2461 return BinaryOperator::CreateAdd( 2462 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2463 } 2464 } 2465 } 2466 2467 { 2468 Value *Y; 2469 // X-(X+Y) == -Y X-(Y+X) == -Y 2470 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2471 return BinaryOperator::CreateNeg(Y); 2472 2473 // (X-Y)-X == -Y 2474 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2475 return BinaryOperator::CreateNeg(Y); 2476 } 2477 2478 // (sub (or A, B) (and A, B)) --> (xor A, B) 2479 { 2480 Value *A, *B; 2481 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2482 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2483 return BinaryOperator::CreateXor(A, B); 2484 } 2485 2486 // (sub (add A, B) (or A, B)) --> (and A, B) 2487 { 2488 Value *A, *B; 2489 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2490 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2491 return BinaryOperator::CreateAnd(A, B); 2492 } 2493 2494 // (sub (add A, B) (and A, B)) --> (or A, B) 2495 { 2496 Value *A, *B; 2497 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2498 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2499 return BinaryOperator::CreateOr(A, B); 2500 } 2501 2502 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2503 { 2504 Value *A, *B; 2505 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2506 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2507 (Op0->hasOneUse() || Op1->hasOneUse())) 2508 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2509 } 2510 2511 // (sub (or A, B), (xor A, B)) --> (and A, B) 2512 { 2513 Value *A, *B; 2514 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2515 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2516 return BinaryOperator::CreateAnd(A, B); 2517 } 2518 2519 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2520 { 2521 Value *A, *B; 2522 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2523 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2524 (Op0->hasOneUse() || Op1->hasOneUse())) 2525 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2526 } 2527 2528 { 2529 Value *Y; 2530 // ((X | Y) - X) --> (~X & Y) 2531 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2532 return BinaryOperator::CreateAnd( 2533 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2534 } 2535 2536 { 2537 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2538 Value *X; 2539 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2540 m_OneUse(m_Neg(m_Value(X))))))) { 2541 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2542 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2543 } 2544 } 2545 2546 { 2547 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2548 Constant *C; 2549 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2550 return BinaryOperator::CreateNeg( 2551 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2552 } 2553 } 2554 2555 { 2556 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X) 2557 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X)) 2558 Value *C, *X; 2559 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) { 2560 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) && 2561 match(RHS, m_SExt(m_Value(C))) && 2562 (C->getType()->getScalarSizeInBits() == 1); 2563 }; 2564 if (m_SubXorCmp(Op0, Op1)) 2565 return SelectInst::Create(C, Builder.CreateNeg(X), X); 2566 if (m_SubXorCmp(Op1, Op0)) 2567 return SelectInst::Create(C, X, Builder.CreateNeg(X)); 2568 } 2569 2570 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 2571 return R; 2572 2573 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2574 return R; 2575 2576 { 2577 // If we have a subtraction between some value and a select between 2578 // said value and something else, sink subtraction into select hands, i.e.: 2579 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2580 // -> 2581 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2582 // or 2583 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2584 // -> 2585 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2586 // This will result in select between new subtraction and 0. 2587 auto SinkSubIntoSelect = 2588 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2589 auto SubBuilder) -> Instruction * { 2590 Value *Cond, *TrueVal, *FalseVal; 2591 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2592 m_Value(FalseVal))))) 2593 return nullptr; 2594 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2595 return nullptr; 2596 // While it is really tempting to just create two subtractions and let 2597 // InstCombine fold one of those to 0, it isn't possible to do so 2598 // because of worklist visitation order. So ugly it is. 2599 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2600 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2601 Constant *Zero = Constant::getNullValue(Ty); 2602 SelectInst *NewSel = 2603 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2604 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2605 // Preserve prof metadata if any. 2606 NewSel->copyMetadata(cast<Instruction>(*Select)); 2607 return NewSel; 2608 }; 2609 if (Instruction *NewSel = SinkSubIntoSelect( 2610 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2611 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2612 return Builder->CreateSub(OtherHandOfSelect, 2613 /*OtherHandOfSub=*/Op1); 2614 })) 2615 return NewSel; 2616 if (Instruction *NewSel = SinkSubIntoSelect( 2617 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2618 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2619 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2620 OtherHandOfSelect); 2621 })) 2622 return NewSel; 2623 } 2624 2625 // (X - (X & Y)) --> (X & ~Y) 2626 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2627 (Op1->hasOneUse() || isa<Constant>(Y))) 2628 return BinaryOperator::CreateAnd( 2629 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2630 2631 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2632 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2633 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2634 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2635 // As long as Y is freely invertible, this will be neutral or a win. 2636 // Note: We don't generate the inverse max/min, just create the 'not' of 2637 // it and let other folds do the rest. 2638 if (match(Op0, m_Not(m_Value(X))) && 2639 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2640 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2641 Value *Not = Builder.CreateNot(Op1); 2642 return BinaryOperator::CreateSub(Not, X); 2643 } 2644 if (match(Op1, m_Not(m_Value(X))) && 2645 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2646 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2647 Value *Not = Builder.CreateNot(Op0); 2648 return BinaryOperator::CreateSub(X, Not); 2649 } 2650 2651 // Optimize pointer differences into the same array into a size. Consider: 2652 // &A[10] - &A[0]: we should compile this to "10". 2653 Value *LHSOp, *RHSOp; 2654 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2655 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2656 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2657 I.hasNoUnsignedWrap())) 2658 return replaceInstUsesWith(I, Res); 2659 2660 // trunc(p)-trunc(q) -> trunc(p-q) 2661 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2662 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2663 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2664 /* IsNUW */ false)) 2665 return replaceInstUsesWith(I, Res); 2666 2667 if (match(Op0, m_ZExt(m_PtrToIntSameSize(DL, m_Value(LHSOp)))) && 2668 match(Op1, m_ZExtOrSelf(m_PtrToInt(m_Value(RHSOp))))) { 2669 if (auto *GEP = dyn_cast<GEPOperator>(LHSOp)) { 2670 if (GEP->getPointerOperand() == RHSOp) { 2671 if (GEP->hasNoUnsignedWrap() || GEP->hasNoUnsignedSignedWrap()) { 2672 Value *Offset = EmitGEPOffset(GEP); 2673 Value *Res = GEP->hasNoUnsignedWrap() 2674 ? Builder.CreateZExt( 2675 Offset, I.getType(), "", 2676 /*IsNonNeg=*/GEP->hasNoUnsignedSignedWrap()) 2677 : Builder.CreateSExt(Offset, I.getType()); 2678 return replaceInstUsesWith(I, Res); 2679 } 2680 } 2681 } 2682 } 2683 2684 // Canonicalize a shifty way to code absolute value to the common pattern. 2685 // There are 2 potential commuted variants. 2686 // We're relying on the fact that we only do this transform when the shift has 2687 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2688 // instructions). 2689 Value *A; 2690 const APInt *ShAmt; 2691 Type *Ty = I.getType(); 2692 unsigned BitWidth = Ty->getScalarSizeInBits(); 2693 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2694 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2695 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2696 // B = ashr i32 A, 31 ; smear the sign bit 2697 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2698 // --> (A < 0) ? -A : A 2699 Value *IsNeg = Builder.CreateIsNeg(A); 2700 // Copy the nsw flags from the sub to the negate. 2701 Value *NegA = I.hasNoUnsignedWrap() 2702 ? Constant::getNullValue(A->getType()) 2703 : Builder.CreateNeg(A, "", I.hasNoSignedWrap()); 2704 return SelectInst::Create(IsNeg, NegA, A); 2705 } 2706 2707 // If we are subtracting a low-bit masked subset of some value from an add 2708 // of that same value with no low bits changed, that is clearing some low bits 2709 // of the sum: 2710 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2711 const APInt *AddC, *AndC; 2712 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2713 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2714 unsigned Cttz = AddC->countr_zero(); 2715 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2716 if ((HighMask & *AndC).isZero()) 2717 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2718 } 2719 2720 if (Instruction *V = 2721 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2722 return V; 2723 2724 // X - usub.sat(X, Y) => umin(X, Y) 2725 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2726 m_Value(Y))))) 2727 return replaceInstUsesWith( 2728 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2729 2730 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2731 // TODO: The one-use restriction is not strictly necessary, but it may 2732 // require improving other pattern matching and/or codegen. 2733 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2734 return replaceInstUsesWith( 2735 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2736 2737 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2738 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2739 return replaceInstUsesWith( 2740 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2741 2742 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2743 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2744 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2745 return BinaryOperator::CreateNeg(USub); 2746 } 2747 2748 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2749 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2750 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2751 return BinaryOperator::CreateNeg(USub); 2752 } 2753 2754 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2755 if (match(Op0, m_SpecificInt(BitWidth)) && 2756 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2757 return replaceInstUsesWith( 2758 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2759 {Builder.CreateNot(X)})); 2760 2761 // Reduce multiplies for difference-of-squares by factoring: 2762 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2763 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2764 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2765 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2766 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2767 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2768 OBO1->hasNoSignedWrap() && BitWidth > 2; 2769 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2770 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2771 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2772 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2773 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2774 return replaceInstUsesWith(I, Mul); 2775 } 2776 2777 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2778 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2779 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2780 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2781 Value *Sub = 2782 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2783 Value *Call = 2784 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2785 return replaceInstUsesWith(I, Call); 2786 } 2787 } 2788 2789 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2790 return Res; 2791 2792 return TryToNarrowDeduceFlags(); 2793 } 2794 2795 /// This eliminates floating-point negation in either 'fneg(X)' or 2796 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2797 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2798 // This is limited with one-use because fneg is assumed better for 2799 // reassociation and cheaper in codegen than fmul/fdiv. 2800 // TODO: Should the m_OneUse restriction be removed? 2801 Instruction *FNegOp; 2802 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2803 return nullptr; 2804 2805 Value *X; 2806 Constant *C; 2807 2808 // Fold negation into constant operand. 2809 // -(X * C) --> X * (-C) 2810 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2811 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2812 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2813 // -(X / C) --> X / (-C) 2814 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2815 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2816 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2817 // -(C / X) --> (-C) / X 2818 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2819 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2820 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2821 2822 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2823 // not apply to the fdiv. Everything else propagates from the fneg. 2824 // TODO: We could propagate nsz/ninf from fdiv alone? 2825 FastMathFlags FMF = I.getFastMathFlags(); 2826 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2827 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2828 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2829 return FDiv; 2830 } 2831 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2832 // -(X + C) --> -X + -C --> -C - X 2833 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2834 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2835 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2836 2837 return nullptr; 2838 } 2839 2840 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp, 2841 Instruction &FMFSource) { 2842 Value *X, *Y; 2843 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) { 2844 // Push into RHS which is more likely to simplify (const or another fneg). 2845 // FIXME: It would be better to invert the transform. 2846 return cast<Instruction>(Builder.CreateFMulFMF( 2847 X, Builder.CreateFNegFMF(Y, &FMFSource), &FMFSource)); 2848 } 2849 2850 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) { 2851 return cast<Instruction>(Builder.CreateFDivFMF( 2852 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2853 } 2854 2855 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) { 2856 // Make sure to preserve flags and metadata on the call. 2857 if (II->getIntrinsicID() == Intrinsic::ldexp) { 2858 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags(); 2859 CallInst *New = 2860 Builder.CreateCall(II->getCalledFunction(), 2861 {Builder.CreateFNegFMF(II->getArgOperand(0), FMF), 2862 II->getArgOperand(1)}); 2863 New->setFastMathFlags(FMF); 2864 New->copyMetadata(*II); 2865 return New; 2866 } 2867 } 2868 2869 return nullptr; 2870 } 2871 2872 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2873 Value *Op = I.getOperand(0); 2874 2875 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2876 getSimplifyQuery().getWithInstruction(&I))) 2877 return replaceInstUsesWith(I, V); 2878 2879 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2880 return X; 2881 2882 Value *X, *Y; 2883 2884 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2885 if (I.hasNoSignedZeros() && 2886 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2887 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2888 2889 Value *OneUse; 2890 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2891 return nullptr; 2892 2893 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I)) 2894 return replaceInstUsesWith(I, R); 2895 2896 // Try to eliminate fneg if at least 1 arm of the select is negated. 2897 Value *Cond; 2898 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2899 // Unlike most transforms, this one is not safe to propagate nsz unless 2900 // it is present on the original select. We union the flags from the select 2901 // and fneg and then remove nsz if needed. 2902 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2903 S->copyFastMathFlags(&I); 2904 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2905 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags(); 2906 S->setFastMathFlags(FMF); 2907 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2908 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2909 S->setHasNoSignedZeros(false); 2910 } 2911 }; 2912 // -(Cond ? -P : Y) --> Cond ? P : -Y 2913 Value *P; 2914 if (match(X, m_FNeg(m_Value(P)))) { 2915 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2916 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2917 propagateSelectFMF(NewSel, P == Y); 2918 return NewSel; 2919 } 2920 // -(Cond ? X : -P) --> Cond ? -X : P 2921 if (match(Y, m_FNeg(m_Value(P)))) { 2922 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2923 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2924 propagateSelectFMF(NewSel, P == X); 2925 return NewSel; 2926 } 2927 2928 // -(Cond ? X : C) --> Cond ? -X : -C 2929 // -(Cond ? C : Y) --> Cond ? -C : -Y 2930 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) { 2931 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2932 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2933 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY); 2934 propagateSelectFMF(NewSel, /*CommonOperand=*/true); 2935 return NewSel; 2936 } 2937 } 2938 2939 // fneg (copysign x, y) -> copysign x, (fneg y) 2940 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2941 // The source copysign has an additional value input, so we can't propagate 2942 // flags the copysign doesn't also have. 2943 FastMathFlags FMF = I.getFastMathFlags(); 2944 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2945 Value *NegY = Builder.CreateFNegFMF(Y, FMF); 2946 Value *NewCopySign = Builder.CreateCopySign(X, NegY, FMF); 2947 return replaceInstUsesWith(I, NewCopySign); 2948 } 2949 2950 return nullptr; 2951 } 2952 2953 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2954 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2955 I.getFastMathFlags(), 2956 getSimplifyQuery().getWithInstruction(&I))) 2957 return replaceInstUsesWith(I, V); 2958 2959 if (Instruction *X = foldVectorBinop(I)) 2960 return X; 2961 2962 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2963 return Phi; 2964 2965 // Subtraction from -0.0 is the canonical form of fneg. 2966 // fsub -0.0, X ==> fneg X 2967 // fsub nsz 0.0, X ==> fneg nsz X 2968 // 2969 // FIXME This matcher does not respect FTZ or DAZ yet: 2970 // fsub -0.0, Denorm ==> +-0 2971 // fneg Denorm ==> -Denorm 2972 Value *Op; 2973 if (match(&I, m_FNeg(m_Value(Op)))) 2974 return UnaryOperator::CreateFNegFMF(Op, &I); 2975 2976 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2977 return X; 2978 2979 if (Instruction *R = foldFBinOpOfIntCasts(I)) 2980 return R; 2981 2982 Value *X, *Y; 2983 Constant *C; 2984 2985 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2986 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2987 // Canonicalize to fadd to make analysis easier. 2988 // This can also help codegen because fadd is commutative. 2989 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2990 // killed later. We still limit that particular transform with 'hasOneUse' 2991 // because an fneg is assumed better/cheaper than a generic fsub. 2992 if (I.hasNoSignedZeros() || 2993 cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) { 2994 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2995 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2996 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2997 } 2998 } 2999 3000 // (-X) - Op1 --> -(X + Op1) 3001 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 3002 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 3003 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 3004 return UnaryOperator::CreateFNegFMF(FAdd, &I); 3005 } 3006 3007 if (isa<Constant>(Op0)) 3008 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 3009 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 3010 return NV; 3011 3012 // X - C --> X + (-C) 3013 // But don't transform constant expressions because there's an inverse fold 3014 // for X + (-Y) --> X - Y. 3015 if (match(Op1, m_ImmConstant(C))) 3016 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 3017 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 3018 3019 // X - (-Y) --> X + Y 3020 if (match(Op1, m_FNeg(m_Value(Y)))) 3021 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 3022 3023 // Similar to above, but look through a cast of the negated value: 3024 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 3025 Type *Ty = I.getType(); 3026 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 3027 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 3028 3029 // X - (fpext(-Y)) --> X + fpext(Y) 3030 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 3031 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 3032 3033 // Similar to above, but look through fmul/fdiv of the negated value: 3034 // Op0 - (-X * Y) --> Op0 + (X * Y) 3035 // Op0 - (Y * -X) --> Op0 + (X * Y) 3036 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 3037 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 3038 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 3039 } 3040 // Op0 - (-X / Y) --> Op0 + (X / Y) 3041 // Op0 - (X / -Y) --> Op0 + (X / Y) 3042 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 3043 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 3044 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 3045 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 3046 } 3047 3048 // Handle special cases for FSub with selects feeding the operation 3049 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 3050 return replaceInstUsesWith(I, V); 3051 3052 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 3053 // (Y - X) - Y --> -X 3054 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 3055 return UnaryOperator::CreateFNegFMF(X, &I); 3056 3057 // Y - (X + Y) --> -X 3058 // Y - (Y + X) --> -X 3059 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 3060 return UnaryOperator::CreateFNegFMF(X, &I); 3061 3062 // (X * C) - X --> X * (C - 1.0) 3063 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 3064 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 3065 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 3066 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 3067 } 3068 // X - (X * C) --> X * (1.0 - C) 3069 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 3070 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 3071 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 3072 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 3073 } 3074 3075 // Reassociate fsub/fadd sequences to create more fadd instructions and 3076 // reduce dependency chains: 3077 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 3078 Value *Z; 3079 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 3080 m_Value(Z))))) { 3081 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 3082 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 3083 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 3084 } 3085 3086 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 3087 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 3088 m_Value(Vec))); 3089 }; 3090 Value *A0, *A1, *V0, *V1; 3091 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 3092 V0->getType() == V1->getType()) { 3093 // Difference of sums is sum of differences: 3094 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 3095 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 3096 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 3097 {Sub->getType()}, {A0, Sub}, &I); 3098 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 3099 } 3100 3101 if (Instruction *F = factorizeFAddFSub(I, Builder)) 3102 return F; 3103 3104 // TODO: This performs reassociative folds for FP ops. Some fraction of the 3105 // functionality has been subsumed by simple pattern matching here and in 3106 // InstSimplify. We should let a dedicated reassociation pass handle more 3107 // complex pattern matching and remove this from InstCombine. 3108 if (Value *V = FAddCombine(Builder).simplify(&I)) 3109 return replaceInstUsesWith(I, V); 3110 3111 // (X - Y) - Op1 --> X - (Y + Op1) 3112 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 3113 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 3114 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 3115 } 3116 } 3117 3118 return nullptr; 3119 } 3120