1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
22 //
23 // to
24 //
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/PriorityWorklist.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/ADT/Twine.h"
53 #include "llvm/Analysis/BlockFrequencyInfo.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Transforms/Scalar.h"
85 #include "llvm/Transforms/Utils/Cloning.h"
86 #include "llvm/Transforms/Utils/LoopSimplify.h"
87 #include "llvm/Transforms/Utils/LoopUtils.h"
88 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
89 #include "llvm/Transforms/Utils/ValueMapper.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <iterator>
93 #include <limits>
94 #include <optional>
95 #include <utility>
96 #include <vector>
97
98 using namespace llvm;
99 using namespace llvm::PatternMatch;
100
101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
102 cl::init(64));
103
104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
105 cl::init(false));
106
107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
108 cl::init(false));
109
110 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
111 cl::Hidden, cl::init(false));
112
113 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
114 cl::Hidden, cl::init(10));
115
116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
117 cl::Hidden, cl::init(true));
118
119 static cl::opt<bool> AllowNarrowLatchCondition(
120 "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
121 cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
122 "with narrow latch condition."));
123
124 static const char *ClonedLoopTag = "irce.loop.clone";
125
126 #define DEBUG_TYPE "irce"
127
128 namespace {
129
130 /// An inductive range check is conditional branch in a loop with
131 ///
132 /// 1. a very cold successor (i.e. the branch jumps to that successor very
133 /// rarely)
134 ///
135 /// and
136 ///
137 /// 2. a condition that is provably true for some contiguous range of values
138 /// taken by the containing loop's induction variable.
139 ///
140 class InductiveRangeCheck {
141
142 const SCEV *Begin = nullptr;
143 const SCEV *Step = nullptr;
144 const SCEV *End = nullptr;
145 Use *CheckUse = nullptr;
146
147 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
148 Value *&Index, Value *&Length,
149 bool &IsSigned);
150
151 static void
152 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
153 SmallVectorImpl<InductiveRangeCheck> &Checks,
154 SmallPtrSetImpl<Value *> &Visited);
155
156 public:
getBegin() const157 const SCEV *getBegin() const { return Begin; }
getStep() const158 const SCEV *getStep() const { return Step; }
getEnd() const159 const SCEV *getEnd() const { return End; }
160
print(raw_ostream & OS) const161 void print(raw_ostream &OS) const {
162 OS << "InductiveRangeCheck:\n";
163 OS << " Begin: ";
164 Begin->print(OS);
165 OS << " Step: ";
166 Step->print(OS);
167 OS << " End: ";
168 End->print(OS);
169 OS << "\n CheckUse: ";
170 getCheckUse()->getUser()->print(OS);
171 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
172 }
173
174 LLVM_DUMP_METHOD
dump()175 void dump() {
176 print(dbgs());
177 }
178
getCheckUse() const179 Use *getCheckUse() const { return CheckUse; }
180
181 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
182 /// R.getEnd() le R.getBegin(), then R denotes the empty range.
183
184 class Range {
185 const SCEV *Begin;
186 const SCEV *End;
187
188 public:
Range(const SCEV * Begin,const SCEV * End)189 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
190 assert(Begin->getType() == End->getType() && "ill-typed range!");
191 }
192
getType() const193 Type *getType() const { return Begin->getType(); }
getBegin() const194 const SCEV *getBegin() const { return Begin; }
getEnd() const195 const SCEV *getEnd() const { return End; }
isEmpty(ScalarEvolution & SE,bool IsSigned) const196 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
197 if (Begin == End)
198 return true;
199 if (IsSigned)
200 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
201 else
202 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
203 }
204 };
205
206 /// This is the value the condition of the branch needs to evaluate to for the
207 /// branch to take the hot successor (see (1) above).
getPassingDirection()208 bool getPassingDirection() { return true; }
209
210 /// Computes a range for the induction variable (IndVar) in which the range
211 /// check is redundant and can be constant-folded away. The induction
212 /// variable is not required to be the canonical {0,+,1} induction variable.
213 std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
214 const SCEVAddRecExpr *IndVar,
215 bool IsLatchSigned) const;
216
217 /// Parse out a set of inductive range checks from \p BI and append them to \p
218 /// Checks.
219 ///
220 /// NB! There may be conditions feeding into \p BI that aren't inductive range
221 /// checks, and hence don't end up in \p Checks.
222 static void
223 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
224 BranchProbabilityInfo *BPI,
225 SmallVectorImpl<InductiveRangeCheck> &Checks);
226 };
227
228 struct LoopStructure;
229
230 class InductiveRangeCheckElimination {
231 ScalarEvolution &SE;
232 BranchProbabilityInfo *BPI;
233 DominatorTree &DT;
234 LoopInfo &LI;
235
236 using GetBFIFunc =
237 std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
238 GetBFIFunc GetBFI;
239
240 // Returns true if it is profitable to do a transform basing on estimation of
241 // number of iterations.
242 bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
243
244 public:
InductiveRangeCheckElimination(ScalarEvolution & SE,BranchProbabilityInfo * BPI,DominatorTree & DT,LoopInfo & LI,GetBFIFunc GetBFI=std::nullopt)245 InductiveRangeCheckElimination(ScalarEvolution &SE,
246 BranchProbabilityInfo *BPI, DominatorTree &DT,
247 LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
248 : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
249
250 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
251 };
252
253 class IRCELegacyPass : public FunctionPass {
254 public:
255 static char ID;
256
IRCELegacyPass()257 IRCELegacyPass() : FunctionPass(ID) {
258 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
259 }
260
getAnalysisUsage(AnalysisUsage & AU) const261 void getAnalysisUsage(AnalysisUsage &AU) const override {
262 AU.addRequired<BranchProbabilityInfoWrapperPass>();
263 AU.addRequired<DominatorTreeWrapperPass>();
264 AU.addPreserved<DominatorTreeWrapperPass>();
265 AU.addRequired<LoopInfoWrapperPass>();
266 AU.addPreserved<LoopInfoWrapperPass>();
267 AU.addRequired<ScalarEvolutionWrapperPass>();
268 AU.addPreserved<ScalarEvolutionWrapperPass>();
269 }
270
271 bool runOnFunction(Function &F) override;
272 };
273
274 } // end anonymous namespace
275
276 char IRCELegacyPass::ID = 0;
277
278 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
279 "Inductive range check elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)280 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
284 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
285 false, false)
286
287 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
288 /// be interpreted as a range check, return false and set `Index` and `Length`
289 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
290 /// set `Length` to the upper limit `Index` is being range checked.
291 bool
292 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
293 ScalarEvolution &SE, Value *&Index,
294 Value *&Length, bool &IsSigned) {
295 auto IsLoopInvariant = [&SE, L](Value *V) {
296 return SE.isLoopInvariant(SE.getSCEV(V), L);
297 };
298
299 ICmpInst::Predicate Pred = ICI->getPredicate();
300 Value *LHS = ICI->getOperand(0);
301 Value *RHS = ICI->getOperand(1);
302
303 switch (Pred) {
304 default:
305 return false;
306
307 case ICmpInst::ICMP_SLE:
308 std::swap(LHS, RHS);
309 [[fallthrough]];
310 case ICmpInst::ICMP_SGE:
311 IsSigned = true;
312 if (match(RHS, m_ConstantInt<0>())) {
313 Index = LHS;
314 return true; // Lower.
315 }
316 return false;
317
318 case ICmpInst::ICMP_SLT:
319 std::swap(LHS, RHS);
320 [[fallthrough]];
321 case ICmpInst::ICMP_SGT:
322 IsSigned = true;
323 if (match(RHS, m_ConstantInt<-1>())) {
324 Index = LHS;
325 return true; // Lower.
326 }
327
328 if (IsLoopInvariant(LHS)) {
329 Index = RHS;
330 Length = LHS;
331 return true; // Upper.
332 }
333 return false;
334
335 case ICmpInst::ICMP_ULT:
336 std::swap(LHS, RHS);
337 [[fallthrough]];
338 case ICmpInst::ICMP_UGT:
339 IsSigned = false;
340 if (IsLoopInvariant(LHS)) {
341 Index = RHS;
342 Length = LHS;
343 return true; // Both lower and upper.
344 }
345 return false;
346 }
347
348 llvm_unreachable("default clause returns!");
349 }
350
extractRangeChecksFromCond(Loop * L,ScalarEvolution & SE,Use & ConditionUse,SmallVectorImpl<InductiveRangeCheck> & Checks,SmallPtrSetImpl<Value * > & Visited)351 void InductiveRangeCheck::extractRangeChecksFromCond(
352 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
353 SmallVectorImpl<InductiveRangeCheck> &Checks,
354 SmallPtrSetImpl<Value *> &Visited) {
355 Value *Condition = ConditionUse.get();
356 if (!Visited.insert(Condition).second)
357 return;
358
359 // TODO: Do the same for OR, XOR, NOT etc?
360 if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
361 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
362 Checks, Visited);
363 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
364 Checks, Visited);
365 return;
366 }
367
368 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
369 if (!ICI)
370 return;
371
372 Value *Length = nullptr, *Index;
373 bool IsSigned;
374 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
375 return;
376
377 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
378 bool IsAffineIndex =
379 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
380
381 if (!IsAffineIndex)
382 return;
383
384 const SCEV *End = nullptr;
385 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
386 // We can potentially do much better here.
387 if (Length)
388 End = SE.getSCEV(Length);
389 else {
390 // So far we can only reach this point for Signed range check. This may
391 // change in future. In this case we will need to pick Unsigned max for the
392 // unsigned range check.
393 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
394 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
395 End = SIntMax;
396 }
397
398 InductiveRangeCheck IRC;
399 IRC.End = End;
400 IRC.Begin = IndexAddRec->getStart();
401 IRC.Step = IndexAddRec->getStepRecurrence(SE);
402 IRC.CheckUse = &ConditionUse;
403 Checks.push_back(IRC);
404 }
405
extractRangeChecksFromBranch(BranchInst * BI,Loop * L,ScalarEvolution & SE,BranchProbabilityInfo * BPI,SmallVectorImpl<InductiveRangeCheck> & Checks)406 void InductiveRangeCheck::extractRangeChecksFromBranch(
407 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
408 SmallVectorImpl<InductiveRangeCheck> &Checks) {
409 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
410 return;
411
412 BranchProbability LikelyTaken(15, 16);
413
414 if (!SkipProfitabilityChecks && BPI &&
415 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
416 return;
417
418 SmallPtrSet<Value *, 8> Visited;
419 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
420 Checks, Visited);
421 }
422
423 // Add metadata to the loop L to disable loop optimizations. Callers need to
424 // confirm that optimizing loop L is not beneficial.
DisableAllLoopOptsOnLoop(Loop & L)425 static void DisableAllLoopOptsOnLoop(Loop &L) {
426 // We do not care about any existing loopID related metadata for L, since we
427 // are setting all loop metadata to false.
428 LLVMContext &Context = L.getHeader()->getContext();
429 // Reserve first location for self reference to the LoopID metadata node.
430 MDNode *Dummy = MDNode::get(Context, {});
431 MDNode *DisableUnroll = MDNode::get(
432 Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
433 Metadata *FalseVal =
434 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
435 MDNode *DisableVectorize = MDNode::get(
436 Context,
437 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
438 MDNode *DisableLICMVersioning = MDNode::get(
439 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
440 MDNode *DisableDistribution= MDNode::get(
441 Context,
442 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
443 MDNode *NewLoopID =
444 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
445 DisableLICMVersioning, DisableDistribution});
446 // Set operand 0 to refer to the loop id itself.
447 NewLoopID->replaceOperandWith(0, NewLoopID);
448 L.setLoopID(NewLoopID);
449 }
450
451 namespace {
452
453 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
454 // except that it is more lightweight and can track the state of a loop through
455 // changing and potentially invalid IR. This structure also formalizes the
456 // kinds of loops we can deal with -- ones that have a single latch that is also
457 // an exiting block *and* have a canonical induction variable.
458 struct LoopStructure {
459 const char *Tag = "";
460
461 BasicBlock *Header = nullptr;
462 BasicBlock *Latch = nullptr;
463
464 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
465 // successor is `LatchExit', the exit block of the loop.
466 BranchInst *LatchBr = nullptr;
467 BasicBlock *LatchExit = nullptr;
468 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
469
470 // The loop represented by this instance of LoopStructure is semantically
471 // equivalent to:
472 //
473 // intN_ty inc = IndVarIncreasing ? 1 : -1;
474 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
475 //
476 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
477 // ... body ...
478
479 Value *IndVarBase = nullptr;
480 Value *IndVarStart = nullptr;
481 Value *IndVarStep = nullptr;
482 Value *LoopExitAt = nullptr;
483 bool IndVarIncreasing = false;
484 bool IsSignedPredicate = true;
485
486 LoopStructure() = default;
487
map__anon1c7c69790311::LoopStructure488 template <typename M> LoopStructure map(M Map) const {
489 LoopStructure Result;
490 Result.Tag = Tag;
491 Result.Header = cast<BasicBlock>(Map(Header));
492 Result.Latch = cast<BasicBlock>(Map(Latch));
493 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
494 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
495 Result.LatchBrExitIdx = LatchBrExitIdx;
496 Result.IndVarBase = Map(IndVarBase);
497 Result.IndVarStart = Map(IndVarStart);
498 Result.IndVarStep = Map(IndVarStep);
499 Result.LoopExitAt = Map(LoopExitAt);
500 Result.IndVarIncreasing = IndVarIncreasing;
501 Result.IsSignedPredicate = IsSignedPredicate;
502 return Result;
503 }
504
505 static std::optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
506 Loop &, const char *&);
507 };
508
509 /// This class is used to constrain loops to run within a given iteration space.
510 /// The algorithm this class implements is given a Loop and a range [Begin,
511 /// End). The algorithm then tries to break out a "main loop" out of the loop
512 /// it is given in a way that the "main loop" runs with the induction variable
513 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
514 /// loops to run any remaining iterations. The pre loop runs any iterations in
515 /// which the induction variable is < Begin, and the post loop runs any
516 /// iterations in which the induction variable is >= End.
517 class LoopConstrainer {
518 // The representation of a clone of the original loop we started out with.
519 struct ClonedLoop {
520 // The cloned blocks
521 std::vector<BasicBlock *> Blocks;
522
523 // `Map` maps values in the clonee into values in the cloned version
524 ValueToValueMapTy Map;
525
526 // An instance of `LoopStructure` for the cloned loop
527 LoopStructure Structure;
528 };
529
530 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
531 // more details on what these fields mean.
532 struct RewrittenRangeInfo {
533 BasicBlock *PseudoExit = nullptr;
534 BasicBlock *ExitSelector = nullptr;
535 std::vector<PHINode *> PHIValuesAtPseudoExit;
536 PHINode *IndVarEnd = nullptr;
537
538 RewrittenRangeInfo() = default;
539 };
540
541 // Calculated subranges we restrict the iteration space of the main loop to.
542 // See the implementation of `calculateSubRanges' for more details on how
543 // these fields are computed. `LowLimit` is std::nullopt if there is no
544 // restriction on low end of the restricted iteration space of the main loop.
545 // `HighLimit` is std::nullopt if there is no restriction on high end of the
546 // restricted iteration space of the main loop.
547
548 struct SubRanges {
549 std::optional<const SCEV *> LowLimit;
550 std::optional<const SCEV *> HighLimit;
551 };
552
553 // Compute a safe set of limits for the main loop to run in -- effectively the
554 // intersection of `Range' and the iteration space of the original loop.
555 // Return std::nullopt if unable to compute the set of subranges.
556 std::optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
557
558 // Clone `OriginalLoop' and return the result in CLResult. The IR after
559 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
560 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
561 // but there is no such edge.
562 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
563
564 // Create the appropriate loop structure needed to describe a cloned copy of
565 // `Original`. The clone is described by `VM`.
566 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
567 ValueToValueMapTy &VM, bool IsSubloop);
568
569 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
570 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
571 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
572 // `OriginalHeaderCount'.
573 //
574 // If there are iterations left to execute, control is made to jump to
575 // `ContinuationBlock', otherwise they take the normal loop exit. The
576 // returned `RewrittenRangeInfo' object is populated as follows:
577 //
578 // .PseudoExit is a basic block that unconditionally branches to
579 // `ContinuationBlock'.
580 //
581 // .ExitSelector is a basic block that decides, on exit from the loop,
582 // whether to branch to the "true" exit or to `PseudoExit'.
583 //
584 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
585 // for each PHINode in the loop header on taking the pseudo exit.
586 //
587 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
588 // preheader because it is made to branch to the loop header only
589 // conditionally.
590 RewrittenRangeInfo
591 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
592 Value *ExitLoopAt,
593 BasicBlock *ContinuationBlock) const;
594
595 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
596 // function creates a new preheader for `LS' and returns it.
597 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
598 const char *Tag) const;
599
600 // `ContinuationBlockAndPreheader' was the continuation block for some call to
601 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
602 // This function rewrites the PHI nodes in `LS.Header' to start with the
603 // correct value.
604 void rewriteIncomingValuesForPHIs(
605 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
606 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
607
608 // Even though we do not preserve any passes at this time, we at least need to
609 // keep the parent loop structure consistent. The `LPPassManager' seems to
610 // verify this after running a loop pass. This function adds the list of
611 // blocks denoted by BBs to this loops parent loop if required.
612 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
613
614 // Some global state.
615 Function &F;
616 LLVMContext &Ctx;
617 ScalarEvolution &SE;
618 DominatorTree &DT;
619 LoopInfo &LI;
620 function_ref<void(Loop *, bool)> LPMAddNewLoop;
621
622 // Information about the original loop we started out with.
623 Loop &OriginalLoop;
624
625 const SCEV *LatchTakenCount = nullptr;
626 BasicBlock *OriginalPreheader = nullptr;
627
628 // The preheader of the main loop. This may or may not be different from
629 // `OriginalPreheader'.
630 BasicBlock *MainLoopPreheader = nullptr;
631
632 // The range we need to run the main loop in.
633 InductiveRangeCheck::Range Range;
634
635 // The structure of the main loop (see comment at the beginning of this class
636 // for a definition)
637 LoopStructure MainLoopStructure;
638
639 public:
LoopConstrainer(Loop & L,LoopInfo & LI,function_ref<void (Loop *,bool)> LPMAddNewLoop,const LoopStructure & LS,ScalarEvolution & SE,DominatorTree & DT,InductiveRangeCheck::Range R)640 LoopConstrainer(Loop &L, LoopInfo &LI,
641 function_ref<void(Loop *, bool)> LPMAddNewLoop,
642 const LoopStructure &LS, ScalarEvolution &SE,
643 DominatorTree &DT, InductiveRangeCheck::Range R)
644 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
645 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
646 Range(R), MainLoopStructure(LS) {}
647
648 // Entry point for the algorithm. Returns true on success.
649 bool run();
650 };
651
652 } // end anonymous namespace
653
654 /// Given a loop with an deccreasing induction variable, is it possible to
655 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeDecreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)656 static bool isSafeDecreasingBound(const SCEV *Start,
657 const SCEV *BoundSCEV, const SCEV *Step,
658 ICmpInst::Predicate Pred,
659 unsigned LatchBrExitIdx,
660 Loop *L, ScalarEvolution &SE) {
661 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
662 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
663 return false;
664
665 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
666 return false;
667
668 assert(SE.isKnownNegative(Step) && "expecting negative step");
669
670 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
671 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
672 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
673 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
674 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
675 << "\n");
676 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
677
678 bool IsSigned = ICmpInst::isSigned(Pred);
679 // The predicate that we need to check that the induction variable lies
680 // within bounds.
681 ICmpInst::Predicate BoundPred =
682 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
683
684 if (LatchBrExitIdx == 1)
685 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
686
687 assert(LatchBrExitIdx == 0 &&
688 "LatchBrExitIdx should be either 0 or 1");
689
690 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
691 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
692 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
693 APInt::getMinValue(BitWidth);
694 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
695
696 const SCEV *MinusOne =
697 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
698
699 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
700 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
701
702 }
703
704 /// Given a loop with an increasing induction variable, is it possible to
705 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeIncreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)706 static bool isSafeIncreasingBound(const SCEV *Start,
707 const SCEV *BoundSCEV, const SCEV *Step,
708 ICmpInst::Predicate Pred,
709 unsigned LatchBrExitIdx,
710 Loop *L, ScalarEvolution &SE) {
711 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
712 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
713 return false;
714
715 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
716 return false;
717
718 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
719 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
720 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
721 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
722 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
723 << "\n");
724 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
725
726 bool IsSigned = ICmpInst::isSigned(Pred);
727 // The predicate that we need to check that the induction variable lies
728 // within bounds.
729 ICmpInst::Predicate BoundPred =
730 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
731
732 if (LatchBrExitIdx == 1)
733 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
734
735 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
736
737 const SCEV *StepMinusOne =
738 SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
739 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
740 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
741 APInt::getMaxValue(BitWidth);
742 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
743
744 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
745 SE.getAddExpr(BoundSCEV, Step)) &&
746 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
747 }
748
749 std::optional<LoopStructure>
parseLoopStructure(ScalarEvolution & SE,Loop & L,const char * & FailureReason)750 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
751 const char *&FailureReason) {
752 if (!L.isLoopSimplifyForm()) {
753 FailureReason = "loop not in LoopSimplify form";
754 return std::nullopt;
755 }
756
757 BasicBlock *Latch = L.getLoopLatch();
758 assert(Latch && "Simplified loops only have one latch!");
759
760 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
761 FailureReason = "loop has already been cloned";
762 return std::nullopt;
763 }
764
765 if (!L.isLoopExiting(Latch)) {
766 FailureReason = "no loop latch";
767 return std::nullopt;
768 }
769
770 BasicBlock *Header = L.getHeader();
771 BasicBlock *Preheader = L.getLoopPreheader();
772 if (!Preheader) {
773 FailureReason = "no preheader";
774 return std::nullopt;
775 }
776
777 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
778 if (!LatchBr || LatchBr->isUnconditional()) {
779 FailureReason = "latch terminator not conditional branch";
780 return std::nullopt;
781 }
782
783 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
784
785 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
786 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
787 FailureReason = "latch terminator branch not conditional on integral icmp";
788 return std::nullopt;
789 }
790
791 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
792 if (isa<SCEVCouldNotCompute>(LatchCount)) {
793 FailureReason = "could not compute latch count";
794 return std::nullopt;
795 }
796
797 ICmpInst::Predicate Pred = ICI->getPredicate();
798 Value *LeftValue = ICI->getOperand(0);
799 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
800 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
801
802 Value *RightValue = ICI->getOperand(1);
803 const SCEV *RightSCEV = SE.getSCEV(RightValue);
804
805 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
806 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
807 if (isa<SCEVAddRecExpr>(RightSCEV)) {
808 std::swap(LeftSCEV, RightSCEV);
809 std::swap(LeftValue, RightValue);
810 Pred = ICmpInst::getSwappedPredicate(Pred);
811 } else {
812 FailureReason = "no add recurrences in the icmp";
813 return std::nullopt;
814 }
815 }
816
817 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
818 if (AR->getNoWrapFlags(SCEV::FlagNSW))
819 return true;
820
821 IntegerType *Ty = cast<IntegerType>(AR->getType());
822 IntegerType *WideTy =
823 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
824
825 const SCEVAddRecExpr *ExtendAfterOp =
826 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
827 if (ExtendAfterOp) {
828 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
829 const SCEV *ExtendedStep =
830 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
831
832 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
833 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
834
835 if (NoSignedWrap)
836 return true;
837 }
838
839 // We may have proved this when computing the sign extension above.
840 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
841 };
842
843 // `ICI` is interpreted as taking the backedge if the *next* value of the
844 // induction variable satisfies some constraint.
845
846 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
847 if (IndVarBase->getLoop() != &L) {
848 FailureReason = "LHS in cmp is not an AddRec for this loop";
849 return std::nullopt;
850 }
851 if (!IndVarBase->isAffine()) {
852 FailureReason = "LHS in icmp not induction variable";
853 return std::nullopt;
854 }
855 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
856 if (!isa<SCEVConstant>(StepRec)) {
857 FailureReason = "LHS in icmp not induction variable";
858 return std::nullopt;
859 }
860 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
861
862 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
863 FailureReason = "LHS in icmp needs nsw for equality predicates";
864 return std::nullopt;
865 }
866
867 assert(!StepCI->isZero() && "Zero step?");
868 bool IsIncreasing = !StepCI->isNegative();
869 bool IsSignedPredicate;
870 const SCEV *StartNext = IndVarBase->getStart();
871 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
872 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
873 const SCEV *Step = SE.getSCEV(StepCI);
874
875 const SCEV *FixedRightSCEV = nullptr;
876
877 // If RightValue resides within loop (but still being loop invariant),
878 // regenerate it as preheader.
879 if (auto *I = dyn_cast<Instruction>(RightValue))
880 if (L.contains(I->getParent()))
881 FixedRightSCEV = RightSCEV;
882
883 if (IsIncreasing) {
884 bool DecreasedRightValueByOne = false;
885 if (StepCI->isOne()) {
886 // Try to turn eq/ne predicates to those we can work with.
887 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
888 // while (++i != len) { while (++i < len) {
889 // ... ---> ...
890 // } }
891 // If both parts are known non-negative, it is profitable to use
892 // unsigned comparison in increasing loop. This allows us to make the
893 // comparison check against "RightSCEV + 1" more optimistic.
894 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
895 isKnownNonNegativeInLoop(RightSCEV, &L, SE))
896 Pred = ICmpInst::ICMP_ULT;
897 else
898 Pred = ICmpInst::ICMP_SLT;
899 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
900 // while (true) { while (true) {
901 // if (++i == len) ---> if (++i > len - 1)
902 // break; break;
903 // ... ...
904 // } }
905 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
906 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
907 Pred = ICmpInst::ICMP_UGT;
908 RightSCEV = SE.getMinusSCEV(RightSCEV,
909 SE.getOne(RightSCEV->getType()));
910 DecreasedRightValueByOne = true;
911 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
912 Pred = ICmpInst::ICMP_SGT;
913 RightSCEV = SE.getMinusSCEV(RightSCEV,
914 SE.getOne(RightSCEV->getType()));
915 DecreasedRightValueByOne = true;
916 }
917 }
918 }
919
920 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
921 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
922 bool FoundExpectedPred =
923 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
924
925 if (!FoundExpectedPred) {
926 FailureReason = "expected icmp slt semantically, found something else";
927 return std::nullopt;
928 }
929
930 IsSignedPredicate = ICmpInst::isSigned(Pred);
931 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
932 FailureReason = "unsigned latch conditions are explicitly prohibited";
933 return std::nullopt;
934 }
935
936 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
937 LatchBrExitIdx, &L, SE)) {
938 FailureReason = "Unsafe loop bounds";
939 return std::nullopt;
940 }
941 if (LatchBrExitIdx == 0) {
942 // We need to increase the right value unless we have already decreased
943 // it virtually when we replaced EQ with SGT.
944 if (!DecreasedRightValueByOne)
945 FixedRightSCEV =
946 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
947 } else {
948 assert(!DecreasedRightValueByOne &&
949 "Right value can be decreased only for LatchBrExitIdx == 0!");
950 }
951 } else {
952 bool IncreasedRightValueByOne = false;
953 if (StepCI->isMinusOne()) {
954 // Try to turn eq/ne predicates to those we can work with.
955 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
956 // while (--i != len) { while (--i > len) {
957 // ... ---> ...
958 // } }
959 // We intentionally don't turn the predicate into UGT even if we know
960 // that both operands are non-negative, because it will only pessimize
961 // our check against "RightSCEV - 1".
962 Pred = ICmpInst::ICMP_SGT;
963 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
964 // while (true) { while (true) {
965 // if (--i == len) ---> if (--i < len + 1)
966 // break; break;
967 // ... ...
968 // } }
969 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
970 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
971 Pred = ICmpInst::ICMP_ULT;
972 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
973 IncreasedRightValueByOne = true;
974 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
975 Pred = ICmpInst::ICMP_SLT;
976 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
977 IncreasedRightValueByOne = true;
978 }
979 }
980 }
981
982 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
983 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
984
985 bool FoundExpectedPred =
986 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
987
988 if (!FoundExpectedPred) {
989 FailureReason = "expected icmp sgt semantically, found something else";
990 return std::nullopt;
991 }
992
993 IsSignedPredicate =
994 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
995
996 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
997 FailureReason = "unsigned latch conditions are explicitly prohibited";
998 return std::nullopt;
999 }
1000
1001 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1002 LatchBrExitIdx, &L, SE)) {
1003 FailureReason = "Unsafe bounds";
1004 return std::nullopt;
1005 }
1006
1007 if (LatchBrExitIdx == 0) {
1008 // We need to decrease the right value unless we have already increased
1009 // it virtually when we replaced EQ with SLT.
1010 if (!IncreasedRightValueByOne)
1011 FixedRightSCEV =
1012 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1013 } else {
1014 assert(!IncreasedRightValueByOne &&
1015 "Right value can be increased only for LatchBrExitIdx == 0!");
1016 }
1017 }
1018 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1019
1020 assert(SE.getLoopDisposition(LatchCount, &L) ==
1021 ScalarEvolution::LoopInvariant &&
1022 "loop variant exit count doesn't make sense!");
1023
1024 assert(!L.contains(LatchExit) && "expected an exit block!");
1025 const DataLayout &DL = Preheader->getModule()->getDataLayout();
1026 SCEVExpander Expander(SE, DL, "irce");
1027 Instruction *Ins = Preheader->getTerminator();
1028
1029 if (FixedRightSCEV)
1030 RightValue =
1031 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1032
1033 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1034 IndVarStartV->setName("indvar.start");
1035
1036 LoopStructure Result;
1037
1038 Result.Tag = "main";
1039 Result.Header = Header;
1040 Result.Latch = Latch;
1041 Result.LatchBr = LatchBr;
1042 Result.LatchExit = LatchExit;
1043 Result.LatchBrExitIdx = LatchBrExitIdx;
1044 Result.IndVarStart = IndVarStartV;
1045 Result.IndVarStep = StepCI;
1046 Result.IndVarBase = LeftValue;
1047 Result.IndVarIncreasing = IsIncreasing;
1048 Result.LoopExitAt = RightValue;
1049 Result.IsSignedPredicate = IsSignedPredicate;
1050
1051 FailureReason = nullptr;
1052
1053 return Result;
1054 }
1055
1056 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1057 /// signed or unsigned extension of \p S to type \p Ty.
NoopOrExtend(const SCEV * S,Type * Ty,ScalarEvolution & SE,bool Signed)1058 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1059 bool Signed) {
1060 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1061 }
1062
1063 std::optional<LoopConstrainer::SubRanges>
calculateSubRanges(bool IsSignedPredicate) const1064 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1065 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1066
1067 auto *RTy = cast<IntegerType>(Range.getType());
1068
1069 // We only support wide range checks and narrow latches.
1070 if (!AllowNarrowLatchCondition && RTy != Ty)
1071 return std::nullopt;
1072 if (RTy->getBitWidth() < Ty->getBitWidth())
1073 return std::nullopt;
1074
1075 LoopConstrainer::SubRanges Result;
1076
1077 // I think we can be more aggressive here and make this nuw / nsw if the
1078 // addition that feeds into the icmp for the latch's terminating branch is nuw
1079 // / nsw. In any case, a wrapping 2's complement addition is safe.
1080 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1081 RTy, SE, IsSignedPredicate);
1082 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1083 SE, IsSignedPredicate);
1084
1085 bool Increasing = MainLoopStructure.IndVarIncreasing;
1086
1087 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1088 // [Smallest, GreatestSeen] is the range of values the induction variable
1089 // takes.
1090
1091 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1092
1093 const SCEV *One = SE.getOne(RTy);
1094 if (Increasing) {
1095 Smallest = Start;
1096 Greatest = End;
1097 // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1098 GreatestSeen = SE.getMinusSCEV(End, One);
1099 } else {
1100 // These two computations may sign-overflow. Here is why that is okay:
1101 //
1102 // We know that the induction variable does not sign-overflow on any
1103 // iteration except the last one, and it starts at `Start` and ends at
1104 // `End`, decrementing by one every time.
1105 //
1106 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1107 // induction variable is decreasing we know that that the smallest value
1108 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1109 //
1110 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
1111 // that case, `Clamp` will always return `Smallest` and
1112 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1113 // will be an empty range. Returning an empty range is always safe.
1114
1115 Smallest = SE.getAddExpr(End, One);
1116 Greatest = SE.getAddExpr(Start, One);
1117 GreatestSeen = Start;
1118 }
1119
1120 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1121 return IsSignedPredicate
1122 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1123 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1124 };
1125
1126 // In some cases we can prove that we don't need a pre or post loop.
1127 ICmpInst::Predicate PredLE =
1128 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1129 ICmpInst::Predicate PredLT =
1130 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1131
1132 bool ProvablyNoPreloop =
1133 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1134 if (!ProvablyNoPreloop)
1135 Result.LowLimit = Clamp(Range.getBegin());
1136
1137 bool ProvablyNoPostLoop =
1138 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1139 if (!ProvablyNoPostLoop)
1140 Result.HighLimit = Clamp(Range.getEnd());
1141
1142 return Result;
1143 }
1144
cloneLoop(LoopConstrainer::ClonedLoop & Result,const char * Tag) const1145 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1146 const char *Tag) const {
1147 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1148 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1149 Result.Blocks.push_back(Clone);
1150 Result.Map[BB] = Clone;
1151 }
1152
1153 auto GetClonedValue = [&Result](Value *V) {
1154 assert(V && "null values not in domain!");
1155 auto It = Result.Map.find(V);
1156 if (It == Result.Map.end())
1157 return V;
1158 return static_cast<Value *>(It->second);
1159 };
1160
1161 auto *ClonedLatch =
1162 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1163 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1164 MDNode::get(Ctx, {}));
1165
1166 Result.Structure = MainLoopStructure.map(GetClonedValue);
1167 Result.Structure.Tag = Tag;
1168
1169 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1170 BasicBlock *ClonedBB = Result.Blocks[i];
1171 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1172
1173 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1174
1175 for (Instruction &I : *ClonedBB)
1176 RemapInstruction(&I, Result.Map,
1177 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1178
1179 // Exit blocks will now have one more predecessor and their PHI nodes need
1180 // to be edited to reflect that. No phi nodes need to be introduced because
1181 // the loop is in LCSSA.
1182
1183 for (auto *SBB : successors(OriginalBB)) {
1184 if (OriginalLoop.contains(SBB))
1185 continue; // not an exit block
1186
1187 for (PHINode &PN : SBB->phis()) {
1188 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1189 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1190 SE.forgetValue(&PN);
1191 }
1192 }
1193 }
1194 }
1195
changeIterationSpaceEnd(const LoopStructure & LS,BasicBlock * Preheader,Value * ExitSubloopAt,BasicBlock * ContinuationBlock) const1196 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1197 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1198 BasicBlock *ContinuationBlock) const {
1199 // We start with a loop with a single latch:
1200 //
1201 // +--------------------+
1202 // | |
1203 // | preheader |
1204 // | |
1205 // +--------+-----------+
1206 // | ----------------\
1207 // | / |
1208 // +--------v----v------+ |
1209 // | | |
1210 // | header | |
1211 // | | |
1212 // +--------------------+ |
1213 // |
1214 // ..... |
1215 // |
1216 // +--------------------+ |
1217 // | | |
1218 // | latch >----------/
1219 // | |
1220 // +-------v------------+
1221 // |
1222 // |
1223 // | +--------------------+
1224 // | | |
1225 // +---> original exit |
1226 // | |
1227 // +--------------------+
1228 //
1229 // We change the control flow to look like
1230 //
1231 //
1232 // +--------------------+
1233 // | |
1234 // | preheader >-------------------------+
1235 // | | |
1236 // +--------v-----------+ |
1237 // | /-------------+ |
1238 // | / | |
1239 // +--------v--v--------+ | |
1240 // | | | |
1241 // | header | | +--------+ |
1242 // | | | | | |
1243 // +--------------------+ | | +-----v-----v-----------+
1244 // | | | |
1245 // | | | .pseudo.exit |
1246 // | | | |
1247 // | | +-----------v-----------+
1248 // | | |
1249 // ..... | | |
1250 // | | +--------v-------------+
1251 // +--------------------+ | | | |
1252 // | | | | | ContinuationBlock |
1253 // | latch >------+ | | |
1254 // | | | +----------------------+
1255 // +---------v----------+ |
1256 // | |
1257 // | |
1258 // | +---------------^-----+
1259 // | | |
1260 // +-----> .exit.selector |
1261 // | |
1262 // +----------v----------+
1263 // |
1264 // +--------------------+ |
1265 // | | |
1266 // | original exit <----+
1267 // | |
1268 // +--------------------+
1269
1270 RewrittenRangeInfo RRI;
1271
1272 BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1273 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1274 &F, BBInsertLocation);
1275 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1276 BBInsertLocation);
1277
1278 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1279 bool Increasing = LS.IndVarIncreasing;
1280 bool IsSignedPredicate = LS.IsSignedPredicate;
1281
1282 IRBuilder<> B(PreheaderJump);
1283 auto *RangeTy = Range.getBegin()->getType();
1284 auto NoopOrExt = [&](Value *V) {
1285 if (V->getType() == RangeTy)
1286 return V;
1287 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1288 : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1289 };
1290
1291 // EnterLoopCond - is it okay to start executing this `LS'?
1292 Value *EnterLoopCond = nullptr;
1293 auto Pred =
1294 Increasing
1295 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1296 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1297 Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1298 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1299
1300 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1301 PreheaderJump->eraseFromParent();
1302
1303 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1304 B.SetInsertPoint(LS.LatchBr);
1305 Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1306 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1307
1308 Value *CondForBranch = LS.LatchBrExitIdx == 1
1309 ? TakeBackedgeLoopCond
1310 : B.CreateNot(TakeBackedgeLoopCond);
1311
1312 LS.LatchBr->setCondition(CondForBranch);
1313
1314 B.SetInsertPoint(RRI.ExitSelector);
1315
1316 // IterationsLeft - are there any more iterations left, given the original
1317 // upper bound on the induction variable? If not, we branch to the "real"
1318 // exit.
1319 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1320 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1321 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1322
1323 BranchInst *BranchToContinuation =
1324 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1325
1326 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1327 // each of the PHI nodes in the loop header. This feeds into the initial
1328 // value of the same PHI nodes if/when we continue execution.
1329 for (PHINode &PN : LS.Header->phis()) {
1330 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1331 BranchToContinuation);
1332
1333 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1334 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1335 RRI.ExitSelector);
1336 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1337 }
1338
1339 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1340 BranchToContinuation);
1341 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1342 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1343
1344 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1345 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1346 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1347
1348 return RRI;
1349 }
1350
rewriteIncomingValuesForPHIs(LoopStructure & LS,BasicBlock * ContinuationBlock,const LoopConstrainer::RewrittenRangeInfo & RRI) const1351 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1352 LoopStructure &LS, BasicBlock *ContinuationBlock,
1353 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1354 unsigned PHIIndex = 0;
1355 for (PHINode &PN : LS.Header->phis())
1356 PN.setIncomingValueForBlock(ContinuationBlock,
1357 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1358
1359 LS.IndVarStart = RRI.IndVarEnd;
1360 }
1361
createPreheader(const LoopStructure & LS,BasicBlock * OldPreheader,const char * Tag) const1362 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1363 BasicBlock *OldPreheader,
1364 const char *Tag) const {
1365 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1366 BranchInst::Create(LS.Header, Preheader);
1367
1368 LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1369
1370 return Preheader;
1371 }
1372
addToParentLoopIfNeeded(ArrayRef<BasicBlock * > BBs)1373 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1374 Loop *ParentLoop = OriginalLoop.getParentLoop();
1375 if (!ParentLoop)
1376 return;
1377
1378 for (BasicBlock *BB : BBs)
1379 ParentLoop->addBasicBlockToLoop(BB, LI);
1380 }
1381
createClonedLoopStructure(Loop * Original,Loop * Parent,ValueToValueMapTy & VM,bool IsSubloop)1382 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1383 ValueToValueMapTy &VM,
1384 bool IsSubloop) {
1385 Loop &New = *LI.AllocateLoop();
1386 if (Parent)
1387 Parent->addChildLoop(&New);
1388 else
1389 LI.addTopLevelLoop(&New);
1390 LPMAddNewLoop(&New, IsSubloop);
1391
1392 // Add all of the blocks in Original to the new loop.
1393 for (auto *BB : Original->blocks())
1394 if (LI.getLoopFor(BB) == Original)
1395 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1396
1397 // Add all of the subloops to the new loop.
1398 for (Loop *SubLoop : *Original)
1399 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1400
1401 return &New;
1402 }
1403
run()1404 bool LoopConstrainer::run() {
1405 BasicBlock *Preheader = nullptr;
1406 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1407 Preheader = OriginalLoop.getLoopPreheader();
1408 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1409 "preconditions!");
1410
1411 OriginalPreheader = Preheader;
1412 MainLoopPreheader = Preheader;
1413
1414 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1415 std::optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1416 if (!MaybeSR) {
1417 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1418 return false;
1419 }
1420
1421 SubRanges SR = *MaybeSR;
1422 bool Increasing = MainLoopStructure.IndVarIncreasing;
1423 IntegerType *IVTy =
1424 cast<IntegerType>(Range.getBegin()->getType());
1425
1426 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1427 Instruction *InsertPt = OriginalPreheader->getTerminator();
1428
1429 // It would have been better to make `PreLoop' and `PostLoop'
1430 // `std::optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1431 // constructor.
1432 ClonedLoop PreLoop, PostLoop;
1433 bool NeedsPreLoop =
1434 Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value();
1435 bool NeedsPostLoop =
1436 Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value();
1437
1438 Value *ExitPreLoopAt = nullptr;
1439 Value *ExitMainLoopAt = nullptr;
1440 const SCEVConstant *MinusOneS =
1441 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1442
1443 if (NeedsPreLoop) {
1444 const SCEV *ExitPreLoopAtSCEV = nullptr;
1445
1446 if (Increasing)
1447 ExitPreLoopAtSCEV = *SR.LowLimit;
1448 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1449 IsSignedPredicate))
1450 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1451 else {
1452 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1453 << "preloop exit limit. HighLimit = "
1454 << *(*SR.HighLimit) << "\n");
1455 return false;
1456 }
1457
1458 if (!Expander.isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt)) {
1459 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1460 << " preloop exit limit " << *ExitPreLoopAtSCEV
1461 << " at block " << InsertPt->getParent()->getName()
1462 << "\n");
1463 return false;
1464 }
1465
1466 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1467 ExitPreLoopAt->setName("exit.preloop.at");
1468 }
1469
1470 if (NeedsPostLoop) {
1471 const SCEV *ExitMainLoopAtSCEV = nullptr;
1472
1473 if (Increasing)
1474 ExitMainLoopAtSCEV = *SR.HighLimit;
1475 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1476 IsSignedPredicate))
1477 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1478 else {
1479 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1480 << "mainloop exit limit. LowLimit = "
1481 << *(*SR.LowLimit) << "\n");
1482 return false;
1483 }
1484
1485 if (!Expander.isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt)) {
1486 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1487 << " main loop exit limit " << *ExitMainLoopAtSCEV
1488 << " at block " << InsertPt->getParent()->getName()
1489 << "\n");
1490 return false;
1491 }
1492
1493 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1494 ExitMainLoopAt->setName("exit.mainloop.at");
1495 }
1496
1497 // We clone these ahead of time so that we don't have to deal with changing
1498 // and temporarily invalid IR as we transform the loops.
1499 if (NeedsPreLoop)
1500 cloneLoop(PreLoop, "preloop");
1501 if (NeedsPostLoop)
1502 cloneLoop(PostLoop, "postloop");
1503
1504 RewrittenRangeInfo PreLoopRRI;
1505
1506 if (NeedsPreLoop) {
1507 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1508 PreLoop.Structure.Header);
1509
1510 MainLoopPreheader =
1511 createPreheader(MainLoopStructure, Preheader, "mainloop");
1512 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1513 ExitPreLoopAt, MainLoopPreheader);
1514 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1515 PreLoopRRI);
1516 }
1517
1518 BasicBlock *PostLoopPreheader = nullptr;
1519 RewrittenRangeInfo PostLoopRRI;
1520
1521 if (NeedsPostLoop) {
1522 PostLoopPreheader =
1523 createPreheader(PostLoop.Structure, Preheader, "postloop");
1524 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1525 ExitMainLoopAt, PostLoopPreheader);
1526 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1527 PostLoopRRI);
1528 }
1529
1530 BasicBlock *NewMainLoopPreheader =
1531 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1532 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1533 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1534 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1535
1536 // Some of the above may be nullptr, filter them out before passing to
1537 // addToParentLoopIfNeeded.
1538 auto NewBlocksEnd =
1539 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1540
1541 addToParentLoopIfNeeded(ArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1542
1543 DT.recalculate(F);
1544
1545 // We need to first add all the pre and post loop blocks into the loop
1546 // structures (as part of createClonedLoopStructure), and then update the
1547 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1548 // LI when LoopSimplifyForm is generated.
1549 Loop *PreL = nullptr, *PostL = nullptr;
1550 if (!PreLoop.Blocks.empty()) {
1551 PreL = createClonedLoopStructure(&OriginalLoop,
1552 OriginalLoop.getParentLoop(), PreLoop.Map,
1553 /* IsSubLoop */ false);
1554 }
1555
1556 if (!PostLoop.Blocks.empty()) {
1557 PostL =
1558 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1559 PostLoop.Map, /* IsSubLoop */ false);
1560 }
1561
1562 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1563 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1564 formLCSSARecursively(*L, DT, &LI, &SE);
1565 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1566 // Pre/post loops are slow paths, we do not need to perform any loop
1567 // optimizations on them.
1568 if (!IsOriginalLoop)
1569 DisableAllLoopOptsOnLoop(*L);
1570 };
1571 if (PreL)
1572 CanonicalizeLoop(PreL, false);
1573 if (PostL)
1574 CanonicalizeLoop(PostL, false);
1575 CanonicalizeLoop(&OriginalLoop, true);
1576
1577 return true;
1578 }
1579
1580 /// Computes and returns a range of values for the induction variable (IndVar)
1581 /// in which the range check can be safely elided. If it cannot compute such a
1582 /// range, returns std::nullopt.
1583 std::optional<InductiveRangeCheck::Range>
computeSafeIterationSpace(ScalarEvolution & SE,const SCEVAddRecExpr * IndVar,bool IsLatchSigned) const1584 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
1585 const SCEVAddRecExpr *IndVar,
1586 bool IsLatchSigned) const {
1587 // We can deal when types of latch check and range checks don't match in case
1588 // if latch check is more narrow.
1589 auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
1590 auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
1591 // Do not work with pointer types.
1592 if (!IVType || !RCType)
1593 return std::nullopt;
1594 if (IVType->getBitWidth() > RCType->getBitWidth())
1595 return std::nullopt;
1596 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1597 // variable, that may or may not exist as a real llvm::Value in the loop) and
1598 // this inductive range check is a range check on the "C + D * I" ("C" is
1599 // getBegin() and "D" is getStep()). We rewrite the value being range
1600 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1601 //
1602 // The actual inequalities we solve are of the form
1603 //
1604 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1605 //
1606 // Here L stands for upper limit of the safe iteration space.
1607 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1608 // overflows when calculating (0 - M) and (L - M) we, depending on type of
1609 // IV's iteration space, limit the calculations by borders of the iteration
1610 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1611 // If we figured out that "anything greater than (-M) is safe", we strengthen
1612 // this to "everything greater than 0 is safe", assuming that values between
1613 // -M and 0 just do not exist in unsigned iteration space, and we don't want
1614 // to deal with overflown values.
1615
1616 if (!IndVar->isAffine())
1617 return std::nullopt;
1618
1619 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1620 const SCEVConstant *B = dyn_cast<SCEVConstant>(
1621 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1622 if (!B)
1623 return std::nullopt;
1624 assert(!B->isZero() && "Recurrence with zero step?");
1625
1626 const SCEV *C = getBegin();
1627 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1628 if (D != B)
1629 return std::nullopt;
1630
1631 assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1632 unsigned BitWidth = RCType->getBitWidth();
1633 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1634
1635 // Subtract Y from X so that it does not go through border of the IV
1636 // iteration space. Mathematically, it is equivalent to:
1637 //
1638 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
1639 //
1640 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1641 // any width of bit grid). But after we take min/max, the result is
1642 // guaranteed to be within [INT_MIN, INT_MAX].
1643 //
1644 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1645 // values, depending on type of latch condition that defines IV iteration
1646 // space.
1647 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1648 // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1649 // This is required to ensure that SINT_MAX - X does not overflow signed and
1650 // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1651 // restriction and make it work for negative X either?
1652 if (IsLatchSigned) {
1653 // X is a number from signed range, Y is interpreted as signed.
1654 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1655 // thing we should care about is that we didn't cross SINT_MAX.
1656 // So, if Y is positive, we subtract Y safely.
1657 // Rule 1: Y > 0 ---> Y.
1658 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1659 // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1660 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1661 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1662 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1663 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1664 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1665 SCEV::FlagNSW);
1666 } else
1667 // X is a number from unsigned range, Y is interpreted as signed.
1668 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1669 // thing we should care about is that we didn't cross zero.
1670 // So, if Y is negative, we subtract Y safely.
1671 // Rule 1: Y <s 0 ---> Y.
1672 // If 0 <= Y <= X, we subtract Y safely.
1673 // Rule 2: Y <=s X ---> Y.
1674 // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1675 // Rule 3: Y >s X ---> X.
1676 // It gives us smin(X, Y) to subtract in all cases.
1677 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1678 };
1679 const SCEV *M = SE.getMinusSCEV(C, A);
1680 const SCEV *Zero = SE.getZero(M->getType());
1681
1682 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1683 auto SCEVCheckNonNegative = [&](const SCEV *X) {
1684 const Loop *L = IndVar->getLoop();
1685 const SCEV *One = SE.getOne(X->getType());
1686 // Can we trivially prove that X is a non-negative or negative value?
1687 if (isKnownNonNegativeInLoop(X, L, SE))
1688 return One;
1689 else if (isKnownNegativeInLoop(X, L, SE))
1690 return Zero;
1691 // If not, we will have to figure it out during the execution.
1692 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1693 const SCEV *NegOne = SE.getNegativeSCEV(One);
1694 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1695 };
1696 // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1697 // X is non-negative (in sense of a signed value). We need to re-implement
1698 // this function in a way that it will correctly handle negative X as well.
1699 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1700 // end up with a negative X and produce wrong results. So currently we ensure
1701 // that if getEnd() is negative then both ends of the safe range are zero.
1702 // Note that this may pessimize elimination of unsigned range checks against
1703 // negative values.
1704 const SCEV *REnd = getEnd();
1705 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1706
1707 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1708 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1709 return InductiveRangeCheck::Range(Begin, End);
1710 }
1711
1712 static std::optional<InductiveRangeCheck::Range>
IntersectSignedRange(ScalarEvolution & SE,const std::optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1713 IntersectSignedRange(ScalarEvolution &SE,
1714 const std::optional<InductiveRangeCheck::Range> &R1,
1715 const InductiveRangeCheck::Range &R2) {
1716 if (R2.isEmpty(SE, /* IsSigned */ true))
1717 return std::nullopt;
1718 if (!R1)
1719 return R2;
1720 auto &R1Value = *R1;
1721 // We never return empty ranges from this function, and R1 is supposed to be
1722 // a result of intersection. Thus, R1 is never empty.
1723 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1724 "We should never have empty R1!");
1725
1726 // TODO: we could widen the smaller range and have this work; but for now we
1727 // bail out to keep things simple.
1728 if (R1Value.getType() != R2.getType())
1729 return std::nullopt;
1730
1731 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1732 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1733
1734 // If the resulting range is empty, just return std::nullopt.
1735 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1736 if (Ret.isEmpty(SE, /* IsSigned */ true))
1737 return std::nullopt;
1738 return Ret;
1739 }
1740
1741 static std::optional<InductiveRangeCheck::Range>
IntersectUnsignedRange(ScalarEvolution & SE,const std::optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1742 IntersectUnsignedRange(ScalarEvolution &SE,
1743 const std::optional<InductiveRangeCheck::Range> &R1,
1744 const InductiveRangeCheck::Range &R2) {
1745 if (R2.isEmpty(SE, /* IsSigned */ false))
1746 return std::nullopt;
1747 if (!R1)
1748 return R2;
1749 auto &R1Value = *R1;
1750 // We never return empty ranges from this function, and R1 is supposed to be
1751 // a result of intersection. Thus, R1 is never empty.
1752 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1753 "We should never have empty R1!");
1754
1755 // TODO: we could widen the smaller range and have this work; but for now we
1756 // bail out to keep things simple.
1757 if (R1Value.getType() != R2.getType())
1758 return std::nullopt;
1759
1760 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1761 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1762
1763 // If the resulting range is empty, just return std::nullopt.
1764 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1765 if (Ret.isEmpty(SE, /* IsSigned */ false))
1766 return std::nullopt;
1767 return Ret;
1768 }
1769
run(Function & F,FunctionAnalysisManager & AM)1770 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1771 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1772 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1773 // There are no loops in the function. Return before computing other expensive
1774 // analyses.
1775 if (LI.empty())
1776 return PreservedAnalyses::all();
1777 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1778 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1779
1780 // Get BFI analysis result on demand. Please note that modification of
1781 // CFG invalidates this analysis and we should handle it.
1782 auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1783 return AM.getResult<BlockFrequencyAnalysis>(F);
1784 };
1785 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1786
1787 bool Changed = false;
1788 {
1789 bool CFGChanged = false;
1790 for (const auto &L : LI) {
1791 CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1792 /*PreserveLCSSA=*/false);
1793 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1794 }
1795 Changed |= CFGChanged;
1796
1797 if (CFGChanged && !SkipProfitabilityChecks) {
1798 PreservedAnalyses PA = PreservedAnalyses::all();
1799 PA.abandon<BlockFrequencyAnalysis>();
1800 AM.invalidate(F, PA);
1801 }
1802 }
1803
1804 SmallPriorityWorklist<Loop *, 4> Worklist;
1805 appendLoopsToWorklist(LI, Worklist);
1806 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1807 if (!IsSubloop)
1808 appendLoopsToWorklist(*NL, Worklist);
1809 };
1810
1811 while (!Worklist.empty()) {
1812 Loop *L = Worklist.pop_back_val();
1813 if (IRCE.run(L, LPMAddNewLoop)) {
1814 Changed = true;
1815 if (!SkipProfitabilityChecks) {
1816 PreservedAnalyses PA = PreservedAnalyses::all();
1817 PA.abandon<BlockFrequencyAnalysis>();
1818 AM.invalidate(F, PA);
1819 }
1820 }
1821 }
1822
1823 if (!Changed)
1824 return PreservedAnalyses::all();
1825 return getLoopPassPreservedAnalyses();
1826 }
1827
runOnFunction(Function & F)1828 bool IRCELegacyPass::runOnFunction(Function &F) {
1829 if (skipFunction(F))
1830 return false;
1831
1832 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1833 BranchProbabilityInfo &BPI =
1834 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1835 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1836 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1837 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1838
1839 bool Changed = false;
1840
1841 for (const auto &L : LI) {
1842 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1843 /*PreserveLCSSA=*/false);
1844 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1845 }
1846
1847 SmallPriorityWorklist<Loop *, 4> Worklist;
1848 appendLoopsToWorklist(LI, Worklist);
1849 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1850 if (!IsSubloop)
1851 appendLoopsToWorklist(*NL, Worklist);
1852 };
1853
1854 while (!Worklist.empty()) {
1855 Loop *L = Worklist.pop_back_val();
1856 Changed |= IRCE.run(L, LPMAddNewLoop);
1857 }
1858 return Changed;
1859 }
1860
1861 bool
isProfitableToTransform(const Loop & L,LoopStructure & LS)1862 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
1863 LoopStructure &LS) {
1864 if (SkipProfitabilityChecks)
1865 return true;
1866 if (GetBFI) {
1867 BlockFrequencyInfo &BFI = (*GetBFI)();
1868 uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1869 uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
1870 if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1871 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1872 << "the estimated number of iterations basing on "
1873 "frequency info is " << (hFreq / phFreq) << "\n";);
1874 return false;
1875 }
1876 return true;
1877 }
1878
1879 if (!BPI)
1880 return true;
1881 BranchProbability ExitProbability =
1882 BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
1883 if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
1884 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1885 << "the exit probability is too big " << ExitProbability
1886 << "\n";);
1887 return false;
1888 }
1889 return true;
1890 }
1891
run(Loop * L,function_ref<void (Loop *,bool)> LPMAddNewLoop)1892 bool InductiveRangeCheckElimination::run(
1893 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1894 if (L->getBlocks().size() >= LoopSizeCutoff) {
1895 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1896 return false;
1897 }
1898
1899 BasicBlock *Preheader = L->getLoopPreheader();
1900 if (!Preheader) {
1901 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1902 return false;
1903 }
1904
1905 LLVMContext &Context = Preheader->getContext();
1906 SmallVector<InductiveRangeCheck, 16> RangeChecks;
1907
1908 for (auto *BBI : L->getBlocks())
1909 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1910 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1911 RangeChecks);
1912
1913 if (RangeChecks.empty())
1914 return false;
1915
1916 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1917 OS << "irce: looking at loop "; L->print(OS);
1918 OS << "irce: loop has " << RangeChecks.size()
1919 << " inductive range checks: \n";
1920 for (InductiveRangeCheck &IRC : RangeChecks)
1921 IRC.print(OS);
1922 };
1923
1924 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1925
1926 if (PrintRangeChecks)
1927 PrintRecognizedRangeChecks(errs());
1928
1929 const char *FailureReason = nullptr;
1930 std::optional<LoopStructure> MaybeLoopStructure =
1931 LoopStructure::parseLoopStructure(SE, *L, FailureReason);
1932 if (!MaybeLoopStructure) {
1933 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1934 << FailureReason << "\n";);
1935 return false;
1936 }
1937 LoopStructure LS = *MaybeLoopStructure;
1938 if (!isProfitableToTransform(*L, LS))
1939 return false;
1940 const SCEVAddRecExpr *IndVar =
1941 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1942
1943 std::optional<InductiveRangeCheck::Range> SafeIterRange;
1944 Instruction *ExprInsertPt = Preheader->getTerminator();
1945
1946 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1947 // Basing on the type of latch predicate, we interpret the IV iteration range
1948 // as signed or unsigned range. We use different min/max functions (signed or
1949 // unsigned) when intersecting this range with safe iteration ranges implied
1950 // by range checks.
1951 auto IntersectRange =
1952 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1953
1954 IRBuilder<> B(ExprInsertPt);
1955 for (InductiveRangeCheck &IRC : RangeChecks) {
1956 auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1957 LS.IsSignedPredicate);
1958 if (Result) {
1959 auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
1960 if (MaybeSafeIterRange) {
1961 assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
1962 "We should never return empty ranges!");
1963 RangeChecksToEliminate.push_back(IRC);
1964 SafeIterRange = *MaybeSafeIterRange;
1965 }
1966 }
1967 }
1968
1969 if (!SafeIterRange)
1970 return false;
1971
1972 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, *SafeIterRange);
1973 bool Changed = LC.run();
1974
1975 if (Changed) {
1976 auto PrintConstrainedLoopInfo = [L]() {
1977 dbgs() << "irce: in function ";
1978 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1979 dbgs() << "constrained ";
1980 L->print(dbgs());
1981 };
1982
1983 LLVM_DEBUG(PrintConstrainedLoopInfo());
1984
1985 if (PrintChangedLoops)
1986 PrintConstrainedLoopInfo();
1987
1988 // Optimize away the now-redundant range checks.
1989
1990 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1991 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1992 ? ConstantInt::getTrue(Context)
1993 : ConstantInt::getFalse(Context);
1994 IRC.getCheckUse()->set(FoldedRangeCheck);
1995 }
1996 }
1997
1998 return Changed;
1999 }
2000
createInductiveRangeCheckEliminationPass()2001 Pass *llvm::createInductiveRangeCheckEliminationPass() {
2002 return new IRCELegacyPass();
2003 }
2004