1 //===- IdentifierTable.cpp - Hash table for identifier lookup -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the IdentifierInfo, IdentifierVisitor, and 10 // IdentifierTable interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/IdentifierTable.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/DiagnosticLex.h" 17 #include "clang/Basic/LangOptions.h" 18 #include "clang/Basic/OperatorKinds.h" 19 #include "clang/Basic/Specifiers.h" 20 #include "clang/Basic/TargetBuiltins.h" 21 #include "clang/Basic/TokenKinds.h" 22 #include "llvm/ADT/DenseMapInfo.h" 23 #include "llvm/ADT/FoldingSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Support/Allocator.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <cassert> 30 #include <cstdio> 31 #include <cstring> 32 #include <string> 33 34 using namespace clang; 35 36 // A check to make sure the ObjCOrBuiltinID has sufficient room to store the 37 // largest possible target/aux-target combination. If we exceed this, we likely 38 // need to just change the ObjCOrBuiltinIDBits value in IdentifierTable.h. 39 static_assert(2 * LargestBuiltinID < (2 << (InterestingIdentifierBits - 1)), 40 "Insufficient ObjCOrBuiltinID Bits"); 41 42 //===----------------------------------------------------------------------===// 43 // IdentifierTable Implementation 44 //===----------------------------------------------------------------------===// 45 46 IdentifierIterator::~IdentifierIterator() = default; 47 48 IdentifierInfoLookup::~IdentifierInfoLookup() = default; 49 50 namespace { 51 52 /// A simple identifier lookup iterator that represents an 53 /// empty sequence of identifiers. 54 class EmptyLookupIterator : public IdentifierIterator { 55 public: 56 StringRef Next() override { return StringRef(); } 57 }; 58 59 } // namespace 60 61 IdentifierIterator *IdentifierInfoLookup::getIdentifiers() { 62 return new EmptyLookupIterator(); 63 } 64 65 IdentifierTable::IdentifierTable(IdentifierInfoLookup *ExternalLookup) 66 : HashTable(8192), // Start with space for 8K identifiers. 67 ExternalLookup(ExternalLookup) {} 68 69 IdentifierTable::IdentifierTable(const LangOptions &LangOpts, 70 IdentifierInfoLookup *ExternalLookup) 71 : IdentifierTable(ExternalLookup) { 72 // Populate the identifier table with info about keywords for the current 73 // language. 74 AddKeywords(LangOpts); 75 } 76 77 //===----------------------------------------------------------------------===// 78 // Language Keyword Implementation 79 //===----------------------------------------------------------------------===// 80 81 // Constants for TokenKinds.def 82 namespace { 83 84 enum TokenKey : unsigned { 85 KEYC99 = 0x1, 86 KEYCXX = 0x2, 87 KEYCXX11 = 0x4, 88 KEYGNU = 0x8, 89 KEYMS = 0x10, 90 BOOLSUPPORT = 0x20, 91 KEYALTIVEC = 0x40, 92 KEYNOCXX = 0x80, 93 KEYBORLAND = 0x100, 94 KEYOPENCLC = 0x200, 95 KEYC23 = 0x400, 96 KEYNOMS18 = 0x800, 97 KEYNOOPENCL = 0x1000, 98 WCHARSUPPORT = 0x2000, 99 HALFSUPPORT = 0x4000, 100 CHAR8SUPPORT = 0x8000, 101 KEYOBJC = 0x10000, 102 KEYZVECTOR = 0x20000, 103 KEYCOROUTINES = 0x40000, 104 KEYMODULES = 0x80000, 105 KEYCXX20 = 0x100000, 106 KEYOPENCLCXX = 0x200000, 107 KEYMSCOMPAT = 0x400000, 108 KEYSYCL = 0x800000, 109 KEYCUDA = 0x1000000, 110 KEYZOS = 0x2000000, 111 KEYNOZOS = 0x4000000, 112 KEYHLSL = 0x8000000, 113 KEYFIXEDPOINT = 0x10000000, 114 KEYMAX = KEYFIXEDPOINT, // The maximum key 115 KEYALLCXX = KEYCXX | KEYCXX11 | KEYCXX20, 116 KEYALL = (KEYMAX | (KEYMAX - 1)) & ~KEYNOMS18 & ~KEYNOOPENCL & 117 ~KEYNOZOS // KEYNOMS18, KEYNOOPENCL, KEYNOZOS are excluded. 118 }; 119 120 /// How a keyword is treated in the selected standard. This enum is ordered 121 /// intentionally so that the value that 'wins' is the most 'permissive'. 122 enum KeywordStatus { 123 KS_Unknown, // Not yet calculated. Used when figuring out the status. 124 KS_Disabled, // Disabled 125 KS_Future, // Is a keyword in future standard 126 KS_Extension, // Is an extension 127 KS_Enabled, // Enabled 128 }; 129 130 } // namespace 131 132 // This works on a single TokenKey flag and checks the LangOpts to get the 133 // KeywordStatus based exclusively on this flag, so that it can be merged in 134 // getKeywordStatus. Most should be enabled/disabled, but some might imply 135 // 'future' versions, or extensions. Returns 'unknown' unless this is KNOWN to 136 // be disabled, and the calling function makes it 'disabled' if no other flag 137 // changes it. This is necessary for the KEYNOCXX and KEYNOOPENCL flags. 138 static KeywordStatus getKeywordStatusHelper(const LangOptions &LangOpts, 139 TokenKey Flag) { 140 // Flag is a single bit version of TokenKey (that is, not 141 // KEYALL/KEYALLCXX/etc), so we can check with == throughout this function. 142 assert((Flag & ~(Flag - 1)) == Flag && "Multiple bits set?"); 143 144 switch (Flag) { 145 case KEYC99: 146 if (LangOpts.C99) 147 return KS_Enabled; 148 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; 149 case KEYC23: 150 if (LangOpts.C23) 151 return KS_Enabled; 152 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; 153 case KEYCXX: 154 return LangOpts.CPlusPlus ? KS_Enabled : KS_Unknown; 155 case KEYCXX11: 156 if (LangOpts.CPlusPlus11) 157 return KS_Enabled; 158 return LangOpts.CPlusPlus ? KS_Future : KS_Unknown; 159 case KEYCXX20: 160 if (LangOpts.CPlusPlus20) 161 return KS_Enabled; 162 return LangOpts.CPlusPlus ? KS_Future : KS_Unknown; 163 case KEYGNU: 164 return LangOpts.GNUKeywords ? KS_Extension : KS_Unknown; 165 case KEYMS: 166 return LangOpts.MicrosoftExt ? KS_Extension : KS_Unknown; 167 case BOOLSUPPORT: 168 if (LangOpts.Bool) return KS_Enabled; 169 return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; 170 case KEYALTIVEC: 171 return LangOpts.AltiVec ? KS_Enabled : KS_Unknown; 172 case KEYBORLAND: 173 return LangOpts.Borland ? KS_Extension : KS_Unknown; 174 case KEYOPENCLC: 175 return LangOpts.OpenCL && !LangOpts.OpenCLCPlusPlus ? KS_Enabled 176 : KS_Unknown; 177 case WCHARSUPPORT: 178 return LangOpts.WChar ? KS_Enabled : KS_Unknown; 179 case HALFSUPPORT: 180 return LangOpts.Half ? KS_Enabled : KS_Unknown; 181 case CHAR8SUPPORT: 182 if (LangOpts.Char8) return KS_Enabled; 183 if (LangOpts.CPlusPlus20) return KS_Unknown; 184 if (LangOpts.CPlusPlus) return KS_Future; 185 return KS_Unknown; 186 case KEYOBJC: 187 // We treat bridge casts as objective-C keywords so we can warn on them 188 // in non-arc mode. 189 return LangOpts.ObjC ? KS_Enabled : KS_Unknown; 190 case KEYZVECTOR: 191 return LangOpts.ZVector ? KS_Enabled : KS_Unknown; 192 case KEYCOROUTINES: 193 return LangOpts.Coroutines ? KS_Enabled : KS_Unknown; 194 case KEYMODULES: 195 return KS_Unknown; 196 case KEYOPENCLCXX: 197 return LangOpts.OpenCLCPlusPlus ? KS_Enabled : KS_Unknown; 198 case KEYMSCOMPAT: 199 return LangOpts.MSVCCompat ? KS_Enabled : KS_Unknown; 200 case KEYSYCL: 201 return LangOpts.isSYCL() ? KS_Enabled : KS_Unknown; 202 case KEYCUDA: 203 return LangOpts.CUDA ? KS_Enabled : KS_Unknown; 204 case KEYZOS: 205 return LangOpts.ZOSExt ? KS_Enabled : KS_Unknown; 206 case KEYHLSL: 207 return LangOpts.HLSL ? KS_Enabled : KS_Unknown; 208 case KEYNOCXX: 209 // This is enabled in all non-C++ modes, but might be enabled for other 210 // reasons as well. 211 return LangOpts.CPlusPlus ? KS_Unknown : KS_Enabled; 212 case KEYNOOPENCL: 213 case KEYNOMS18: 214 case KEYNOZOS: 215 // The disable behavior for this is handled in getKeywordStatus. 216 return KS_Unknown; 217 case KEYFIXEDPOINT: 218 return LangOpts.FixedPoint ? KS_Enabled : KS_Disabled; 219 default: 220 llvm_unreachable("Unknown KeywordStatus flag"); 221 } 222 } 223 224 /// Translates flags as specified in TokenKinds.def into keyword status 225 /// in the given language standard. 226 static KeywordStatus getKeywordStatus(const LangOptions &LangOpts, 227 unsigned Flags) { 228 // KEYALL means always enabled, so special case this one. 229 if (Flags == KEYALL) return KS_Enabled; 230 // These are tests that need to 'always win', as they are special in that they 231 // disable based on certain conditions. 232 if (LangOpts.OpenCL && (Flags & KEYNOOPENCL)) return KS_Disabled; 233 if (LangOpts.MSVCCompat && (Flags & KEYNOMS18) && 234 !LangOpts.isCompatibleWithMSVC(LangOptions::MSVC2015)) 235 return KS_Disabled; 236 if (LangOpts.ZOSExt && (Flags & KEYNOZOS)) 237 return KS_Disabled; 238 KeywordStatus CurStatus = KS_Unknown; 239 240 while (Flags != 0) { 241 unsigned CurFlag = Flags & ~(Flags - 1); 242 Flags = Flags & ~CurFlag; 243 CurStatus = std::max( 244 CurStatus, 245 getKeywordStatusHelper(LangOpts, static_cast<TokenKey>(CurFlag))); 246 } 247 248 if (CurStatus == KS_Unknown) 249 return KS_Disabled; 250 return CurStatus; 251 } 252 253 /// AddKeyword - This method is used to associate a token ID with specific 254 /// identifiers because they are language keywords. This causes the lexer to 255 /// automatically map matching identifiers to specialized token codes. 256 static void AddKeyword(StringRef Keyword, 257 tok::TokenKind TokenCode, unsigned Flags, 258 const LangOptions &LangOpts, IdentifierTable &Table) { 259 KeywordStatus AddResult = getKeywordStatus(LangOpts, Flags); 260 261 // Don't add this keyword if disabled in this language. 262 if (AddResult == KS_Disabled) return; 263 264 IdentifierInfo &Info = 265 Table.get(Keyword, AddResult == KS_Future ? tok::identifier : TokenCode); 266 Info.setIsExtensionToken(AddResult == KS_Extension); 267 Info.setIsFutureCompatKeyword(AddResult == KS_Future); 268 } 269 270 /// AddCXXOperatorKeyword - Register a C++ operator keyword alternative 271 /// representations. 272 static void AddCXXOperatorKeyword(StringRef Keyword, 273 tok::TokenKind TokenCode, 274 IdentifierTable &Table) { 275 IdentifierInfo &Info = Table.get(Keyword, TokenCode); 276 Info.setIsCPlusPlusOperatorKeyword(); 277 } 278 279 /// AddObjCKeyword - Register an Objective-C \@keyword like "class" "selector" 280 /// or "property". 281 static void AddObjCKeyword(StringRef Name, 282 tok::ObjCKeywordKind ObjCID, 283 IdentifierTable &Table) { 284 Table.get(Name).setObjCKeywordID(ObjCID); 285 } 286 287 static void AddNotableIdentifier(StringRef Name, 288 tok::NotableIdentifierKind BTID, 289 IdentifierTable &Table) { 290 // Don't add 'not_notable' identifier. 291 if (BTID != tok::not_notable) { 292 IdentifierInfo &Info = Table.get(Name, tok::identifier); 293 Info.setNotableIdentifierID(BTID); 294 } 295 } 296 297 /// AddKeywords - Add all keywords to the symbol table. 298 /// 299 void IdentifierTable::AddKeywords(const LangOptions &LangOpts) { 300 // Add keywords and tokens for the current language. 301 #define KEYWORD(NAME, FLAGS) \ 302 AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \ 303 FLAGS, LangOpts, *this); 304 #define ALIAS(NAME, TOK, FLAGS) \ 305 AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \ 306 FLAGS, LangOpts, *this); 307 #define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \ 308 if (LangOpts.CXXOperatorNames) \ 309 AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this); 310 #define OBJC_AT_KEYWORD(NAME) \ 311 if (LangOpts.ObjC) \ 312 AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); 313 #define NOTABLE_IDENTIFIER(NAME) \ 314 AddNotableIdentifier(StringRef(#NAME), tok::NAME, *this); 315 316 #define TESTING_KEYWORD(NAME, FLAGS) 317 #include "clang/Basic/TokenKinds.def" 318 319 if (LangOpts.ParseUnknownAnytype) 320 AddKeyword("__unknown_anytype", tok::kw___unknown_anytype, KEYALL, 321 LangOpts, *this); 322 323 if (LangOpts.DeclSpecKeyword) 324 AddKeyword("__declspec", tok::kw___declspec, KEYALL, LangOpts, *this); 325 326 if (LangOpts.IEEE128) 327 AddKeyword("__ieee128", tok::kw___float128, KEYALL, LangOpts, *this); 328 329 // Add the 'import' contextual keyword. 330 get("import").setModulesImport(true); 331 } 332 333 /// Checks if the specified token kind represents a keyword in the 334 /// specified language. 335 /// \returns Status of the keyword in the language. 336 static KeywordStatus getTokenKwStatus(const LangOptions &LangOpts, 337 tok::TokenKind K) { 338 switch (K) { 339 #define KEYWORD(NAME, FLAGS) \ 340 case tok::kw_##NAME: return getKeywordStatus(LangOpts, FLAGS); 341 #include "clang/Basic/TokenKinds.def" 342 default: return KS_Disabled; 343 } 344 } 345 346 /// Returns true if the identifier represents a keyword in the 347 /// specified language. 348 bool IdentifierInfo::isKeyword(const LangOptions &LangOpts) const { 349 switch (getTokenKwStatus(LangOpts, getTokenID())) { 350 case KS_Enabled: 351 case KS_Extension: 352 return true; 353 default: 354 return false; 355 } 356 } 357 358 /// Returns true if the identifier represents a C++ keyword in the 359 /// specified language. 360 bool IdentifierInfo::isCPlusPlusKeyword(const LangOptions &LangOpts) const { 361 if (!LangOpts.CPlusPlus || !isKeyword(LangOpts)) 362 return false; 363 // This is a C++ keyword if this identifier is not a keyword when checked 364 // using LangOptions without C++ support. 365 LangOptions LangOptsNoCPP = LangOpts; 366 LangOptsNoCPP.CPlusPlus = false; 367 LangOptsNoCPP.CPlusPlus11 = false; 368 LangOptsNoCPP.CPlusPlus20 = false; 369 return !isKeyword(LangOptsNoCPP); 370 } 371 372 ReservedIdentifierStatus 373 IdentifierInfo::isReserved(const LangOptions &LangOpts) const { 374 StringRef Name = getName(); 375 376 // '_' is a reserved identifier, but its use is so common (e.g. to store 377 // ignored values) that we don't warn on it. 378 if (Name.size() <= 1) 379 return ReservedIdentifierStatus::NotReserved; 380 381 // [lex.name] p3 382 if (Name[0] == '_') { 383 384 // Each name that begins with an underscore followed by an uppercase letter 385 // or another underscore is reserved. 386 if (Name[1] == '_') 387 return ReservedIdentifierStatus::StartsWithDoubleUnderscore; 388 389 if ('A' <= Name[1] && Name[1] <= 'Z') 390 return ReservedIdentifierStatus:: 391 StartsWithUnderscoreFollowedByCapitalLetter; 392 393 // This is a bit misleading: it actually means it's only reserved if we're 394 // at global scope because it starts with an underscore. 395 return ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope; 396 } 397 398 // Each name that contains a double underscore (__) is reserved. 399 if (LangOpts.CPlusPlus && Name.contains("__")) 400 return ReservedIdentifierStatus::ContainsDoubleUnderscore; 401 402 return ReservedIdentifierStatus::NotReserved; 403 } 404 405 ReservedLiteralSuffixIdStatus 406 IdentifierInfo::isReservedLiteralSuffixId() const { 407 StringRef Name = getName(); 408 409 // Note: the diag::warn_deprecated_literal_operator_id diagnostic depends on 410 // this being the first check we do, so if this order changes, we have to fix 411 // that as well. 412 if (Name[0] != '_') 413 return ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore; 414 415 if (Name.contains("__")) 416 return ReservedLiteralSuffixIdStatus::ContainsDoubleUnderscore; 417 418 return ReservedLiteralSuffixIdStatus::NotReserved; 419 } 420 421 StringRef IdentifierInfo::deuglifiedName() const { 422 StringRef Name = getName(); 423 if (Name.size() >= 2 && Name.front() == '_' && 424 (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z'))) 425 return Name.ltrim('_'); 426 return Name; 427 } 428 429 tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const { 430 // We use a perfect hash function here involving the length of the keyword, 431 // the first and third character. For preprocessor ID's there are no 432 // collisions (if there were, the switch below would complain about duplicate 433 // case values). Note that this depends on 'if' being null terminated. 434 435 #define HASH(LEN, FIRST, THIRD) \ 436 (LEN << 6) + (((FIRST - 'a') - (THIRD - 'a')) & 63) 437 #define CASE(LEN, FIRST, THIRD, NAME) \ 438 case HASH(LEN, FIRST, THIRD): \ 439 return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME 440 441 unsigned Len = getLength(); 442 if (Len < 2) return tok::pp_not_keyword; 443 const char *Name = getNameStart(); 444 switch (HASH(Len, Name[0], Name[2])) { 445 default: return tok::pp_not_keyword; 446 CASE( 2, 'i', '\0', if); 447 CASE( 4, 'e', 'i', elif); 448 CASE( 4, 'e', 's', else); 449 CASE( 4, 'l', 'n', line); 450 CASE( 4, 's', 'c', sccs); 451 CASE( 5, 'e', 'b', embed); 452 CASE( 5, 'e', 'd', endif); 453 CASE( 5, 'e', 'r', error); 454 CASE( 5, 'i', 'e', ident); 455 CASE( 5, 'i', 'd', ifdef); 456 CASE( 5, 'u', 'd', undef); 457 458 CASE( 6, 'a', 's', assert); 459 CASE( 6, 'd', 'f', define); 460 CASE( 6, 'i', 'n', ifndef); 461 CASE( 6, 'i', 'p', import); 462 CASE( 6, 'p', 'a', pragma); 463 464 CASE( 7, 'd', 'f', defined); 465 CASE( 7, 'e', 'i', elifdef); 466 CASE( 7, 'i', 'c', include); 467 CASE( 7, 'w', 'r', warning); 468 469 CASE( 8, 'e', 'i', elifndef); 470 CASE( 8, 'u', 'a', unassert); 471 CASE(12, 'i', 'c', include_next); 472 473 CASE(14, '_', 'p', __public_macro); 474 475 CASE(15, '_', 'p', __private_macro); 476 477 CASE(16, '_', 'i', __include_macros); 478 #undef CASE 479 #undef HASH 480 } 481 } 482 483 //===----------------------------------------------------------------------===// 484 // Stats Implementation 485 //===----------------------------------------------------------------------===// 486 487 /// PrintStats - Print statistics about how well the identifier table is doing 488 /// at hashing identifiers. 489 void IdentifierTable::PrintStats() const { 490 unsigned NumBuckets = HashTable.getNumBuckets(); 491 unsigned NumIdentifiers = HashTable.getNumItems(); 492 unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers; 493 unsigned AverageIdentifierSize = 0; 494 unsigned MaxIdentifierLength = 0; 495 496 // TODO: Figure out maximum times an identifier had to probe for -stats. 497 for (llvm::StringMap<IdentifierInfo*, llvm::BumpPtrAllocator>::const_iterator 498 I = HashTable.begin(), E = HashTable.end(); I != E; ++I) { 499 unsigned IdLen = I->getKeyLength(); 500 AverageIdentifierSize += IdLen; 501 if (MaxIdentifierLength < IdLen) 502 MaxIdentifierLength = IdLen; 503 } 504 505 fprintf(stderr, "\n*** Identifier Table Stats:\n"); 506 fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers); 507 fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets); 508 fprintf(stderr, "Hash density (#identifiers per bucket): %f\n", 509 NumIdentifiers/(double)NumBuckets); 510 fprintf(stderr, "Ave identifier length: %f\n", 511 (AverageIdentifierSize/(double)NumIdentifiers)); 512 fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength); 513 514 // Compute statistics about the memory allocated for identifiers. 515 HashTable.getAllocator().PrintStats(); 516 } 517 518 //===----------------------------------------------------------------------===// 519 // SelectorTable Implementation 520 //===----------------------------------------------------------------------===// 521 522 unsigned llvm::DenseMapInfo<clang::Selector>::getHashValue(clang::Selector S) { 523 return DenseMapInfo<void*>::getHashValue(S.getAsOpaquePtr()); 524 } 525 526 bool Selector::isKeywordSelector(ArrayRef<StringRef> Names) const { 527 assert(!Names.empty() && "must have >= 1 selector slots"); 528 if (getNumArgs() != Names.size()) 529 return false; 530 for (unsigned I = 0, E = Names.size(); I != E; ++I) { 531 if (getNameForSlot(I) != Names[I]) 532 return false; 533 } 534 return true; 535 } 536 537 bool Selector::isUnarySelector(StringRef Name) const { 538 return isUnarySelector() && getNameForSlot(0) == Name; 539 } 540 541 unsigned Selector::getNumArgs() const { 542 unsigned IIF = getIdentifierInfoFlag(); 543 if (IIF <= ZeroArg) 544 return 0; 545 if (IIF == OneArg) 546 return 1; 547 // We point to a MultiKeywordSelector. 548 MultiKeywordSelector *SI = getMultiKeywordSelector(); 549 return SI->getNumArgs(); 550 } 551 552 const IdentifierInfo * 553 Selector::getIdentifierInfoForSlot(unsigned argIndex) const { 554 if (getIdentifierInfoFlag() < MultiArg) { 555 assert(argIndex == 0 && "illegal keyword index"); 556 return getAsIdentifierInfo(); 557 } 558 559 // We point to a MultiKeywordSelector. 560 MultiKeywordSelector *SI = getMultiKeywordSelector(); 561 return SI->getIdentifierInfoForSlot(argIndex); 562 } 563 564 StringRef Selector::getNameForSlot(unsigned int argIndex) const { 565 const IdentifierInfo *II = getIdentifierInfoForSlot(argIndex); 566 return II ? II->getName() : StringRef(); 567 } 568 569 std::string MultiKeywordSelector::getName() const { 570 SmallString<256> Str; 571 llvm::raw_svector_ostream OS(Str); 572 for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) { 573 if (*I) 574 OS << (*I)->getName(); 575 OS << ':'; 576 } 577 578 return std::string(OS.str()); 579 } 580 581 std::string Selector::getAsString() const { 582 if (isNull()) 583 return "<null selector>"; 584 585 if (getIdentifierInfoFlag() < MultiArg) { 586 const IdentifierInfo *II = getAsIdentifierInfo(); 587 588 if (getNumArgs() == 0) { 589 assert(II && "If the number of arguments is 0 then II is guaranteed to " 590 "not be null."); 591 return std::string(II->getName()); 592 } 593 594 if (!II) 595 return ":"; 596 597 return II->getName().str() + ":"; 598 } 599 600 // We have a multiple keyword selector. 601 return getMultiKeywordSelector()->getName(); 602 } 603 604 void Selector::print(llvm::raw_ostream &OS) const { 605 OS << getAsString(); 606 } 607 608 LLVM_DUMP_METHOD void Selector::dump() const { print(llvm::errs()); } 609 610 /// Interpreting the given string using the normal CamelCase 611 /// conventions, determine whether the given string starts with the 612 /// given "word", which is assumed to end in a lowercase letter. 613 static bool startsWithWord(StringRef name, StringRef word) { 614 if (name.size() < word.size()) return false; 615 return ((name.size() == word.size() || !isLowercase(name[word.size()])) && 616 name.starts_with(word)); 617 } 618 619 ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) { 620 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); 621 if (!first) return OMF_None; 622 623 StringRef name = first->getName(); 624 if (sel.isUnarySelector()) { 625 if (name == "autorelease") return OMF_autorelease; 626 if (name == "dealloc") return OMF_dealloc; 627 if (name == "finalize") return OMF_finalize; 628 if (name == "release") return OMF_release; 629 if (name == "retain") return OMF_retain; 630 if (name == "retainCount") return OMF_retainCount; 631 if (name == "self") return OMF_self; 632 if (name == "initialize") return OMF_initialize; 633 } 634 635 if (name == "performSelector" || name == "performSelectorInBackground" || 636 name == "performSelectorOnMainThread") 637 return OMF_performSelector; 638 639 // The other method families may begin with a prefix of underscores. 640 name = name.ltrim('_'); 641 642 if (name.empty()) return OMF_None; 643 switch (name.front()) { 644 case 'a': 645 if (startsWithWord(name, "alloc")) return OMF_alloc; 646 break; 647 case 'c': 648 if (startsWithWord(name, "copy")) return OMF_copy; 649 break; 650 case 'i': 651 if (startsWithWord(name, "init")) return OMF_init; 652 break; 653 case 'm': 654 if (startsWithWord(name, "mutableCopy")) return OMF_mutableCopy; 655 break; 656 case 'n': 657 if (startsWithWord(name, "new")) return OMF_new; 658 break; 659 default: 660 break; 661 } 662 663 return OMF_None; 664 } 665 666 ObjCInstanceTypeFamily Selector::getInstTypeMethodFamily(Selector sel) { 667 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); 668 if (!first) return OIT_None; 669 670 StringRef name = first->getName(); 671 672 if (name.empty()) return OIT_None; 673 switch (name.front()) { 674 case 'a': 675 if (startsWithWord(name, "array")) return OIT_Array; 676 break; 677 case 'd': 678 if (startsWithWord(name, "default")) return OIT_ReturnsSelf; 679 if (startsWithWord(name, "dictionary")) return OIT_Dictionary; 680 break; 681 case 's': 682 if (startsWithWord(name, "shared")) return OIT_ReturnsSelf; 683 if (startsWithWord(name, "standard")) return OIT_Singleton; 684 break; 685 case 'i': 686 if (startsWithWord(name, "init")) return OIT_Init; 687 break; 688 default: 689 break; 690 } 691 return OIT_None; 692 } 693 694 ObjCStringFormatFamily Selector::getStringFormatFamilyImpl(Selector sel) { 695 const IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); 696 if (!first) return SFF_None; 697 698 StringRef name = first->getName(); 699 700 switch (name.front()) { 701 case 'a': 702 if (name == "appendFormat") return SFF_NSString; 703 break; 704 705 case 'i': 706 if (name == "initWithFormat") return SFF_NSString; 707 break; 708 709 case 'l': 710 if (name == "localizedStringWithFormat") return SFF_NSString; 711 break; 712 713 case 's': 714 if (name == "stringByAppendingFormat" || 715 name == "stringWithFormat") return SFF_NSString; 716 break; 717 } 718 return SFF_None; 719 } 720 721 namespace { 722 723 struct SelectorTableImpl { 724 llvm::FoldingSet<MultiKeywordSelector> Table; 725 llvm::BumpPtrAllocator Allocator; 726 }; 727 728 } // namespace 729 730 static SelectorTableImpl &getSelectorTableImpl(void *P) { 731 return *static_cast<SelectorTableImpl*>(P); 732 } 733 734 SmallString<64> 735 SelectorTable::constructSetterName(StringRef Name) { 736 SmallString<64> SetterName("set"); 737 SetterName += Name; 738 SetterName[3] = toUppercase(SetterName[3]); 739 return SetterName; 740 } 741 742 Selector 743 SelectorTable::constructSetterSelector(IdentifierTable &Idents, 744 SelectorTable &SelTable, 745 const IdentifierInfo *Name) { 746 IdentifierInfo *SetterName = 747 &Idents.get(constructSetterName(Name->getName())); 748 return SelTable.getUnarySelector(SetterName); 749 } 750 751 std::string SelectorTable::getPropertyNameFromSetterSelector(Selector Sel) { 752 StringRef Name = Sel.getNameForSlot(0); 753 assert(Name.starts_with("set") && "invalid setter name"); 754 return (Twine(toLowercase(Name[3])) + Name.drop_front(4)).str(); 755 } 756 757 size_t SelectorTable::getTotalMemory() const { 758 SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); 759 return SelTabImpl.Allocator.getTotalMemory(); 760 } 761 762 Selector SelectorTable::getSelector(unsigned nKeys, 763 const IdentifierInfo **IIV) { 764 if (nKeys < 2) 765 return Selector(IIV[0], nKeys); 766 767 SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); 768 769 // Unique selector, to guarantee there is one per name. 770 llvm::FoldingSetNodeID ID; 771 MultiKeywordSelector::Profile(ID, IIV, nKeys); 772 773 void *InsertPos = nullptr; 774 if (MultiKeywordSelector *SI = 775 SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos)) 776 return Selector(SI); 777 778 // MultiKeywordSelector objects are not allocated with new because they have a 779 // variable size array (for parameter types) at the end of them. 780 unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *); 781 MultiKeywordSelector *SI = 782 (MultiKeywordSelector *)SelTabImpl.Allocator.Allocate( 783 Size, alignof(MultiKeywordSelector)); 784 new (SI) MultiKeywordSelector(nKeys, IIV); 785 SelTabImpl.Table.InsertNode(SI, InsertPos); 786 return Selector(SI); 787 } 788 789 SelectorTable::SelectorTable() { 790 Impl = new SelectorTableImpl(); 791 } 792 793 SelectorTable::~SelectorTable() { 794 delete &getSelectorTableImpl(Impl); 795 } 796 797 const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) { 798 switch (Operator) { 799 case OO_None: 800 case NUM_OVERLOADED_OPERATORS: 801 return nullptr; 802 803 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 804 case OO_##Name: return Spelling; 805 #include "clang/Basic/OperatorKinds.def" 806 } 807 808 llvm_unreachable("Invalid OverloadedOperatorKind!"); 809 } 810 811 StringRef clang::getNullabilitySpelling(NullabilityKind kind, 812 bool isContextSensitive) { 813 switch (kind) { 814 case NullabilityKind::NonNull: 815 return isContextSensitive ? "nonnull" : "_Nonnull"; 816 817 case NullabilityKind::Nullable: 818 return isContextSensitive ? "nullable" : "_Nullable"; 819 820 case NullabilityKind::NullableResult: 821 assert(!isContextSensitive && 822 "_Nullable_result isn't supported as context-sensitive keyword"); 823 return "_Nullable_result"; 824 825 case NullabilityKind::Unspecified: 826 return isContextSensitive ? "null_unspecified" : "_Null_unspecified"; 827 } 828 llvm_unreachable("Unknown nullability kind."); 829 } 830 831 llvm::raw_ostream &clang::operator<<(llvm::raw_ostream &OS, 832 NullabilityKind NK) { 833 switch (NK) { 834 case NullabilityKind::NonNull: 835 return OS << "NonNull"; 836 case NullabilityKind::Nullable: 837 return OS << "Nullable"; 838 case NullabilityKind::NullableResult: 839 return OS << "NullableResult"; 840 case NullabilityKind::Unspecified: 841 return OS << "Unspecified"; 842 } 843 llvm_unreachable("Unknown nullability kind."); 844 } 845 846 diag::kind 847 IdentifierTable::getFutureCompatDiagKind(const IdentifierInfo &II, 848 const LangOptions &LangOpts) { 849 assert(II.isFutureCompatKeyword() && "diagnostic should not be needed"); 850 851 unsigned Flags = llvm::StringSwitch<unsigned>(II.getName()) 852 #define KEYWORD(NAME, FLAGS) .Case(#NAME, FLAGS) 853 #include "clang/Basic/TokenKinds.def" 854 #undef KEYWORD 855 ; 856 857 if (LangOpts.CPlusPlus) { 858 if ((Flags & KEYCXX11) == KEYCXX11) 859 return diag::warn_cxx11_keyword; 860 861 // char8_t is not modeled as a CXX20_KEYWORD because it's not 862 // unconditionally enabled in C++20 mode. (It can be disabled 863 // by -fno-char8_t.) 864 if (((Flags & KEYCXX20) == KEYCXX20) || 865 ((Flags & CHAR8SUPPORT) == CHAR8SUPPORT)) 866 return diag::warn_cxx20_keyword; 867 } else { 868 if ((Flags & KEYC99) == KEYC99) 869 return diag::warn_c99_keyword; 870 if ((Flags & KEYC23) == KEYC23) 871 return diag::warn_c23_keyword; 872 } 873 874 llvm_unreachable( 875 "Keyword not known to come from a newer Standard or proposed Standard"); 876 } 877