xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
isLeakCheckerRoot(GlobalVariable * GV)110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
IsSafeComputationToRemove(Value * V,function_ref<TargetLibraryInfo & (Function &)> GetTLI)162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
CleanupPointerRootUsers(GlobalVariable * GV,function_ref<TargetLibraryInfo & (Function &)> GetTLI)193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
212        UI != E;) {
213     User *U = *UI++;
214     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
215       Value *V = SI->getValueOperand();
216       if (isa<Constant>(V)) {
217         Changed = true;
218         SI->eraseFromParent();
219       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
220         if (I->hasOneUse())
221           Dead.push_back(std::make_pair(I, SI));
222       }
223     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
224       if (isa<Constant>(MSI->getValue())) {
225         Changed = true;
226         MSI->eraseFromParent();
227       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
228         if (I->hasOneUse())
229           Dead.push_back(std::make_pair(I, MSI));
230       }
231     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
232       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
233       if (MemSrc && MemSrc->isConstant()) {
234         Changed = true;
235         MTI->eraseFromParent();
236       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
237         if (I->hasOneUse())
238           Dead.push_back(std::make_pair(I, MTI));
239       }
240     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
241       if (CE->use_empty()) {
242         CE->destroyConstant();
243         Changed = true;
244       }
245     } else if (Constant *C = dyn_cast<Constant>(U)) {
246       if (isSafeToDestroyConstant(C)) {
247         C->destroyConstant();
248         // This could have invalidated UI, start over from scratch.
249         Dead.clear();
250         CleanupPointerRootUsers(GV, GetTLI);
251         return true;
252       }
253     }
254   }
255 
256   for (int i = 0, e = Dead.size(); i != e; ++i) {
257     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
258       Dead[i].second->eraseFromParent();
259       Instruction *I = Dead[i].first;
260       do {
261         if (isAllocationFn(I, GetTLI))
262           break;
263         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
264         if (!J)
265           break;
266         I->eraseFromParent();
267         I = J;
268       } while (true);
269       I->eraseFromParent();
270       Changed = true;
271     }
272   }
273 
274   return Changed;
275 }
276 
277 /// We just marked GV constant.  Loop over all users of the global, cleaning up
278 /// the obvious ones.  This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft.  This returns true if it made a change.
CleanupConstantGlobalUsers(Value * V,Constant * Init,const DataLayout & DL,function_ref<TargetLibraryInfo & (Function &)> GetTLI)280 static bool CleanupConstantGlobalUsers(
281     Value *V, Constant *Init, const DataLayout &DL,
282     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283   bool Changed = false;
284   // Note that we need to use a weak value handle for the worklist items. When
285   // we delete a constant array, we may also be holding pointer to one of its
286   // elements (or an element of one of its elements if we're dealing with an
287   // array of arrays) in the worklist.
288   SmallVector<WeakTrackingVH, 8> WorkList(V->users());
289   while (!WorkList.empty()) {
290     Value *UV = WorkList.pop_back_val();
291     if (!UV)
292       continue;
293 
294     User *U = cast<User>(UV);
295 
296     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297       if (Init) {
298         if (auto *Casted =
299                 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
300           // Replace the load with the initializer.
301           LI->replaceAllUsesWith(Casted);
302           LI->eraseFromParent();
303           Changed = true;
304         }
305       }
306     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
307       // Store must be unreachable or storing Init into the global.
308       SI->eraseFromParent();
309       Changed = true;
310     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
311       if (CE->getOpcode() == Instruction::GetElementPtr) {
312         Constant *SubInit = nullptr;
313         if (Init)
314           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
315               Init, CE, V->getType()->getPointerElementType(), DL);
316         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
317       } else if ((CE->getOpcode() == Instruction::BitCast &&
318                   CE->getType()->isPointerTy()) ||
319                  CE->getOpcode() == Instruction::AddrSpaceCast) {
320         // Pointer cast, delete any stores and memsets to the global.
321         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
322       }
323 
324       if (CE->use_empty()) {
325         CE->destroyConstant();
326         Changed = true;
327       }
328     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
329       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
330       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
331       // and will invalidate our notion of what Init is.
332       Constant *SubInit = nullptr;
333       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
334         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
335             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
336         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
337           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
338               Init, CE, V->getType()->getPointerElementType(), DL);
339 
340         // If the initializer is an all-null value and we have an inbounds GEP,
341         // we already know what the result of any load from that GEP is.
342         // TODO: Handle splats.
343         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
344           SubInit = Constant::getNullValue(GEP->getResultElementType());
345       }
346       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
347 
348       if (GEP->use_empty()) {
349         GEP->eraseFromParent();
350         Changed = true;
351       }
352     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
353       if (MI->getRawDest() == V) {
354         MI->eraseFromParent();
355         Changed = true;
356       }
357 
358     } else if (Constant *C = dyn_cast<Constant>(U)) {
359       // If we have a chain of dead constantexprs or other things dangling from
360       // us, and if they are all dead, nuke them without remorse.
361       if (isSafeToDestroyConstant(C)) {
362         C->destroyConstant();
363         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
364         return true;
365       }
366     }
367   }
368   return Changed;
369 }
370 
371 static bool isSafeSROAElementUse(Value *V);
372 
373 /// Return true if the specified GEP is a safe user of a derived
374 /// expression from a global that we want to SROA.
isSafeSROAGEP(User * U)375 static bool isSafeSROAGEP(User *U) {
376   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
377   // don't like < 3 operand CE's, and we don't like non-constant integer
378   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
379   // value of C.
380   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
381       !cast<Constant>(U->getOperand(1))->isNullValue())
382     return false;
383 
384   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
385   ++GEPI; // Skip over the pointer index.
386 
387   // For all other level we require that the indices are constant and inrange.
388   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
389   // invalid things like allowing i to index an out-of-range subscript that
390   // accesses A[1]. This can also happen between different members of a struct
391   // in llvm IR.
392   for (; GEPI != E; ++GEPI) {
393     if (GEPI.isStruct())
394       continue;
395 
396     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
397     if (!IdxVal || (GEPI.isBoundedSequential() &&
398                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
399       return false;
400   }
401 
402   return llvm::all_of(U->users(),
403                       [](User *UU) { return isSafeSROAElementUse(UU); });
404 }
405 
406 /// Return true if the specified instruction is a safe user of a derived
407 /// expression from a global that we want to SROA.
isSafeSROAElementUse(Value * V)408 static bool isSafeSROAElementUse(Value *V) {
409   // We might have a dead and dangling constant hanging off of here.
410   if (Constant *C = dyn_cast<Constant>(V))
411     return isSafeToDestroyConstant(C);
412 
413   Instruction *I = dyn_cast<Instruction>(V);
414   if (!I) return false;
415 
416   // Loads are ok.
417   if (isa<LoadInst>(I)) return true;
418 
419   // Stores *to* the pointer are ok.
420   if (StoreInst *SI = dyn_cast<StoreInst>(I))
421     return SI->getOperand(0) != V;
422 
423   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
424   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
425 }
426 
427 /// Look at all uses of the global and decide whether it is safe for us to
428 /// perform this transformation.
GlobalUsersSafeToSRA(GlobalValue * GV)429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
430   for (User *U : GV->users()) {
431     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
432     if (!isa<GetElementPtrInst>(U) &&
433         (!isa<ConstantExpr>(U) ||
434         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
435       return false;
436 
437     // Check the gep and it's users are safe to SRA
438     if (!isSafeSROAGEP(U))
439       return false;
440   }
441 
442   return true;
443 }
444 
IsSRASequential(Type * T)445 static bool IsSRASequential(Type *T) {
446   return isa<ArrayType>(T) || isa<VectorType>(T);
447 }
GetSRASequentialNumElements(Type * T)448 static uint64_t GetSRASequentialNumElements(Type *T) {
449   if (ArrayType *AT = dyn_cast<ArrayType>(T))
450     return AT->getNumElements();
451   return cast<FixedVectorType>(T)->getNumElements();
452 }
GetSRASequentialElementType(Type * T)453 static Type *GetSRASequentialElementType(Type *T) {
454   if (ArrayType *AT = dyn_cast<ArrayType>(T))
455     return AT->getElementType();
456   return cast<VectorType>(T)->getElementType();
457 }
CanDoGlobalSRA(GlobalVariable * GV)458 static bool CanDoGlobalSRA(GlobalVariable *GV) {
459   Constant *Init = GV->getInitializer();
460 
461   if (isa<StructType>(Init->getType())) {
462     // nothing to check
463   } else if (IsSRASequential(Init->getType())) {
464     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
465         GV->hasNUsesOrMore(16))
466       return false; // It's not worth it.
467   } else
468     return false;
469 
470   return GlobalUsersSafeToSRA(GV);
471 }
472 
473 /// Copy over the debug info for a variable to its SRA replacements.
transferSRADebugInfo(GlobalVariable * GV,GlobalVariable * NGV,uint64_t FragmentOffsetInBits,uint64_t FragmentSizeInBits,uint64_t VarSize)474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
475                                  uint64_t FragmentOffsetInBits,
476                                  uint64_t FragmentSizeInBits,
477                                  uint64_t VarSize) {
478   SmallVector<DIGlobalVariableExpression *, 1> GVs;
479   GV->getDebugInfo(GVs);
480   for (auto *GVE : GVs) {
481     DIVariable *Var = GVE->getVariable();
482     DIExpression *Expr = GVE->getExpression();
483     // If the FragmentSize is smaller than the variable,
484     // emit a fragment expression.
485     if (FragmentSizeInBits < VarSize) {
486       if (auto E = DIExpression::createFragmentExpression(
487               Expr, FragmentOffsetInBits, FragmentSizeInBits))
488         Expr = *E;
489       else
490         return;
491     }
492     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
493     NGV->addDebugInfo(NGVE);
494   }
495 }
496 
497 /// Perform scalar replacement of aggregates on the specified global variable.
498 /// This opens the door for other optimizations by exposing the behavior of the
499 /// program in a more fine-grained way.  We have determined that this
500 /// transformation is safe already.  We return the first global variable we
501 /// insert so that the caller can reprocess it.
SRAGlobal(GlobalVariable * GV,const DataLayout & DL)502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
503   // Make sure this global only has simple uses that we can SRA.
504   if (!CanDoGlobalSRA(GV))
505     return nullptr;
506 
507   assert(GV->hasLocalLinkage());
508   Constant *Init = GV->getInitializer();
509   Type *Ty = Init->getType();
510   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
511 
512   std::map<unsigned, GlobalVariable *> NewGlobals;
513 
514   // Get the alignment of the global, either explicit or target-specific.
515   Align StartAlignment =
516       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
517 
518   // Loop over all users and create replacement variables for used aggregate
519   // elements.
520   for (User *GEP : GV->users()) {
521     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
522                                            Instruction::GetElementPtr) ||
523             isa<GetElementPtrInst>(GEP)) &&
524            "NonGEP CE's are not SRAable!");
525 
526     // Ignore the 1th operand, which has to be zero or else the program is quite
527     // broken (undefined).  Get the 2nd operand, which is the structure or array
528     // index.
529     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
530     if (NewGlobals.count(ElementIdx) == 1)
531       continue; // we`ve already created replacement variable
532     assert(NewGlobals.count(ElementIdx) == 0);
533 
534     Type *ElTy = nullptr;
535     if (StructType *STy = dyn_cast<StructType>(Ty))
536       ElTy = STy->getElementType(ElementIdx);
537     else
538       ElTy = GetSRASequentialElementType(Ty);
539     assert(ElTy);
540 
541     Constant *In = Init->getAggregateElement(ElementIdx);
542     assert(In && "Couldn't get element of initializer?");
543 
544     GlobalVariable *NGV = new GlobalVariable(
545         ElTy, false, GlobalVariable::InternalLinkage, In,
546         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
547         GV->getType()->getAddressSpace());
548     NGV->setExternallyInitialized(GV->isExternallyInitialized());
549     NGV->copyAttributesFrom(GV);
550     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
551 
552     if (StructType *STy = dyn_cast<StructType>(Ty)) {
553       const StructLayout &Layout = *DL.getStructLayout(STy);
554 
555       // Calculate the known alignment of the field.  If the original aggregate
556       // had 256 byte alignment for example, something might depend on that:
557       // propagate info to each field.
558       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
559       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
560       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
561         NGV->setAlignment(NewAlign);
562 
563       // Copy over the debug info for the variable.
564       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
565       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
566       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
567     } else {
568       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
569       Align EltAlign = DL.getABITypeAlign(ElTy);
570       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
571 
572       // Calculate the known alignment of the field.  If the original aggregate
573       // had 256 byte alignment for example, something might depend on that:
574       // propagate info to each field.
575       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
576       if (NewAlign > EltAlign)
577         NGV->setAlignment(NewAlign);
578       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
579                            FragmentSizeInBits, VarSize);
580     }
581   }
582 
583   if (NewGlobals.empty())
584     return nullptr;
585 
586   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
587   for (auto NewGlobalVar : NewGlobals)
588     Globals.push_back(NewGlobalVar.second);
589 
590   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
591 
592   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
593 
594   // Loop over all of the uses of the global, replacing the constantexpr geps,
595   // with smaller constantexpr geps or direct references.
596   while (!GV->use_empty()) {
597     User *GEP = GV->user_back();
598     assert(((isa<ConstantExpr>(GEP) &&
599              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
600             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
601 
602     // Ignore the 1th operand, which has to be zero or else the program is quite
603     // broken (undefined).  Get the 2nd operand, which is the structure or array
604     // index.
605     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
606     assert(NewGlobals.count(ElementIdx) == 1);
607 
608     Value *NewPtr = NewGlobals[ElementIdx];
609     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
610 
611     // Form a shorter GEP if needed.
612     if (GEP->getNumOperands() > 3) {
613       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
614         SmallVector<Constant*, 8> Idxs;
615         Idxs.push_back(NullInt);
616         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
617           Idxs.push_back(CE->getOperand(i));
618         NewPtr =
619             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
620       } else {
621         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
622         SmallVector<Value*, 8> Idxs;
623         Idxs.push_back(NullInt);
624         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
625           Idxs.push_back(GEPI->getOperand(i));
626         NewPtr = GetElementPtrInst::Create(
627             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
628             GEPI);
629       }
630     }
631     GEP->replaceAllUsesWith(NewPtr);
632 
633     // We changed the pointer of any memory access user. Recalculate alignments.
634     for (User *U : NewPtr->users()) {
635       if (auto *Load = dyn_cast<LoadInst>(U)) {
636         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
637         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
638                                                     PrefAlign, DL, Load);
639         Load->setAlignment(NewAlign);
640       }
641       if (auto *Store = dyn_cast<StoreInst>(U)) {
642         Align PrefAlign =
643             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
644         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
645                                                     PrefAlign, DL, Store);
646         Store->setAlignment(NewAlign);
647       }
648     }
649 
650     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
651       GEPI->eraseFromParent();
652     else
653       cast<ConstantExpr>(GEP)->destroyConstant();
654   }
655 
656   // Delete the old global, now that it is dead.
657   Globals.erase(GV);
658   ++NumSRA;
659 
660   assert(NewGlobals.size() > 0);
661   return NewGlobals.begin()->second;
662 }
663 
664 /// Return true if all users of the specified value will trap if the value is
665 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
666 /// reprocessing them.
AllUsesOfValueWillTrapIfNull(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs)667 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
668                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
669   for (const User *U : V->users()) {
670     if (const Instruction *I = dyn_cast<Instruction>(U)) {
671       // If null pointer is considered valid, then all uses are non-trapping.
672       // Non address-space 0 globals have already been pruned by the caller.
673       if (NullPointerIsDefined(I->getFunction()))
674         return false;
675     }
676     if (isa<LoadInst>(U)) {
677       // Will trap.
678     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
679       if (SI->getOperand(0) == V) {
680         //cerr << "NONTRAPPING USE: " << *U;
681         return false;  // Storing the value.
682       }
683     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
684       if (CI->getCalledOperand() != V) {
685         //cerr << "NONTRAPPING USE: " << *U;
686         return false;  // Not calling the ptr
687       }
688     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
689       if (II->getCalledOperand() != V) {
690         //cerr << "NONTRAPPING USE: " << *U;
691         return false;  // Not calling the ptr
692       }
693     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
694       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
695     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
696       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
697     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
698       // If we've already seen this phi node, ignore it, it has already been
699       // checked.
700       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
701         return false;
702     } else {
703       //cerr << "NONTRAPPING USE: " << *U;
704       return false;
705     }
706   }
707   return true;
708 }
709 
710 /// Return true if all uses of any loads from GV will trap if the loaded value
711 /// is null.  Note that this also permits comparisons of the loaded value
712 /// against null, as a special case.
AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable * GV)713 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
714   for (const User *U : GV->users())
715     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
716       SmallPtrSet<const PHINode*, 8> PHIs;
717       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
718         return false;
719     } else if (isa<StoreInst>(U)) {
720       // Ignore stores to the global.
721     } else {
722       // We don't know or understand this user, bail out.
723       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
724       return false;
725     }
726   return true;
727 }
728 
OptimizeAwayTrappingUsesOfValue(Value * V,Constant * NewV)729 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
730   bool Changed = false;
731   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
732     Instruction *I = cast<Instruction>(*UI++);
733     // Uses are non-trapping if null pointer is considered valid.
734     // Non address-space 0 globals are already pruned by the caller.
735     if (NullPointerIsDefined(I->getFunction()))
736       return false;
737     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
738       LI->setOperand(0, NewV);
739       Changed = true;
740     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
741       if (SI->getOperand(1) == V) {
742         SI->setOperand(1, NewV);
743         Changed = true;
744       }
745     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
746       CallBase *CB = cast<CallBase>(I);
747       if (CB->getCalledOperand() == V) {
748         // Calling through the pointer!  Turn into a direct call, but be careful
749         // that the pointer is not also being passed as an argument.
750         CB->setCalledOperand(NewV);
751         Changed = true;
752         bool PassedAsArg = false;
753         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
754           if (CB->getArgOperand(i) == V) {
755             PassedAsArg = true;
756             CB->setArgOperand(i, NewV);
757           }
758 
759         if (PassedAsArg) {
760           // Being passed as an argument also.  Be careful to not invalidate UI!
761           UI = V->user_begin();
762         }
763       }
764     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
765       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
766                                 ConstantExpr::getCast(CI->getOpcode(),
767                                                       NewV, CI->getType()));
768       if (CI->use_empty()) {
769         Changed = true;
770         CI->eraseFromParent();
771       }
772     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
773       // Should handle GEP here.
774       SmallVector<Constant*, 8> Idxs;
775       Idxs.reserve(GEPI->getNumOperands()-1);
776       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
777            i != e; ++i)
778         if (Constant *C = dyn_cast<Constant>(*i))
779           Idxs.push_back(C);
780         else
781           break;
782       if (Idxs.size() == GEPI->getNumOperands()-1)
783         Changed |= OptimizeAwayTrappingUsesOfValue(
784             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
785                                                  NewV, Idxs));
786       if (GEPI->use_empty()) {
787         Changed = true;
788         GEPI->eraseFromParent();
789       }
790     }
791   }
792 
793   return Changed;
794 }
795 
796 /// The specified global has only one non-null value stored into it.  If there
797 /// are uses of the loaded value that would trap if the loaded value is
798 /// dynamically null, then we know that they cannot be reachable with a null
799 /// optimize away the load.
OptimizeAwayTrappingUsesOfLoads(GlobalVariable * GV,Constant * LV,const DataLayout & DL,function_ref<TargetLibraryInfo & (Function &)> GetTLI)800 static bool OptimizeAwayTrappingUsesOfLoads(
801     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
802     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
803   bool Changed = false;
804 
805   // Keep track of whether we are able to remove all the uses of the global
806   // other than the store that defines it.
807   bool AllNonStoreUsesGone = true;
808 
809   // Replace all uses of loads with uses of uses of the stored value.
810   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
811     User *GlobalUser = *GUI++;
812     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
813       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
814       // If we were able to delete all uses of the loads
815       if (LI->use_empty()) {
816         LI->eraseFromParent();
817         Changed = true;
818       } else {
819         AllNonStoreUsesGone = false;
820       }
821     } else if (isa<StoreInst>(GlobalUser)) {
822       // Ignore the store that stores "LV" to the global.
823       assert(GlobalUser->getOperand(1) == GV &&
824              "Must be storing *to* the global");
825     } else {
826       AllNonStoreUsesGone = false;
827 
828       // If we get here we could have other crazy uses that are transitively
829       // loaded.
830       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
831               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
832               isa<BitCastInst>(GlobalUser) ||
833               isa<GetElementPtrInst>(GlobalUser)) &&
834              "Only expect load and stores!");
835     }
836   }
837 
838   if (Changed) {
839     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
840                       << "\n");
841     ++NumGlobUses;
842   }
843 
844   // If we nuked all of the loads, then none of the stores are needed either,
845   // nor is the global.
846   if (AllNonStoreUsesGone) {
847     if (isLeakCheckerRoot(GV)) {
848       Changed |= CleanupPointerRootUsers(GV, GetTLI);
849     } else {
850       Changed = true;
851       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
852     }
853     if (GV->use_empty()) {
854       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
855       Changed = true;
856       GV->eraseFromParent();
857       ++NumDeleted;
858     }
859   }
860   return Changed;
861 }
862 
863 /// Walk the use list of V, constant folding all of the instructions that are
864 /// foldable.
ConstantPropUsersOf(Value * V,const DataLayout & DL,TargetLibraryInfo * TLI)865 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
866                                 TargetLibraryInfo *TLI) {
867   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
868     if (Instruction *I = dyn_cast<Instruction>(*UI++))
869       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
870         I->replaceAllUsesWith(NewC);
871 
872         // Advance UI to the next non-I use to avoid invalidating it!
873         // Instructions could multiply use V.
874         while (UI != E && *UI == I)
875           ++UI;
876         if (isInstructionTriviallyDead(I, TLI))
877           I->eraseFromParent();
878       }
879 }
880 
881 /// This function takes the specified global variable, and transforms the
882 /// program as if it always contained the result of the specified malloc.
883 /// Because it is always the result of the specified malloc, there is no reason
884 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
885 /// loads of GV as uses of the new global.
886 static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable * GV,CallInst * CI,Type * AllocTy,ConstantInt * NElements,const DataLayout & DL,TargetLibraryInfo * TLI)887 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
888                               ConstantInt *NElements, const DataLayout &DL,
889                               TargetLibraryInfo *TLI) {
890   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
891                     << '\n');
892 
893   Type *GlobalType;
894   if (NElements->getZExtValue() == 1)
895     GlobalType = AllocTy;
896   else
897     // If we have an array allocation, the global variable is of an array.
898     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
899 
900   // Create the new global variable.  The contents of the malloc'd memory is
901   // undefined, so initialize with an undef value.
902   GlobalVariable *NewGV = new GlobalVariable(
903       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
904       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
905       GV->getThreadLocalMode());
906 
907   // If there are bitcast users of the malloc (which is typical, usually we have
908   // a malloc + bitcast) then replace them with uses of the new global.  Update
909   // other users to use the global as well.
910   BitCastInst *TheBC = nullptr;
911   while (!CI->use_empty()) {
912     Instruction *User = cast<Instruction>(CI->user_back());
913     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
914       if (BCI->getType() == NewGV->getType()) {
915         BCI->replaceAllUsesWith(NewGV);
916         BCI->eraseFromParent();
917       } else {
918         BCI->setOperand(0, NewGV);
919       }
920     } else {
921       if (!TheBC)
922         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
923       User->replaceUsesOfWith(CI, TheBC);
924     }
925   }
926 
927   Constant *RepValue = NewGV;
928   if (NewGV->getType() != GV->getValueType())
929     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
930 
931   // If there is a comparison against null, we will insert a global bool to
932   // keep track of whether the global was initialized yet or not.
933   GlobalVariable *InitBool =
934     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
935                        GlobalValue::InternalLinkage,
936                        ConstantInt::getFalse(GV->getContext()),
937                        GV->getName()+".init", GV->getThreadLocalMode());
938   bool InitBoolUsed = false;
939 
940   // Loop over all uses of GV, processing them in turn.
941   while (!GV->use_empty()) {
942     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
943       // The global is initialized when the store to it occurs.
944       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
945                     Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
946       SI->eraseFromParent();
947       continue;
948     }
949 
950     LoadInst *LI = cast<LoadInst>(GV->user_back());
951     while (!LI->use_empty()) {
952       Use &LoadUse = *LI->use_begin();
953       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
954       if (!ICI) {
955         LoadUse = RepValue;
956         continue;
957       }
958 
959       // Replace the cmp X, 0 with a use of the bool value.
960       // Sink the load to where the compare was, if atomic rules allow us to.
961       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
962                                InitBool->getName() + ".val", false, Align(1),
963                                LI->getOrdering(), LI->getSyncScopeID(),
964                                LI->isUnordered() ? (Instruction *)ICI : LI);
965       InitBoolUsed = true;
966       switch (ICI->getPredicate()) {
967       default: llvm_unreachable("Unknown ICmp Predicate!");
968       case ICmpInst::ICMP_ULT:
969       case ICmpInst::ICMP_SLT:   // X < null -> always false
970         LV = ConstantInt::getFalse(GV->getContext());
971         break;
972       case ICmpInst::ICMP_ULE:
973       case ICmpInst::ICMP_SLE:
974       case ICmpInst::ICMP_EQ:
975         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
976         break;
977       case ICmpInst::ICMP_NE:
978       case ICmpInst::ICMP_UGE:
979       case ICmpInst::ICMP_SGE:
980       case ICmpInst::ICMP_UGT:
981       case ICmpInst::ICMP_SGT:
982         break;  // no change.
983       }
984       ICI->replaceAllUsesWith(LV);
985       ICI->eraseFromParent();
986     }
987     LI->eraseFromParent();
988   }
989 
990   // If the initialization boolean was used, insert it, otherwise delete it.
991   if (!InitBoolUsed) {
992     while (!InitBool->use_empty())  // Delete initializations
993       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
994     delete InitBool;
995   } else
996     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
997 
998   // Now the GV is dead, nuke it and the malloc..
999   GV->eraseFromParent();
1000   CI->eraseFromParent();
1001 
1002   // To further other optimizations, loop over all users of NewGV and try to
1003   // constant prop them.  This will promote GEP instructions with constant
1004   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1005   ConstantPropUsersOf(NewGV, DL, TLI);
1006   if (RepValue != NewGV)
1007     ConstantPropUsersOf(RepValue, DL, TLI);
1008 
1009   return NewGV;
1010 }
1011 
1012 /// Scan the use-list of V checking to make sure that there are no complex uses
1013 /// of V.  We permit simple things like dereferencing the pointer, but not
1014 /// storing through the address, unless it is to the specified global.
1015 static bool
valueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction * V,const GlobalVariable * GV)1016 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1017                                           const GlobalVariable *GV) {
1018   for (const User *U : V->users()) {
1019     const Instruction *Inst = cast<Instruction>(U);
1020 
1021     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1022       continue; // Fine, ignore.
1023     }
1024 
1025     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1026       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1027         return false;  // Storing the pointer itself... bad.
1028       continue; // Otherwise, storing through it, or storing into GV... fine.
1029     }
1030 
1031     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1032       if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV))
1033         return false;
1034       continue;
1035     }
1036 
1037     return false;
1038   }
1039   return true;
1040 }
1041 
1042 /// This function is called when we see a pointer global variable with a single
1043 /// value stored it that is a malloc or cast of malloc.
tryToOptimizeStoreOfMallocToGlobal(GlobalVariable * GV,CallInst * CI,Type * AllocTy,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1044 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1045                                                Type *AllocTy,
1046                                                AtomicOrdering Ordering,
1047                                                const DataLayout &DL,
1048                                                TargetLibraryInfo *TLI) {
1049   // If this is a malloc of an abstract type, don't touch it.
1050   if (!AllocTy->isSized())
1051     return false;
1052 
1053   // We can't optimize this global unless all uses of it are *known* to be
1054   // of the malloc value, not of the null initializer value (consider a use
1055   // that compares the global's value against zero to see if the malloc has
1056   // been reached).  To do this, we check to see if all uses of the global
1057   // would trap if the global were null: this proves that they must all
1058   // happen after the malloc.
1059   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1060     return false;
1061 
1062   // We can't optimize this if the malloc itself is used in a complex way,
1063   // for example, being stored into multiple globals.  This allows the
1064   // malloc to be stored into the specified global, loaded icmp'd.
1065   // These are all things we could transform to using the global for.
1066   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1067     return false;
1068 
1069   // If we have a global that is only initialized with a fixed size malloc,
1070   // transform the program to use global memory instead of malloc'd memory.
1071   // This eliminates dynamic allocation, avoids an indirection accessing the
1072   // data, and exposes the resultant global to further GlobalOpt.
1073   // We cannot optimize the malloc if we cannot determine malloc array size.
1074   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1075   if (!NElems)
1076     return false;
1077 
1078   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1079     // Restrict this transformation to only working on small allocations
1080     // (2048 bytes currently), as we don't want to introduce a 16M global or
1081     // something.
1082     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1083       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1084       return true;
1085     }
1086 
1087   return false;
1088 }
1089 
1090 // Try to optimize globals based on the knowledge that only one value (besides
1091 // its initializer) is ever stored to the global.
1092 static bool
optimizeOnceStoredGlobal(GlobalVariable * GV,Value * StoredOnceVal,AtomicOrdering Ordering,const DataLayout & DL,function_ref<TargetLibraryInfo & (Function &)> GetTLI)1093 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1094                          AtomicOrdering Ordering, const DataLayout &DL,
1095                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1096   // Ignore no-op GEPs and bitcasts.
1097   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1098 
1099   // If we are dealing with a pointer global that is initialized to null and
1100   // only has one (non-null) value stored into it, then we can optimize any
1101   // users of the loaded value (often calls and loads) that would trap if the
1102   // value was null.
1103   if (GV->getInitializer()->getType()->isPointerTy() &&
1104       GV->getInitializer()->isNullValue() &&
1105       !NullPointerIsDefined(
1106           nullptr /* F */,
1107           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1108     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1109       if (GV->getInitializer()->getType() != SOVC->getType())
1110         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1111 
1112       // Optimize away any trapping uses of the loaded value.
1113       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1114         return true;
1115     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1116       auto *TLI = &GetTLI(*CI->getFunction());
1117       Type *MallocType = getMallocAllocatedType(CI, TLI);
1118       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1119                                                            Ordering, DL, TLI))
1120         return true;
1121     }
1122   }
1123 
1124   return false;
1125 }
1126 
1127 /// At this point, we have learned that the only two values ever stored into GV
1128 /// are its initializer and OtherVal.  See if we can shrink the global into a
1129 /// boolean and select between the two values whenever it is used.  This exposes
1130 /// the values to other scalar optimizations.
TryToShrinkGlobalToBoolean(GlobalVariable * GV,Constant * OtherVal)1131 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1132   Type *GVElType = GV->getValueType();
1133 
1134   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1135   // an FP value, pointer or vector, don't do this optimization because a select
1136   // between them is very expensive and unlikely to lead to later
1137   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1138   // where v1 and v2 both require constant pool loads, a big loss.
1139   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1140       GVElType->isFloatingPointTy() ||
1141       GVElType->isPointerTy() || GVElType->isVectorTy())
1142     return false;
1143 
1144   // Walk the use list of the global seeing if all the uses are load or store.
1145   // If there is anything else, bail out.
1146   for (User *U : GV->users())
1147     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1148       return false;
1149 
1150   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1151 
1152   // Create the new global, initializing it to false.
1153   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1154                                              false,
1155                                              GlobalValue::InternalLinkage,
1156                                         ConstantInt::getFalse(GV->getContext()),
1157                                              GV->getName()+".b",
1158                                              GV->getThreadLocalMode(),
1159                                              GV->getType()->getAddressSpace());
1160   NewGV->copyAttributesFrom(GV);
1161   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1162 
1163   Constant *InitVal = GV->getInitializer();
1164   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1165          "No reason to shrink to bool!");
1166 
1167   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1168   GV->getDebugInfo(GVs);
1169 
1170   // If initialized to zero and storing one into the global, we can use a cast
1171   // instead of a select to synthesize the desired value.
1172   bool IsOneZero = false;
1173   bool EmitOneOrZero = true;
1174   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1175   if (CI && CI->getValue().getActiveBits() <= 64) {
1176     IsOneZero = InitVal->isNullValue() && CI->isOne();
1177 
1178     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1179     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1180       uint64_t ValInit = CIInit->getZExtValue();
1181       uint64_t ValOther = CI->getZExtValue();
1182       uint64_t ValMinus = ValOther - ValInit;
1183 
1184       for(auto *GVe : GVs){
1185         DIGlobalVariable *DGV = GVe->getVariable();
1186         DIExpression *E = GVe->getExpression();
1187         const DataLayout &DL = GV->getParent()->getDataLayout();
1188         unsigned SizeInOctets =
1189           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1190 
1191         // It is expected that the address of global optimized variable is on
1192         // top of the stack. After optimization, value of that variable will
1193         // be ether 0 for initial value or 1 for other value. The following
1194         // expression should return constant integer value depending on the
1195         // value at global object address:
1196         // val * (ValOther - ValInit) + ValInit:
1197         // DW_OP_deref DW_OP_constu <ValMinus>
1198         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1199         SmallVector<uint64_t, 12> Ops = {
1200             dwarf::DW_OP_deref_size, SizeInOctets,
1201             dwarf::DW_OP_constu, ValMinus,
1202             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1203             dwarf::DW_OP_plus};
1204         bool WithStackValue = true;
1205         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1206         DIGlobalVariableExpression *DGVE =
1207           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1208         NewGV->addDebugInfo(DGVE);
1209      }
1210      EmitOneOrZero = false;
1211     }
1212   }
1213 
1214   if (EmitOneOrZero) {
1215      // FIXME: This will only emit address for debugger on which will
1216      // be written only 0 or 1.
1217      for(auto *GV : GVs)
1218        NewGV->addDebugInfo(GV);
1219    }
1220 
1221   while (!GV->use_empty()) {
1222     Instruction *UI = cast<Instruction>(GV->user_back());
1223     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1224       // Change the store into a boolean store.
1225       bool StoringOther = SI->getOperand(0) == OtherVal;
1226       // Only do this if we weren't storing a loaded value.
1227       Value *StoreVal;
1228       if (StoringOther || SI->getOperand(0) == InitVal) {
1229         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1230                                     StoringOther);
1231       } else {
1232         // Otherwise, we are storing a previously loaded copy.  To do this,
1233         // change the copy from copying the original value to just copying the
1234         // bool.
1235         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1236 
1237         // If we've already replaced the input, StoredVal will be a cast or
1238         // select instruction.  If not, it will be a load of the original
1239         // global.
1240         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1241           assert(LI->getOperand(0) == GV && "Not a copy!");
1242           // Insert a new load, to preserve the saved value.
1243           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1244                                   LI->getName() + ".b", false, Align(1),
1245                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1246         } else {
1247           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1248                  "This is not a form that we understand!");
1249           StoreVal = StoredVal->getOperand(0);
1250           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1251         }
1252       }
1253       StoreInst *NSI =
1254           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1255                         SI->getSyncScopeID(), SI);
1256       NSI->setDebugLoc(SI->getDebugLoc());
1257     } else {
1258       // Change the load into a load of bool then a select.
1259       LoadInst *LI = cast<LoadInst>(UI);
1260       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1261                                    LI->getName() + ".b", false, Align(1),
1262                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1263       Instruction *NSI;
1264       if (IsOneZero)
1265         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1266       else
1267         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1268       NSI->takeName(LI);
1269       // Since LI is split into two instructions, NLI and NSI both inherit the
1270       // same DebugLoc
1271       NLI->setDebugLoc(LI->getDebugLoc());
1272       NSI->setDebugLoc(LI->getDebugLoc());
1273       LI->replaceAllUsesWith(NSI);
1274     }
1275     UI->eraseFromParent();
1276   }
1277 
1278   // Retain the name of the old global variable. People who are debugging their
1279   // programs may expect these variables to be named the same.
1280   NewGV->takeName(GV);
1281   GV->eraseFromParent();
1282   return true;
1283 }
1284 
deleteIfDead(GlobalValue & GV,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)1285 static bool deleteIfDead(
1286     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1287   GV.removeDeadConstantUsers();
1288 
1289   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1290     return false;
1291 
1292   if (const Comdat *C = GV.getComdat())
1293     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1294       return false;
1295 
1296   bool Dead;
1297   if (auto *F = dyn_cast<Function>(&GV))
1298     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1299   else
1300     Dead = GV.use_empty();
1301   if (!Dead)
1302     return false;
1303 
1304   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1305   GV.eraseFromParent();
1306   ++NumDeleted;
1307   return true;
1308 }
1309 
isPointerValueDeadOnEntryToFunction(const Function * F,GlobalValue * GV,function_ref<DominatorTree & (Function &)> LookupDomTree)1310 static bool isPointerValueDeadOnEntryToFunction(
1311     const Function *F, GlobalValue *GV,
1312     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1313   // Find all uses of GV. We expect them all to be in F, and if we can't
1314   // identify any of the uses we bail out.
1315   //
1316   // On each of these uses, identify if the memory that GV points to is
1317   // used/required/live at the start of the function. If it is not, for example
1318   // if the first thing the function does is store to the GV, the GV can
1319   // possibly be demoted.
1320   //
1321   // We don't do an exhaustive search for memory operations - simply look
1322   // through bitcasts as they're quite common and benign.
1323   const DataLayout &DL = GV->getParent()->getDataLayout();
1324   SmallVector<LoadInst *, 4> Loads;
1325   SmallVector<StoreInst *, 4> Stores;
1326   for (auto *U : GV->users()) {
1327     if (Operator::getOpcode(U) == Instruction::BitCast) {
1328       for (auto *UU : U->users()) {
1329         if (auto *LI = dyn_cast<LoadInst>(UU))
1330           Loads.push_back(LI);
1331         else if (auto *SI = dyn_cast<StoreInst>(UU))
1332           Stores.push_back(SI);
1333         else
1334           return false;
1335       }
1336       continue;
1337     }
1338 
1339     Instruction *I = dyn_cast<Instruction>(U);
1340     if (!I)
1341       return false;
1342     assert(I->getParent()->getParent() == F);
1343 
1344     if (auto *LI = dyn_cast<LoadInst>(I))
1345       Loads.push_back(LI);
1346     else if (auto *SI = dyn_cast<StoreInst>(I))
1347       Stores.push_back(SI);
1348     else
1349       return false;
1350   }
1351 
1352   // We have identified all uses of GV into loads and stores. Now check if all
1353   // of them are known not to depend on the value of the global at the function
1354   // entry point. We do this by ensuring that every load is dominated by at
1355   // least one store.
1356   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1357 
1358   // The below check is quadratic. Check we're not going to do too many tests.
1359   // FIXME: Even though this will always have worst-case quadratic time, we
1360   // could put effort into minimizing the average time by putting stores that
1361   // have been shown to dominate at least one load at the beginning of the
1362   // Stores array, making subsequent dominance checks more likely to succeed
1363   // early.
1364   //
1365   // The threshold here is fairly large because global->local demotion is a
1366   // very powerful optimization should it fire.
1367   const unsigned Threshold = 100;
1368   if (Loads.size() * Stores.size() > Threshold)
1369     return false;
1370 
1371   for (auto *L : Loads) {
1372     auto *LTy = L->getType();
1373     if (none_of(Stores, [&](const StoreInst *S) {
1374           auto *STy = S->getValueOperand()->getType();
1375           // The load is only dominated by the store if DomTree says so
1376           // and the number of bits loaded in L is less than or equal to
1377           // the number of bits stored in S.
1378           return DT.dominates(S, L) &&
1379                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1380                      DL.getTypeStoreSize(STy).getFixedSize();
1381         }))
1382       return false;
1383   }
1384   // All loads have known dependences inside F, so the global can be localized.
1385   return true;
1386 }
1387 
1388 /// C may have non-instruction users. Can all of those users be turned into
1389 /// instructions?
allNonInstructionUsersCanBeMadeInstructions(Constant * C)1390 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1391   // We don't do this exhaustively. The most common pattern that we really need
1392   // to care about is a constant GEP or constant bitcast - so just looking
1393   // through one single ConstantExpr.
1394   //
1395   // The set of constants that this function returns true for must be able to be
1396   // handled by makeAllConstantUsesInstructions.
1397   for (auto *U : C->users()) {
1398     if (isa<Instruction>(U))
1399       continue;
1400     if (!isa<ConstantExpr>(U))
1401       // Non instruction, non-constantexpr user; cannot convert this.
1402       return false;
1403     for (auto *UU : U->users())
1404       if (!isa<Instruction>(UU))
1405         // A constantexpr used by another constant. We don't try and recurse any
1406         // further but just bail out at this point.
1407         return false;
1408   }
1409 
1410   return true;
1411 }
1412 
1413 /// C may have non-instruction users, and
1414 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1415 /// non-instruction users to instructions.
makeAllConstantUsesInstructions(Constant * C)1416 static void makeAllConstantUsesInstructions(Constant *C) {
1417   SmallVector<ConstantExpr*,4> Users;
1418   for (auto *U : C->users()) {
1419     if (isa<ConstantExpr>(U))
1420       Users.push_back(cast<ConstantExpr>(U));
1421     else
1422       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1423       // should not have returned true for C.
1424       assert(
1425           isa<Instruction>(U) &&
1426           "Can't transform non-constantexpr non-instruction to instruction!");
1427   }
1428 
1429   SmallVector<Value*,4> UUsers;
1430   for (auto *U : Users) {
1431     UUsers.clear();
1432     append_range(UUsers, U->users());
1433     for (auto *UU : UUsers) {
1434       Instruction *UI = cast<Instruction>(UU);
1435       Instruction *NewU = U->getAsInstruction();
1436       NewU->insertBefore(UI);
1437       UI->replaceUsesOfWith(U, NewU);
1438     }
1439     // We've replaced all the uses, so destroy the constant. (destroyConstant
1440     // will update value handles and metadata.)
1441     U->destroyConstant();
1442   }
1443 }
1444 
1445 /// Analyze the specified global variable and optimize
1446 /// it if possible.  If we make a change, return true.
1447 static bool
processInternalGlobal(GlobalVariable * GV,const GlobalStatus & GS,function_ref<TargetLibraryInfo & (Function &)> GetTLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1448 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1449                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1450                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1451   auto &DL = GV->getParent()->getDataLayout();
1452   // If this is a first class global and has only one accessing function and
1453   // this function is non-recursive, we replace the global with a local alloca
1454   // in this function.
1455   //
1456   // NOTE: It doesn't make sense to promote non-single-value types since we
1457   // are just replacing static memory to stack memory.
1458   //
1459   // If the global is in different address space, don't bring it to stack.
1460   if (!GS.HasMultipleAccessingFunctions &&
1461       GS.AccessingFunction &&
1462       GV->getValueType()->isSingleValueType() &&
1463       GV->getType()->getAddressSpace() == 0 &&
1464       !GV->isExternallyInitialized() &&
1465       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1466       GS.AccessingFunction->doesNotRecurse() &&
1467       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1468                                           LookupDomTree)) {
1469     const DataLayout &DL = GV->getParent()->getDataLayout();
1470 
1471     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1472     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1473                                                    ->getEntryBlock().begin());
1474     Type *ElemTy = GV->getValueType();
1475     // FIXME: Pass Global's alignment when globals have alignment
1476     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1477                                         GV->getName(), &FirstI);
1478     if (!isa<UndefValue>(GV->getInitializer()))
1479       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1480 
1481     makeAllConstantUsesInstructions(GV);
1482 
1483     GV->replaceAllUsesWith(Alloca);
1484     GV->eraseFromParent();
1485     ++NumLocalized;
1486     return true;
1487   }
1488 
1489   bool Changed = false;
1490 
1491   // If the global is never loaded (but may be stored to), it is dead.
1492   // Delete it now.
1493   if (!GS.IsLoaded) {
1494     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1495 
1496     if (isLeakCheckerRoot(GV)) {
1497       // Delete any constant stores to the global.
1498       Changed = CleanupPointerRootUsers(GV, GetTLI);
1499     } else {
1500       // Delete any stores we can find to the global.  We may not be able to
1501       // make it completely dead though.
1502       Changed =
1503           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1504     }
1505 
1506     // If the global is dead now, delete it.
1507     if (GV->use_empty()) {
1508       GV->eraseFromParent();
1509       ++NumDeleted;
1510       Changed = true;
1511     }
1512     return Changed;
1513 
1514   }
1515   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1516     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1517 
1518     // Don't actually mark a global constant if it's atomic because atomic loads
1519     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1520     // requires write access to the variable even if it's not actually changed.
1521     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1522       assert(!GV->isConstant() && "Expected a non-constant global");
1523       GV->setConstant(true);
1524       Changed = true;
1525     }
1526 
1527     // Clean up any obviously simplifiable users now.
1528     Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1529 
1530     // If the global is dead now, just nuke it.
1531     if (GV->use_empty()) {
1532       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1533                         << "all users and delete global!\n");
1534       GV->eraseFromParent();
1535       ++NumDeleted;
1536       return true;
1537     }
1538 
1539     // Fall through to the next check; see if we can optimize further.
1540     ++NumMarked;
1541   }
1542   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1543     const DataLayout &DL = GV->getParent()->getDataLayout();
1544     if (SRAGlobal(GV, DL))
1545       return true;
1546   }
1547   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1548     // If the initial value for the global was an undef value, and if only
1549     // one other value was stored into it, we can just change the
1550     // initializer to be the stored value, then delete all stores to the
1551     // global.  This allows us to mark it constant.
1552     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1553       if (isa<UndefValue>(GV->getInitializer())) {
1554         // Change the initial value here.
1555         GV->setInitializer(SOVConstant);
1556 
1557         // Clean up any obviously simplifiable users now.
1558         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1559 
1560         if (GV->use_empty()) {
1561           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1562                             << "simplify all users and delete global!\n");
1563           GV->eraseFromParent();
1564           ++NumDeleted;
1565         }
1566         ++NumSubstitute;
1567         return true;
1568       }
1569 
1570     // Try to optimize globals based on the knowledge that only one value
1571     // (besides its initializer) is ever stored to the global.
1572     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
1573                                  GetTLI))
1574       return true;
1575 
1576     // Otherwise, if the global was not a boolean, we can shrink it to be a
1577     // boolean.
1578     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1579       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1580         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1581           ++NumShrunkToBool;
1582           return true;
1583         }
1584       }
1585     }
1586   }
1587 
1588   return Changed;
1589 }
1590 
1591 /// Analyze the specified global variable and optimize it if possible.  If we
1592 /// make a change, return true.
1593 static bool
processGlobal(GlobalValue & GV,function_ref<TargetLibraryInfo & (Function &)> GetTLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1594 processGlobal(GlobalValue &GV,
1595               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1596               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1597   if (GV.getName().startswith("llvm."))
1598     return false;
1599 
1600   GlobalStatus GS;
1601 
1602   if (GlobalStatus::analyzeGlobal(&GV, GS))
1603     return false;
1604 
1605   bool Changed = false;
1606   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1607     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1608                                                : GlobalValue::UnnamedAddr::Local;
1609     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1610       GV.setUnnamedAddr(NewUnnamedAddr);
1611       NumUnnamed++;
1612       Changed = true;
1613     }
1614   }
1615 
1616   // Do more involved optimizations if the global is internal.
1617   if (!GV.hasLocalLinkage())
1618     return Changed;
1619 
1620   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1621   if (!GVar)
1622     return Changed;
1623 
1624   if (GVar->isConstant() || !GVar->hasInitializer())
1625     return Changed;
1626 
1627   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
1628 }
1629 
1630 /// Walk all of the direct calls of the specified function, changing them to
1631 /// FastCC.
ChangeCalleesToFastCall(Function * F)1632 static void ChangeCalleesToFastCall(Function *F) {
1633   for (User *U : F->users()) {
1634     if (isa<BlockAddress>(U))
1635       continue;
1636     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1637   }
1638 }
1639 
StripAttr(LLVMContext & C,AttributeList Attrs,Attribute::AttrKind A)1640 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1641                                Attribute::AttrKind A) {
1642   unsigned AttrIndex;
1643   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1644     return Attrs.removeAttribute(C, AttrIndex, A);
1645   return Attrs;
1646 }
1647 
RemoveAttribute(Function * F,Attribute::AttrKind A)1648 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1649   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1650   for (User *U : F->users()) {
1651     if (isa<BlockAddress>(U))
1652       continue;
1653     CallBase *CB = cast<CallBase>(U);
1654     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1655   }
1656 }
1657 
1658 /// Return true if this is a calling convention that we'd like to change.  The
1659 /// idea here is that we don't want to mess with the convention if the user
1660 /// explicitly requested something with performance implications like coldcc,
1661 /// GHC, or anyregcc.
hasChangeableCC(Function * F)1662 static bool hasChangeableCC(Function *F) {
1663   CallingConv::ID CC = F->getCallingConv();
1664 
1665   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1666   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1667     return false;
1668 
1669   // FIXME: Change CC for the whole chain of musttail calls when possible.
1670   //
1671   // Can't change CC of the function that either has musttail calls, or is a
1672   // musttail callee itself
1673   for (User *U : F->users()) {
1674     if (isa<BlockAddress>(U))
1675       continue;
1676     CallInst* CI = dyn_cast<CallInst>(U);
1677     if (!CI)
1678       continue;
1679 
1680     if (CI->isMustTailCall())
1681       return false;
1682   }
1683 
1684   for (BasicBlock &BB : *F)
1685     if (BB.getTerminatingMustTailCall())
1686       return false;
1687 
1688   return true;
1689 }
1690 
1691 /// Return true if the block containing the call site has a BlockFrequency of
1692 /// less than ColdCCRelFreq% of the entry block.
isColdCallSite(CallBase & CB,BlockFrequencyInfo & CallerBFI)1693 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1694   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1695   auto *CallSiteBB = CB.getParent();
1696   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1697   auto CallerEntryFreq =
1698       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1699   return CallSiteFreq < CallerEntryFreq * ColdProb;
1700 }
1701 
1702 // This function checks if the input function F is cold at all call sites. It
1703 // also looks each call site's containing function, returning false if the
1704 // caller function contains other non cold calls. The input vector AllCallsCold
1705 // contains a list of functions that only have call sites in cold blocks.
1706 static bool
isValidCandidateForColdCC(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,const std::vector<Function * > & AllCallsCold)1707 isValidCandidateForColdCC(Function &F,
1708                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1709                           const std::vector<Function *> &AllCallsCold) {
1710 
1711   if (F.user_empty())
1712     return false;
1713 
1714   for (User *U : F.users()) {
1715     if (isa<BlockAddress>(U))
1716       continue;
1717 
1718     CallBase &CB = cast<CallBase>(*U);
1719     Function *CallerFunc = CB.getParent()->getParent();
1720     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1721     if (!isColdCallSite(CB, CallerBFI))
1722       return false;
1723     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1724       return false;
1725   }
1726   return true;
1727 }
1728 
changeCallSitesToColdCC(Function * F)1729 static void changeCallSitesToColdCC(Function *F) {
1730   for (User *U : F->users()) {
1731     if (isa<BlockAddress>(U))
1732       continue;
1733     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1734   }
1735 }
1736 
1737 // This function iterates over all the call instructions in the input Function
1738 // and checks that all call sites are in cold blocks and are allowed to use the
1739 // coldcc calling convention.
1740 static bool
hasOnlyColdCalls(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI)1741 hasOnlyColdCalls(Function &F,
1742                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1743   for (BasicBlock &BB : F) {
1744     for (Instruction &I : BB) {
1745       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1746         // Skip over isline asm instructions since they aren't function calls.
1747         if (CI->isInlineAsm())
1748           continue;
1749         Function *CalledFn = CI->getCalledFunction();
1750         if (!CalledFn)
1751           return false;
1752         if (!CalledFn->hasLocalLinkage())
1753           return false;
1754         // Skip over instrinsics since they won't remain as function calls.
1755         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1756           continue;
1757         // Check if it's valid to use coldcc calling convention.
1758         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1759             CalledFn->hasAddressTaken())
1760           return false;
1761         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1762         if (!isColdCallSite(*CI, CallerBFI))
1763           return false;
1764       }
1765     }
1766   }
1767   return true;
1768 }
1769 
hasMustTailCallers(Function * F)1770 static bool hasMustTailCallers(Function *F) {
1771   for (User *U : F->users()) {
1772     CallBase *CB = dyn_cast<CallBase>(U);
1773     if (!CB) {
1774       assert(isa<BlockAddress>(U) &&
1775              "Expected either CallBase or BlockAddress");
1776       continue;
1777     }
1778     if (CB->isMustTailCall())
1779       return true;
1780   }
1781   return false;
1782 }
1783 
hasInvokeCallers(Function * F)1784 static bool hasInvokeCallers(Function *F) {
1785   for (User *U : F->users())
1786     if (isa<InvokeInst>(U))
1787       return true;
1788   return false;
1789 }
1790 
RemovePreallocated(Function * F)1791 static void RemovePreallocated(Function *F) {
1792   RemoveAttribute(F, Attribute::Preallocated);
1793 
1794   auto *M = F->getParent();
1795 
1796   IRBuilder<> Builder(M->getContext());
1797 
1798   // Cannot modify users() while iterating over it, so make a copy.
1799   SmallVector<User *, 4> PreallocatedCalls(F->users());
1800   for (User *U : PreallocatedCalls) {
1801     CallBase *CB = dyn_cast<CallBase>(U);
1802     if (!CB)
1803       continue;
1804 
1805     assert(
1806         !CB->isMustTailCall() &&
1807         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1808     // Create copy of call without "preallocated" operand bundle.
1809     SmallVector<OperandBundleDef, 1> OpBundles;
1810     CB->getOperandBundlesAsDefs(OpBundles);
1811     CallBase *PreallocatedSetup = nullptr;
1812     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1813       if (It->getTag() == "preallocated") {
1814         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1815         OpBundles.erase(It);
1816         break;
1817       }
1818     }
1819     assert(PreallocatedSetup && "Did not find preallocated bundle");
1820     uint64_t ArgCount =
1821         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1822 
1823     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1824            "Unknown indirect call type");
1825     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1826     CB->replaceAllUsesWith(NewCB);
1827     NewCB->takeName(CB);
1828     CB->eraseFromParent();
1829 
1830     Builder.SetInsertPoint(PreallocatedSetup);
1831     auto *StackSave =
1832         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1833 
1834     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1835     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1836                        StackSave);
1837 
1838     // Replace @llvm.call.preallocated.arg() with alloca.
1839     // Cannot modify users() while iterating over it, so make a copy.
1840     // @llvm.call.preallocated.arg() can be called with the same index multiple
1841     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1842     // already created a Value* for the index, and if not, create an alloca and
1843     // bitcast right after the @llvm.call.preallocated.setup() so that it
1844     // dominates all uses.
1845     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1846     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1847     for (auto *User : PreallocatedArgs) {
1848       auto *UseCall = cast<CallBase>(User);
1849       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1850                  Intrinsic::call_preallocated_arg &&
1851              "preallocated token use was not a llvm.call.preallocated.arg");
1852       uint64_t AllocArgIndex =
1853           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1854       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1855       if (!AllocaReplacement) {
1856         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1857         auto *ArgType = UseCall
1858                             ->getAttribute(AttributeList::FunctionIndex,
1859                                            Attribute::Preallocated)
1860                             .getValueAsType();
1861         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1862         Builder.SetInsertPoint(InsertBefore);
1863         auto *Alloca =
1864             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1865         auto *BitCast = Builder.CreateBitCast(
1866             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1867         ArgAllocas[AllocArgIndex] = BitCast;
1868         AllocaReplacement = BitCast;
1869       }
1870 
1871       UseCall->replaceAllUsesWith(AllocaReplacement);
1872       UseCall->eraseFromParent();
1873     }
1874     // Remove @llvm.call.preallocated.setup().
1875     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1876   }
1877 }
1878 
1879 static bool
OptimizeFunctions(Module & M,function_ref<TargetLibraryInfo & (Function &)> GetTLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)1880 OptimizeFunctions(Module &M,
1881                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1882                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1883                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1884                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1885                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1886 
1887   bool Changed = false;
1888 
1889   std::vector<Function *> AllCallsCold;
1890   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
1891     Function *F = &*FI++;
1892     if (hasOnlyColdCalls(*F, GetBFI))
1893       AllCallsCold.push_back(F);
1894   }
1895 
1896   // Optimize functions.
1897   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1898     Function *F = &*FI++;
1899 
1900     // Don't perform global opt pass on naked functions; we don't want fast
1901     // calling conventions for naked functions.
1902     if (F->hasFnAttribute(Attribute::Naked))
1903       continue;
1904 
1905     // Functions without names cannot be referenced outside this module.
1906     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1907       F->setLinkage(GlobalValue::InternalLinkage);
1908 
1909     if (deleteIfDead(*F, NotDiscardableComdats)) {
1910       Changed = true;
1911       continue;
1912     }
1913 
1914     // LLVM's definition of dominance allows instructions that are cyclic
1915     // in unreachable blocks, e.g.:
1916     // %pat = select i1 %condition, @global, i16* %pat
1917     // because any instruction dominates an instruction in a block that's
1918     // not reachable from entry.
1919     // So, remove unreachable blocks from the function, because a) there's
1920     // no point in analyzing them and b) GlobalOpt should otherwise grow
1921     // some more complicated logic to break these cycles.
1922     // Removing unreachable blocks might invalidate the dominator so we
1923     // recalculate it.
1924     if (!F->isDeclaration()) {
1925       if (removeUnreachableBlocks(*F)) {
1926         auto &DT = LookupDomTree(*F);
1927         DT.recalculate(*F);
1928         Changed = true;
1929       }
1930     }
1931 
1932     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
1933 
1934     if (!F->hasLocalLinkage())
1935       continue;
1936 
1937     // If we have an inalloca parameter that we can safely remove the
1938     // inalloca attribute from, do so. This unlocks optimizations that
1939     // wouldn't be safe in the presence of inalloca.
1940     // FIXME: We should also hoist alloca affected by this to the entry
1941     // block if possible.
1942     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1943         !F->hasAddressTaken() && !hasMustTailCallers(F)) {
1944       RemoveAttribute(F, Attribute::InAlloca);
1945       Changed = true;
1946     }
1947 
1948     // FIXME: handle invokes
1949     // FIXME: handle musttail
1950     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1951       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
1952           !hasInvokeCallers(F)) {
1953         RemovePreallocated(F);
1954         Changed = true;
1955       }
1956       continue;
1957     }
1958 
1959     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
1960       NumInternalFunc++;
1961       TargetTransformInfo &TTI = GetTTI(*F);
1962       // Change the calling convention to coldcc if either stress testing is
1963       // enabled or the target would like to use coldcc on functions which are
1964       // cold at all call sites and the callers contain no other non coldcc
1965       // calls.
1966       if (EnableColdCCStressTest ||
1967           (TTI.useColdCCForColdCall(*F) &&
1968            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
1969         F->setCallingConv(CallingConv::Cold);
1970         changeCallSitesToColdCC(F);
1971         Changed = true;
1972         NumColdCC++;
1973       }
1974     }
1975 
1976     if (hasChangeableCC(F) && !F->isVarArg() &&
1977         !F->hasAddressTaken()) {
1978       // If this function has a calling convention worth changing, is not a
1979       // varargs function, and is only called directly, promote it to use the
1980       // Fast calling convention.
1981       F->setCallingConv(CallingConv::Fast);
1982       ChangeCalleesToFastCall(F);
1983       ++NumFastCallFns;
1984       Changed = true;
1985     }
1986 
1987     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1988         !F->hasAddressTaken()) {
1989       // The function is not used by a trampoline intrinsic, so it is safe
1990       // to remove the 'nest' attribute.
1991       RemoveAttribute(F, Attribute::Nest);
1992       ++NumNestRemoved;
1993       Changed = true;
1994     }
1995   }
1996   return Changed;
1997 }
1998 
1999 static bool
OptimizeGlobalVars(Module & M,function_ref<TargetLibraryInfo & (Function &)> GetTLI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2000 OptimizeGlobalVars(Module &M,
2001                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2002                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2003                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2004   bool Changed = false;
2005 
2006   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2007        GVI != E; ) {
2008     GlobalVariable *GV = &*GVI++;
2009     // Global variables without names cannot be referenced outside this module.
2010     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2011       GV->setLinkage(GlobalValue::InternalLinkage);
2012     // Simplify the initializer.
2013     if (GV->hasInitializer())
2014       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2015         auto &DL = M.getDataLayout();
2016         // TLI is not used in the case of a Constant, so use default nullptr
2017         // for that optional parameter, since we don't have a Function to
2018         // provide GetTLI anyway.
2019         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2020         if (New != C)
2021           GV->setInitializer(New);
2022       }
2023 
2024     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2025       Changed = true;
2026       continue;
2027     }
2028 
2029     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2030   }
2031   return Changed;
2032 }
2033 
2034 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2035 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2036 /// GEP operands of Addr [0, OpNo) have been stepped into.
EvaluateStoreInto(Constant * Init,Constant * Val,ConstantExpr * Addr,unsigned OpNo)2037 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2038                                    ConstantExpr *Addr, unsigned OpNo) {
2039   // Base case of the recursion.
2040   if (OpNo == Addr->getNumOperands()) {
2041     assert(Val->getType() == Init->getType() && "Type mismatch!");
2042     return Val;
2043   }
2044 
2045   SmallVector<Constant*, 32> Elts;
2046   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2047     // Break up the constant into its elements.
2048     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2049       Elts.push_back(Init->getAggregateElement(i));
2050 
2051     // Replace the element that we are supposed to.
2052     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2053     unsigned Idx = CU->getZExtValue();
2054     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2055     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2056 
2057     // Return the modified struct.
2058     return ConstantStruct::get(STy, Elts);
2059   }
2060 
2061   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2062   uint64_t NumElts;
2063   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2064     NumElts = ATy->getNumElements();
2065   else
2066     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2067 
2068   // Break up the array into elements.
2069   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2070     Elts.push_back(Init->getAggregateElement(i));
2071 
2072   assert(CI->getZExtValue() < NumElts);
2073   Elts[CI->getZExtValue()] =
2074     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2075 
2076   if (Init->getType()->isArrayTy())
2077     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2078   return ConstantVector::get(Elts);
2079 }
2080 
2081 /// We have decided that Addr (which satisfies the predicate
2082 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
CommitValueTo(Constant * Val,Constant * Addr)2083 static void CommitValueTo(Constant *Val, Constant *Addr) {
2084   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2085     assert(GV->hasInitializer());
2086     GV->setInitializer(Val);
2087     return;
2088   }
2089 
2090   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2091   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2092   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2093 }
2094 
2095 /// Given a map of address -> value, where addresses are expected to be some form
2096 /// of either a global or a constant GEP, set the initializer for the address to
2097 /// be the value. This performs mostly the same function as CommitValueTo()
2098 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2099 /// case where the set of addresses are GEPs sharing the same underlying global,
2100 /// processing the GEPs in batches rather than individually.
2101 ///
2102 /// To give an example, consider the following C++ code adapted from the clang
2103 /// regression tests:
2104 /// struct S {
2105 ///  int n = 10;
2106 ///  int m = 2 * n;
2107 ///  S(int a) : n(a) {}
2108 /// };
2109 ///
2110 /// template<typename T>
2111 /// struct U {
2112 ///  T *r = &q;
2113 ///  T q = 42;
2114 ///  U *p = this;
2115 /// };
2116 ///
2117 /// U<S> e;
2118 ///
2119 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2120 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2121 /// members. This batch algorithm will simply use general CommitValueTo() method
2122 /// to handle the complex nested S struct initialization of 'q', before
2123 /// processing the outermost members in a single batch. Using CommitValueTo() to
2124 /// handle member in the outer struct is inefficient when the struct/array is
2125 /// very large as we end up creating and destroy constant arrays for each
2126 /// initialization.
2127 /// For the above case, we expect the following IR to be generated:
2128 ///
2129 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2130 /// %struct.S = type { i32, i32 }
2131 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2132 ///                                                  i64 0, i32 1),
2133 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2134 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2135 /// constant expression, while the other two elements of @e are "simple".
BatchCommitValueTo(const DenseMap<Constant *,Constant * > & Mem)2136 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2137   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2138   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2139   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2140   SimpleCEs.reserve(Mem.size());
2141 
2142   for (const auto &I : Mem) {
2143     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2144       GVs.push_back(std::make_pair(GV, I.second));
2145     } else {
2146       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2147       // We don't handle the deeply recursive case using the batch method.
2148       if (GEP->getNumOperands() > 3)
2149         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2150       else
2151         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2152     }
2153   }
2154 
2155   // The algorithm below doesn't handle cases like nested structs, so use the
2156   // slower fully general method if we have to.
2157   for (auto ComplexCE : ComplexCEs)
2158     CommitValueTo(ComplexCE.second, ComplexCE.first);
2159 
2160   for (auto GVPair : GVs) {
2161     assert(GVPair.first->hasInitializer());
2162     GVPair.first->setInitializer(GVPair.second);
2163   }
2164 
2165   if (SimpleCEs.empty())
2166     return;
2167 
2168   // We cache a single global's initializer elements in the case where the
2169   // subsequent address/val pair uses the same one. This avoids throwing away and
2170   // rebuilding the constant struct/vector/array just because one element is
2171   // modified at a time.
2172   SmallVector<Constant *, 32> Elts;
2173   Elts.reserve(SimpleCEs.size());
2174   GlobalVariable *CurrentGV = nullptr;
2175 
2176   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2177     Constant *Init = GV->getInitializer();
2178     Type *Ty = Init->getType();
2179     if (Update) {
2180       if (CurrentGV) {
2181         assert(CurrentGV && "Expected a GV to commit to!");
2182         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2183         // We have a valid cache that needs to be committed.
2184         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2185           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2186         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2187           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2188         else
2189           CurrentGV->setInitializer(ConstantVector::get(Elts));
2190       }
2191       if (CurrentGV == GV)
2192         return;
2193       // Need to clear and set up cache for new initializer.
2194       CurrentGV = GV;
2195       Elts.clear();
2196       unsigned NumElts;
2197       if (auto *STy = dyn_cast<StructType>(Ty))
2198         NumElts = STy->getNumElements();
2199       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2200         NumElts = ATy->getNumElements();
2201       else
2202         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2203       for (unsigned i = 0, e = NumElts; i != e; ++i)
2204         Elts.push_back(Init->getAggregateElement(i));
2205     }
2206   };
2207 
2208   for (auto CEPair : SimpleCEs) {
2209     ConstantExpr *GEP = CEPair.first;
2210     Constant *Val = CEPair.second;
2211 
2212     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2213     commitAndSetupCache(GV, GV != CurrentGV);
2214     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2215     Elts[CI->getZExtValue()] = Val;
2216   }
2217   // The last initializer in the list needs to be committed, others
2218   // will be committed on a new initializer being processed.
2219   commitAndSetupCache(CurrentGV, true);
2220 }
2221 
2222 /// Evaluate static constructors in the function, if we can.  Return true if we
2223 /// can, false otherwise.
EvaluateStaticConstructor(Function * F,const DataLayout & DL,TargetLibraryInfo * TLI)2224 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2225                                       TargetLibraryInfo *TLI) {
2226   // Call the function.
2227   Evaluator Eval(DL, TLI);
2228   Constant *RetValDummy;
2229   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2230                                            SmallVector<Constant*, 0>());
2231 
2232   if (EvalSuccess) {
2233     ++NumCtorsEvaluated;
2234 
2235     // We succeeded at evaluation: commit the result.
2236     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2237                       << F->getName() << "' to "
2238                       << Eval.getMutatedMemory().size() << " stores.\n");
2239     BatchCommitValueTo(Eval.getMutatedMemory());
2240     for (GlobalVariable *GV : Eval.getInvariants())
2241       GV->setConstant(true);
2242   }
2243 
2244   return EvalSuccess;
2245 }
2246 
compareNames(Constant * const * A,Constant * const * B)2247 static int compareNames(Constant *const *A, Constant *const *B) {
2248   Value *AStripped = (*A)->stripPointerCasts();
2249   Value *BStripped = (*B)->stripPointerCasts();
2250   return AStripped->getName().compare(BStripped->getName());
2251 }
2252 
setUsedInitializer(GlobalVariable & V,const SmallPtrSetImpl<GlobalValue * > & Init)2253 static void setUsedInitializer(GlobalVariable &V,
2254                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2255   if (Init.empty()) {
2256     V.eraseFromParent();
2257     return;
2258   }
2259 
2260   // Type of pointer to the array of pointers.
2261   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2262 
2263   SmallVector<Constant *, 8> UsedArray;
2264   for (GlobalValue *GV : Init) {
2265     Constant *Cast
2266       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2267     UsedArray.push_back(Cast);
2268   }
2269   // Sort to get deterministic order.
2270   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2271   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2272 
2273   Module *M = V.getParent();
2274   V.removeFromParent();
2275   GlobalVariable *NV =
2276       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2277                          ConstantArray::get(ATy, UsedArray), "");
2278   NV->takeName(&V);
2279   NV->setSection("llvm.metadata");
2280   delete &V;
2281 }
2282 
2283 namespace {
2284 
2285 /// An easy to access representation of llvm.used and llvm.compiler.used.
2286 class LLVMUsed {
2287   SmallPtrSet<GlobalValue *, 4> Used;
2288   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2289   GlobalVariable *UsedV;
2290   GlobalVariable *CompilerUsedV;
2291 
2292 public:
LLVMUsed(Module & M)2293   LLVMUsed(Module &M) {
2294     SmallVector<GlobalValue *, 4> Vec;
2295     UsedV = collectUsedGlobalVariables(M, Vec, false);
2296     Used = {Vec.begin(), Vec.end()};
2297     Vec.clear();
2298     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2299     CompilerUsed = {Vec.begin(), Vec.end()};
2300   }
2301 
2302   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2303   using used_iterator_range = iterator_range<iterator>;
2304 
usedBegin()2305   iterator usedBegin() { return Used.begin(); }
usedEnd()2306   iterator usedEnd() { return Used.end(); }
2307 
used()2308   used_iterator_range used() {
2309     return used_iterator_range(usedBegin(), usedEnd());
2310   }
2311 
compilerUsedBegin()2312   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
compilerUsedEnd()2313   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2314 
compilerUsed()2315   used_iterator_range compilerUsed() {
2316     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2317   }
2318 
usedCount(GlobalValue * GV) const2319   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2320 
compilerUsedCount(GlobalValue * GV) const2321   bool compilerUsedCount(GlobalValue *GV) const {
2322     return CompilerUsed.count(GV);
2323   }
2324 
usedErase(GlobalValue * GV)2325   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
compilerUsedErase(GlobalValue * GV)2326   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
usedInsert(GlobalValue * GV)2327   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2328 
compilerUsedInsert(GlobalValue * GV)2329   bool compilerUsedInsert(GlobalValue *GV) {
2330     return CompilerUsed.insert(GV).second;
2331   }
2332 
syncVariablesAndSets()2333   void syncVariablesAndSets() {
2334     if (UsedV)
2335       setUsedInitializer(*UsedV, Used);
2336     if (CompilerUsedV)
2337       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2338   }
2339 };
2340 
2341 } // end anonymous namespace
2342 
hasUseOtherThanLLVMUsed(GlobalAlias & GA,const LLVMUsed & U)2343 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2344   if (GA.use_empty()) // No use at all.
2345     return false;
2346 
2347   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2348          "We should have removed the duplicated "
2349          "element from llvm.compiler.used");
2350   if (!GA.hasOneUse())
2351     // Strictly more than one use. So at least one is not in llvm.used and
2352     // llvm.compiler.used.
2353     return true;
2354 
2355   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2356   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2357 }
2358 
hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue & V,const LLVMUsed & U)2359 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2360                                                const LLVMUsed &U) {
2361   unsigned N = 2;
2362   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2363          "We should have removed the duplicated "
2364          "element from llvm.compiler.used");
2365   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2366     ++N;
2367   return V.hasNUsesOrMore(N);
2368 }
2369 
mayHaveOtherReferences(GlobalAlias & GA,const LLVMUsed & U)2370 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2371   if (!GA.hasLocalLinkage())
2372     return true;
2373 
2374   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2375 }
2376 
hasUsesToReplace(GlobalAlias & GA,const LLVMUsed & U,bool & RenameTarget)2377 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2378                              bool &RenameTarget) {
2379   RenameTarget = false;
2380   bool Ret = false;
2381   if (hasUseOtherThanLLVMUsed(GA, U))
2382     Ret = true;
2383 
2384   // If the alias is externally visible, we may still be able to simplify it.
2385   if (!mayHaveOtherReferences(GA, U))
2386     return Ret;
2387 
2388   // If the aliasee has internal linkage, give it the name and linkage
2389   // of the alias, and delete the alias.  This turns:
2390   //   define internal ... @f(...)
2391   //   @a = alias ... @f
2392   // into:
2393   //   define ... @a(...)
2394   Constant *Aliasee = GA.getAliasee();
2395   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2396   if (!Target->hasLocalLinkage())
2397     return Ret;
2398 
2399   // Do not perform the transform if multiple aliases potentially target the
2400   // aliasee. This check also ensures that it is safe to replace the section
2401   // and other attributes of the aliasee with those of the alias.
2402   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2403     return Ret;
2404 
2405   RenameTarget = true;
2406   return true;
2407 }
2408 
2409 static bool
OptimizeGlobalAliases(Module & M,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2410 OptimizeGlobalAliases(Module &M,
2411                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2412   bool Changed = false;
2413   LLVMUsed Used(M);
2414 
2415   for (GlobalValue *GV : Used.used())
2416     Used.compilerUsedErase(GV);
2417 
2418   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2419        I != E;) {
2420     GlobalAlias *J = &*I++;
2421 
2422     // Aliases without names cannot be referenced outside this module.
2423     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2424       J->setLinkage(GlobalValue::InternalLinkage);
2425 
2426     if (deleteIfDead(*J, NotDiscardableComdats)) {
2427       Changed = true;
2428       continue;
2429     }
2430 
2431     // If the alias can change at link time, nothing can be done - bail out.
2432     if (J->isInterposable())
2433       continue;
2434 
2435     Constant *Aliasee = J->getAliasee();
2436     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2437     // We can't trivially replace the alias with the aliasee if the aliasee is
2438     // non-trivial in some way. We also can't replace the alias with the aliasee
2439     // if the aliasee is interposable because aliases point to the local
2440     // definition.
2441     // TODO: Try to handle non-zero GEPs of local aliasees.
2442     if (!Target || Target->isInterposable())
2443       continue;
2444     Target->removeDeadConstantUsers();
2445 
2446     // Make all users of the alias use the aliasee instead.
2447     bool RenameTarget;
2448     if (!hasUsesToReplace(*J, Used, RenameTarget))
2449       continue;
2450 
2451     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2452     ++NumAliasesResolved;
2453     Changed = true;
2454 
2455     if (RenameTarget) {
2456       // Give the aliasee the name, linkage and other attributes of the alias.
2457       Target->takeName(&*J);
2458       Target->setLinkage(J->getLinkage());
2459       Target->setDSOLocal(J->isDSOLocal());
2460       Target->setVisibility(J->getVisibility());
2461       Target->setDLLStorageClass(J->getDLLStorageClass());
2462 
2463       if (Used.usedErase(&*J))
2464         Used.usedInsert(Target);
2465 
2466       if (Used.compilerUsedErase(&*J))
2467         Used.compilerUsedInsert(Target);
2468     } else if (mayHaveOtherReferences(*J, Used))
2469       continue;
2470 
2471     // Delete the alias.
2472     M.getAliasList().erase(J);
2473     ++NumAliasesRemoved;
2474     Changed = true;
2475   }
2476 
2477   Used.syncVariablesAndSets();
2478 
2479   return Changed;
2480 }
2481 
2482 static Function *
FindCXAAtExit(Module & M,function_ref<TargetLibraryInfo & (Function &)> GetTLI)2483 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2484   // Hack to get a default TLI before we have actual Function.
2485   auto FuncIter = M.begin();
2486   if (FuncIter == M.end())
2487     return nullptr;
2488   auto *TLI = &GetTLI(*FuncIter);
2489 
2490   LibFunc F = LibFunc_cxa_atexit;
2491   if (!TLI->has(F))
2492     return nullptr;
2493 
2494   Function *Fn = M.getFunction(TLI->getName(F));
2495   if (!Fn)
2496     return nullptr;
2497 
2498   // Now get the actual TLI for Fn.
2499   TLI = &GetTLI(*Fn);
2500 
2501   // Make sure that the function has the correct prototype.
2502   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2503     return nullptr;
2504 
2505   return Fn;
2506 }
2507 
2508 /// Returns whether the given function is an empty C++ destructor and can
2509 /// therefore be eliminated.
2510 /// Note that we assume that other optimization passes have already simplified
2511 /// the code so we simply check for 'ret'.
cxxDtorIsEmpty(const Function & Fn)2512 static bool cxxDtorIsEmpty(const Function &Fn) {
2513   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2514   // nounwind, but that doesn't seem worth doing.
2515   if (Fn.isDeclaration())
2516     return false;
2517 
2518   for (auto &I : Fn.getEntryBlock()) {
2519     if (isa<DbgInfoIntrinsic>(I))
2520       continue;
2521     if (isa<ReturnInst>(I))
2522       return true;
2523     break;
2524   }
2525   return false;
2526 }
2527 
OptimizeEmptyGlobalCXXDtors(Function * CXAAtExitFn)2528 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2529   /// Itanium C++ ABI p3.3.5:
2530   ///
2531   ///   After constructing a global (or local static) object, that will require
2532   ///   destruction on exit, a termination function is registered as follows:
2533   ///
2534   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2535   ///
2536   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2537   ///   call f(p) when DSO d is unloaded, before all such termination calls
2538   ///   registered before this one. It returns zero if registration is
2539   ///   successful, nonzero on failure.
2540 
2541   // This pass will look for calls to __cxa_atexit where the function is trivial
2542   // and remove them.
2543   bool Changed = false;
2544 
2545   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2546        I != E;) {
2547     // We're only interested in calls. Theoretically, we could handle invoke
2548     // instructions as well, but neither llvm-gcc nor clang generate invokes
2549     // to __cxa_atexit.
2550     CallInst *CI = dyn_cast<CallInst>(*I++);
2551     if (!CI)
2552       continue;
2553 
2554     Function *DtorFn =
2555       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2556     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2557       continue;
2558 
2559     // Just remove the call.
2560     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2561     CI->eraseFromParent();
2562 
2563     ++NumCXXDtorsRemoved;
2564 
2565     Changed |= true;
2566   }
2567 
2568   return Changed;
2569 }
2570 
optimizeGlobalsInModule(Module & M,const DataLayout & DL,function_ref<TargetLibraryInfo & (Function &)> GetTLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree)2571 static bool optimizeGlobalsInModule(
2572     Module &M, const DataLayout &DL,
2573     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2574     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2575     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2576     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2577   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2578   bool Changed = false;
2579   bool LocalChange = true;
2580   while (LocalChange) {
2581     LocalChange = false;
2582 
2583     NotDiscardableComdats.clear();
2584     for (const GlobalVariable &GV : M.globals())
2585       if (const Comdat *C = GV.getComdat())
2586         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2587           NotDiscardableComdats.insert(C);
2588     for (Function &F : M)
2589       if (const Comdat *C = F.getComdat())
2590         if (!F.isDefTriviallyDead())
2591           NotDiscardableComdats.insert(C);
2592     for (GlobalAlias &GA : M.aliases())
2593       if (const Comdat *C = GA.getComdat())
2594         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2595           NotDiscardableComdats.insert(C);
2596 
2597     // Delete functions that are trivially dead, ccc -> fastcc
2598     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2599                                      NotDiscardableComdats);
2600 
2601     // Optimize global_ctors list.
2602     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2603       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2604     });
2605 
2606     // Optimize non-address-taken globals.
2607     LocalChange |=
2608         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2609 
2610     // Resolve aliases, when possible.
2611     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2612 
2613     // Try to remove trivial global destructors if they are not removed
2614     // already.
2615     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2616     if (CXAAtExitFn)
2617       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2618 
2619     Changed |= LocalChange;
2620   }
2621 
2622   // TODO: Move all global ctors functions to the end of the module for code
2623   // layout.
2624 
2625   return Changed;
2626 }
2627 
run(Module & M,ModuleAnalysisManager & AM)2628 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2629     auto &DL = M.getDataLayout();
2630     auto &FAM =
2631         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2632     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2633       return FAM.getResult<DominatorTreeAnalysis>(F);
2634     };
2635     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2636       return FAM.getResult<TargetLibraryAnalysis>(F);
2637     };
2638     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2639       return FAM.getResult<TargetIRAnalysis>(F);
2640     };
2641 
2642     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2643       return FAM.getResult<BlockFrequencyAnalysis>(F);
2644     };
2645 
2646     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2647       return PreservedAnalyses::all();
2648     return PreservedAnalyses::none();
2649 }
2650 
2651 namespace {
2652 
2653 struct GlobalOptLegacyPass : public ModulePass {
2654   static char ID; // Pass identification, replacement for typeid
2655 
GlobalOptLegacyPass__anonaff4dab40a11::GlobalOptLegacyPass2656   GlobalOptLegacyPass() : ModulePass(ID) {
2657     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2658   }
2659 
runOnModule__anonaff4dab40a11::GlobalOptLegacyPass2660   bool runOnModule(Module &M) override {
2661     if (skipModule(M))
2662       return false;
2663 
2664     auto &DL = M.getDataLayout();
2665     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2666       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2667     };
2668     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2669       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2670     };
2671     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2672       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2673     };
2674 
2675     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2676       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2677     };
2678 
2679     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2680                                    LookupDomTree);
2681   }
2682 
getAnalysisUsage__anonaff4dab40a11::GlobalOptLegacyPass2683   void getAnalysisUsage(AnalysisUsage &AU) const override {
2684     AU.addRequired<TargetLibraryInfoWrapperPass>();
2685     AU.addRequired<TargetTransformInfoWrapperPass>();
2686     AU.addRequired<DominatorTreeWrapperPass>();
2687     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2688   }
2689 };
2690 
2691 } // end anonymous namespace
2692 
2693 char GlobalOptLegacyPass::ID = 0;
2694 
2695 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2696                       "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)2697 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2698 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2699 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2700 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2701 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2702                     "Global Variable Optimizer", false, false)
2703 
2704 ModulePass *llvm::createGlobalOptimizerPass() {
2705   return new GlobalOptLegacyPass();
2706 }
2707