1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/StringRef.h" 69 #include "llvm/ADT/StringSet.h" 70 #include "llvm/ADT/iterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/GlobalsModRef.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/Argument.h" 76 #include "llvm/IR/AttributeMask.h" 77 #include "llvm/IR/Attributes.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DataLayout.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/Function.h" 85 #include "llvm/IR/GlobalAlias.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/GlobalVariable.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstVisitor.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/Support/Alignment.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/SpecialCaseList.h" 105 #include "llvm/Support/VirtualFileSystem.h" 106 #include "llvm/TargetParser/Triple.h" 107 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 108 #include "llvm/Transforms/Utils/Instrumentation.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <memory> 115 #include <set> 116 #include <string> 117 #include <utility> 118 #include <vector> 119 120 using namespace llvm; 121 122 // This must be consistent with ShadowWidthBits. 123 static const Align ShadowTLSAlignment = Align(2); 124 125 static const Align MinOriginAlignment = Align(4); 126 127 // The size of TLS variables. These constants must be kept in sync with the ones 128 // in dfsan.cpp. 129 static const unsigned ArgTLSSize = 800; 130 static const unsigned RetvalTLSSize = 800; 131 132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 133 // alignment requirements provided by the input IR are correct. For example, 134 // if the input IR contains a load with alignment 8, this flag will cause 135 // the shadow load to have alignment 16. This flag is disabled by default as 136 // we have unfortunately encountered too much code (including Clang itself; 137 // see PR14291) which performs misaligned access. 138 static cl::opt<bool> ClPreserveAlignment( 139 "dfsan-preserve-alignment", 140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 141 cl::init(false)); 142 143 // The ABI list files control how shadow parameters are passed. The pass treats 144 // every function labelled "uninstrumented" in the ABI list file as conforming 145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 146 // additional annotations for those functions, a call to one of those functions 147 // will produce a warning message, as the labelling behaviour of the function is 148 // unknown. The other supported annotations for uninstrumented functions are 149 // "functional" and "discard", which are described below under 150 // DataFlowSanitizer::WrapperKind. 151 // Functions will often be labelled with both "uninstrumented" and one of 152 // "functional" or "discard". This will leave the function unchanged by this 153 // pass, and create a wrapper function that will call the original. 154 // 155 // Instrumented functions can also be annotated as "force_zero_labels", which 156 // will make all shadow and return values set zero labels. 157 // Functions should never be labelled with both "force_zero_labels" and 158 // "uninstrumented" or any of the unistrumented wrapper kinds. 159 static cl::list<std::string> ClABIListFiles( 160 "dfsan-abilist", 161 cl::desc("File listing native ABI functions and how the pass treats them"), 162 cl::Hidden); 163 164 // Controls whether the pass includes or ignores the labels of pointers in load 165 // instructions. 166 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 167 "dfsan-combine-pointer-labels-on-load", 168 cl::desc("Combine the label of the pointer with the label of the data when " 169 "loading from memory."), 170 cl::Hidden, cl::init(true)); 171 172 // Controls whether the pass includes or ignores the labels of pointers in 173 // stores instructions. 174 static cl::opt<bool> ClCombinePointerLabelsOnStore( 175 "dfsan-combine-pointer-labels-on-store", 176 cl::desc("Combine the label of the pointer with the label of the data when " 177 "storing in memory."), 178 cl::Hidden, cl::init(false)); 179 180 // Controls whether the pass propagates labels of offsets in GEP instructions. 181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 182 "dfsan-combine-offset-labels-on-gep", 183 cl::desc( 184 "Combine the label of the offset with the label of the pointer when " 185 "doing pointer arithmetic."), 186 cl::Hidden, cl::init(true)); 187 188 static cl::list<std::string> ClCombineTaintLookupTables( 189 "dfsan-combine-taint-lookup-table", 190 cl::desc( 191 "When dfsan-combine-offset-labels-on-gep and/or " 192 "dfsan-combine-pointer-labels-on-load are false, this flag can " 193 "be used to re-enable combining offset and/or pointer taint when " 194 "loading specific constant global variables (i.e. lookup tables)."), 195 cl::Hidden); 196 197 static cl::opt<bool> ClDebugNonzeroLabels( 198 "dfsan-debug-nonzero-labels", 199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 200 "load or return with a nonzero label"), 201 cl::Hidden); 202 203 // Experimental feature that inserts callbacks for certain data events. 204 // Currently callbacks are only inserted for loads, stores, memory transfers 205 // (i.e. memcpy and memmove), and comparisons. 206 // 207 // If this flag is set to true, the user must provide definitions for the 208 // following callback functions: 209 // void __dfsan_load_callback(dfsan_label Label, void* addr); 210 // void __dfsan_store_callback(dfsan_label Label, void* addr); 211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 213 static cl::opt<bool> ClEventCallbacks( 214 "dfsan-event-callbacks", 215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 216 cl::Hidden, cl::init(false)); 217 218 // Experimental feature that inserts callbacks for conditionals, including: 219 // conditional branch, switch, select. 220 // This must be true for dfsan_set_conditional_callback() to have effect. 221 static cl::opt<bool> ClConditionalCallbacks( 222 "dfsan-conditional-callbacks", 223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden, 224 cl::init(false)); 225 226 // Experimental feature that inserts callbacks for data reaching a function, 227 // either via function arguments and loads. 228 // This must be true for dfsan_set_reaches_function_callback() to have effect. 229 static cl::opt<bool> ClReachesFunctionCallbacks( 230 "dfsan-reaches-function-callbacks", 231 cl::desc("Insert calls to callback functions on data reaching a function."), 232 cl::Hidden, cl::init(false)); 233 234 // Controls whether the pass tracks the control flow of select instructions. 235 static cl::opt<bool> ClTrackSelectControlFlow( 236 "dfsan-track-select-control-flow", 237 cl::desc("Propagate labels from condition values of select instructions " 238 "to results."), 239 cl::Hidden, cl::init(true)); 240 241 // TODO: This default value follows MSan. DFSan may use a different value. 242 static cl::opt<int> ClInstrumentWithCallThreshold( 243 "dfsan-instrument-with-call-threshold", 244 cl::desc("If the function being instrumented requires more than " 245 "this number of origin stores, use callbacks instead of " 246 "inline checks (-1 means never use callbacks)."), 247 cl::Hidden, cl::init(3500)); 248 249 // Controls how to track origins. 250 // * 0: do not track origins. 251 // * 1: track origins at memory store operations. 252 // * 2: track origins at memory load and store operations. 253 // TODO: track callsites. 254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 255 cl::desc("Track origins of labels"), 256 cl::Hidden, cl::init(0)); 257 258 static cl::opt<bool> ClIgnorePersonalityRoutine( 259 "dfsan-ignore-personality-routine", 260 cl::desc("If a personality routine is marked uninstrumented from the ABI " 261 "list, do not create a wrapper for it."), 262 cl::Hidden, cl::init(false)); 263 264 static StringRef getGlobalTypeString(const GlobalValue &G) { 265 // Types of GlobalVariables are always pointer types. 266 Type *GType = G.getValueType(); 267 // For now we support excluding struct types only. 268 if (StructType *SGType = dyn_cast<StructType>(GType)) { 269 if (!SGType->isLiteral()) 270 return SGType->getName(); 271 } 272 return "<unknown type>"; 273 } 274 275 namespace { 276 277 // Memory map parameters used in application-to-shadow address calculation. 278 // Offset = (Addr & ~AndMask) ^ XorMask 279 // Shadow = ShadowBase + Offset 280 // Origin = (OriginBase + Offset) & ~3ULL 281 struct MemoryMapParams { 282 uint64_t AndMask; 283 uint64_t XorMask; 284 uint64_t ShadowBase; 285 uint64_t OriginBase; 286 }; 287 288 } // end anonymous namespace 289 290 // NOLINTBEGIN(readability-identifier-naming) 291 // aarch64 Linux 292 const MemoryMapParams Linux_AArch64_MemoryMapParams = { 293 0, // AndMask (not used) 294 0x0B00000000000, // XorMask 295 0, // ShadowBase (not used) 296 0x0200000000000, // OriginBase 297 }; 298 299 // x86_64 Linux 300 const MemoryMapParams Linux_X86_64_MemoryMapParams = { 301 0, // AndMask (not used) 302 0x500000000000, // XorMask 303 0, // ShadowBase (not used) 304 0x100000000000, // OriginBase 305 }; 306 // NOLINTEND(readability-identifier-naming) 307 308 // loongarch64 Linux 309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { 310 0, // AndMask (not used) 311 0x500000000000, // XorMask 312 0, // ShadowBase (not used) 313 0x100000000000, // OriginBase 314 }; 315 316 namespace { 317 318 class DFSanABIList { 319 std::unique_ptr<SpecialCaseList> SCL; 320 321 public: 322 DFSanABIList() = default; 323 324 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 325 326 /// Returns whether either this function or its source file are listed in the 327 /// given category. 328 bool isIn(const Function &F, StringRef Category) const { 329 return isIn(*F.getParent(), Category) || 330 SCL->inSection("dataflow", "fun", F.getName(), Category); 331 } 332 333 /// Returns whether this global alias is listed in the given category. 334 /// 335 /// If GA aliases a function, the alias's name is matched as a function name 336 /// would be. Similarly, aliases of globals are matched like globals. 337 bool isIn(const GlobalAlias &GA, StringRef Category) const { 338 if (isIn(*GA.getParent(), Category)) 339 return true; 340 341 if (isa<FunctionType>(GA.getValueType())) 342 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 343 344 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 345 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 346 Category); 347 } 348 349 /// Returns whether this module is listed in the given category. 350 bool isIn(const Module &M, StringRef Category) const { 351 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 352 } 353 }; 354 355 /// TransformedFunction is used to express the result of transforming one 356 /// function type into another. This struct is immutable. It holds metadata 357 /// useful for updating calls of the old function to the new type. 358 struct TransformedFunction { 359 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 360 const std::vector<unsigned> &ArgumentIndexMapping) 361 : OriginalType(OriginalType), TransformedType(TransformedType), 362 ArgumentIndexMapping(ArgumentIndexMapping) {} 363 364 // Disallow copies. 365 TransformedFunction(const TransformedFunction &) = delete; 366 TransformedFunction &operator=(const TransformedFunction &) = delete; 367 368 // Allow moves. 369 TransformedFunction(TransformedFunction &&) = default; 370 TransformedFunction &operator=(TransformedFunction &&) = default; 371 372 /// Type of the function before the transformation. 373 FunctionType *OriginalType; 374 375 /// Type of the function after the transformation. 376 FunctionType *TransformedType; 377 378 /// Transforming a function may change the position of arguments. This 379 /// member records the mapping from each argument's old position to its new 380 /// position. Argument positions are zero-indexed. If the transformation 381 /// from F to F' made the first argument of F into the third argument of F', 382 /// then ArgumentIndexMapping[0] will equal 2. 383 std::vector<unsigned> ArgumentIndexMapping; 384 }; 385 386 /// Given function attributes from a call site for the original function, 387 /// return function attributes appropriate for a call to the transformed 388 /// function. 389 AttributeList 390 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 391 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 392 393 // Construct a vector of AttributeSet for each function argument. 394 std::vector<llvm::AttributeSet> ArgumentAttributes( 395 TransformedFunction.TransformedType->getNumParams()); 396 397 // Copy attributes from the parameter of the original function to the 398 // transformed version. 'ArgumentIndexMapping' holds the mapping from 399 // old argument position to new. 400 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 401 I < IE; ++I) { 402 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 403 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 404 } 405 406 // Copy annotations on varargs arguments. 407 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 408 IE = CallSiteAttrs.getNumAttrSets(); 409 I < IE; ++I) { 410 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 411 } 412 413 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 414 CallSiteAttrs.getRetAttrs(), 415 llvm::ArrayRef(ArgumentAttributes)); 416 } 417 418 class DataFlowSanitizer { 419 friend struct DFSanFunction; 420 friend class DFSanVisitor; 421 422 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 423 424 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 425 426 /// How should calls to uninstrumented functions be handled? 427 enum WrapperKind { 428 /// This function is present in an uninstrumented form but we don't know 429 /// how it should be handled. Print a warning and call the function anyway. 430 /// Don't label the return value. 431 WK_Warning, 432 433 /// This function does not write to (user-accessible) memory, and its return 434 /// value is unlabelled. 435 WK_Discard, 436 437 /// This function does not write to (user-accessible) memory, and the label 438 /// of its return value is the union of the label of its arguments. 439 WK_Functional, 440 441 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 442 /// where F is the name of the function. This function may wrap the 443 /// original function or provide its own implementation. WK_Custom uses an 444 /// extra pointer argument to return the shadow. This allows the wrapped 445 /// form of the function type to be expressed in C. 446 WK_Custom 447 }; 448 449 Module *Mod; 450 LLVMContext *Ctx; 451 Type *Int8Ptr; 452 IntegerType *OriginTy; 453 PointerType *OriginPtrTy; 454 ConstantInt *ZeroOrigin; 455 /// The shadow type for all primitive types and vector types. 456 IntegerType *PrimitiveShadowTy; 457 PointerType *PrimitiveShadowPtrTy; 458 IntegerType *IntptrTy; 459 ConstantInt *ZeroPrimitiveShadow; 460 Constant *ArgTLS; 461 ArrayType *ArgOriginTLSTy; 462 Constant *ArgOriginTLS; 463 Constant *RetvalTLS; 464 Constant *RetvalOriginTLS; 465 FunctionType *DFSanUnionLoadFnTy; 466 FunctionType *DFSanLoadLabelAndOriginFnTy; 467 FunctionType *DFSanUnimplementedFnTy; 468 FunctionType *DFSanWrapperExternWeakNullFnTy; 469 FunctionType *DFSanSetLabelFnTy; 470 FunctionType *DFSanNonzeroLabelFnTy; 471 FunctionType *DFSanVarargWrapperFnTy; 472 FunctionType *DFSanConditionalCallbackFnTy; 473 FunctionType *DFSanConditionalCallbackOriginFnTy; 474 FunctionType *DFSanReachesFunctionCallbackFnTy; 475 FunctionType *DFSanReachesFunctionCallbackOriginFnTy; 476 FunctionType *DFSanCmpCallbackFnTy; 477 FunctionType *DFSanLoadStoreCallbackFnTy; 478 FunctionType *DFSanMemTransferCallbackFnTy; 479 FunctionType *DFSanChainOriginFnTy; 480 FunctionType *DFSanChainOriginIfTaintedFnTy; 481 FunctionType *DFSanMemOriginTransferFnTy; 482 FunctionType *DFSanMemShadowOriginTransferFnTy; 483 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; 484 FunctionType *DFSanMaybeStoreOriginFnTy; 485 FunctionCallee DFSanUnionLoadFn; 486 FunctionCallee DFSanLoadLabelAndOriginFn; 487 FunctionCallee DFSanUnimplementedFn; 488 FunctionCallee DFSanWrapperExternWeakNullFn; 489 FunctionCallee DFSanSetLabelFn; 490 FunctionCallee DFSanNonzeroLabelFn; 491 FunctionCallee DFSanVarargWrapperFn; 492 FunctionCallee DFSanLoadCallbackFn; 493 FunctionCallee DFSanStoreCallbackFn; 494 FunctionCallee DFSanMemTransferCallbackFn; 495 FunctionCallee DFSanConditionalCallbackFn; 496 FunctionCallee DFSanConditionalCallbackOriginFn; 497 FunctionCallee DFSanReachesFunctionCallbackFn; 498 FunctionCallee DFSanReachesFunctionCallbackOriginFn; 499 FunctionCallee DFSanCmpCallbackFn; 500 FunctionCallee DFSanChainOriginFn; 501 FunctionCallee DFSanChainOriginIfTaintedFn; 502 FunctionCallee DFSanMemOriginTransferFn; 503 FunctionCallee DFSanMemShadowOriginTransferFn; 504 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; 505 FunctionCallee DFSanMaybeStoreOriginFn; 506 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 507 MDNode *ColdCallWeights; 508 MDNode *OriginStoreWeights; 509 DFSanABIList ABIList; 510 DenseMap<Value *, Function *> UnwrappedFnMap; 511 AttributeMask ReadOnlyNoneAttrs; 512 StringSet<> CombineTaintLookupTableNames; 513 514 /// Memory map parameters used in calculation mapping application addresses 515 /// to shadow addresses and origin addresses. 516 const MemoryMapParams *MapParams; 517 518 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 519 Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos); 520 Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos, 521 Value *ShadowOffset); 522 std::pair<Value *, Value *> getShadowOriginAddress(Value *Addr, 523 Align InstAlignment, 524 BasicBlock::iterator Pos); 525 bool isInstrumented(const Function *F); 526 bool isInstrumented(const GlobalAlias *GA); 527 bool isForceZeroLabels(const Function *F); 528 TransformedFunction getCustomFunctionType(FunctionType *T); 529 WrapperKind getWrapperKind(Function *F); 530 void addGlobalNameSuffix(GlobalValue *GV); 531 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); 532 Function *buildWrapperFunction(Function *F, StringRef NewFName, 533 GlobalValue::LinkageTypes NewFLink, 534 FunctionType *NewFT); 535 void initializeCallbackFunctions(Module &M); 536 void initializeRuntimeFunctions(Module &M); 537 bool initializeModule(Module &M); 538 539 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 540 /// from it. Returns the origin's loaded value. 541 Value *loadNextOrigin(BasicBlock::iterator Pos, Align OriginAlign, 542 Value **OriginAddr); 543 544 /// Returns whether the given load byte size is amenable to inlined 545 /// optimization patterns. 546 bool hasLoadSizeForFastPath(uint64_t Size); 547 548 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 549 bool shouldTrackOrigins(); 550 551 /// Returns a zero constant with the shadow type of OrigTy. 552 /// 553 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 554 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 555 /// getZeroShadow(other type) = i16(0) 556 Constant *getZeroShadow(Type *OrigTy); 557 /// Returns a zero constant with the shadow type of V's type. 558 Constant *getZeroShadow(Value *V); 559 560 /// Checks if V is a zero shadow. 561 bool isZeroShadow(Value *V); 562 563 /// Returns the shadow type of OrigTy. 564 /// 565 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 566 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 567 /// getShadowTy(other type) = i16 568 Type *getShadowTy(Type *OrigTy); 569 /// Returns the shadow type of V's type. 570 Type *getShadowTy(Value *V); 571 572 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 573 574 public: 575 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 576 577 bool runImpl(Module &M, 578 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); 579 }; 580 581 struct DFSanFunction { 582 DataFlowSanitizer &DFS; 583 Function *F; 584 DominatorTree DT; 585 bool IsNativeABI; 586 bool IsForceZeroLabels; 587 TargetLibraryInfo &TLI; 588 AllocaInst *LabelReturnAlloca = nullptr; 589 AllocaInst *OriginReturnAlloca = nullptr; 590 DenseMap<Value *, Value *> ValShadowMap; 591 DenseMap<Value *, Value *> ValOriginMap; 592 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 593 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 594 595 struct PHIFixupElement { 596 PHINode *Phi; 597 PHINode *ShadowPhi; 598 PHINode *OriginPhi; 599 }; 600 std::vector<PHIFixupElement> PHIFixups; 601 602 DenseSet<Instruction *> SkipInsts; 603 std::vector<Value *> NonZeroChecks; 604 605 struct CachedShadow { 606 BasicBlock *Block; // The block where Shadow is defined. 607 Value *Shadow; 608 }; 609 /// Maps a value to its latest shadow value in terms of domination tree. 610 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 611 /// Maps a value to its latest collapsed shadow value it was converted to in 612 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 613 /// used at a post process where CFG blocks are split. So it does not cache 614 /// BasicBlock like CachedShadows, but uses domination between values. 615 DenseMap<Value *, Value *> CachedCollapsedShadows; 616 DenseMap<Value *, std::set<Value *>> ShadowElements; 617 618 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 619 bool IsForceZeroLabels, TargetLibraryInfo &TLI) 620 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 621 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { 622 DT.recalculate(*F); 623 } 624 625 /// Computes the shadow address for a given function argument. 626 /// 627 /// Shadow = ArgTLS+ArgOffset. 628 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 629 630 /// Computes the shadow address for a return value. 631 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 632 633 /// Computes the origin address for a given function argument. 634 /// 635 /// Origin = ArgOriginTLS[ArgNo]. 636 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 637 638 /// Computes the origin address for a return value. 639 Value *getRetvalOriginTLS(); 640 641 Value *getOrigin(Value *V); 642 void setOrigin(Instruction *I, Value *Origin); 643 /// Generates IR to compute the origin of the last operand with a taint label. 644 Value *combineOperandOrigins(Instruction *Inst); 645 /// Before the instruction Pos, generates IR to compute the last origin with a 646 /// taint label. Labels and origins are from vectors Shadows and Origins 647 /// correspondingly. The generated IR is like 648 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 649 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 650 /// zeros with other bitwidths. 651 Value *combineOrigins(const std::vector<Value *> &Shadows, 652 const std::vector<Value *> &Origins, 653 BasicBlock::iterator Pos, ConstantInt *Zero = nullptr); 654 655 Value *getShadow(Value *V); 656 void setShadow(Instruction *I, Value *Shadow); 657 /// Generates IR to compute the union of the two given shadows, inserting it 658 /// before Pos. The combined value is with primitive type. 659 Value *combineShadows(Value *V1, Value *V2, BasicBlock::iterator Pos); 660 /// Combines the shadow values of V1 and V2, then converts the combined value 661 /// with primitive type into a shadow value with the original type T. 662 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 663 BasicBlock::iterator Pos); 664 Value *combineOperandShadows(Instruction *Inst); 665 666 /// Generates IR to load shadow and origin corresponding to bytes [\p 667 /// Addr, \p Addr + \p Size), where addr has alignment \p 668 /// InstAlignment, and take the union of each of those shadows. The returned 669 /// shadow always has primitive type. 670 /// 671 /// When tracking loads is enabled, the returned origin is a chain at the 672 /// current stack if the returned shadow is tainted. 673 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 674 Align InstAlignment, 675 BasicBlock::iterator Pos); 676 677 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 678 Align InstAlignment, Value *PrimitiveShadow, 679 Value *Origin, BasicBlock::iterator Pos); 680 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 681 /// the expanded shadow value. 682 /// 683 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 684 /// EFP([n x T], PS) = [n x EFP(T,PS)] 685 /// EFP(other types, PS) = PS 686 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 687 BasicBlock::iterator Pos); 688 /// Collapses Shadow into a single primitive shadow value, unioning all 689 /// primitive shadow values in the process. Returns the final primitive 690 /// shadow value. 691 /// 692 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 693 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 694 /// CTP(other types, PS) = PS 695 Value *collapseToPrimitiveShadow(Value *Shadow, BasicBlock::iterator Pos); 696 697 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 698 BasicBlock::iterator Pos); 699 700 Align getShadowAlign(Align InstAlignment); 701 702 // If ClConditionalCallbacks is enabled, insert a callback after a given 703 // branch instruction using the given conditional expression. 704 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); 705 706 // If ClReachesFunctionCallbacks is enabled, insert a callback for each 707 // argument and load instruction. 708 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, 709 Value *Data); 710 711 bool isLookupTableConstant(Value *P); 712 713 private: 714 /// Collapses the shadow with aggregate type into a single primitive shadow 715 /// value. 716 template <class AggregateType> 717 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 718 IRBuilder<> &IRB); 719 720 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 721 722 /// Returns the shadow value of an argument A. 723 Value *getShadowForTLSArgument(Argument *A); 724 725 /// The fast path of loading shadows. 726 std::pair<Value *, Value *> 727 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 728 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 729 BasicBlock::iterator Pos); 730 731 Align getOriginAlign(Align InstAlignment); 732 733 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 734 /// is __dfsan_load_label_and_origin. This function returns the union of all 735 /// labels and the origin of the first taint label. However this is an 736 /// additional call with many instructions. To ensure common cases are fast, 737 /// checks if it is possible to load labels and origins without using the 738 /// callback function. 739 /// 740 /// When enabling tracking load instructions, we always use 741 /// __dfsan_load_label_and_origin to reduce code size. 742 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 743 744 /// Returns a chain at the current stack with previous origin V. 745 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 746 747 /// Returns a chain at the current stack with previous origin V if Shadow is 748 /// tainted. 749 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 750 751 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 752 /// Origin otherwise. 753 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 754 755 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 756 /// Size). 757 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 758 uint64_t StoreOriginSize, Align Alignment); 759 760 /// Stores Origin in terms of its Shadow value. 761 /// * Do not write origins for zero shadows because we do not trace origins 762 /// for untainted sinks. 763 /// * Use __dfsan_maybe_store_origin if there are too many origin store 764 /// instrumentations. 765 void storeOrigin(BasicBlock::iterator Pos, Value *Addr, uint64_t Size, 766 Value *Shadow, Value *Origin, Value *StoreOriginAddr, 767 Align InstAlignment); 768 769 /// Convert a scalar value to an i1 by comparing with 0. 770 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 771 772 bool shouldInstrumentWithCall(); 773 774 /// Generates IR to load shadow and origin corresponding to bytes [\p 775 /// Addr, \p Addr + \p Size), where addr has alignment \p 776 /// InstAlignment, and take the union of each of those shadows. The returned 777 /// shadow always has primitive type. 778 std::pair<Value *, Value *> 779 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 780 Align InstAlignment, 781 BasicBlock::iterator Pos); 782 int NumOriginStores = 0; 783 }; 784 785 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 786 public: 787 DFSanFunction &DFSF; 788 789 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 790 791 const DataLayout &getDataLayout() const { 792 return DFSF.F->getDataLayout(); 793 } 794 795 // Combines shadow values and origins for all of I's operands. 796 void visitInstOperands(Instruction &I); 797 798 void visitUnaryOperator(UnaryOperator &UO); 799 void visitBinaryOperator(BinaryOperator &BO); 800 void visitBitCastInst(BitCastInst &BCI); 801 void visitCastInst(CastInst &CI); 802 void visitCmpInst(CmpInst &CI); 803 void visitLandingPadInst(LandingPadInst &LPI); 804 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 805 void visitLoadInst(LoadInst &LI); 806 void visitStoreInst(StoreInst &SI); 807 void visitAtomicRMWInst(AtomicRMWInst &I); 808 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 809 void visitReturnInst(ReturnInst &RI); 810 void visitLibAtomicLoad(CallBase &CB); 811 void visitLibAtomicStore(CallBase &CB); 812 void visitLibAtomicExchange(CallBase &CB); 813 void visitLibAtomicCompareExchange(CallBase &CB); 814 void visitCallBase(CallBase &CB); 815 void visitPHINode(PHINode &PN); 816 void visitExtractElementInst(ExtractElementInst &I); 817 void visitInsertElementInst(InsertElementInst &I); 818 void visitShuffleVectorInst(ShuffleVectorInst &I); 819 void visitExtractValueInst(ExtractValueInst &I); 820 void visitInsertValueInst(InsertValueInst &I); 821 void visitAllocaInst(AllocaInst &I); 822 void visitSelectInst(SelectInst &I); 823 void visitMemSetInst(MemSetInst &I); 824 void visitMemTransferInst(MemTransferInst &I); 825 void visitBranchInst(BranchInst &BR); 826 void visitSwitchInst(SwitchInst &SW); 827 828 private: 829 void visitCASOrRMW(Align InstAlignment, Instruction &I); 830 831 // Returns false when this is an invoke of a custom function. 832 bool visitWrappedCallBase(Function &F, CallBase &CB); 833 834 // Combines origins for all of I's operands. 835 void visitInstOperandOrigins(Instruction &I); 836 837 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 838 IRBuilder<> &IRB); 839 840 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 841 IRBuilder<> &IRB); 842 843 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); 844 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); 845 }; 846 847 bool LibAtomicFunction(const Function &F) { 848 // This is a bit of a hack because TargetLibraryInfo is a function pass. 849 // The DFSan pass would need to be refactored to be function pass oriented 850 // (like MSan is) in order to fit together nicely with TargetLibraryInfo. 851 // We need this check to prevent them from being instrumented, or wrapped. 852 // Match on name and number of arguments. 853 if (!F.hasName() || F.isVarArg()) 854 return false; 855 switch (F.arg_size()) { 856 case 4: 857 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store"; 858 case 5: 859 return F.getName() == "__atomic_exchange"; 860 case 6: 861 return F.getName() == "__atomic_compare_exchange"; 862 default: 863 return false; 864 } 865 } 866 867 } // end anonymous namespace 868 869 DataFlowSanitizer::DataFlowSanitizer( 870 const std::vector<std::string> &ABIListFiles) { 871 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 872 llvm::append_range(AllABIListFiles, ClABIListFiles); 873 // FIXME: should we propagate vfs::FileSystem to this constructor? 874 ABIList.set( 875 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 876 877 for (StringRef v : ClCombineTaintLookupTables) 878 CombineTaintLookupTableNames.insert(v); 879 } 880 881 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 882 SmallVector<Type *, 4> ArgTypes; 883 884 // Some parameters of the custom function being constructed are 885 // parameters of T. Record the mapping from parameters of T to 886 // parameters of the custom function, so that parameter attributes 887 // at call sites can be updated. 888 std::vector<unsigned> ArgumentIndexMapping; 889 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 890 Type *ParamType = T->getParamType(I); 891 ArgumentIndexMapping.push_back(ArgTypes.size()); 892 ArgTypes.push_back(ParamType); 893 } 894 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 895 ArgTypes.push_back(PrimitiveShadowTy); 896 if (T->isVarArg()) 897 ArgTypes.push_back(PrimitiveShadowPtrTy); 898 Type *RetType = T->getReturnType(); 899 if (!RetType->isVoidTy()) 900 ArgTypes.push_back(PrimitiveShadowPtrTy); 901 902 if (shouldTrackOrigins()) { 903 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 904 ArgTypes.push_back(OriginTy); 905 if (T->isVarArg()) 906 ArgTypes.push_back(OriginPtrTy); 907 if (!RetType->isVoidTy()) 908 ArgTypes.push_back(OriginPtrTy); 909 } 910 911 return TransformedFunction( 912 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 913 ArgumentIndexMapping); 914 } 915 916 bool DataFlowSanitizer::isZeroShadow(Value *V) { 917 Type *T = V->getType(); 918 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 919 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 920 return CI->isZero(); 921 return false; 922 } 923 924 return isa<ConstantAggregateZero>(V); 925 } 926 927 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 928 uint64_t ShadowSize = Size * ShadowWidthBytes; 929 return ShadowSize % 8 == 0 || ShadowSize == 4; 930 } 931 932 bool DataFlowSanitizer::shouldTrackOrigins() { 933 static const bool ShouldTrackOrigins = ClTrackOrigins; 934 return ShouldTrackOrigins; 935 } 936 937 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 938 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 939 return ZeroPrimitiveShadow; 940 Type *ShadowTy = getShadowTy(OrigTy); 941 return ConstantAggregateZero::get(ShadowTy); 942 } 943 944 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 945 return getZeroShadow(V->getType()); 946 } 947 948 static Value *expandFromPrimitiveShadowRecursive( 949 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 950 Value *PrimitiveShadow, IRBuilder<> &IRB) { 951 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 952 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 953 954 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 955 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 956 Indices.push_back(Idx); 957 Shadow = expandFromPrimitiveShadowRecursive( 958 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 959 Indices.pop_back(); 960 } 961 return Shadow; 962 } 963 964 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 965 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 966 Indices.push_back(Idx); 967 Shadow = expandFromPrimitiveShadowRecursive( 968 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 969 Indices.pop_back(); 970 } 971 return Shadow; 972 } 973 llvm_unreachable("Unexpected shadow type"); 974 } 975 976 bool DFSanFunction::shouldInstrumentWithCall() { 977 return ClInstrumentWithCallThreshold >= 0 && 978 NumOriginStores >= ClInstrumentWithCallThreshold; 979 } 980 981 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 982 BasicBlock::iterator Pos) { 983 Type *ShadowTy = DFS.getShadowTy(T); 984 985 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 986 return PrimitiveShadow; 987 988 if (DFS.isZeroShadow(PrimitiveShadow)) 989 return DFS.getZeroShadow(ShadowTy); 990 991 IRBuilder<> IRB(Pos->getParent(), Pos); 992 SmallVector<unsigned, 4> Indices; 993 Value *Shadow = UndefValue::get(ShadowTy); 994 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 995 PrimitiveShadow, IRB); 996 997 // Caches the primitive shadow value that built the shadow value. 998 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 999 return Shadow; 1000 } 1001 1002 template <class AggregateType> 1003 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 1004 IRBuilder<> &IRB) { 1005 if (!AT->getNumElements()) 1006 return DFS.ZeroPrimitiveShadow; 1007 1008 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1009 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 1010 1011 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 1012 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1013 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 1014 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1015 } 1016 return Aggregator; 1017 } 1018 1019 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1020 IRBuilder<> &IRB) { 1021 Type *ShadowTy = Shadow->getType(); 1022 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1023 return Shadow; 1024 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 1025 return collapseAggregateShadow<>(AT, Shadow, IRB); 1026 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 1027 return collapseAggregateShadow<>(ST, Shadow, IRB); 1028 llvm_unreachable("Unexpected shadow type"); 1029 } 1030 1031 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 1032 BasicBlock::iterator Pos) { 1033 Type *ShadowTy = Shadow->getType(); 1034 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 1035 return Shadow; 1036 1037 // Checks if the cached collapsed shadow value dominates Pos. 1038 Value *&CS = CachedCollapsedShadows[Shadow]; 1039 if (CS && DT.dominates(CS, Pos)) 1040 return CS; 1041 1042 IRBuilder<> IRB(Pos->getParent(), Pos); 1043 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 1044 // Caches the converted primitive shadow value. 1045 CS = PrimitiveShadow; 1046 return PrimitiveShadow; 1047 } 1048 1049 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, 1050 Value *Condition) { 1051 if (!ClConditionalCallbacks) { 1052 return; 1053 } 1054 IRBuilder<> IRB(&I); 1055 Value *CondShadow = getShadow(Condition); 1056 CallInst *CI; 1057 if (DFS.shouldTrackOrigins()) { 1058 Value *CondOrigin = getOrigin(Condition); 1059 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn, 1060 {CondShadow, CondOrigin}); 1061 } else { 1062 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow}); 1063 } 1064 CI->addParamAttr(0, Attribute::ZExt); 1065 } 1066 1067 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, 1068 Instruction &I, 1069 Value *Data) { 1070 if (!ClReachesFunctionCallbacks) { 1071 return; 1072 } 1073 const DebugLoc &dbgloc = I.getDebugLoc(); 1074 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB); 1075 ConstantInt *CILine; 1076 llvm::Value *FilePathPtr; 1077 1078 if (dbgloc.get() == nullptr) { 1079 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0)); 1080 FilePathPtr = IRB.CreateGlobalString( 1081 I.getFunction()->getParent()->getSourceFileName()); 1082 } else { 1083 CILine = llvm::ConstantInt::get(I.getContext(), 1084 llvm::APInt(32, dbgloc.getLine())); 1085 FilePathPtr = IRB.CreateGlobalString(dbgloc->getFilename()); 1086 } 1087 1088 llvm::Value *FunctionNamePtr = 1089 IRB.CreateGlobalString(I.getFunction()->getName()); 1090 1091 CallInst *CB; 1092 std::vector<Value *> args; 1093 1094 if (DFS.shouldTrackOrigins()) { 1095 Value *DataOrigin = getOrigin(Data); 1096 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; 1097 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args); 1098 } else { 1099 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; 1100 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args); 1101 } 1102 CB->addParamAttr(0, Attribute::ZExt); 1103 CB->setDebugLoc(dbgloc); 1104 } 1105 1106 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 1107 if (!OrigTy->isSized()) 1108 return PrimitiveShadowTy; 1109 if (isa<IntegerType>(OrigTy)) 1110 return PrimitiveShadowTy; 1111 if (isa<VectorType>(OrigTy)) 1112 return PrimitiveShadowTy; 1113 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 1114 return ArrayType::get(getShadowTy(AT->getElementType()), 1115 AT->getNumElements()); 1116 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1117 SmallVector<Type *, 4> Elements; 1118 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 1119 Elements.push_back(getShadowTy(ST->getElementType(I))); 1120 return StructType::get(*Ctx, Elements); 1121 } 1122 return PrimitiveShadowTy; 1123 } 1124 1125 Type *DataFlowSanitizer::getShadowTy(Value *V) { 1126 return getShadowTy(V->getType()); 1127 } 1128 1129 bool DataFlowSanitizer::initializeModule(Module &M) { 1130 Triple TargetTriple(M.getTargetTriple()); 1131 const DataLayout &DL = M.getDataLayout(); 1132 1133 if (TargetTriple.getOS() != Triple::Linux) 1134 report_fatal_error("unsupported operating system"); 1135 switch (TargetTriple.getArch()) { 1136 case Triple::aarch64: 1137 MapParams = &Linux_AArch64_MemoryMapParams; 1138 break; 1139 case Triple::x86_64: 1140 MapParams = &Linux_X86_64_MemoryMapParams; 1141 break; 1142 case Triple::loongarch64: 1143 MapParams = &Linux_LoongArch64_MemoryMapParams; 1144 break; 1145 default: 1146 report_fatal_error("unsupported architecture"); 1147 } 1148 1149 Mod = &M; 1150 Ctx = &M.getContext(); 1151 Int8Ptr = PointerType::getUnqual(*Ctx); 1152 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1153 OriginPtrTy = PointerType::getUnqual(*Ctx); 1154 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1155 PrimitiveShadowPtrTy = PointerType::getUnqual(*Ctx); 1156 IntptrTy = DL.getIntPtrType(*Ctx); 1157 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1158 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1159 1160 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1161 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1162 /*isVarArg=*/false); 1163 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1164 DFSanLoadLabelAndOriginFnTy = 1165 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1166 /*isVarArg=*/false); 1167 DFSanUnimplementedFnTy = FunctionType::get( 1168 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1169 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; 1170 DFSanWrapperExternWeakNullFnTy = 1171 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs, 1172 /*isVarArg=*/false); 1173 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1174 PointerType::getUnqual(*Ctx), IntptrTy}; 1175 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1176 DFSanSetLabelArgs, /*isVarArg=*/false); 1177 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), {}, 1178 /*isVarArg=*/false); 1179 DFSanVarargWrapperFnTy = FunctionType::get( 1180 Type::getVoidTy(*Ctx), PointerType::getUnqual(*Ctx), /*isVarArg=*/false); 1181 DFSanConditionalCallbackFnTy = 1182 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1183 /*isVarArg=*/false); 1184 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; 1185 DFSanConditionalCallbackOriginFnTy = FunctionType::get( 1186 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs, 1187 /*isVarArg=*/false); 1188 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, 1189 OriginTy, Int8Ptr}; 1190 DFSanReachesFunctionCallbackFnTy = 1191 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs, 1192 /*isVarArg=*/false); 1193 Type *DFSanReachesFunctionCallbackOriginArgs[5] = { 1194 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; 1195 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( 1196 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs, 1197 /*isVarArg=*/false); 1198 DFSanCmpCallbackFnTy = 1199 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1200 /*isVarArg=*/false); 1201 DFSanChainOriginFnTy = 1202 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1203 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1204 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1205 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1206 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1207 Int8Ptr, IntptrTy, OriginTy}; 1208 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1209 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1210 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1211 DFSanMemOriginTransferFnTy = FunctionType::get( 1212 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1213 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1214 DFSanMemShadowOriginTransferFnTy = 1215 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs, 1216 /*isVarArg=*/false); 1217 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { 1218 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; 1219 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( 1220 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs, 1221 /*isVarArg=*/false); 1222 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1223 DFSanLoadStoreCallbackFnTy = 1224 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1225 /*isVarArg=*/false); 1226 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1227 DFSanMemTransferCallbackFnTy = 1228 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1229 /*isVarArg=*/false); 1230 1231 ColdCallWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); 1232 OriginStoreWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); 1233 return true; 1234 } 1235 1236 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1237 return !ABIList.isIn(*F, "uninstrumented"); 1238 } 1239 1240 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1241 return !ABIList.isIn(*GA, "uninstrumented"); 1242 } 1243 1244 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1245 return ABIList.isIn(*F, "force_zero_labels"); 1246 } 1247 1248 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1249 if (ABIList.isIn(*F, "functional")) 1250 return WK_Functional; 1251 if (ABIList.isIn(*F, "discard")) 1252 return WK_Discard; 1253 if (ABIList.isIn(*F, "custom")) 1254 return WK_Custom; 1255 1256 return WK_Warning; 1257 } 1258 1259 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1260 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1261 GV->setName(GVName + Suffix); 1262 1263 // Try to change the name of the function in module inline asm. We only do 1264 // this for specific asm directives, currently only ".symver", to try to avoid 1265 // corrupting asm which happens to contain the symbol name as a substring. 1266 // Note that the substitution for .symver assumes that the versioned symbol 1267 // also has an instrumented name. 1268 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1269 std::string SearchStr = ".symver " + GVName + ","; 1270 size_t Pos = Asm.find(SearchStr); 1271 if (Pos != std::string::npos) { 1272 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1273 Pos = Asm.find('@'); 1274 1275 if (Pos == std::string::npos) 1276 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1277 1278 Asm.replace(Pos, 1, Suffix + "@"); 1279 GV->getParent()->setModuleInlineAsm(Asm); 1280 } 1281 } 1282 1283 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, 1284 Function *F) { 1285 // If the function we are wrapping was ExternWeak, it may be null. 1286 // The original code before calling this wrapper may have checked for null, 1287 // but replacing with a known-to-not-be-null wrapper can break this check. 1288 // When replacing uses of the extern weak function with the wrapper we try 1289 // to avoid replacing uses in conditionals, but this is not perfect. 1290 // In the case where we fail, and accidentally optimize out a null check 1291 // for a extern weak function, add a check here to help identify the issue. 1292 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) { 1293 std::vector<Value *> Args; 1294 Args.push_back(F); 1295 Args.push_back(IRB.CreateGlobalString(F->getName())); 1296 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args); 1297 } 1298 } 1299 1300 Function * 1301 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1302 GlobalValue::LinkageTypes NewFLink, 1303 FunctionType *NewFT) { 1304 FunctionType *FT = F->getFunctionType(); 1305 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1306 NewFName, F->getParent()); 1307 NewF->copyAttributesFrom(F); 1308 NewF->removeRetAttrs(AttributeFuncs::typeIncompatible( 1309 NewFT->getReturnType(), NewF->getAttributes().getRetAttrs())); 1310 1311 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1312 if (F->isVarArg()) { 1313 NewF->removeFnAttr("split-stack"); 1314 CallInst::Create(DFSanVarargWrapperFn, 1315 IRBuilder<>(BB).CreateGlobalString(F->getName()), "", BB); 1316 new UnreachableInst(*Ctx, BB); 1317 } else { 1318 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1319 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1320 1321 CallInst *CI = CallInst::Create(F, Args, "", BB); 1322 if (FT->getReturnType()->isVoidTy()) 1323 ReturnInst::Create(*Ctx, BB); 1324 else 1325 ReturnInst::Create(*Ctx, CI, BB); 1326 } 1327 1328 return NewF; 1329 } 1330 1331 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1332 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1333 LLVMContext &C = M.getContext(); 1334 { 1335 AttributeList AL; 1336 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1337 AL = AL.addFnAttribute( 1338 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1339 AL = AL.addRetAttribute(C, Attribute::ZExt); 1340 DFSanUnionLoadFn = 1341 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1342 } 1343 { 1344 AttributeList AL; 1345 AL = AL.addFnAttribute(C, Attribute::NoUnwind); 1346 AL = AL.addFnAttribute( 1347 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly())); 1348 AL = AL.addRetAttribute(C, Attribute::ZExt); 1349 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1350 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1351 } 1352 DFSanUnimplementedFn = 1353 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1354 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( 1355 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy); 1356 { 1357 AttributeList AL; 1358 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1359 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1360 DFSanSetLabelFn = 1361 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1362 } 1363 DFSanNonzeroLabelFn = 1364 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1365 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1366 DFSanVarargWrapperFnTy); 1367 { 1368 AttributeList AL; 1369 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1370 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1371 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1372 DFSanChainOriginFnTy, AL); 1373 } 1374 { 1375 AttributeList AL; 1376 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1377 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1378 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1379 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1380 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1381 } 1382 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1383 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1384 1385 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( 1386 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy); 1387 1388 DFSanMemShadowOriginConditionalExchangeFn = 1389 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange", 1390 DFSanMemShadowOriginConditionalExchangeFnTy); 1391 1392 { 1393 AttributeList AL; 1394 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1395 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1396 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1397 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1398 } 1399 1400 DFSanRuntimeFunctions.insert( 1401 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1402 DFSanRuntimeFunctions.insert( 1403 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1404 DFSanRuntimeFunctions.insert( 1405 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1406 DFSanRuntimeFunctions.insert( 1407 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); 1408 DFSanRuntimeFunctions.insert( 1409 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1410 DFSanRuntimeFunctions.insert( 1411 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1412 DFSanRuntimeFunctions.insert( 1413 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1414 DFSanRuntimeFunctions.insert( 1415 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1416 DFSanRuntimeFunctions.insert( 1417 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1418 DFSanRuntimeFunctions.insert( 1419 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1420 DFSanRuntimeFunctions.insert( 1421 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); 1422 DFSanRuntimeFunctions.insert( 1423 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); 1424 DFSanRuntimeFunctions.insert( 1425 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); 1426 DFSanRuntimeFunctions.insert( 1427 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); 1428 DFSanRuntimeFunctions.insert( 1429 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1430 DFSanRuntimeFunctions.insert( 1431 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1432 DFSanRuntimeFunctions.insert( 1433 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1434 DFSanRuntimeFunctions.insert( 1435 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1436 DFSanRuntimeFunctions.insert( 1437 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); 1438 DFSanRuntimeFunctions.insert( 1439 DFSanMemShadowOriginConditionalExchangeFn.getCallee() 1440 ->stripPointerCasts()); 1441 DFSanRuntimeFunctions.insert( 1442 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1443 } 1444 1445 // Initializes event callback functions and declare them in the module 1446 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1447 { 1448 AttributeList AL; 1449 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1450 DFSanLoadCallbackFn = Mod->getOrInsertFunction( 1451 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL); 1452 } 1453 { 1454 AttributeList AL; 1455 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1456 DFSanStoreCallbackFn = Mod->getOrInsertFunction( 1457 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL); 1458 } 1459 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1460 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1461 { 1462 AttributeList AL; 1463 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1464 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", 1465 DFSanCmpCallbackFnTy, AL); 1466 } 1467 { 1468 AttributeList AL; 1469 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1470 DFSanConditionalCallbackFn = Mod->getOrInsertFunction( 1471 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL); 1472 } 1473 { 1474 AttributeList AL; 1475 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1476 DFSanConditionalCallbackOriginFn = 1477 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin", 1478 DFSanConditionalCallbackOriginFnTy, AL); 1479 } 1480 { 1481 AttributeList AL; 1482 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1483 DFSanReachesFunctionCallbackFn = 1484 Mod->getOrInsertFunction("__dfsan_reaches_function_callback", 1485 DFSanReachesFunctionCallbackFnTy, AL); 1486 } 1487 { 1488 AttributeList AL; 1489 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1490 DFSanReachesFunctionCallbackOriginFn = 1491 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin", 1492 DFSanReachesFunctionCallbackOriginFnTy, AL); 1493 } 1494 } 1495 1496 bool DataFlowSanitizer::runImpl( 1497 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1498 initializeModule(M); 1499 1500 if (ABIList.isIn(M, "skip")) 1501 return false; 1502 1503 const unsigned InitialGlobalSize = M.global_size(); 1504 const unsigned InitialModuleSize = M.size(); 1505 1506 bool Changed = false; 1507 1508 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1509 Type *Ty) -> Constant * { 1510 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1511 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1512 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1513 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1514 } 1515 return C; 1516 }; 1517 1518 // These globals must be kept in sync with the ones in dfsan.cpp. 1519 ArgTLS = 1520 GetOrInsertGlobal("__dfsan_arg_tls", 1521 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1522 RetvalTLS = GetOrInsertGlobal( 1523 "__dfsan_retval_tls", 1524 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1525 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1526 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1527 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1528 1529 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1530 Changed = true; 1531 return new GlobalVariable( 1532 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1533 ConstantInt::getSigned(OriginTy, 1534 shouldTrackOrigins() ? ClTrackOrigins : 0), 1535 "__dfsan_track_origins"); 1536 }); 1537 1538 initializeCallbackFunctions(M); 1539 initializeRuntimeFunctions(M); 1540 1541 std::vector<Function *> FnsToInstrument; 1542 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1543 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1544 SmallPtrSet<Constant *, 1> PersonalityFns; 1545 for (Function &F : M) 1546 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) && 1547 !LibAtomicFunction(F) && 1548 !F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) { 1549 FnsToInstrument.push_back(&F); 1550 if (F.hasPersonalityFn()) 1551 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1552 } 1553 1554 if (ClIgnorePersonalityRoutine) { 1555 for (auto *C : PersonalityFns) { 1556 assert(isa<Function>(C) && "Personality routine is not a function!"); 1557 Function *F = cast<Function>(C); 1558 if (!isInstrumented(F)) 1559 llvm::erase(FnsToInstrument, F); 1560 } 1561 } 1562 1563 // Give function aliases prefixes when necessary, and build wrappers where the 1564 // instrumentedness is inconsistent. 1565 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1566 // Don't stop on weak. We assume people aren't playing games with the 1567 // instrumentedness of overridden weak aliases. 1568 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1569 if (!F) 1570 continue; 1571 1572 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1573 if (GAInst && FInst) { 1574 addGlobalNameSuffix(&GA); 1575 } else if (GAInst != FInst) { 1576 // Non-instrumented alias of an instrumented function, or vice versa. 1577 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1578 // below will take care of instrumenting it. 1579 Function *NewF = 1580 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1581 GA.replaceAllUsesWith(NewF); 1582 NewF->takeName(&GA); 1583 GA.eraseFromParent(); 1584 FnsToInstrument.push_back(NewF); 1585 } 1586 } 1587 1588 // TODO: This could be more precise. 1589 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory); 1590 1591 // First, change the ABI of every function in the module. ABI-listed 1592 // functions keep their original ABI and get a wrapper function. 1593 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1594 FE = FnsToInstrument.end(); 1595 FI != FE; ++FI) { 1596 Function &F = **FI; 1597 FunctionType *FT = F.getFunctionType(); 1598 1599 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1600 FT->getReturnType()->isVoidTy()); 1601 1602 if (isInstrumented(&F)) { 1603 if (isForceZeroLabels(&F)) 1604 FnsWithForceZeroLabel.insert(&F); 1605 1606 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1607 // easily identify cases of mismatching ABIs. This naming scheme is 1608 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1609 addGlobalNameSuffix(&F); 1610 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1611 // Build a wrapper function for F. The wrapper simply calls F, and is 1612 // added to FnsToInstrument so that any instrumentation according to its 1613 // WrapperKind is done in the second pass below. 1614 1615 // If the function being wrapped has local linkage, then preserve the 1616 // function's linkage in the wrapper function. 1617 GlobalValue::LinkageTypes WrapperLinkage = 1618 F.hasLocalLinkage() ? F.getLinkage() 1619 : GlobalValue::LinkOnceODRLinkage; 1620 1621 Function *NewF = buildWrapperFunction( 1622 &F, 1623 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1624 std::string(F.getName()), 1625 WrapperLinkage, FT); 1626 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1627 1628 // Extern weak functions can sometimes be null at execution time. 1629 // Code will sometimes check if an extern weak function is null. 1630 // This could look something like: 1631 // declare extern_weak i8 @my_func(i8) 1632 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, 1633 // label %avoid_my_func 1634 // The @"dfsw$my_func" wrapper is never null, so if we replace this use 1635 // in the comparison, the icmp will simplify to false and we have 1636 // accidentally optimized away a null check that is necessary. 1637 // This can lead to a crash when the null extern_weak my_func is called. 1638 // 1639 // To prevent (the most common pattern of) this problem, 1640 // do not replace uses in comparisons with the wrapper. 1641 // We definitely want to replace uses in call instructions. 1642 // Other uses (e.g. store the function address somewhere) might be 1643 // called or compared or both - this case may not be handled correctly. 1644 // We will default to replacing with wrapper in cases we are unsure. 1645 auto IsNotCmpUse = [](Use &U) -> bool { 1646 User *Usr = U.getUser(); 1647 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) { 1648 // This is the most common case for icmp ne null 1649 if (CE->getOpcode() == Instruction::ICmp) { 1650 return false; 1651 } 1652 } 1653 if (Instruction *I = dyn_cast<Instruction>(Usr)) { 1654 if (I->getOpcode() == Instruction::ICmp) { 1655 return false; 1656 } 1657 } 1658 return true; 1659 }; 1660 F.replaceUsesWithIf(NewF, IsNotCmpUse); 1661 1662 UnwrappedFnMap[NewF] = &F; 1663 *FI = NewF; 1664 1665 if (!F.isDeclaration()) { 1666 // This function is probably defining an interposition of an 1667 // uninstrumented function and hence needs to keep the original ABI. 1668 // But any functions it may call need to use the instrumented ABI, so 1669 // we instrument it in a mode which preserves the original ABI. 1670 FnsWithNativeABI.insert(&F); 1671 1672 // This code needs to rebuild the iterators, as they may be invalidated 1673 // by the push_back, taking care that the new range does not include 1674 // any functions added by this code. 1675 size_t N = FI - FnsToInstrument.begin(), 1676 Count = FE - FnsToInstrument.begin(); 1677 FnsToInstrument.push_back(&F); 1678 FI = FnsToInstrument.begin() + N; 1679 FE = FnsToInstrument.begin() + Count; 1680 } 1681 // Hopefully, nobody will try to indirectly call a vararg 1682 // function... yet. 1683 } else if (FT->isVarArg()) { 1684 UnwrappedFnMap[&F] = &F; 1685 *FI = nullptr; 1686 } 1687 } 1688 1689 for (Function *F : FnsToInstrument) { 1690 if (!F || F->isDeclaration()) 1691 continue; 1692 1693 removeUnreachableBlocks(*F); 1694 1695 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1696 FnsWithForceZeroLabel.count(F), GetTLI(*F)); 1697 1698 if (ClReachesFunctionCallbacks) { 1699 // Add callback for arguments reaching this function. 1700 for (auto &FArg : F->args()) { 1701 Instruction *Next = &F->getEntryBlock().front(); 1702 Value *FArgShadow = DFSF.getShadow(&FArg); 1703 if (isZeroShadow(FArgShadow)) 1704 continue; 1705 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) { 1706 Next = FArgShadowInst->getNextNode(); 1707 } 1708 if (shouldTrackOrigins()) { 1709 if (Instruction *Origin = 1710 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) { 1711 // Ensure IRB insertion point is after loads for shadow and origin. 1712 Instruction *OriginNext = Origin->getNextNode(); 1713 if (Next->comesBefore(OriginNext)) { 1714 Next = OriginNext; 1715 } 1716 } 1717 } 1718 IRBuilder<> IRB(Next); 1719 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg); 1720 } 1721 } 1722 1723 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1724 // Build a copy of the list before iterating over it. 1725 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1726 1727 for (BasicBlock *BB : BBList) { 1728 Instruction *Inst = &BB->front(); 1729 while (true) { 1730 // DFSanVisitor may split the current basic block, changing the current 1731 // instruction's next pointer and moving the next instruction to the 1732 // tail block from which we should continue. 1733 Instruction *Next = Inst->getNextNode(); 1734 // DFSanVisitor may delete Inst, so keep track of whether it was a 1735 // terminator. 1736 bool IsTerminator = Inst->isTerminator(); 1737 if (!DFSF.SkipInsts.count(Inst)) 1738 DFSanVisitor(DFSF).visit(Inst); 1739 if (IsTerminator) 1740 break; 1741 Inst = Next; 1742 } 1743 } 1744 1745 // We will not necessarily be able to compute the shadow for every phi node 1746 // until we have visited every block. Therefore, the code that handles phi 1747 // nodes adds them to the PHIFixups list so that they can be properly 1748 // handled here. 1749 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1750 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1751 ++Val) { 1752 P.ShadowPhi->setIncomingValue( 1753 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1754 if (P.OriginPhi) 1755 P.OriginPhi->setIncomingValue( 1756 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1757 } 1758 } 1759 1760 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1761 // places (i.e. instructions in basic blocks we haven't even begun visiting 1762 // yet). To make our life easier, do this work in a pass after the main 1763 // instrumentation. 1764 if (ClDebugNonzeroLabels) { 1765 for (Value *V : DFSF.NonZeroChecks) { 1766 BasicBlock::iterator Pos; 1767 if (Instruction *I = dyn_cast<Instruction>(V)) 1768 Pos = std::next(I->getIterator()); 1769 else 1770 Pos = DFSF.F->getEntryBlock().begin(); 1771 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1772 Pos = std::next(Pos->getIterator()); 1773 IRBuilder<> IRB(Pos->getParent(), Pos); 1774 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1775 Value *Ne = 1776 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1777 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1778 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1779 IRBuilder<> ThenIRB(BI); 1780 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1781 } 1782 } 1783 } 1784 1785 return Changed || !FnsToInstrument.empty() || 1786 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1787 } 1788 1789 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1790 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1791 if (ArgOffset) 1792 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1793 return IRB.CreateIntToPtr(Base, PointerType::get(*DFS.Ctx, 0), "_dfsarg"); 1794 } 1795 1796 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1797 return IRB.CreatePointerCast(DFS.RetvalTLS, PointerType::get(*DFS.Ctx, 0), 1798 "_dfsret"); 1799 } 1800 1801 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1802 1803 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1804 return IRB.CreateConstInBoundsGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, 1805 ArgNo, "_dfsarg_o"); 1806 } 1807 1808 Value *DFSanFunction::getOrigin(Value *V) { 1809 assert(DFS.shouldTrackOrigins()); 1810 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1811 return DFS.ZeroOrigin; 1812 Value *&Origin = ValOriginMap[V]; 1813 if (!Origin) { 1814 if (Argument *A = dyn_cast<Argument>(V)) { 1815 if (IsNativeABI) 1816 return DFS.ZeroOrigin; 1817 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1818 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1819 IRBuilder<> IRB(ArgOriginTLSPos); 1820 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1821 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1822 } else { 1823 // Overflow 1824 Origin = DFS.ZeroOrigin; 1825 } 1826 } else { 1827 Origin = DFS.ZeroOrigin; 1828 } 1829 } 1830 return Origin; 1831 } 1832 1833 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1834 if (!DFS.shouldTrackOrigins()) 1835 return; 1836 assert(!ValOriginMap.count(I)); 1837 assert(Origin->getType() == DFS.OriginTy); 1838 ValOriginMap[I] = Origin; 1839 } 1840 1841 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1842 unsigned ArgOffset = 0; 1843 const DataLayout &DL = F->getDataLayout(); 1844 for (auto &FArg : F->args()) { 1845 if (!FArg.getType()->isSized()) { 1846 if (A == &FArg) 1847 break; 1848 continue; 1849 } 1850 1851 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1852 if (A != &FArg) { 1853 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1854 if (ArgOffset > ArgTLSSize) 1855 break; // ArgTLS overflows, uses a zero shadow. 1856 continue; 1857 } 1858 1859 if (ArgOffset + Size > ArgTLSSize) 1860 break; // ArgTLS overflows, uses a zero shadow. 1861 1862 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1863 IRBuilder<> IRB(ArgTLSPos); 1864 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1865 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1866 ShadowTLSAlignment); 1867 } 1868 1869 return DFS.getZeroShadow(A); 1870 } 1871 1872 Value *DFSanFunction::getShadow(Value *V) { 1873 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1874 return DFS.getZeroShadow(V); 1875 if (IsForceZeroLabels) 1876 return DFS.getZeroShadow(V); 1877 Value *&Shadow = ValShadowMap[V]; 1878 if (!Shadow) { 1879 if (Argument *A = dyn_cast<Argument>(V)) { 1880 if (IsNativeABI) 1881 return DFS.getZeroShadow(V); 1882 Shadow = getShadowForTLSArgument(A); 1883 NonZeroChecks.push_back(Shadow); 1884 } else { 1885 Shadow = DFS.getZeroShadow(V); 1886 } 1887 } 1888 return Shadow; 1889 } 1890 1891 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1892 assert(!ValShadowMap.count(I)); 1893 ValShadowMap[I] = Shadow; 1894 } 1895 1896 /// Compute the integer shadow offset that corresponds to a given 1897 /// application address. 1898 /// 1899 /// Offset = (Addr & ~AndMask) ^ XorMask 1900 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1901 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1902 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1903 1904 uint64_t AndMask = MapParams->AndMask; 1905 if (AndMask) 1906 OffsetLong = 1907 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1908 1909 uint64_t XorMask = MapParams->XorMask; 1910 if (XorMask) 1911 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1912 return OffsetLong; 1913 } 1914 1915 std::pair<Value *, Value *> 1916 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1917 BasicBlock::iterator Pos) { 1918 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1919 IRBuilder<> IRB(Pos->getParent(), Pos); 1920 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1921 Value *ShadowLong = ShadowOffset; 1922 uint64_t ShadowBase = MapParams->ShadowBase; 1923 if (ShadowBase != 0) { 1924 ShadowLong = 1925 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1926 } 1927 Value *ShadowPtr = IRB.CreateIntToPtr(ShadowLong, PointerType::get(*Ctx, 0)); 1928 Value *OriginPtr = nullptr; 1929 if (shouldTrackOrigins()) { 1930 Value *OriginLong = ShadowOffset; 1931 uint64_t OriginBase = MapParams->OriginBase; 1932 if (OriginBase != 0) 1933 OriginLong = 1934 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1935 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1936 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1937 // So Mask is unnecessary. 1938 if (Alignment < MinOriginAlignment) { 1939 uint64_t Mask = MinOriginAlignment.value() - 1; 1940 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1941 } 1942 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1943 } 1944 return std::make_pair(ShadowPtr, OriginPtr); 1945 } 1946 1947 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, 1948 BasicBlock::iterator Pos, 1949 Value *ShadowOffset) { 1950 IRBuilder<> IRB(Pos->getParent(), Pos); 1951 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1952 } 1953 1954 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, 1955 BasicBlock::iterator Pos) { 1956 IRBuilder<> IRB(Pos->getParent(), Pos); 1957 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1958 return getShadowAddress(Addr, Pos, ShadowOffset); 1959 } 1960 1961 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1962 BasicBlock::iterator Pos) { 1963 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1964 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1965 } 1966 1967 // Generates IR to compute the union of the two given shadows, inserting it 1968 // before Pos. The combined value is with primitive type. 1969 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, 1970 BasicBlock::iterator Pos) { 1971 if (DFS.isZeroShadow(V1)) 1972 return collapseToPrimitiveShadow(V2, Pos); 1973 if (DFS.isZeroShadow(V2)) 1974 return collapseToPrimitiveShadow(V1, Pos); 1975 if (V1 == V2) 1976 return collapseToPrimitiveShadow(V1, Pos); 1977 1978 auto V1Elems = ShadowElements.find(V1); 1979 auto V2Elems = ShadowElements.find(V2); 1980 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1981 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1982 V2Elems->second.begin(), V2Elems->second.end())) { 1983 return collapseToPrimitiveShadow(V1, Pos); 1984 } 1985 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1986 V1Elems->second.begin(), V1Elems->second.end())) { 1987 return collapseToPrimitiveShadow(V2, Pos); 1988 } 1989 } else if (V1Elems != ShadowElements.end()) { 1990 if (V1Elems->second.count(V2)) 1991 return collapseToPrimitiveShadow(V1, Pos); 1992 } else if (V2Elems != ShadowElements.end()) { 1993 if (V2Elems->second.count(V1)) 1994 return collapseToPrimitiveShadow(V2, Pos); 1995 } 1996 1997 auto Key = std::make_pair(V1, V2); 1998 if (V1 > V2) 1999 std::swap(Key.first, Key.second); 2000 CachedShadow &CCS = CachedShadows[Key]; 2001 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 2002 return CCS.Shadow; 2003 2004 // Converts inputs shadows to shadows with primitive types. 2005 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 2006 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 2007 2008 IRBuilder<> IRB(Pos->getParent(), Pos); 2009 CCS.Block = Pos->getParent(); 2010 CCS.Shadow = IRB.CreateOr(PV1, PV2); 2011 2012 std::set<Value *> UnionElems; 2013 if (V1Elems != ShadowElements.end()) { 2014 UnionElems = V1Elems->second; 2015 } else { 2016 UnionElems.insert(V1); 2017 } 2018 if (V2Elems != ShadowElements.end()) { 2019 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 2020 } else { 2021 UnionElems.insert(V2); 2022 } 2023 ShadowElements[CCS.Shadow] = std::move(UnionElems); 2024 2025 return CCS.Shadow; 2026 } 2027 2028 // A convenience function which folds the shadows of each of the operands 2029 // of the provided instruction Inst, inserting the IR before Inst. Returns 2030 // the computed union Value. 2031 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 2032 if (Inst->getNumOperands() == 0) 2033 return DFS.getZeroShadow(Inst); 2034 2035 Value *Shadow = getShadow(Inst->getOperand(0)); 2036 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 2037 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), 2038 Inst->getIterator()); 2039 2040 return expandFromPrimitiveShadow(Inst->getType(), Shadow, 2041 Inst->getIterator()); 2042 } 2043 2044 void DFSanVisitor::visitInstOperands(Instruction &I) { 2045 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 2046 DFSF.setShadow(&I, CombinedShadow); 2047 visitInstOperandOrigins(I); 2048 } 2049 2050 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 2051 const std::vector<Value *> &Origins, 2052 BasicBlock::iterator Pos, 2053 ConstantInt *Zero) { 2054 assert(Shadows.size() == Origins.size()); 2055 size_t Size = Origins.size(); 2056 if (Size == 0) 2057 return DFS.ZeroOrigin; 2058 Value *Origin = nullptr; 2059 if (!Zero) 2060 Zero = DFS.ZeroPrimitiveShadow; 2061 for (size_t I = 0; I != Size; ++I) { 2062 Value *OpOrigin = Origins[I]; 2063 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 2064 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 2065 continue; 2066 if (!Origin) { 2067 Origin = OpOrigin; 2068 continue; 2069 } 2070 Value *OpShadow = Shadows[I]; 2071 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 2072 IRBuilder<> IRB(Pos->getParent(), Pos); 2073 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 2074 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2075 } 2076 return Origin ? Origin : DFS.ZeroOrigin; 2077 } 2078 2079 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 2080 size_t Size = Inst->getNumOperands(); 2081 std::vector<Value *> Shadows(Size); 2082 std::vector<Value *> Origins(Size); 2083 for (unsigned I = 0; I != Size; ++I) { 2084 Shadows[I] = getShadow(Inst->getOperand(I)); 2085 Origins[I] = getOrigin(Inst->getOperand(I)); 2086 } 2087 return combineOrigins(Shadows, Origins, Inst->getIterator()); 2088 } 2089 2090 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 2091 if (!DFSF.DFS.shouldTrackOrigins()) 2092 return; 2093 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 2094 DFSF.setOrigin(&I, CombinedOrigin); 2095 } 2096 2097 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 2098 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 2099 return Align(Alignment.value() * DFS.ShadowWidthBytes); 2100 } 2101 2102 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 2103 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2104 return Align(std::max(MinOriginAlignment, Alignment)); 2105 } 2106 2107 bool DFSanFunction::isLookupTableConstant(Value *P) { 2108 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts())) 2109 if (GV->isConstant() && GV->hasName()) 2110 return DFS.CombineTaintLookupTableNames.count(GV->getName()); 2111 2112 return false; 2113 } 2114 2115 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 2116 Align InstAlignment) { 2117 // When enabling tracking load instructions, we always use 2118 // __dfsan_load_label_and_origin to reduce code size. 2119 if (ClTrackOrigins == 2) 2120 return true; 2121 2122 assert(Size != 0); 2123 // * if Size == 1, it is sufficient to load its origin aligned at 4. 2124 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 2125 // load its origin aligned at 4. If not, although origins may be lost, it 2126 // should not happen very often. 2127 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 2128 // Size % 4 == 0, it is more efficient to load origins without callbacks. 2129 // * Otherwise we use __dfsan_load_label_and_origin. 2130 // This should ensure that common cases run efficiently. 2131 if (Size <= 2) 2132 return false; 2133 2134 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 2135 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 2136 } 2137 2138 Value *DataFlowSanitizer::loadNextOrigin(BasicBlock::iterator Pos, 2139 Align OriginAlign, 2140 Value **OriginAddr) { 2141 IRBuilder<> IRB(Pos->getParent(), Pos); 2142 *OriginAddr = 2143 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 2144 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 2145 } 2146 2147 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 2148 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 2149 Align OriginAlign, Value *FirstOrigin, BasicBlock::iterator Pos) { 2150 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2151 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 2152 2153 assert(Size >= 4 && "Not large enough load size for fast path!"); 2154 2155 // Used for origin tracking. 2156 std::vector<Value *> Shadows; 2157 std::vector<Value *> Origins; 2158 2159 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 2160 // but this function is only used in a subset of cases that make it possible 2161 // to optimize the instrumentation. 2162 // 2163 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 2164 // per byte) is either: 2165 // - a multiple of 8 (common) 2166 // - equal to 4 (only for load32) 2167 // 2168 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 2169 // other cases, we use a 64-bit integer to hold the wide shadow. 2170 Type *WideShadowTy = 2171 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 2172 2173 IRBuilder<> IRB(Pos->getParent(), Pos); 2174 Value *CombinedWideShadow = 2175 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2176 2177 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 2178 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 2179 2180 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 2181 if (BytesPerWideShadow > 4) { 2182 assert(BytesPerWideShadow == 8); 2183 // The wide shadow relates to two origin pointers: one for the first four 2184 // application bytes, and one for the latest four. We use a left shift to 2185 // get just the shadow bytes that correspond to the first origin pointer, 2186 // and then the entire shadow for the second origin pointer (which will be 2187 // chosen by combineOrigins() iff the least-significant half of the wide 2188 // shadow was empty but the other half was not). 2189 Value *WideShadowLo = IRB.CreateShl( 2190 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 2191 Shadows.push_back(WideShadow); 2192 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 2193 2194 Shadows.push_back(WideShadowLo); 2195 Origins.push_back(Origin); 2196 } else { 2197 Shadows.push_back(WideShadow); 2198 Origins.push_back(Origin); 2199 } 2200 }; 2201 2202 if (ShouldTrackOrigins) 2203 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 2204 2205 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 2206 // then OR individual shadows within the combined WideShadow by binary ORing. 2207 // This is fewer instructions than ORing shadows individually, since it 2208 // needs logN shift/or instructions (N being the bytes of the combined wide 2209 // shadow). 2210 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 2211 ByteOfs += BytesPerWideShadow) { 2212 ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr, 2213 ConstantInt::get(DFS.IntptrTy, 1)); 2214 Value *NextWideShadow = 2215 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign); 2216 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 2217 if (ShouldTrackOrigins) { 2218 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 2219 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 2220 } 2221 } 2222 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 2223 Width >>= 1) { 2224 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 2225 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 2226 } 2227 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 2228 ShouldTrackOrigins 2229 ? combineOrigins(Shadows, Origins, Pos, 2230 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 2231 : DFS.ZeroOrigin}; 2232 } 2233 2234 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 2235 Value *Addr, uint64_t Size, Align InstAlignment, BasicBlock::iterator Pos) { 2236 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 2237 2238 // Non-escaped loads. 2239 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2240 const auto SI = AllocaShadowMap.find(AI); 2241 if (SI != AllocaShadowMap.end()) { 2242 IRBuilder<> IRB(Pos->getParent(), Pos); 2243 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2244 const auto OI = AllocaOriginMap.find(AI); 2245 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2246 return {ShadowLI, ShouldTrackOrigins 2247 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2248 : nullptr}; 2249 } 2250 } 2251 2252 // Load from constant addresses. 2253 SmallVector<const Value *, 2> Objs; 2254 getUnderlyingObjects(Addr, Objs); 2255 bool AllConstants = true; 2256 for (const Value *Obj : Objs) { 2257 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2258 continue; 2259 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2260 continue; 2261 2262 AllConstants = false; 2263 break; 2264 } 2265 if (AllConstants) 2266 return {DFS.ZeroPrimitiveShadow, 2267 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2268 2269 if (Size == 0) 2270 return {DFS.ZeroPrimitiveShadow, 2271 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2272 2273 // Use callback to load if this is not an optimizable case for origin 2274 // tracking. 2275 if (ShouldTrackOrigins && 2276 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2277 IRBuilder<> IRB(Pos->getParent(), Pos); 2278 CallInst *Call = 2279 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2280 {Addr, ConstantInt::get(DFS.IntptrTy, Size)}); 2281 Call->addRetAttr(Attribute::ZExt); 2282 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2283 DFS.PrimitiveShadowTy), 2284 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2285 } 2286 2287 // Other cases that support loading shadows or origins in a fast way. 2288 Value *ShadowAddr, *OriginAddr; 2289 std::tie(ShadowAddr, OriginAddr) = 2290 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2291 2292 const Align ShadowAlign = getShadowAlign(InstAlignment); 2293 const Align OriginAlign = getOriginAlign(InstAlignment); 2294 Value *Origin = nullptr; 2295 if (ShouldTrackOrigins) { 2296 IRBuilder<> IRB(Pos->getParent(), Pos); 2297 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2298 } 2299 2300 // When the byte size is small enough, we can load the shadow directly with 2301 // just a few instructions. 2302 switch (Size) { 2303 case 1: { 2304 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2305 LI->setAlignment(ShadowAlign); 2306 return {LI, Origin}; 2307 } 2308 case 2: { 2309 IRBuilder<> IRB(Pos->getParent(), Pos); 2310 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2311 ConstantInt::get(DFS.IntptrTy, 1)); 2312 Value *Load = 2313 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2314 Value *Load1 = 2315 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2316 return {combineShadows(Load, Load1, Pos), Origin}; 2317 } 2318 } 2319 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2320 2321 if (HasSizeForFastPath) 2322 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2323 OriginAlign, Origin, Pos); 2324 2325 IRBuilder<> IRB(Pos->getParent(), Pos); 2326 CallInst *FallbackCall = IRB.CreateCall( 2327 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2328 FallbackCall->addRetAttr(Attribute::ZExt); 2329 return {FallbackCall, Origin}; 2330 } 2331 2332 std::pair<Value *, Value *> 2333 DFSanFunction::loadShadowOrigin(Value *Addr, uint64_t Size, Align InstAlignment, 2334 BasicBlock::iterator Pos) { 2335 Value *PrimitiveShadow, *Origin; 2336 std::tie(PrimitiveShadow, Origin) = 2337 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2338 if (DFS.shouldTrackOrigins()) { 2339 if (ClTrackOrigins == 2) { 2340 IRBuilder<> IRB(Pos->getParent(), Pos); 2341 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2342 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2343 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2344 } 2345 } 2346 return {PrimitiveShadow, Origin}; 2347 } 2348 2349 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2350 switch (AO) { 2351 case AtomicOrdering::NotAtomic: 2352 return AtomicOrdering::NotAtomic; 2353 case AtomicOrdering::Unordered: 2354 case AtomicOrdering::Monotonic: 2355 case AtomicOrdering::Acquire: 2356 return AtomicOrdering::Acquire; 2357 case AtomicOrdering::Release: 2358 case AtomicOrdering::AcquireRelease: 2359 return AtomicOrdering::AcquireRelease; 2360 case AtomicOrdering::SequentiallyConsistent: 2361 return AtomicOrdering::SequentiallyConsistent; 2362 } 2363 llvm_unreachable("Unknown ordering"); 2364 } 2365 2366 Value *StripPointerGEPsAndCasts(Value *V) { 2367 if (!V->getType()->isPointerTy()) 2368 return V; 2369 2370 // DFSan pass should be running on valid IR, but we'll 2371 // keep a seen set to ensure there are no issues. 2372 SmallPtrSet<const Value *, 4> Visited; 2373 Visited.insert(V); 2374 do { 2375 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 2376 V = GEP->getPointerOperand(); 2377 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2378 V = cast<Operator>(V)->getOperand(0); 2379 if (!V->getType()->isPointerTy()) 2380 return V; 2381 } else if (isa<GlobalAlias>(V)) { 2382 V = cast<GlobalAlias>(V)->getAliasee(); 2383 } 2384 } while (Visited.insert(V).second); 2385 2386 return V; 2387 } 2388 2389 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2390 auto &DL = LI.getDataLayout(); 2391 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2392 if (Size == 0) { 2393 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2394 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2395 return; 2396 } 2397 2398 // When an application load is atomic, increase atomic ordering between 2399 // atomic application loads and stores to ensure happen-before order; load 2400 // shadow data after application data; store zero shadow data before 2401 // application data. This ensure shadow loads return either labels of the 2402 // initial application data or zeros. 2403 if (LI.isAtomic()) 2404 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2405 2406 BasicBlock::iterator AfterLi = std::next(LI.getIterator()); 2407 BasicBlock::iterator Pos = LI.getIterator(); 2408 if (LI.isAtomic()) 2409 Pos = std::next(Pos); 2410 2411 std::vector<Value *> Shadows; 2412 std::vector<Value *> Origins; 2413 Value *PrimitiveShadow, *Origin; 2414 std::tie(PrimitiveShadow, Origin) = 2415 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2416 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2417 if (ShouldTrackOrigins) { 2418 Shadows.push_back(PrimitiveShadow); 2419 Origins.push_back(Origin); 2420 } 2421 if (ClCombinePointerLabelsOnLoad || 2422 DFSF.isLookupTableConstant( 2423 StripPointerGEPsAndCasts(LI.getPointerOperand()))) { 2424 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2425 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2426 if (ShouldTrackOrigins) { 2427 Shadows.push_back(PtrShadow); 2428 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2429 } 2430 } 2431 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2432 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2433 2434 Value *Shadow = 2435 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2436 DFSF.setShadow(&LI, Shadow); 2437 2438 if (ShouldTrackOrigins) { 2439 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2440 } 2441 2442 if (ClEventCallbacks) { 2443 IRBuilder<> IRB(Pos->getParent(), Pos); 2444 Value *Addr = LI.getPointerOperand(); 2445 CallInst *CI = 2446 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr}); 2447 CI->addParamAttr(0, Attribute::ZExt); 2448 } 2449 2450 IRBuilder<> IRB(AfterLi->getParent(), AfterLi); 2451 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI); 2452 } 2453 2454 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2455 IRBuilder<> &IRB) { 2456 assert(DFS.shouldTrackOrigins()); 2457 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2458 } 2459 2460 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2461 if (!DFS.shouldTrackOrigins()) 2462 return V; 2463 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2464 } 2465 2466 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2467 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2468 const DataLayout &DL = F->getDataLayout(); 2469 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2470 if (IntptrSize == OriginSize) 2471 return Origin; 2472 assert(IntptrSize == OriginSize * 2); 2473 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2474 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2475 } 2476 2477 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2478 Value *StoreOriginAddr, 2479 uint64_t StoreOriginSize, Align Alignment) { 2480 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2481 const DataLayout &DL = F->getDataLayout(); 2482 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2483 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2484 assert(IntptrAlignment >= MinOriginAlignment); 2485 assert(IntptrSize >= OriginSize); 2486 2487 unsigned Ofs = 0; 2488 Align CurrentAlignment = Alignment; 2489 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2490 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2491 Value *IntptrStoreOriginPtr = 2492 IRB.CreatePointerCast(StoreOriginAddr, PointerType::get(*DFS.Ctx, 0)); 2493 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2494 Value *Ptr = 2495 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2496 : IntptrStoreOriginPtr; 2497 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2498 Ofs += IntptrSize / OriginSize; 2499 CurrentAlignment = IntptrAlignment; 2500 } 2501 } 2502 2503 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2504 ++I) { 2505 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2506 : StoreOriginAddr; 2507 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2508 CurrentAlignment = MinOriginAlignment; 2509 } 2510 } 2511 2512 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2513 const Twine &Name) { 2514 Type *VTy = V->getType(); 2515 assert(VTy->isIntegerTy()); 2516 if (VTy->getIntegerBitWidth() == 1) 2517 // Just converting a bool to a bool, so do nothing. 2518 return V; 2519 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2520 } 2521 2522 void DFSanFunction::storeOrigin(BasicBlock::iterator Pos, Value *Addr, 2523 uint64_t Size, Value *Shadow, Value *Origin, 2524 Value *StoreOriginAddr, Align InstAlignment) { 2525 // Do not write origins for zero shadows because we do not trace origins for 2526 // untainted sinks. 2527 const Align OriginAlignment = getOriginAlign(InstAlignment); 2528 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2529 IRBuilder<> IRB(Pos->getParent(), Pos); 2530 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2531 if (!ConstantShadow->isZeroValue()) 2532 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2533 OriginAlignment); 2534 return; 2535 } 2536 2537 if (shouldInstrumentWithCall()) { 2538 IRB.CreateCall( 2539 DFS.DFSanMaybeStoreOriginFn, 2540 {CollapsedShadow, Addr, ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2541 } else { 2542 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2543 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2544 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2545 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU); 2546 IRBuilder<> IRBNew(CheckTerm); 2547 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2548 OriginAlignment); 2549 ++NumOriginStores; 2550 } 2551 } 2552 2553 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2554 Align ShadowAlign, 2555 BasicBlock::iterator Pos) { 2556 IRBuilder<> IRB(Pos->getParent(), Pos); 2557 IntegerType *ShadowTy = 2558 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2559 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2560 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2561 IRB.CreateAlignedStore(ExtZeroShadow, ShadowAddr, ShadowAlign); 2562 // Do not write origins for 0 shadows because we do not trace origins for 2563 // untainted sinks. 2564 } 2565 2566 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2567 Align InstAlignment, 2568 Value *PrimitiveShadow, 2569 Value *Origin, 2570 BasicBlock::iterator Pos) { 2571 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2572 2573 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2574 const auto SI = AllocaShadowMap.find(AI); 2575 if (SI != AllocaShadowMap.end()) { 2576 IRBuilder<> IRB(Pos->getParent(), Pos); 2577 IRB.CreateStore(PrimitiveShadow, SI->second); 2578 2579 // Do not write origins for 0 shadows because we do not trace origins for 2580 // untainted sinks. 2581 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2582 const auto OI = AllocaOriginMap.find(AI); 2583 assert(OI != AllocaOriginMap.end() && Origin); 2584 IRB.CreateStore(Origin, OI->second); 2585 } 2586 return; 2587 } 2588 } 2589 2590 const Align ShadowAlign = getShadowAlign(InstAlignment); 2591 if (DFS.isZeroShadow(PrimitiveShadow)) { 2592 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2593 return; 2594 } 2595 2596 IRBuilder<> IRB(Pos->getParent(), Pos); 2597 Value *ShadowAddr, *OriginAddr; 2598 std::tie(ShadowAddr, OriginAddr) = 2599 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2600 2601 const unsigned ShadowVecSize = 8; 2602 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2603 "Shadow vector is too large!"); 2604 2605 uint64_t Offset = 0; 2606 uint64_t LeftSize = Size; 2607 if (LeftSize >= ShadowVecSize) { 2608 auto *ShadowVecTy = 2609 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2610 Value *ShadowVec = PoisonValue::get(ShadowVecTy); 2611 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2612 ShadowVec = IRB.CreateInsertElement( 2613 ShadowVec, PrimitiveShadow, 2614 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2615 } 2616 do { 2617 Value *CurShadowVecAddr = 2618 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowAddr, Offset); 2619 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2620 LeftSize -= ShadowVecSize; 2621 ++Offset; 2622 } while (LeftSize >= ShadowVecSize); 2623 Offset *= ShadowVecSize; 2624 } 2625 while (LeftSize > 0) { 2626 Value *CurShadowAddr = 2627 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2628 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2629 --LeftSize; 2630 ++Offset; 2631 } 2632 2633 if (ShouldTrackOrigins) { 2634 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2635 InstAlignment); 2636 } 2637 } 2638 2639 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2640 switch (AO) { 2641 case AtomicOrdering::NotAtomic: 2642 return AtomicOrdering::NotAtomic; 2643 case AtomicOrdering::Unordered: 2644 case AtomicOrdering::Monotonic: 2645 case AtomicOrdering::Release: 2646 return AtomicOrdering::Release; 2647 case AtomicOrdering::Acquire: 2648 case AtomicOrdering::AcquireRelease: 2649 return AtomicOrdering::AcquireRelease; 2650 case AtomicOrdering::SequentiallyConsistent: 2651 return AtomicOrdering::SequentiallyConsistent; 2652 } 2653 llvm_unreachable("Unknown ordering"); 2654 } 2655 2656 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2657 auto &DL = SI.getDataLayout(); 2658 Value *Val = SI.getValueOperand(); 2659 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2660 if (Size == 0) 2661 return; 2662 2663 // When an application store is atomic, increase atomic ordering between 2664 // atomic application loads and stores to ensure happen-before order; load 2665 // shadow data after application data; store zero shadow data before 2666 // application data. This ensure shadow loads return either labels of the 2667 // initial application data or zeros. 2668 if (SI.isAtomic()) 2669 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2670 2671 const bool ShouldTrackOrigins = 2672 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2673 std::vector<Value *> Shadows; 2674 std::vector<Value *> Origins; 2675 2676 Value *Shadow = 2677 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2678 2679 if (ShouldTrackOrigins) { 2680 Shadows.push_back(Shadow); 2681 Origins.push_back(DFSF.getOrigin(Val)); 2682 } 2683 2684 Value *PrimitiveShadow; 2685 if (ClCombinePointerLabelsOnStore) { 2686 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2687 if (ShouldTrackOrigins) { 2688 Shadows.push_back(PtrShadow); 2689 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2690 } 2691 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, SI.getIterator()); 2692 } else { 2693 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, SI.getIterator()); 2694 } 2695 Value *Origin = nullptr; 2696 if (ShouldTrackOrigins) 2697 Origin = DFSF.combineOrigins(Shadows, Origins, SI.getIterator()); 2698 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2699 PrimitiveShadow, Origin, SI.getIterator()); 2700 if (ClEventCallbacks) { 2701 IRBuilder<> IRB(&SI); 2702 Value *Addr = SI.getPointerOperand(); 2703 CallInst *CI = 2704 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr}); 2705 CI->addParamAttr(0, Attribute::ZExt); 2706 } 2707 } 2708 2709 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2710 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2711 2712 Value *Val = I.getOperand(1); 2713 const auto &DL = I.getDataLayout(); 2714 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2715 if (Size == 0) 2716 return; 2717 2718 // Conservatively set data at stored addresses and return with zero shadow to 2719 // prevent shadow data races. 2720 IRBuilder<> IRB(&I); 2721 Value *Addr = I.getOperand(0); 2722 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2723 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, I.getIterator()); 2724 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2725 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2726 } 2727 2728 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2729 visitCASOrRMW(I.getAlign(), I); 2730 // TODO: The ordering change follows MSan. It is possible not to change 2731 // ordering because we always set and use 0 shadows. 2732 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2733 } 2734 2735 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2736 visitCASOrRMW(I.getAlign(), I); 2737 // TODO: The ordering change follows MSan. It is possible not to change 2738 // ordering because we always set and use 0 shadows. 2739 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2740 } 2741 2742 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2743 visitInstOperands(UO); 2744 } 2745 2746 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2747 visitInstOperands(BO); 2748 } 2749 2750 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2751 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2752 // a musttail call and a ret, don't instrument. New instructions are not 2753 // allowed after a musttail call. 2754 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2755 if (CI->isMustTailCall()) 2756 return; 2757 visitInstOperands(BCI); 2758 } 2759 2760 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2761 2762 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2763 visitInstOperands(CI); 2764 if (ClEventCallbacks) { 2765 IRBuilder<> IRB(&CI); 2766 Value *CombinedShadow = DFSF.getShadow(&CI); 2767 CallInst *CallI = 2768 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2769 CallI->addParamAttr(0, Attribute::ZExt); 2770 } 2771 } 2772 2773 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2774 // We do not need to track data through LandingPadInst. 2775 // 2776 // For the C++ exceptions, if a value is thrown, this value will be stored 2777 // in a memory location provided by __cxa_allocate_exception(...) (on the 2778 // throw side) or __cxa_begin_catch(...) (on the catch side). 2779 // This memory will have a shadow, so with the loads and stores we will be 2780 // able to propagate labels on data thrown through exceptions, without any 2781 // special handling of the LandingPadInst. 2782 // 2783 // The second element in the pair result of the LandingPadInst is a 2784 // register value, but it is for a type ID and should never be tainted. 2785 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2786 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2787 } 2788 2789 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2790 if (ClCombineOffsetLabelsOnGEP || 2791 DFSF.isLookupTableConstant( 2792 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) { 2793 visitInstOperands(GEPI); 2794 return; 2795 } 2796 2797 // Only propagate shadow/origin of base pointer value but ignore those of 2798 // offset operands. 2799 Value *BasePointer = GEPI.getPointerOperand(); 2800 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2801 if (DFSF.DFS.shouldTrackOrigins()) 2802 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2803 } 2804 2805 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2806 visitInstOperands(I); 2807 } 2808 2809 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2810 visitInstOperands(I); 2811 } 2812 2813 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2814 visitInstOperands(I); 2815 } 2816 2817 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2818 IRBuilder<> IRB(&I); 2819 Value *Agg = I.getAggregateOperand(); 2820 Value *AggShadow = DFSF.getShadow(Agg); 2821 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2822 DFSF.setShadow(&I, ResShadow); 2823 visitInstOperandOrigins(I); 2824 } 2825 2826 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2827 IRBuilder<> IRB(&I); 2828 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2829 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2830 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2831 DFSF.setShadow(&I, Res); 2832 visitInstOperandOrigins(I); 2833 } 2834 2835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2836 bool AllLoadsStores = true; 2837 for (User *U : I.users()) { 2838 if (isa<LoadInst>(U)) 2839 continue; 2840 2841 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2842 if (SI->getPointerOperand() == &I) 2843 continue; 2844 } 2845 2846 AllLoadsStores = false; 2847 break; 2848 } 2849 if (AllLoadsStores) { 2850 IRBuilder<> IRB(&I); 2851 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2852 if (DFSF.DFS.shouldTrackOrigins()) { 2853 DFSF.AllocaOriginMap[&I] = 2854 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2855 } 2856 } 2857 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2858 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2859 } 2860 2861 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2862 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2863 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2864 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2865 Value *ShadowSel = nullptr; 2866 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2867 std::vector<Value *> Shadows; 2868 std::vector<Value *> Origins; 2869 Value *TrueOrigin = 2870 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2871 Value *FalseOrigin = 2872 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2873 2874 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition()); 2875 2876 if (isa<VectorType>(I.getCondition()->getType())) { 2877 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2878 FalseShadow, I.getIterator()); 2879 if (ShouldTrackOrigins) { 2880 Shadows.push_back(TrueShadow); 2881 Shadows.push_back(FalseShadow); 2882 Origins.push_back(TrueOrigin); 2883 Origins.push_back(FalseOrigin); 2884 } 2885 } else { 2886 if (TrueShadow == FalseShadow) { 2887 ShadowSel = TrueShadow; 2888 if (ShouldTrackOrigins) { 2889 Shadows.push_back(TrueShadow); 2890 Origins.push_back(TrueOrigin); 2891 } 2892 } else { 2893 ShadowSel = SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, 2894 "", I.getIterator()); 2895 if (ShouldTrackOrigins) { 2896 Shadows.push_back(ShadowSel); 2897 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2898 FalseOrigin, "", I.getIterator())); 2899 } 2900 } 2901 } 2902 DFSF.setShadow(&I, ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert( 2903 I.getType(), CondShadow, 2904 ShadowSel, I.getIterator()) 2905 : ShadowSel); 2906 if (ShouldTrackOrigins) { 2907 if (ClTrackSelectControlFlow) { 2908 Shadows.push_back(CondShadow); 2909 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2910 } 2911 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, I.getIterator())); 2912 } 2913 } 2914 2915 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2916 IRBuilder<> IRB(&I); 2917 Value *ValShadow = DFSF.getShadow(I.getValue()); 2918 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2919 ? DFSF.getOrigin(I.getValue()) 2920 : DFSF.DFS.ZeroOrigin; 2921 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 2922 {ValShadow, ValOrigin, I.getDest(), 2923 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2924 } 2925 2926 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2927 IRBuilder<> IRB(&I); 2928 2929 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2930 // need to move origins before moving shadows. 2931 if (DFSF.DFS.shouldTrackOrigins()) { 2932 IRB.CreateCall( 2933 DFSF.DFS.DFSanMemOriginTransferFn, 2934 {I.getArgOperand(0), I.getArgOperand(1), 2935 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2936 } 2937 2938 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), I.getIterator()); 2939 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), I.getIterator()); 2940 Value *LenShadow = 2941 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2942 DFSF.DFS.ShadowWidthBytes)); 2943 auto *MTI = cast<MemTransferInst>( 2944 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2945 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2946 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne())); 2947 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne())); 2948 if (ClEventCallbacks) { 2949 IRB.CreateCall( 2950 DFSF.DFS.DFSanMemTransferCallbackFn, 2951 {DestShadow, IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2952 } 2953 } 2954 2955 void DFSanVisitor::visitBranchInst(BranchInst &BR) { 2956 if (!BR.isConditional()) 2957 return; 2958 2959 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition()); 2960 } 2961 2962 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { 2963 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition()); 2964 } 2965 2966 static bool isAMustTailRetVal(Value *RetVal) { 2967 // Tail call may have a bitcast between return. 2968 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2969 RetVal = I->getOperand(0); 2970 } 2971 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2972 return I->isMustTailCall(); 2973 } 2974 return false; 2975 } 2976 2977 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2978 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2979 // Don't emit the instrumentation for musttail call returns. 2980 if (isAMustTailRetVal(RI.getReturnValue())) 2981 return; 2982 2983 Value *S = DFSF.getShadow(RI.getReturnValue()); 2984 IRBuilder<> IRB(&RI); 2985 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2986 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2987 if (Size <= RetvalTLSSize) { 2988 // If the size overflows, stores nothing. At callsite, oversized return 2989 // shadows are set to zero. 2990 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2991 } 2992 if (DFSF.DFS.shouldTrackOrigins()) { 2993 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2994 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2995 } 2996 } 2997 } 2998 2999 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 3000 std::vector<Value *> &Args, 3001 IRBuilder<> &IRB) { 3002 FunctionType *FT = F.getFunctionType(); 3003 3004 auto *I = CB.arg_begin(); 3005 3006 // Adds non-variable argument shadows. 3007 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3008 Args.push_back( 3009 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator())); 3010 3011 // Adds variable argument shadows. 3012 if (FT->isVarArg()) { 3013 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 3014 CB.arg_size() - FT->getNumParams()); 3015 auto *LabelVAAlloca = 3016 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 3017 "labelva", DFSF.F->getEntryBlock().begin()); 3018 3019 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3020 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 3021 IRB.CreateStore( 3022 DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), CB.getIterator()), 3023 LabelVAPtr); 3024 } 3025 3026 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 3027 } 3028 3029 // Adds the return value shadow. 3030 if (!FT->getReturnType()->isVoidTy()) { 3031 if (!DFSF.LabelReturnAlloca) { 3032 DFSF.LabelReturnAlloca = new AllocaInst( 3033 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 3034 "labelreturn", DFSF.F->getEntryBlock().begin()); 3035 } 3036 Args.push_back(DFSF.LabelReturnAlloca); 3037 } 3038 } 3039 3040 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 3041 std::vector<Value *> &Args, 3042 IRBuilder<> &IRB) { 3043 FunctionType *FT = F.getFunctionType(); 3044 3045 auto *I = CB.arg_begin(); 3046 3047 // Add non-variable argument origins. 3048 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 3049 Args.push_back(DFSF.getOrigin(*I)); 3050 3051 // Add variable argument origins. 3052 if (FT->isVarArg()) { 3053 auto *OriginVATy = 3054 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 3055 auto *OriginVAAlloca = 3056 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 3057 "originva", DFSF.F->getEntryBlock().begin()); 3058 3059 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 3060 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 3061 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 3062 } 3063 3064 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 3065 } 3066 3067 // Add the return value origin. 3068 if (!FT->getReturnType()->isVoidTy()) { 3069 if (!DFSF.OriginReturnAlloca) { 3070 DFSF.OriginReturnAlloca = new AllocaInst( 3071 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 3072 "originreturn", DFSF.F->getEntryBlock().begin()); 3073 } 3074 Args.push_back(DFSF.OriginReturnAlloca); 3075 } 3076 } 3077 3078 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 3079 IRBuilder<> IRB(&CB); 3080 switch (DFSF.DFS.getWrapperKind(&F)) { 3081 case DataFlowSanitizer::WK_Warning: 3082 CB.setCalledFunction(&F); 3083 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 3084 IRB.CreateGlobalString(F.getName())); 3085 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3086 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3087 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3088 return true; 3089 case DataFlowSanitizer::WK_Discard: 3090 CB.setCalledFunction(&F); 3091 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3092 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3093 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 3094 return true; 3095 case DataFlowSanitizer::WK_Functional: 3096 CB.setCalledFunction(&F); 3097 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F); 3098 visitInstOperands(CB); 3099 return true; 3100 case DataFlowSanitizer::WK_Custom: 3101 // Don't try to handle invokes of custom functions, it's too complicated. 3102 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 3103 // wrapper. 3104 CallInst *CI = dyn_cast<CallInst>(&CB); 3105 if (!CI) 3106 return false; 3107 3108 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3109 FunctionType *FT = F.getFunctionType(); 3110 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 3111 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 3112 CustomFName += F.getName(); 3113 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 3114 CustomFName, CustomFn.TransformedType); 3115 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 3116 CustomFn->copyAttributesFrom(&F); 3117 3118 // Custom functions returning non-void will write to the return label. 3119 if (!FT->getReturnType()->isVoidTy()) { 3120 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 3121 } 3122 } 3123 3124 std::vector<Value *> Args; 3125 3126 // Adds non-variable arguments. 3127 auto *I = CB.arg_begin(); 3128 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 3129 Args.push_back(*I); 3130 } 3131 3132 // Adds shadow arguments. 3133 const unsigned ShadowArgStart = Args.size(); 3134 addShadowArguments(F, CB, Args, IRB); 3135 3136 // Adds origin arguments. 3137 const unsigned OriginArgStart = Args.size(); 3138 if (ShouldTrackOrigins) 3139 addOriginArguments(F, CB, Args, IRB); 3140 3141 // Adds variable arguments. 3142 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 3143 3144 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 3145 CustomCI->setCallingConv(CI->getCallingConv()); 3146 CustomCI->setAttributes(transformFunctionAttributes( 3147 CustomFn, CI->getContext(), CI->getAttributes())); 3148 3149 // Update the parameter attributes of the custom call instruction to 3150 // zero extend the shadow parameters. This is required for targets 3151 // which consider PrimitiveShadowTy an illegal type. 3152 for (unsigned N = 0; N < FT->getNumParams(); N++) { 3153 const unsigned ArgNo = ShadowArgStart + N; 3154 if (CustomCI->getArgOperand(ArgNo)->getType() == 3155 DFSF.DFS.PrimitiveShadowTy) 3156 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 3157 if (ShouldTrackOrigins) { 3158 const unsigned OriginArgNo = OriginArgStart + N; 3159 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 3160 DFSF.DFS.OriginTy) 3161 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 3162 } 3163 } 3164 3165 // Loads the return value shadow and origin. 3166 if (!FT->getReturnType()->isVoidTy()) { 3167 LoadInst *LabelLoad = 3168 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 3169 DFSF.setShadow(CustomCI, 3170 DFSF.expandFromPrimitiveShadow( 3171 FT->getReturnType(), LabelLoad, CB.getIterator())); 3172 if (ShouldTrackOrigins) { 3173 LoadInst *OriginLoad = 3174 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 3175 DFSF.setOrigin(CustomCI, OriginLoad); 3176 } 3177 } 3178 3179 CI->replaceAllUsesWith(CustomCI); 3180 CI->eraseFromParent(); 3181 return true; 3182 } 3183 return false; 3184 } 3185 3186 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 3187 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3188 uint32_t OrderingTable[NumOrderings] = {}; 3189 3190 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3191 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3192 OrderingTable[(int)AtomicOrderingCABI::consume] = 3193 (int)AtomicOrderingCABI::acquire; 3194 OrderingTable[(int)AtomicOrderingCABI::release] = 3195 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3196 (int)AtomicOrderingCABI::acq_rel; 3197 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3198 (int)AtomicOrderingCABI::seq_cst; 3199 3200 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 3201 } 3202 3203 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { 3204 // Since we use getNextNode here, we can't have CB terminate the BB. 3205 assert(isa<CallInst>(CB)); 3206 3207 IRBuilder<> IRB(&CB); 3208 Value *Size = CB.getArgOperand(0); 3209 Value *SrcPtr = CB.getArgOperand(1); 3210 Value *DstPtr = CB.getArgOperand(2); 3211 Value *Ordering = CB.getArgOperand(3); 3212 // Convert the call to have at least Acquire ordering to make sure 3213 // the shadow operations aren't reordered before it. 3214 Value *NewOrdering = 3215 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3216 CB.setArgOperand(3, NewOrdering); 3217 3218 IRBuilder<> NextIRB(CB.getNextNode()); 3219 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3220 3221 // TODO: Support ClCombinePointerLabelsOnLoad 3222 // TODO: Support ClEventCallbacks 3223 3224 NextIRB.CreateCall( 3225 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3226 {DstPtr, SrcPtr, NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3227 } 3228 3229 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 3230 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 3231 uint32_t OrderingTable[NumOrderings] = {}; 3232 3233 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 3234 OrderingTable[(int)AtomicOrderingCABI::release] = 3235 (int)AtomicOrderingCABI::release; 3236 OrderingTable[(int)AtomicOrderingCABI::consume] = 3237 OrderingTable[(int)AtomicOrderingCABI::acquire] = 3238 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 3239 (int)AtomicOrderingCABI::acq_rel; 3240 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 3241 (int)AtomicOrderingCABI::seq_cst; 3242 3243 return ConstantDataVector::get(IRB.getContext(), OrderingTable); 3244 } 3245 3246 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { 3247 IRBuilder<> IRB(&CB); 3248 Value *Size = CB.getArgOperand(0); 3249 Value *SrcPtr = CB.getArgOperand(1); 3250 Value *DstPtr = CB.getArgOperand(2); 3251 Value *Ordering = CB.getArgOperand(3); 3252 // Convert the call to have at least Release ordering to make sure 3253 // the shadow operations aren't reordered after it. 3254 Value *NewOrdering = 3255 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3256 CB.setArgOperand(3, NewOrdering); 3257 3258 // TODO: Support ClCombinePointerLabelsOnStore 3259 // TODO: Support ClEventCallbacks 3260 3261 IRB.CreateCall( 3262 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3263 {DstPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3264 } 3265 3266 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { 3267 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int 3268 // ordering) 3269 IRBuilder<> IRB(&CB); 3270 Value *Size = CB.getArgOperand(0); 3271 Value *TargetPtr = CB.getArgOperand(1); 3272 Value *SrcPtr = CB.getArgOperand(2); 3273 Value *DstPtr = CB.getArgOperand(3); 3274 3275 // This operation is not atomic for the shadow and origin memory. 3276 // This could result in DFSan false positives or false negatives. 3277 // For now we will assume these operations are rare, and 3278 // the additional complexity to address this is not warrented. 3279 3280 // Current Target to Dest 3281 IRB.CreateCall( 3282 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3283 {DstPtr, TargetPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3284 3285 // Current Src to Target (overriding) 3286 IRB.CreateCall( 3287 DFSF.DFS.DFSanMemShadowOriginTransferFn, 3288 {TargetPtr, SrcPtr, IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3289 } 3290 3291 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { 3292 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void 3293 // *desired, int success_order, int failure_order) 3294 Value *Size = CB.getArgOperand(0); 3295 Value *TargetPtr = CB.getArgOperand(1); 3296 Value *ExpectedPtr = CB.getArgOperand(2); 3297 Value *DesiredPtr = CB.getArgOperand(3); 3298 3299 // This operation is not atomic for the shadow and origin memory. 3300 // This could result in DFSan false positives or false negatives. 3301 // For now we will assume these operations are rare, and 3302 // the additional complexity to address this is not warrented. 3303 3304 IRBuilder<> NextIRB(CB.getNextNode()); 3305 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3306 3307 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3308 3309 // If original call returned true, copy Desired to Target. 3310 // If original call returned false, copy Target to Expected. 3311 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, 3312 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false), 3313 TargetPtr, ExpectedPtr, DesiredPtr, 3314 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)}); 3315 } 3316 3317 void DFSanVisitor::visitCallBase(CallBase &CB) { 3318 Function *F = CB.getCalledFunction(); 3319 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 3320 visitInstOperands(CB); 3321 return; 3322 } 3323 3324 // Calls to this function are synthesized in wrappers, and we shouldn't 3325 // instrument them. 3326 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 3327 return; 3328 3329 LibFunc LF; 3330 if (DFSF.TLI.getLibFunc(CB, LF)) { 3331 // libatomic.a functions need to have special handling because there isn't 3332 // a good way to intercept them or compile the library with 3333 // instrumentation. 3334 switch (LF) { 3335 case LibFunc_atomic_load: 3336 if (!isa<CallInst>(CB)) { 3337 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " 3338 "Ignoring!\n"; 3339 break; 3340 } 3341 visitLibAtomicLoad(CB); 3342 return; 3343 case LibFunc_atomic_store: 3344 visitLibAtomicStore(CB); 3345 return; 3346 default: 3347 break; 3348 } 3349 } 3350 3351 // TODO: These are not supported by TLI? They are not in the enum. 3352 if (F && F->hasName() && !F->isVarArg()) { 3353 if (F->getName() == "__atomic_exchange") { 3354 visitLibAtomicExchange(CB); 3355 return; 3356 } 3357 if (F->getName() == "__atomic_compare_exchange") { 3358 visitLibAtomicCompareExchange(CB); 3359 return; 3360 } 3361 } 3362 3363 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 3364 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 3365 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 3366 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 3367 return; 3368 3369 IRBuilder<> IRB(&CB); 3370 3371 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 3372 FunctionType *FT = CB.getFunctionType(); 3373 const DataLayout &DL = getDataLayout(); 3374 3375 // Stores argument shadows. 3376 unsigned ArgOffset = 0; 3377 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 3378 if (ShouldTrackOrigins) { 3379 // Ignore overflowed origins 3380 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 3381 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 3382 !DFSF.DFS.isZeroShadow(ArgShadow)) 3383 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 3384 DFSF.getArgOriginTLS(I, IRB)); 3385 } 3386 3387 unsigned Size = 3388 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 3389 // Stop storing if arguments' size overflows. Inside a function, arguments 3390 // after overflow have zero shadow values. 3391 if (ArgOffset + Size > ArgTLSSize) 3392 break; 3393 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 3394 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 3395 ShadowTLSAlignment); 3396 ArgOffset += alignTo(Size, ShadowTLSAlignment); 3397 } 3398 3399 Instruction *Next = nullptr; 3400 if (!CB.getType()->isVoidTy()) { 3401 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 3402 if (II->getNormalDest()->getSinglePredecessor()) { 3403 Next = &II->getNormalDest()->front(); 3404 } else { 3405 BasicBlock *NewBB = 3406 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 3407 Next = &NewBB->front(); 3408 } 3409 } else { 3410 assert(CB.getIterator() != CB.getParent()->end()); 3411 Next = CB.getNextNode(); 3412 } 3413 3414 // Don't emit the epilogue for musttail call returns. 3415 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3416 return; 3417 3418 // Loads the return value shadow. 3419 IRBuilder<> NextIRB(Next); 3420 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 3421 if (Size > RetvalTLSSize) { 3422 // Set overflowed return shadow to be zero. 3423 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 3424 } else { 3425 LoadInst *LI = NextIRB.CreateAlignedLoad( 3426 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 3427 ShadowTLSAlignment, "_dfsret"); 3428 DFSF.SkipInsts.insert(LI); 3429 DFSF.setShadow(&CB, LI); 3430 DFSF.NonZeroChecks.push_back(LI); 3431 } 3432 3433 if (ShouldTrackOrigins) { 3434 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 3435 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3436 DFSF.SkipInsts.insert(LI); 3437 DFSF.setOrigin(&CB, LI); 3438 } 3439 3440 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB); 3441 } 3442 } 3443 3444 void DFSanVisitor::visitPHINode(PHINode &PN) { 3445 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3446 PHINode *ShadowPN = PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", 3447 PN.getIterator()); 3448 3449 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3450 Value *UndefShadow = UndefValue::get(ShadowTy); 3451 for (BasicBlock *BB : PN.blocks()) 3452 ShadowPN->addIncoming(UndefShadow, BB); 3453 3454 DFSF.setShadow(&PN, ShadowPN); 3455 3456 PHINode *OriginPN = nullptr; 3457 if (DFSF.DFS.shouldTrackOrigins()) { 3458 OriginPN = PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", 3459 PN.getIterator()); 3460 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3461 for (BasicBlock *BB : PN.blocks()) 3462 OriginPN->addIncoming(UndefOrigin, BB); 3463 DFSF.setOrigin(&PN, OriginPN); 3464 } 3465 3466 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3467 } 3468 3469 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3470 ModuleAnalysisManager &AM) { 3471 // Return early if nosanitize_dataflow module flag is present for the module. 3472 if (checkIfAlreadyInstrumented(M, "nosanitize_dataflow")) 3473 return PreservedAnalyses::all(); 3474 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { 3475 auto &FAM = 3476 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 3477 return FAM.getResult<TargetLibraryAnalysis>(F); 3478 }; 3479 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) 3480 return PreservedAnalyses::all(); 3481 3482 PreservedAnalyses PA = PreservedAnalyses::none(); 3483 // GlobalsAA is considered stateless and does not get invalidated unless 3484 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 3485 // make changes that require GlobalsAA to be invalidated. 3486 PA.abandon<GlobalsAA>(); 3487 return PA; 3488 } 3489