1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "CodeGenDAGPatterns.h"
10 #include "CodeGenInstruction.h"
11 #include "CodeGenRegisters.h"
12 #include "DAGISelMatcher.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/TableGen/Error.h"
16 #include "llvm/TableGen/Record.h"
17 #include <utility>
18 using namespace llvm;
19
20
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
getRegisterValueType(Record * R,const CodeGenTarget & T)24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25 const CodeGenTarget &T) {
26 bool FoundRC = false;
27 MVT::SimpleValueType VT = MVT::Other;
28 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29
30 for (const auto &RC : T.getRegBank().getRegClasses()) {
31 if (!RC.contains(Reg))
32 continue;
33
34 if (!FoundRC) {
35 FoundRC = true;
36 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
37 if (VVT.isSimple())
38 VT = VVT.getSimple().SimpleTy;
39 continue;
40 }
41
42 #ifndef NDEBUG
43 // If this occurs in multiple register classes, they all have to agree.
44 const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
45 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
46 "ValueType mismatch between register classes for this register");
47 #endif
48 }
49 return VT;
50 }
51
52
53 namespace {
54 class MatcherGen {
55 const PatternToMatch &Pattern;
56 const CodeGenDAGPatterns &CGP;
57
58 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
59 /// out with all of the types removed. This allows us to insert type checks
60 /// as we scan the tree.
61 TreePatternNodePtr PatWithNoTypes;
62
63 /// VariableMap - A map from variable names ('$dst') to the recorded operand
64 /// number that they were captured as. These are biased by 1 to make
65 /// insertion easier.
66 StringMap<unsigned> VariableMap;
67
68 /// This maintains the recorded operand number that OPC_CheckComplexPattern
69 /// drops each sub-operand into. We don't want to insert these into
70 /// VariableMap because that leads to identity checking if they are
71 /// encountered multiple times. Biased by 1 like VariableMap for
72 /// consistency.
73 StringMap<unsigned> NamedComplexPatternOperands;
74
75 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
76 /// the RecordedNodes array, this keeps track of which slot will be next to
77 /// record into.
78 unsigned NextRecordedOperandNo;
79
80 /// MatchedChainNodes - This maintains the position in the recorded nodes
81 /// array of all of the recorded input nodes that have chains.
82 SmallVector<unsigned, 2> MatchedChainNodes;
83
84 /// MatchedComplexPatterns - This maintains a list of all of the
85 /// ComplexPatterns that we need to check. The second element of each pair
86 /// is the recorded operand number of the input node.
87 SmallVector<std::pair<const TreePatternNode*,
88 unsigned>, 2> MatchedComplexPatterns;
89
90 /// PhysRegInputs - List list has an entry for each explicitly specified
91 /// physreg input to the pattern. The first elt is the Register node, the
92 /// second is the recorded slot number the input pattern match saved it in.
93 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
94
95 /// Matcher - This is the top level of the generated matcher, the result.
96 Matcher *TheMatcher;
97
98 /// CurPredicate - As we emit matcher nodes, this points to the latest check
99 /// which should have future checks stuck into its Next position.
100 Matcher *CurPredicate;
101 public:
102 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
103
104 bool EmitMatcherCode(unsigned Variant);
105 void EmitResultCode();
106
GetMatcher() const107 Matcher *GetMatcher() const { return TheMatcher; }
108 private:
109 void AddMatcher(Matcher *NewNode);
110 void InferPossibleTypes(unsigned ForceMode);
111
112 // Matcher Generation.
113 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
114 unsigned ForceMode);
115 void EmitLeafMatchCode(const TreePatternNode *N);
116 void EmitOperatorMatchCode(const TreePatternNode *N,
117 TreePatternNode *NodeNoTypes,
118 unsigned ForceMode);
119
120 /// If this is the first time a node with unique identifier Name has been
121 /// seen, record it. Otherwise, emit a check to make sure this is the same
122 /// node. Returns true if this is the first encounter.
123 bool recordUniqueNode(ArrayRef<std::string> Names);
124
125 // Result Code Generation.
getNamedArgumentSlot(StringRef Name)126 unsigned getNamedArgumentSlot(StringRef Name) {
127 unsigned VarMapEntry = VariableMap[Name];
128 assert(VarMapEntry != 0 &&
129 "Variable referenced but not defined and not caught earlier!");
130 return VarMapEntry-1;
131 }
132
133 void EmitResultOperand(const TreePatternNode *N,
134 SmallVectorImpl<unsigned> &ResultOps);
135 void EmitResultOfNamedOperand(const TreePatternNode *N,
136 SmallVectorImpl<unsigned> &ResultOps);
137 void EmitResultLeafAsOperand(const TreePatternNode *N,
138 SmallVectorImpl<unsigned> &ResultOps);
139 void EmitResultInstructionAsOperand(const TreePatternNode *N,
140 SmallVectorImpl<unsigned> &ResultOps);
141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142 SmallVectorImpl<unsigned> &ResultOps);
143 };
144
145 } // end anonymous namespace
146
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
148 const CodeGenDAGPatterns &cgp)
149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150 TheMatcher(nullptr), CurPredicate(nullptr) {
151 // We need to produce the matcher tree for the patterns source pattern. To do
152 // this we need to match the structure as well as the types. To do the type
153 // matching, we want to figure out the fewest number of type checks we need to
154 // emit. For example, if there is only one integer type supported by a
155 // target, there should be no type comparisons at all for integer patterns!
156 //
157 // To figure out the fewest number of type checks needed, clone the pattern,
158 // remove the types, then perform type inference on the pattern as a whole.
159 // If there are unresolved types, emit an explicit check for those types,
160 // apply the type to the tree, then rerun type inference. Iterate until all
161 // types are resolved.
162 //
163 PatWithNoTypes = Pattern.getSrcPattern()->clone();
164 PatWithNoTypes->RemoveAllTypes();
165
166 // If there are types that are manifestly known, infer them.
167 InferPossibleTypes(Pattern.getForceMode());
168 }
169
170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
171 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
172 /// want to propagate implied types as far throughout the tree as possible so
173 /// that we avoid doing redundant type checks. This does the type propagation.
InferPossibleTypes(unsigned ForceMode)174 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
175 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
176 // diagnostics, which we know are impossible at this point.
177 TreePattern &TP = *CGP.pf_begin()->second;
178 TP.getInfer().CodeGen = true;
179 TP.getInfer().ForceMode = ForceMode;
180
181 bool MadeChange = true;
182 while (MadeChange)
183 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
184 true/*Ignore reg constraints*/);
185 }
186
187
188 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)189 void MatcherGen::AddMatcher(Matcher *NewNode) {
190 if (CurPredicate)
191 CurPredicate->setNext(NewNode);
192 else
193 TheMatcher = NewNode;
194 CurPredicate = NewNode;
195 }
196
197
198 //===----------------------------------------------------------------------===//
199 // Pattern Match Generation
200 //===----------------------------------------------------------------------===//
201
202 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode * N)203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
204 assert(N->isLeaf() && "Not a leaf?");
205
206 // Direct match against an integer constant.
207 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
208 // If this is the root of the dag we're matching, we emit a redundant opcode
209 // check to ensure that this gets folded into the normal top-level
210 // OpcodeSwitch.
211 if (N == Pattern.getSrcPattern()) {
212 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
213 AddMatcher(new CheckOpcodeMatcher(NI));
214 }
215
216 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
217 }
218
219 // An UnsetInit represents a named node without any constraints.
220 if (isa<UnsetInit>(N->getLeafValue())) {
221 assert(N->hasName() && "Unnamed ? leaf");
222 return;
223 }
224
225 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
226 if (!DI) {
227 errs() << "Unknown leaf kind: " << *N << "\n";
228 abort();
229 }
230
231 Record *LeafRec = DI->getDef();
232
233 // A ValueType leaf node can represent a register when named, or itself when
234 // unnamed.
235 if (LeafRec->isSubClassOf("ValueType")) {
236 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
237 if (N->hasName())
238 return;
239 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
240 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
241 }
242
243 if (// Handle register references. Nothing to do here, they always match.
244 LeafRec->isSubClassOf("RegisterClass") ||
245 LeafRec->isSubClassOf("RegisterOperand") ||
246 LeafRec->isSubClassOf("PointerLikeRegClass") ||
247 LeafRec->isSubClassOf("SubRegIndex") ||
248 // Place holder for SRCVALUE nodes. Nothing to do here.
249 LeafRec->getName() == "srcvalue")
250 return;
251
252 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
253 // record the register
254 if (LeafRec->isSubClassOf("Register")) {
255 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
256 NextRecordedOperandNo));
257 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
258 return;
259 }
260
261 if (LeafRec->isSubClassOf("CondCode"))
262 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263
264 if (LeafRec->isSubClassOf("ComplexPattern")) {
265 // We can't model ComplexPattern uses that don't have their name taken yet.
266 // The OPC_CheckComplexPattern operation implicitly records the results.
267 if (N->getName().empty()) {
268 std::string S;
269 raw_string_ostream OS(S);
270 OS << "We expect complex pattern uses to have names: " << *N;
271 PrintFatalError(S);
272 }
273
274 // Remember this ComplexPattern so that we can emit it after all the other
275 // structural matches are done.
276 unsigned InputOperand = VariableMap[N->getName()] - 1;
277 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
278 return;
279 }
280
281 if (LeafRec->getName() == "immAllOnesV") {
282 // If this is the root of the dag we're matching, we emit a redundant opcode
283 // check to ensure that this gets folded into the normal top-level
284 // OpcodeSwitch.
285 if (N == Pattern.getSrcPattern()) {
286 MVT VT = N->getSimpleType(0);
287 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
288 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
289 AddMatcher(new CheckOpcodeMatcher(NI));
290 }
291 return AddMatcher(new CheckImmAllOnesVMatcher());
292 }
293 if (LeafRec->getName() == "immAllZerosV") {
294 // If this is the root of the dag we're matching, we emit a redundant opcode
295 // check to ensure that this gets folded into the normal top-level
296 // OpcodeSwitch.
297 if (N == Pattern.getSrcPattern()) {
298 MVT VT = N->getSimpleType(0);
299 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
300 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
301 AddMatcher(new CheckOpcodeMatcher(NI));
302 }
303 return AddMatcher(new CheckImmAllZerosVMatcher());
304 }
305
306 errs() << "Unknown leaf kind: " << *N << "\n";
307 abort();
308 }
309
EmitOperatorMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes,unsigned ForceMode)310 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
311 TreePatternNode *NodeNoTypes,
312 unsigned ForceMode) {
313 assert(!N->isLeaf() && "Not an operator?");
314
315 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
316 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
317 // "MY_PAT:op1:op2". We should already have validated that the uses are
318 // consistent.
319 std::string PatternName = std::string(N->getOperator()->getName());
320 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
321 PatternName += ":";
322 PatternName += N->getChild(i)->getName();
323 }
324
325 if (recordUniqueNode(PatternName)) {
326 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
327 MatchedComplexPatterns.push_back(NodeAndOpNum);
328 }
329
330 return;
331 }
332
333 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
334
335 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
336 // a constant without a predicate fn that has more than one bit set, handle
337 // this as a special case. This is usually for targets that have special
338 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
339 // handling stuff). Using these instructions is often far more efficient
340 // than materializing the constant. Unfortunately, both the instcombiner
341 // and the dag combiner can often infer that bits are dead, and thus drop
342 // them from the mask in the dag. For example, it might turn 'AND X, 255'
343 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
344 // to handle this.
345 if ((N->getOperator()->getName() == "and" ||
346 N->getOperator()->getName() == "or") &&
347 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
348 N->getPredicateCalls().empty()) {
349 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
350 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
351 // If this is at the root of the pattern, we emit a redundant
352 // CheckOpcode so that the following checks get factored properly under
353 // a single opcode check.
354 if (N == Pattern.getSrcPattern())
355 AddMatcher(new CheckOpcodeMatcher(CInfo));
356
357 // Emit the CheckAndImm/CheckOrImm node.
358 if (N->getOperator()->getName() == "and")
359 AddMatcher(new CheckAndImmMatcher(II->getValue()));
360 else
361 AddMatcher(new CheckOrImmMatcher(II->getValue()));
362
363 // Match the LHS of the AND as appropriate.
364 AddMatcher(new MoveChildMatcher(0));
365 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
366 AddMatcher(new MoveParentMatcher());
367 return;
368 }
369 }
370 }
371
372 // Check that the current opcode lines up.
373 AddMatcher(new CheckOpcodeMatcher(CInfo));
374
375 // If this node has memory references (i.e. is a load or store), tell the
376 // interpreter to capture them in the memref array.
377 if (N->NodeHasProperty(SDNPMemOperand, CGP))
378 AddMatcher(new RecordMemRefMatcher());
379
380 // If this node has a chain, then the chain is operand #0 is the SDNode, and
381 // the child numbers of the node are all offset by one.
382 unsigned OpNo = 0;
383 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
384 // Record the node and remember it in our chained nodes list.
385 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
386 "' chained node",
387 NextRecordedOperandNo));
388 // Remember all of the input chains our pattern will match.
389 MatchedChainNodes.push_back(NextRecordedOperandNo++);
390
391 // Don't look at the input chain when matching the tree pattern to the
392 // SDNode.
393 OpNo = 1;
394
395 // If this node is not the root and the subtree underneath it produces a
396 // chain, then the result of matching the node is also produce a chain.
397 // Beyond that, this means that we're also folding (at least) the root node
398 // into the node that produce the chain (for example, matching
399 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
400 // problematic, if the 'reg' node also uses the load (say, its chain).
401 // Graphically:
402 //
403 // [LD]
404 // ^ ^
405 // | \ DAG's like cheese.
406 // / |
407 // / [YY]
408 // | ^
409 // [XX]--/
410 //
411 // It would be invalid to fold XX and LD. In this case, folding the two
412 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
413 // To prevent this, we emit a dynamic check for legality before allowing
414 // this to be folded.
415 //
416 const TreePatternNode *Root = Pattern.getSrcPattern();
417 if (N != Root) { // Not the root of the pattern.
418 // If there is a node between the root and this node, then we definitely
419 // need to emit the check.
420 bool NeedCheck = !Root->hasChild(N);
421
422 // If it *is* an immediate child of the root, we can still need a check if
423 // the root SDNode has multiple inputs. For us, this means that it is an
424 // intrinsic, has multiple operands, or has other inputs like chain or
425 // glue).
426 if (!NeedCheck) {
427 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
428 NeedCheck =
429 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
430 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
431 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
432 PInfo.getNumOperands() > 1 ||
433 PInfo.hasProperty(SDNPHasChain) ||
434 PInfo.hasProperty(SDNPInGlue) ||
435 PInfo.hasProperty(SDNPOptInGlue);
436 }
437
438 if (NeedCheck)
439 AddMatcher(new CheckFoldableChainNodeMatcher());
440 }
441 }
442
443 // If this node has an output glue and isn't the root, remember it.
444 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
445 N != Pattern.getSrcPattern()) {
446 // TODO: This redundantly records nodes with both glues and chains.
447
448 // Record the node and remember it in our chained nodes list.
449 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
450 "' glue output node",
451 NextRecordedOperandNo));
452 }
453
454 // If this node is known to have an input glue or if it *might* have an input
455 // glue, capture it as the glue input of the pattern.
456 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
457 N->NodeHasProperty(SDNPInGlue, CGP))
458 AddMatcher(new CaptureGlueInputMatcher());
459
460 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
461 // Get the code suitable for matching this child. Move to the child, check
462 // it then move back to the parent.
463 AddMatcher(new MoveChildMatcher(OpNo));
464 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
465 AddMatcher(new MoveParentMatcher());
466 }
467 }
468
recordUniqueNode(ArrayRef<std::string> Names)469 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
470 unsigned Entry = 0;
471 for (const std::string &Name : Names) {
472 unsigned &VarMapEntry = VariableMap[Name];
473 if (!Entry)
474 Entry = VarMapEntry;
475 assert(Entry == VarMapEntry);
476 }
477
478 bool NewRecord = false;
479 if (Entry == 0) {
480 // If it is a named node, we must emit a 'Record' opcode.
481 std::string WhatFor;
482 for (const std::string &Name : Names) {
483 if (!WhatFor.empty())
484 WhatFor += ',';
485 WhatFor += "$" + Name;
486 }
487 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
488 Entry = ++NextRecordedOperandNo;
489 NewRecord = true;
490 } else {
491 // If we get here, this is a second reference to a specific name. Since
492 // we already have checked that the first reference is valid, we don't
493 // have to recursively match it, just check that it's the same as the
494 // previously named thing.
495 AddMatcher(new CheckSameMatcher(Entry-1));
496 }
497
498 for (const std::string &Name : Names)
499 VariableMap[Name] = Entry;
500
501 return NewRecord;
502 }
503
EmitMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes,unsigned ForceMode)504 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
505 TreePatternNode *NodeNoTypes,
506 unsigned ForceMode) {
507 // If N and NodeNoTypes don't agree on a type, then this is a case where we
508 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
509 // reinfer any correlated types.
510 SmallVector<unsigned, 2> ResultsToTypeCheck;
511
512 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
513 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
514 NodeNoTypes->setType(i, N->getExtType(i));
515 InferPossibleTypes(ForceMode);
516 ResultsToTypeCheck.push_back(i);
517 }
518
519 // If this node has a name associated with it, capture it in VariableMap. If
520 // we already saw this in the pattern, emit code to verify dagness.
521 SmallVector<std::string, 4> Names;
522 if (!N->getName().empty())
523 Names.push_back(N->getName());
524
525 for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
526 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
527 }
528
529 if (!Names.empty()) {
530 if (!recordUniqueNode(Names))
531 return;
532 }
533
534 if (N->isLeaf())
535 EmitLeafMatchCode(N);
536 else
537 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
538
539 // If there are node predicates for this node, generate their checks.
540 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
541 const TreePredicateCall &Pred = N->getPredicateCalls()[i];
542 SmallVector<unsigned, 4> Operands;
543 if (Pred.Fn.usesOperands()) {
544 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
545 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
546 std::string Name =
547 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
548 Operands.push_back(getNamedArgumentSlot(Name));
549 }
550 }
551 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
552 }
553
554 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
555 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
556 ResultsToTypeCheck[i]));
557 }
558
559 /// EmitMatcherCode - Generate the code that matches the predicate of this
560 /// pattern for the specified Variant. If the variant is invalid this returns
561 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)562 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
563 // If the root of the pattern is a ComplexPattern and if it is specified to
564 // match some number of root opcodes, these are considered to be our variants.
565 // Depending on which variant we're generating code for, emit the root opcode
566 // check.
567 if (const ComplexPattern *CP =
568 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
569 const std::vector<Record*> &OpNodes = CP->getRootNodes();
570 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
571 if (Variant >= OpNodes.size()) return true;
572
573 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
574 } else {
575 if (Variant != 0) return true;
576 }
577
578 // Emit the matcher for the pattern structure and types.
579 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
580 Pattern.getForceMode());
581
582 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
583 // feature is around, do the check).
584 if (!Pattern.getPredicateCheck().empty())
585 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
586
587 // Now that we've completed the structural type match, emit any ComplexPattern
588 // checks (e.g. addrmode matches). We emit this after the structural match
589 // because they are generally more expensive to evaluate and more difficult to
590 // factor.
591 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
592 auto N = MatchedComplexPatterns[i].first;
593
594 // Remember where the results of this match get stuck.
595 if (N->isLeaf()) {
596 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
597 } else {
598 unsigned CurOp = NextRecordedOperandNo;
599 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
600 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
601 CurOp += N->getChild(i)->getNumMIResults(CGP);
602 }
603 }
604
605 // Get the slot we recorded the value in from the name on the node.
606 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
607
608 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
609
610 // Emit a CheckComplexPat operation, which does the match (aborting if it
611 // fails) and pushes the matched operands onto the recorded nodes list.
612 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
613 N->getName(), NextRecordedOperandNo));
614
615 // Record the right number of operands.
616 NextRecordedOperandNo += CP.getNumOperands();
617 if (CP.hasProperty(SDNPHasChain)) {
618 // If the complex pattern has a chain, then we need to keep track of the
619 // fact that we just recorded a chain input. The chain input will be
620 // matched as the last operand of the predicate if it was successful.
621 ++NextRecordedOperandNo; // Chained node operand.
622
623 // It is the last operand recorded.
624 assert(NextRecordedOperandNo > 1 &&
625 "Should have recorded input/result chains at least!");
626 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
627 }
628
629 // TODO: Complex patterns can't have output glues, if they did, we'd want
630 // to record them.
631 }
632
633 return false;
634 }
635
636
637 //===----------------------------------------------------------------------===//
638 // Node Result Generation
639 //===----------------------------------------------------------------------===//
640
EmitResultOfNamedOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)641 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
642 SmallVectorImpl<unsigned> &ResultOps){
643 assert(!N->getName().empty() && "Operand not named!");
644
645 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
646 // Complex operands have already been completely selected, just find the
647 // right slot ant add the arguments directly.
648 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
649 ResultOps.push_back(SlotNo - 1 + i);
650
651 return;
652 }
653
654 unsigned SlotNo = getNamedArgumentSlot(N->getName());
655
656 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
657 // version of the immediate so that it doesn't get selected due to some other
658 // node use.
659 if (!N->isLeaf()) {
660 StringRef OperatorName = N->getOperator()->getName();
661 if (OperatorName == "imm" || OperatorName == "fpimm") {
662 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
663 ResultOps.push_back(NextRecordedOperandNo++);
664 return;
665 }
666 }
667
668 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
669 ResultOps.push_back(SlotNo + i);
670 }
671
EmitResultLeafAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)672 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
673 SmallVectorImpl<unsigned> &ResultOps) {
674 assert(N->isLeaf() && "Must be a leaf");
675
676 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
677 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
678 ResultOps.push_back(NextRecordedOperandNo++);
679 return;
680 }
681
682 // If this is an explicit register reference, handle it.
683 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
684 Record *Def = DI->getDef();
685 if (Def->isSubClassOf("Register")) {
686 const CodeGenRegister *Reg =
687 CGP.getTargetInfo().getRegBank().getReg(Def);
688 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
689 ResultOps.push_back(NextRecordedOperandNo++);
690 return;
691 }
692
693 if (Def->getName() == "zero_reg") {
694 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
695 ResultOps.push_back(NextRecordedOperandNo++);
696 return;
697 }
698
699 if (Def->getName() == "undef_tied_input") {
700 std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
701 std::array<unsigned, 0> InstOps;
702 auto IDOperandNo = NextRecordedOperandNo++;
703 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
704 ResultVTs, InstOps, false, false, false,
705 false, -1, IDOperandNo));
706 ResultOps.push_back(IDOperandNo);
707 return;
708 }
709
710 // Handle a reference to a register class. This is used
711 // in COPY_TO_SUBREG instructions.
712 if (Def->isSubClassOf("RegisterOperand"))
713 Def = Def->getValueAsDef("RegClass");
714 if (Def->isSubClassOf("RegisterClass")) {
715 // If the register class has an enum integer value greater than 127, the
716 // encoding overflows the limit of 7 bits, which precludes the use of
717 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
718 const CodeGenRegisterClass &RC =
719 CGP.getTargetInfo().getRegisterClass(Def);
720 if (RC.EnumValue <= 127) {
721 std::string Value = getQualifiedName(Def) + "RegClassID";
722 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
723 ResultOps.push_back(NextRecordedOperandNo++);
724 } else {
725 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
726 ResultOps.push_back(NextRecordedOperandNo++);
727 }
728 return;
729 }
730
731 // Handle a subregister index. This is used for INSERT_SUBREG etc.
732 if (Def->isSubClassOf("SubRegIndex")) {
733 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
734 // If we have more than 127 subreg indices the encoding can overflow
735 // 7 bit and we cannot use StringInteger.
736 if (RB.getSubRegIndices().size() > 127) {
737 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
738 assert(I && "Cannot find subreg index by name!");
739 if (I->EnumValue > 127) {
740 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
741 ResultOps.push_back(NextRecordedOperandNo++);
742 return;
743 }
744 }
745 std::string Value = getQualifiedName(Def);
746 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
747 ResultOps.push_back(NextRecordedOperandNo++);
748 return;
749 }
750 }
751
752 errs() << "unhandled leaf node:\n";
753 N->dump();
754 }
755
756 static bool
mayInstNodeLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)757 mayInstNodeLoadOrStore(const TreePatternNode *N,
758 const CodeGenDAGPatterns &CGP) {
759 Record *Op = N->getOperator();
760 const CodeGenTarget &CGT = CGP.getTargetInfo();
761 CodeGenInstruction &II = CGT.getInstruction(Op);
762 return II.mayLoad || II.mayStore;
763 }
764
765 static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)766 numNodesThatMayLoadOrStore(const TreePatternNode *N,
767 const CodeGenDAGPatterns &CGP) {
768 if (N->isLeaf())
769 return 0;
770
771 Record *OpRec = N->getOperator();
772 if (!OpRec->isSubClassOf("Instruction"))
773 return 0;
774
775 unsigned Count = 0;
776 if (mayInstNodeLoadOrStore(N, CGP))
777 ++Count;
778
779 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
780 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
781
782 return Count;
783 }
784
785 void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & OutputOps)786 EmitResultInstructionAsOperand(const TreePatternNode *N,
787 SmallVectorImpl<unsigned> &OutputOps) {
788 Record *Op = N->getOperator();
789 const CodeGenTarget &CGT = CGP.getTargetInfo();
790 CodeGenInstruction &II = CGT.getInstruction(Op);
791 const DAGInstruction &Inst = CGP.getInstruction(Op);
792
793 bool isRoot = N == Pattern.getDstPattern();
794
795 // TreeHasOutGlue - True if this tree has glue.
796 bool TreeHasInGlue = false, TreeHasOutGlue = false;
797 if (isRoot) {
798 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
799 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
800 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
801
802 // FIXME2: this is checking the entire pattern, not just the node in
803 // question, doing this just for the root seems like a total hack.
804 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
805 }
806
807 // NumResults - This is the number of results produced by the instruction in
808 // the "outs" list.
809 unsigned NumResults = Inst.getNumResults();
810
811 // Number of operands we know the output instruction must have. If it is
812 // variadic, we could have more operands.
813 unsigned NumFixedOperands = II.Operands.size();
814
815 SmallVector<unsigned, 8> InstOps;
816
817 // Loop over all of the fixed operands of the instruction pattern, emitting
818 // code to fill them all in. The node 'N' usually has number children equal to
819 // the number of input operands of the instruction. However, in cases where
820 // there are predicate operands for an instruction, we need to fill in the
821 // 'execute always' values. Match up the node operands to the instruction
822 // operands to do this.
823 unsigned ChildNo = 0;
824
825 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
826 // number of operands at the end of the list which have default values.
827 // Those can come from the pattern if it provides enough arguments, or be
828 // filled in with the default if the pattern hasn't provided them. But any
829 // operand with a default value _before_ the last mandatory one will be
830 // filled in with their defaults unconditionally.
831 unsigned NonOverridableOperands = NumFixedOperands;
832 while (NonOverridableOperands > NumResults &&
833 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
834 --NonOverridableOperands;
835
836 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
837 InstOpNo != e; ++InstOpNo) {
838 // Determine what to emit for this operand.
839 Record *OperandNode = II.Operands[InstOpNo].Rec;
840 if (CGP.operandHasDefault(OperandNode) &&
841 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
842 // This is a predicate or optional def operand which the pattern has not
843 // overridden, or which we aren't letting it override; emit the 'default
844 // ops' operands.
845 const DAGDefaultOperand &DefaultOp
846 = CGP.getDefaultOperand(OperandNode);
847 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
848 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
849 continue;
850 }
851
852 // Otherwise this is a normal operand or a predicate operand without
853 // 'execute always'; emit it.
854
855 // For operands with multiple sub-operands we may need to emit
856 // multiple child patterns to cover them all. However, ComplexPattern
857 // children may themselves emit multiple MI operands.
858 unsigned NumSubOps = 1;
859 if (OperandNode->isSubClassOf("Operand")) {
860 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
861 if (unsigned NumArgs = MIOpInfo->getNumArgs())
862 NumSubOps = NumArgs;
863 }
864
865 unsigned FinalNumOps = InstOps.size() + NumSubOps;
866 while (InstOps.size() < FinalNumOps) {
867 const TreePatternNode *Child = N->getChild(ChildNo);
868 unsigned BeforeAddingNumOps = InstOps.size();
869 EmitResultOperand(Child, InstOps);
870 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
871
872 // If the operand is an instruction and it produced multiple results, just
873 // take the first one.
874 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
875 InstOps.resize(BeforeAddingNumOps+1);
876
877 ++ChildNo;
878 }
879 }
880
881 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
882 // expand suboperands, use default operands, or other features determined from
883 // the CodeGenInstruction after the fixed operands, which were handled
884 // above. Emit the remaining instructions implicitly added by the use for
885 // variable_ops.
886 if (II.Operands.isVariadic) {
887 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
888 EmitResultOperand(N->getChild(I), InstOps);
889 }
890
891 // If this node has input glue or explicitly specified input physregs, we
892 // need to add chained and glued copyfromreg nodes and materialize the glue
893 // input.
894 if (isRoot && !PhysRegInputs.empty()) {
895 // Emit all of the CopyToReg nodes for the input physical registers. These
896 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
897 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
898 const CodeGenRegister *Reg =
899 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
900 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
901 Reg));
902 }
903
904 // Even if the node has no other glue inputs, the resultant node must be
905 // glued to the CopyFromReg nodes we just generated.
906 TreeHasInGlue = true;
907 }
908
909 // Result order: node results, chain, glue
910
911 // Determine the result types.
912 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
913 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
914 ResultVTs.push_back(N->getSimpleType(i));
915
916 // If this is the root instruction of a pattern that has physical registers in
917 // its result pattern, add output VTs for them. For example, X86 has:
918 // (set AL, (mul ...))
919 // This also handles implicit results like:
920 // (implicit EFLAGS)
921 if (isRoot && !Pattern.getDstRegs().empty()) {
922 // If the root came from an implicit def in the instruction handling stuff,
923 // don't re-add it.
924 Record *HandledReg = nullptr;
925 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
926 HandledReg = II.ImplicitDefs[0];
927
928 for (Record *Reg : Pattern.getDstRegs()) {
929 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
930 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
931 }
932 }
933
934 // If this is the root of the pattern and the pattern we're matching includes
935 // a node that is variadic, mark the generated node as variadic so that it
936 // gets the excess operands from the input DAG.
937 int NumFixedArityOperands = -1;
938 if (isRoot &&
939 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
940 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
941
942 // If this is the root node and multiple matched nodes in the input pattern
943 // have MemRefs in them, have the interpreter collect them and plop them onto
944 // this node. If there is just one node with MemRefs, leave them on that node
945 // even if it is not the root.
946 //
947 // FIXME3: This is actively incorrect for result patterns with multiple
948 // memory-referencing instructions.
949 bool PatternHasMemOperands =
950 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
951
952 bool NodeHasMemRefs = false;
953 if (PatternHasMemOperands) {
954 unsigned NumNodesThatLoadOrStore =
955 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
956 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
957 NumNodesThatLoadOrStore == 1;
958 NodeHasMemRefs =
959 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
960 NumNodesThatLoadOrStore != 1));
961 }
962
963 // Determine whether we need to attach a chain to this node.
964 bool NodeHasChain = false;
965 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
966 // For some instructions, we were able to infer from the pattern whether
967 // they should have a chain. Otherwise, attach the chain to the root.
968 //
969 // FIXME2: This is extremely dubious for several reasons, not the least of
970 // which it gives special status to instructions with patterns that Pat<>
971 // nodes can't duplicate.
972 if (II.hasChain_Inferred)
973 NodeHasChain = II.hasChain;
974 else
975 NodeHasChain = isRoot;
976 // Instructions which load and store from memory should have a chain,
977 // regardless of whether they happen to have a pattern saying so.
978 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
979 II.hasSideEffects)
980 NodeHasChain = true;
981 }
982
983 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
984 "Node has no result");
985
986 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
987 ResultVTs, InstOps,
988 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
989 NodeHasMemRefs, NumFixedArityOperands,
990 NextRecordedOperandNo));
991
992 // The non-chain and non-glue results of the newly emitted node get recorded.
993 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
994 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
995 OutputOps.push_back(NextRecordedOperandNo++);
996 }
997 }
998
999 void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)1000 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
1001 SmallVectorImpl<unsigned> &ResultOps) {
1002 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
1003
1004 // Emit the operand.
1005 SmallVector<unsigned, 8> InputOps;
1006
1007 // FIXME2: Could easily generalize this to support multiple inputs and outputs
1008 // to the SDNodeXForm. For now we just support one input and one output like
1009 // the old instruction selector.
1010 assert(N->getNumChildren() == 1);
1011 EmitResultOperand(N->getChild(0), InputOps);
1012
1013 // The input currently must have produced exactly one result.
1014 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1015
1016 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1017 ResultOps.push_back(NextRecordedOperandNo++);
1018 }
1019
EmitResultOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)1020 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1021 SmallVectorImpl<unsigned> &ResultOps) {
1022 // This is something selected from the pattern we matched.
1023 if (!N->getName().empty())
1024 return EmitResultOfNamedOperand(N, ResultOps);
1025
1026 if (N->isLeaf())
1027 return EmitResultLeafAsOperand(N, ResultOps);
1028
1029 Record *OpRec = N->getOperator();
1030 if (OpRec->isSubClassOf("Instruction"))
1031 return EmitResultInstructionAsOperand(N, ResultOps);
1032 if (OpRec->isSubClassOf("SDNodeXForm"))
1033 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1034 errs() << "Unknown result node to emit code for: " << *N << '\n';
1035 PrintFatalError("Unknown node in result pattern!");
1036 }
1037
EmitResultCode()1038 void MatcherGen::EmitResultCode() {
1039 // Patterns that match nodes with (potentially multiple) chain inputs have to
1040 // merge them together into a token factor. This informs the generated code
1041 // what all the chained nodes are.
1042 if (!MatchedChainNodes.empty())
1043 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1044
1045 // Codegen the root of the result pattern, capturing the resulting values.
1046 SmallVector<unsigned, 8> Ops;
1047 EmitResultOperand(Pattern.getDstPattern(), Ops);
1048
1049 // At this point, we have however many values the result pattern produces.
1050 // However, the input pattern might not need all of these. If there are
1051 // excess values at the end (such as implicit defs of condition codes etc)
1052 // just lop them off. This doesn't need to worry about glue or chains, just
1053 // explicit results.
1054 //
1055 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1056
1057 // If the pattern also has (implicit) results, count them as well.
1058 if (!Pattern.getDstRegs().empty()) {
1059 // If the root came from an implicit def in the instruction handling stuff,
1060 // don't re-add it.
1061 Record *HandledReg = nullptr;
1062 const TreePatternNode *DstPat = Pattern.getDstPattern();
1063 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1064 const CodeGenTarget &CGT = CGP.getTargetInfo();
1065 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1066
1067 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1068 HandledReg = II.ImplicitDefs[0];
1069 }
1070
1071 for (Record *Reg : Pattern.getDstRegs()) {
1072 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1073 ++NumSrcResults;
1074 }
1075 }
1076
1077 SmallVector<unsigned, 8> Results(Ops);
1078
1079 // Apply result permutation.
1080 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1081 ++ResNo) {
1082 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1083 }
1084
1085 Results.resize(NumSrcResults);
1086 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1087 }
1088
1089
1090 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1091 /// the specified variant. If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)1092 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1093 unsigned Variant,
1094 const CodeGenDAGPatterns &CGP) {
1095 MatcherGen Gen(Pattern, CGP);
1096
1097 // Generate the code for the matcher.
1098 if (Gen.EmitMatcherCode(Variant))
1099 return nullptr;
1100
1101 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1102 // FIXME2: Split result code out to another table, and make the matcher end
1103 // with an "Emit <index>" command. This allows result generation stuff to be
1104 // shared and factored?
1105
1106 // If the match succeeds, then we generate Pattern.
1107 Gen.EmitResultCode();
1108
1109 // Unconditional match.
1110 return Gen.GetMatcher();
1111 }
1112