xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 822f74a91106b7ca10e85508eb642e62ef945afa)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenACC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/AST/StmtSYCL.h"
32 #include "clang/AST/Type.h"
33 #include "clang/Basic/ABI.h"
34 #include "clang/Basic/CapturedStmt.h"
35 #include "clang/Basic/CodeGenOptions.h"
36 #include "clang/Basic/OpenMPKinds.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Transforms/Utils/SanitizerStats.h"
47 #include <optional>
48 
49 namespace llvm {
50 class BasicBlock;
51 class LLVMContext;
52 class MDNode;
53 class SwitchInst;
54 class Twine;
55 class Value;
56 class CanonicalLoopInfo;
57 }
58 
59 namespace clang {
60 class ASTContext;
61 class CXXDestructorDecl;
62 class CXXForRangeStmt;
63 class CXXTryStmt;
64 class Decl;
65 class LabelDecl;
66 class FunctionDecl;
67 class FunctionProtoType;
68 class LabelStmt;
69 class ObjCContainerDecl;
70 class ObjCInterfaceDecl;
71 class ObjCIvarDecl;
72 class ObjCMethodDecl;
73 class ObjCImplementationDecl;
74 class ObjCPropertyImplDecl;
75 class TargetInfo;
76 class VarDecl;
77 class ObjCForCollectionStmt;
78 class ObjCAtTryStmt;
79 class ObjCAtThrowStmt;
80 class ObjCAtSynchronizedStmt;
81 class ObjCAutoreleasePoolStmt;
82 class OMPUseDevicePtrClause;
83 class OMPUseDeviceAddrClause;
84 class SVETypeFlags;
85 class OMPExecutableDirective;
86 
87 namespace analyze_os_log {
88 class OSLogBufferLayout;
89 }
90 
91 namespace CodeGen {
92 class CodeGenTypes;
93 class CGCallee;
94 class CGFunctionInfo;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFieldFlags;
100 class RegionCodeGenTy;
101 class TargetCodeGenInfo;
102 struct OMPTaskDataTy;
103 struct CGCoroData;
104 
105 /// The kind of evaluation to perform on values of a particular
106 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
107 /// CGExprAgg?
108 ///
109 /// TODO: should vectors maybe be split out into their own thing?
110 enum TypeEvaluationKind {
111   TEK_Scalar,
112   TEK_Complex,
113   TEK_Aggregate
114 };
115 
116 #define LIST_SANITIZER_CHECKS                                                  \
117   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
118   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
119   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
120   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
121   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
122   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
123   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
124   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
125   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
126   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
127   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
128   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
129   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
130   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
131   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
132   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
133   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
134   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
135   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
136   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
137   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
138   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
139   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
140   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
141   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)              \
142   SANITIZER_CHECK(BoundsSafety, bounds_safety, 0)
143 
144 enum SanitizerHandler {
145 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
146   LIST_SANITIZER_CHECKS
147 #undef SANITIZER_CHECK
148 };
149 
150 /// Helper class with most of the code for saving a value for a
151 /// conditional expression cleanup.
152 struct DominatingLLVMValue {
153   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154 
155   /// Answer whether the given value needs extra work to be saved.
156   static bool needsSaving(llvm::Value *value) {
157     if (!value)
158       return false;
159 
160     // If it's not an instruction, we don't need to save.
161     if (!isa<llvm::Instruction>(value)) return false;
162 
163     // If it's an instruction in the entry block, we don't need to save.
164     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
165     return (block != &block->getParent()->getEntryBlock());
166   }
167 
168   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
169   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
170 };
171 
172 /// A partial specialization of DominatingValue for llvm::Values that
173 /// might be llvm::Instructions.
174 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
175   typedef T *type;
176   static type restore(CodeGenFunction &CGF, saved_type value) {
177     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
178   }
179 };
180 
181 /// A specialization of DominatingValue for Address.
182 template <> struct DominatingValue<Address> {
183   typedef Address type;
184 
185   struct saved_type {
186     DominatingLLVMValue::saved_type BasePtr;
187     llvm::Type *ElementType;
188     CharUnits Alignment;
189     DominatingLLVMValue::saved_type Offset;
190     llvm::PointerType *EffectiveType;
191   };
192 
193   static bool needsSaving(type value) {
194     if (DominatingLLVMValue::needsSaving(value.getBasePointer()) ||
195         DominatingLLVMValue::needsSaving(value.getOffset()))
196       return true;
197     return false;
198   }
199   static saved_type save(CodeGenFunction &CGF, type value) {
200     return {DominatingLLVMValue::save(CGF, value.getBasePointer()),
201             value.getElementType(), value.getAlignment(),
202             DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()};
203   }
204   static type restore(CodeGenFunction &CGF, saved_type value) {
205     return Address(DominatingLLVMValue::restore(CGF, value.BasePtr),
206                    value.ElementType, value.Alignment, CGPointerAuthInfo(),
207                    DominatingLLVMValue::restore(CGF, value.Offset));
208   }
209 };
210 
211 /// A specialization of DominatingValue for RValue.
212 template <> struct DominatingValue<RValue> {
213   typedef RValue type;
214   class saved_type {
215     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
216                 AggregateAddress, ComplexAddress };
217     union {
218       struct {
219         DominatingLLVMValue::saved_type first, second;
220       } Vals;
221       DominatingValue<Address>::saved_type AggregateAddr;
222     };
223     LLVM_PREFERRED_TYPE(Kind)
224     unsigned K : 3;
225 
226     saved_type(DominatingLLVMValue::saved_type Val1, unsigned K)
227         : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {}
228 
229     saved_type(DominatingLLVMValue::saved_type Val1,
230                DominatingLLVMValue::saved_type Val2)
231         : Vals{Val1, Val2}, K(ComplexAddress) {}
232 
233     saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K)
234         : AggregateAddr(AggregateAddr), K(K) {}
235 
236   public:
237     static bool needsSaving(RValue value);
238     static saved_type save(CodeGenFunction &CGF, RValue value);
239     RValue restore(CodeGenFunction &CGF);
240 
241     // implementations in CGCleanup.cpp
242   };
243 
244   static bool needsSaving(type value) {
245     return saved_type::needsSaving(value);
246   }
247   static saved_type save(CodeGenFunction &CGF, type value) {
248     return saved_type::save(CGF, value);
249   }
250   static type restore(CodeGenFunction &CGF, saved_type value) {
251     return value.restore(CGF);
252   }
253 };
254 
255 /// CodeGenFunction - This class organizes the per-function state that is used
256 /// while generating LLVM code.
257 class CodeGenFunction : public CodeGenTypeCache {
258   CodeGenFunction(const CodeGenFunction &) = delete;
259   void operator=(const CodeGenFunction &) = delete;
260 
261   friend class CGCXXABI;
262 public:
263   /// A jump destination is an abstract label, branching to which may
264   /// require a jump out through normal cleanups.
265   struct JumpDest {
266     JumpDest() : Block(nullptr), Index(0) {}
267     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
268              unsigned Index)
269         : Block(Block), ScopeDepth(Depth), Index(Index) {}
270 
271     bool isValid() const { return Block != nullptr; }
272     llvm::BasicBlock *getBlock() const { return Block; }
273     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
274     unsigned getDestIndex() const { return Index; }
275 
276     // This should be used cautiously.
277     void setScopeDepth(EHScopeStack::stable_iterator depth) {
278       ScopeDepth = depth;
279     }
280 
281   private:
282     llvm::BasicBlock *Block;
283     EHScopeStack::stable_iterator ScopeDepth;
284     unsigned Index;
285   };
286 
287   CodeGenModule &CGM;  // Per-module state.
288   const TargetInfo &Target;
289 
290   // For EH/SEH outlined funclets, this field points to parent's CGF
291   CodeGenFunction *ParentCGF = nullptr;
292 
293   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
294   LoopInfoStack LoopStack;
295   CGBuilderTy Builder;
296 
297   // Stores variables for which we can't generate correct lifetime markers
298   // because of jumps.
299   VarBypassDetector Bypasses;
300 
301   /// List of recently emitted OMPCanonicalLoops.
302   ///
303   /// Since OMPCanonicalLoops are nested inside other statements (in particular
304   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
305   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
306   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
307   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
308   /// this stack when done. Entering a new loop requires clearing this list; it
309   /// either means we start parsing a new loop nest (in which case the previous
310   /// loop nest goes out of scope) or a second loop in the same level in which
311   /// case it would be ambiguous into which of the two (or more) loops the loop
312   /// nest would extend.
313   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
314 
315   /// Stack to track the Logical Operator recursion nest for MC/DC.
316   SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
317 
318   /// Stack to track the controlled convergence tokens.
319   SmallVector<llvm::ConvergenceControlInst *, 4> ConvergenceTokenStack;
320 
321   /// Number of nested loop to be consumed by the last surrounding
322   /// loop-associated directive.
323   int ExpectedOMPLoopDepth = 0;
324 
325   // CodeGen lambda for loops and support for ordered clause
326   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
327                                   JumpDest)>
328       CodeGenLoopTy;
329   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
330                                   const unsigned, const bool)>
331       CodeGenOrderedTy;
332 
333   // Codegen lambda for loop bounds in worksharing loop constructs
334   typedef llvm::function_ref<std::pair<LValue, LValue>(
335       CodeGenFunction &, const OMPExecutableDirective &S)>
336       CodeGenLoopBoundsTy;
337 
338   // Codegen lambda for loop bounds in dispatch-based loop implementation
339   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
340       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
341       Address UB)>
342       CodeGenDispatchBoundsTy;
343 
344   /// CGBuilder insert helper. This function is called after an
345   /// instruction is created using Builder.
346   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
347                     llvm::BasicBlock::iterator InsertPt) const;
348 
349   /// CurFuncDecl - Holds the Decl for the current outermost
350   /// non-closure context.
351   const Decl *CurFuncDecl = nullptr;
352   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
353   const Decl *CurCodeDecl = nullptr;
354   const CGFunctionInfo *CurFnInfo = nullptr;
355   QualType FnRetTy;
356   llvm::Function *CurFn = nullptr;
357 
358   /// Save Parameter Decl for coroutine.
359   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
360 
361   // Holds coroutine data if the current function is a coroutine. We use a
362   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
363   // in this header.
364   struct CGCoroInfo {
365     std::unique_ptr<CGCoroData> Data;
366     bool InSuspendBlock = false;
367     CGCoroInfo();
368     ~CGCoroInfo();
369   };
370   CGCoroInfo CurCoro;
371 
372   bool isCoroutine() const {
373     return CurCoro.Data != nullptr;
374   }
375 
376   bool inSuspendBlock() const {
377     return isCoroutine() && CurCoro.InSuspendBlock;
378   }
379 
380   // Holds FramePtr for await_suspend wrapper generation,
381   // so that __builtin_coro_frame call can be lowered
382   // directly to value of its second argument
383   struct AwaitSuspendWrapperInfo {
384     llvm::Value *FramePtr = nullptr;
385   };
386   AwaitSuspendWrapperInfo CurAwaitSuspendWrapper;
387 
388   // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics.
389   // It encapsulates SuspendExpr in a function, to separate it's body
390   // from the main coroutine to avoid miscompilations. Intrinisic
391   // is lowered to this function call in CoroSplit pass
392   // Function signature is:
393   // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl)
394   // where type is one of (void, i1, ptr)
395   llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName,
396                                               Twine const &SuspendPointName,
397                                               CoroutineSuspendExpr const &S);
398 
399   /// CurGD - The GlobalDecl for the current function being compiled.
400   GlobalDecl CurGD;
401 
402   /// PrologueCleanupDepth - The cleanup depth enclosing all the
403   /// cleanups associated with the parameters.
404   EHScopeStack::stable_iterator PrologueCleanupDepth;
405 
406   /// ReturnBlock - Unified return block.
407   JumpDest ReturnBlock;
408 
409   /// ReturnValue - The temporary alloca to hold the return
410   /// value. This is invalid iff the function has no return value.
411   Address ReturnValue = Address::invalid();
412 
413   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
414   /// This is invalid if sret is not in use.
415   Address ReturnValuePointer = Address::invalid();
416 
417   /// If a return statement is being visited, this holds the return statment's
418   /// result expression.
419   const Expr *RetExpr = nullptr;
420 
421   /// Return true if a label was seen in the current scope.
422   bool hasLabelBeenSeenInCurrentScope() const {
423     if (CurLexicalScope)
424       return CurLexicalScope->hasLabels();
425     return !LabelMap.empty();
426   }
427 
428   /// AllocaInsertPoint - This is an instruction in the entry block before which
429   /// we prefer to insert allocas.
430   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
431 
432 private:
433   /// PostAllocaInsertPt - This is a place in the prologue where code can be
434   /// inserted that will be dominated by all the static allocas. This helps
435   /// achieve two things:
436   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
437   ///   2. All other prologue code (which are dominated by static allocas) do
438   ///      appear in the source order immediately after all static allocas.
439   ///
440   /// PostAllocaInsertPt will be lazily created when it is *really* required.
441   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
442 
443 public:
444   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
445   /// immediately after AllocaInsertPt.
446   llvm::Instruction *getPostAllocaInsertPoint() {
447     if (!PostAllocaInsertPt) {
448       assert(AllocaInsertPt &&
449              "Expected static alloca insertion point at function prologue");
450       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
451              "EBB should be entry block of the current code gen function");
452       PostAllocaInsertPt = AllocaInsertPt->clone();
453       PostAllocaInsertPt->setName("postallocapt");
454       PostAllocaInsertPt->insertAfter(AllocaInsertPt->getIterator());
455     }
456 
457     return PostAllocaInsertPt;
458   }
459 
460   /// API for captured statement code generation.
461   class CGCapturedStmtInfo {
462   public:
463     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
464         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
465     explicit CGCapturedStmtInfo(const CapturedStmt &S,
466                                 CapturedRegionKind K = CR_Default)
467       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
468 
469       RecordDecl::field_iterator Field =
470         S.getCapturedRecordDecl()->field_begin();
471       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
472                                                 E = S.capture_end();
473            I != E; ++I, ++Field) {
474         if (I->capturesThis())
475           CXXThisFieldDecl = *Field;
476         else if (I->capturesVariable())
477           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
478         else if (I->capturesVariableByCopy())
479           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
480       }
481     }
482 
483     virtual ~CGCapturedStmtInfo();
484 
485     CapturedRegionKind getKind() const { return Kind; }
486 
487     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
488     // Retrieve the value of the context parameter.
489     virtual llvm::Value *getContextValue() const { return ThisValue; }
490 
491     /// Lookup the captured field decl for a variable.
492     virtual const FieldDecl *lookup(const VarDecl *VD) const {
493       return CaptureFields.lookup(VD->getCanonicalDecl());
494     }
495 
496     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
497     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
498 
499     static bool classof(const CGCapturedStmtInfo *) {
500       return true;
501     }
502 
503     /// Emit the captured statement body.
504     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
505       CGF.incrementProfileCounter(S);
506       CGF.EmitStmt(S);
507     }
508 
509     /// Get the name of the capture helper.
510     virtual StringRef getHelperName() const { return "__captured_stmt"; }
511 
512     /// Get the CaptureFields
513     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
514       return CaptureFields;
515     }
516 
517   private:
518     /// The kind of captured statement being generated.
519     CapturedRegionKind Kind;
520 
521     /// Keep the map between VarDecl and FieldDecl.
522     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
523 
524     /// The base address of the captured record, passed in as the first
525     /// argument of the parallel region function.
526     llvm::Value *ThisValue;
527 
528     /// Captured 'this' type.
529     FieldDecl *CXXThisFieldDecl;
530   };
531   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
532 
533   /// RAII for correct setting/restoring of CapturedStmtInfo.
534   class CGCapturedStmtRAII {
535   private:
536     CodeGenFunction &CGF;
537     CGCapturedStmtInfo *PrevCapturedStmtInfo;
538   public:
539     CGCapturedStmtRAII(CodeGenFunction &CGF,
540                        CGCapturedStmtInfo *NewCapturedStmtInfo)
541         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
542       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
543     }
544     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
545   };
546 
547   /// An abstract representation of regular/ObjC call/message targets.
548   class AbstractCallee {
549     /// The function declaration of the callee.
550     const Decl *CalleeDecl;
551 
552   public:
553     AbstractCallee() : CalleeDecl(nullptr) {}
554     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
555     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
556     bool hasFunctionDecl() const {
557       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
558     }
559     const Decl *getDecl() const { return CalleeDecl; }
560     unsigned getNumParams() const {
561       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
562         return FD->getNumParams();
563       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
564     }
565     const ParmVarDecl *getParamDecl(unsigned I) const {
566       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
567         return FD->getParamDecl(I);
568       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
569     }
570   };
571 
572   /// Sanitizers enabled for this function.
573   SanitizerSet SanOpts;
574 
575   /// True if CodeGen currently emits code implementing sanitizer checks.
576   bool IsSanitizerScope = false;
577 
578   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
579   class SanitizerScope {
580     CodeGenFunction *CGF;
581   public:
582     SanitizerScope(CodeGenFunction *CGF);
583     ~SanitizerScope();
584   };
585 
586   /// In C++, whether we are code generating a thunk.  This controls whether we
587   /// should emit cleanups.
588   bool CurFuncIsThunk = false;
589 
590   /// In ARC, whether we should autorelease the return value.
591   bool AutoreleaseResult = false;
592 
593   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
594   /// potentially set the return value.
595   bool SawAsmBlock = false;
596 
597   GlobalDecl CurSEHParent;
598 
599   /// True if the current function is an outlined SEH helper. This can be a
600   /// finally block or filter expression.
601   bool IsOutlinedSEHHelper = false;
602 
603   /// True if CodeGen currently emits code inside presereved access index
604   /// region.
605   bool IsInPreservedAIRegion = false;
606 
607   /// True if the current statement has nomerge attribute.
608   bool InNoMergeAttributedStmt = false;
609 
610   /// True if the current statement has noinline attribute.
611   bool InNoInlineAttributedStmt = false;
612 
613   /// True if the current statement has always_inline attribute.
614   bool InAlwaysInlineAttributedStmt = false;
615 
616   /// True if the current statement has noconvergent attribute.
617   bool InNoConvergentAttributedStmt = false;
618 
619   /// HLSL Branch attribute.
620   HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr =
621       HLSLControlFlowHintAttr::SpellingNotCalculated;
622 
623   // The CallExpr within the current statement that the musttail attribute
624   // applies to.  nullptr if there is no 'musttail' on the current statement.
625   const CallExpr *MustTailCall = nullptr;
626 
627   /// Returns true if a function must make progress, which means the
628   /// mustprogress attribute can be added.
629   bool checkIfFunctionMustProgress() {
630     if (CGM.getCodeGenOpts().getFiniteLoops() ==
631         CodeGenOptions::FiniteLoopsKind::Never)
632       return false;
633 
634     // C++11 and later guarantees that a thread eventually will do one of the
635     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
636     // - terminate,
637     //  - make a call to a library I/O function,
638     //  - perform an access through a volatile glvalue, or
639     //  - perform a synchronization operation or an atomic operation.
640     //
641     // Hence each function is 'mustprogress' in C++11 or later.
642     return getLangOpts().CPlusPlus11;
643   }
644 
645   /// Returns true if a loop must make progress, which means the mustprogress
646   /// attribute can be added. \p HasConstantCond indicates whether the branch
647   /// condition is a known constant.
648   bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody);
649 
650   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
651   llvm::Value *BlockPointer = nullptr;
652 
653   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
654   FieldDecl *LambdaThisCaptureField = nullptr;
655 
656   /// A mapping from NRVO variables to the flags used to indicate
657   /// when the NRVO has been applied to this variable.
658   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
659 
660   EHScopeStack EHStack;
661   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
662 
663   // A stack of cleanups which were added to EHStack but have to be deactivated
664   // later before being popped or emitted. These are usually deactivated on
665   // exiting a `CleanupDeactivationScope` scope. For instance, after a
666   // full-expr.
667   //
668   // These are specially useful for correctly emitting cleanups while
669   // encountering branches out of expression (through stmt-expr or coroutine
670   // suspensions).
671   struct DeferredDeactivateCleanup {
672     EHScopeStack::stable_iterator Cleanup;
673     llvm::Instruction *DominatingIP;
674   };
675   llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack;
676 
677   // Enters a new scope for capturing cleanups which are deferred to be
678   // deactivated, all of which will be deactivated once the scope is exited.
679   struct CleanupDeactivationScope {
680     CodeGenFunction &CGF;
681     size_t OldDeactivateCleanupStackSize;
682     bool Deactivated;
683     CleanupDeactivationScope(CodeGenFunction &CGF)
684         : CGF(CGF), OldDeactivateCleanupStackSize(
685                         CGF.DeferredDeactivationCleanupStack.size()),
686           Deactivated(false) {}
687 
688     void ForceDeactivate() {
689       assert(!Deactivated && "Deactivating already deactivated scope");
690       auto &Stack = CGF.DeferredDeactivationCleanupStack;
691       for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) {
692         CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup,
693                                    Stack[I - 1].DominatingIP);
694         Stack[I - 1].DominatingIP->eraseFromParent();
695       }
696       Stack.resize(OldDeactivateCleanupStackSize);
697       Deactivated = true;
698     }
699 
700     ~CleanupDeactivationScope() {
701       if (Deactivated)
702         return;
703       ForceDeactivate();
704     }
705   };
706 
707   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
708 
709   llvm::Instruction *CurrentFuncletPad = nullptr;
710 
711   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
712     bool isRedundantBeforeReturn() override { return true; }
713 
714     llvm::Value *Addr;
715     llvm::Value *Size;
716 
717   public:
718     CallLifetimeEnd(RawAddress addr, llvm::Value *size)
719         : Addr(addr.getPointer()), Size(size) {}
720 
721     void Emit(CodeGenFunction &CGF, Flags flags) override {
722       CGF.EmitLifetimeEnd(Size, Addr);
723     }
724   };
725 
726   // We are using objects of this 'cleanup' class to emit fake.use calls
727   // for -fextend-variable-liveness. They are placed at the end of a variable's
728   // scope analogous to lifetime markers.
729   class FakeUse final : public EHScopeStack::Cleanup {
730     Address Addr;
731 
732   public:
733     FakeUse(Address addr) : Addr(addr) {}
734 
735     void Emit(CodeGenFunction &CGF, Flags flags) override {
736       CGF.EmitFakeUse(Addr);
737     }
738   };
739 
740   /// Header for data within LifetimeExtendedCleanupStack.
741   struct LifetimeExtendedCleanupHeader {
742     /// The size of the following cleanup object.
743     unsigned Size;
744     /// The kind of cleanup to push.
745     LLVM_PREFERRED_TYPE(CleanupKind)
746     unsigned Kind : 31;
747     /// Whether this is a conditional cleanup.
748     LLVM_PREFERRED_TYPE(bool)
749     unsigned IsConditional : 1;
750 
751     size_t getSize() const { return Size; }
752     CleanupKind getKind() const { return (CleanupKind)Kind; }
753     bool isConditional() const { return IsConditional; }
754   };
755 
756   /// i32s containing the indexes of the cleanup destinations.
757   RawAddress NormalCleanupDest = RawAddress::invalid();
758 
759   unsigned NextCleanupDestIndex = 1;
760 
761   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
762   llvm::BasicBlock *EHResumeBlock = nullptr;
763 
764   /// The exception slot.  All landing pads write the current exception pointer
765   /// into this alloca.
766   llvm::Value *ExceptionSlot = nullptr;
767 
768   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
769   /// write the current selector value into this alloca.
770   llvm::AllocaInst *EHSelectorSlot = nullptr;
771 
772   /// A stack of exception code slots. Entering an __except block pushes a slot
773   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
774   /// a value from the top of the stack.
775   SmallVector<Address, 1> SEHCodeSlotStack;
776 
777   /// Value returned by __exception_info intrinsic.
778   llvm::Value *SEHInfo = nullptr;
779 
780   /// Emits a landing pad for the current EH stack.
781   llvm::BasicBlock *EmitLandingPad();
782 
783   llvm::BasicBlock *getInvokeDestImpl();
784 
785   /// Parent loop-based directive for scan directive.
786   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
787   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
788   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
789   llvm::BasicBlock *OMPScanExitBlock = nullptr;
790   llvm::BasicBlock *OMPScanDispatch = nullptr;
791   bool OMPFirstScanLoop = false;
792 
793   /// Manages parent directive for scan directives.
794   class ParentLoopDirectiveForScanRegion {
795     CodeGenFunction &CGF;
796     const OMPExecutableDirective *ParentLoopDirectiveForScan;
797 
798   public:
799     ParentLoopDirectiveForScanRegion(
800         CodeGenFunction &CGF,
801         const OMPExecutableDirective &ParentLoopDirectiveForScan)
802         : CGF(CGF),
803           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
804       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
805     }
806     ~ParentLoopDirectiveForScanRegion() {
807       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
808     }
809   };
810 
811   template <class T>
812   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
813     return DominatingValue<T>::save(*this, value);
814   }
815 
816   class CGFPOptionsRAII {
817   public:
818     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
819     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
820     ~CGFPOptionsRAII();
821 
822   private:
823     void ConstructorHelper(FPOptions FPFeatures);
824     CodeGenFunction &CGF;
825     FPOptions OldFPFeatures;
826     llvm::fp::ExceptionBehavior OldExcept;
827     llvm::RoundingMode OldRounding;
828     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
829   };
830   FPOptions CurFPFeatures;
831 
832 public:
833   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
834   /// rethrows.
835   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
836 
837   /// A class controlling the emission of a finally block.
838   class FinallyInfo {
839     /// Where the catchall's edge through the cleanup should go.
840     JumpDest RethrowDest;
841 
842     /// A function to call to enter the catch.
843     llvm::FunctionCallee BeginCatchFn;
844 
845     /// An i1 variable indicating whether or not the @finally is
846     /// running for an exception.
847     llvm::AllocaInst *ForEHVar = nullptr;
848 
849     /// An i8* variable into which the exception pointer to rethrow
850     /// has been saved.
851     llvm::AllocaInst *SavedExnVar = nullptr;
852 
853   public:
854     void enter(CodeGenFunction &CGF, const Stmt *Finally,
855                llvm::FunctionCallee beginCatchFn,
856                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
857     void exit(CodeGenFunction &CGF);
858   };
859 
860   /// Returns true inside SEH __try blocks.
861   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
862 
863   /// Returns true while emitting a cleanuppad.
864   bool isCleanupPadScope() const {
865     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
866   }
867 
868   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
869   /// current full-expression.  Safe against the possibility that
870   /// we're currently inside a conditionally-evaluated expression.
871   template <class T, class... As>
872   void pushFullExprCleanup(CleanupKind kind, As... A) {
873     // If we're not in a conditional branch, or if none of the
874     // arguments requires saving, then use the unconditional cleanup.
875     if (!isInConditionalBranch())
876       return EHStack.pushCleanup<T>(kind, A...);
877 
878     // Stash values in a tuple so we can guarantee the order of saves.
879     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
880     SavedTuple Saved{saveValueInCond(A)...};
881 
882     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
883     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
884     initFullExprCleanup();
885   }
886 
887   /// Queue a cleanup to be pushed after finishing the current full-expression,
888   /// potentially with an active flag.
889   template <class T, class... As>
890   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
891     if (!isInConditionalBranch())
892       return pushCleanupAfterFullExprWithActiveFlag<T>(
893           Kind, RawAddress::invalid(), A...);
894 
895     RawAddress ActiveFlag = createCleanupActiveFlag();
896     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
897            "cleanup active flag should never need saving");
898 
899     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
900     SavedTuple Saved{saveValueInCond(A)...};
901 
902     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
903     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
904   }
905 
906   template <class T, class... As>
907   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
908                                               RawAddress ActiveFlag, As... A) {
909     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
910                                             ActiveFlag.isValid()};
911 
912     size_t OldSize = LifetimeExtendedCleanupStack.size();
913     LifetimeExtendedCleanupStack.resize(
914         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
915         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
916 
917     static_assert(sizeof(Header) % alignof(T) == 0,
918                   "Cleanup will be allocated on misaligned address");
919     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
920     new (Buffer) LifetimeExtendedCleanupHeader(Header);
921     new (Buffer + sizeof(Header)) T(A...);
922     if (Header.IsConditional)
923       new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag);
924   }
925 
926   // Push a cleanup onto EHStack and deactivate it later. It is usually
927   // deactivated when exiting a `CleanupDeactivationScope` (for example: after a
928   // full expression).
929   template <class T, class... As>
930   void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) {
931     // Placeholder dominating IP for this cleanup.
932     llvm::Instruction *DominatingIP =
933         Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
934     EHStack.pushCleanup<T>(Kind, A...);
935     DeferredDeactivationCleanupStack.push_back(
936         {EHStack.stable_begin(), DominatingIP});
937   }
938 
939   /// Set up the last cleanup that was pushed as a conditional
940   /// full-expression cleanup.
941   void initFullExprCleanup() {
942     initFullExprCleanupWithFlag(createCleanupActiveFlag());
943   }
944 
945   void initFullExprCleanupWithFlag(RawAddress ActiveFlag);
946   RawAddress createCleanupActiveFlag();
947 
948   /// PushDestructorCleanup - Push a cleanup to call the
949   /// complete-object destructor of an object of the given type at the
950   /// given address.  Does nothing if T is not a C++ class type with a
951   /// non-trivial destructor.
952   void PushDestructorCleanup(QualType T, Address Addr);
953 
954   /// PushDestructorCleanup - Push a cleanup to call the
955   /// complete-object variant of the given destructor on the object at
956   /// the given address.
957   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
958                              Address Addr);
959 
960   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
961   /// process all branch fixups.
962   void PopCleanupBlock(bool FallThroughIsBranchThrough = false,
963                        bool ForDeactivation = false);
964 
965   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
966   /// The block cannot be reactivated.  Pops it if it's the top of the
967   /// stack.
968   ///
969   /// \param DominatingIP - An instruction which is known to
970   ///   dominate the current IP (if set) and which lies along
971   ///   all paths of execution between the current IP and the
972   ///   the point at which the cleanup comes into scope.
973   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
974                               llvm::Instruction *DominatingIP);
975 
976   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
977   /// Cannot be used to resurrect a deactivated cleanup.
978   ///
979   /// \param DominatingIP - An instruction which is known to
980   ///   dominate the current IP (if set) and which lies along
981   ///   all paths of execution between the current IP and the
982   ///   the point at which the cleanup comes into scope.
983   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
984                             llvm::Instruction *DominatingIP);
985 
986   /// Enters a new scope for capturing cleanups, all of which
987   /// will be executed once the scope is exited.
988   class RunCleanupsScope {
989     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
990     size_t LifetimeExtendedCleanupStackSize;
991     CleanupDeactivationScope DeactivateCleanups;
992     bool OldDidCallStackSave;
993   protected:
994     bool PerformCleanup;
995   private:
996 
997     RunCleanupsScope(const RunCleanupsScope &) = delete;
998     void operator=(const RunCleanupsScope &) = delete;
999 
1000   protected:
1001     CodeGenFunction& CGF;
1002 
1003   public:
1004     /// Enter a new cleanup scope.
1005     explicit RunCleanupsScope(CodeGenFunction &CGF)
1006         : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) {
1007       CleanupStackDepth = CGF.EHStack.stable_begin();
1008       LifetimeExtendedCleanupStackSize =
1009           CGF.LifetimeExtendedCleanupStack.size();
1010       OldDidCallStackSave = CGF.DidCallStackSave;
1011       CGF.DidCallStackSave = false;
1012       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
1013       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
1014     }
1015 
1016     /// Exit this cleanup scope, emitting any accumulated cleanups.
1017     ~RunCleanupsScope() {
1018       if (PerformCleanup)
1019         ForceCleanup();
1020     }
1021 
1022     /// Determine whether this scope requires any cleanups.
1023     bool requiresCleanups() const {
1024       return CGF.EHStack.stable_begin() != CleanupStackDepth;
1025     }
1026 
1027     /// Force the emission of cleanups now, instead of waiting
1028     /// until this object is destroyed.
1029     /// \param ValuesToReload - A list of values that need to be available at
1030     /// the insertion point after cleanup emission. If cleanup emission created
1031     /// a shared cleanup block, these value pointers will be rewritten.
1032     /// Otherwise, they not will be modified.
1033     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
1034       assert(PerformCleanup && "Already forced cleanup");
1035       CGF.DidCallStackSave = OldDidCallStackSave;
1036       DeactivateCleanups.ForceDeactivate();
1037       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
1038                            ValuesToReload);
1039       PerformCleanup = false;
1040       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
1041     }
1042   };
1043 
1044   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
1045   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
1046       EHScopeStack::stable_end();
1047 
1048   class LexicalScope : public RunCleanupsScope {
1049     SourceRange Range;
1050     SmallVector<const LabelDecl*, 4> Labels;
1051     LexicalScope *ParentScope;
1052 
1053     LexicalScope(const LexicalScope &) = delete;
1054     void operator=(const LexicalScope &) = delete;
1055 
1056   public:
1057     /// Enter a new cleanup scope.
1058     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
1059       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
1060       CGF.CurLexicalScope = this;
1061       if (CGDebugInfo *DI = CGF.getDebugInfo())
1062         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
1063     }
1064 
1065     void addLabel(const LabelDecl *label) {
1066       assert(PerformCleanup && "adding label to dead scope?");
1067       Labels.push_back(label);
1068     }
1069 
1070     /// Exit this cleanup scope, emitting any accumulated
1071     /// cleanups.
1072     ~LexicalScope() {
1073       if (CGDebugInfo *DI = CGF.getDebugInfo())
1074         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
1075 
1076       // If we should perform a cleanup, force them now.  Note that
1077       // this ends the cleanup scope before rescoping any labels.
1078       if (PerformCleanup) {
1079         ApplyDebugLocation DL(CGF, Range.getEnd());
1080         ForceCleanup();
1081       }
1082     }
1083 
1084     /// Force the emission of cleanups now, instead of waiting
1085     /// until this object is destroyed.
1086     void ForceCleanup() {
1087       CGF.CurLexicalScope = ParentScope;
1088       RunCleanupsScope::ForceCleanup();
1089 
1090       if (!Labels.empty())
1091         rescopeLabels();
1092     }
1093 
1094     bool hasLabels() const {
1095       return !Labels.empty();
1096     }
1097 
1098     void rescopeLabels();
1099   };
1100 
1101   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
1102 
1103   /// The class used to assign some variables some temporarily addresses.
1104   class OMPMapVars {
1105     DeclMapTy SavedLocals;
1106     DeclMapTy SavedTempAddresses;
1107     OMPMapVars(const OMPMapVars &) = delete;
1108     void operator=(const OMPMapVars &) = delete;
1109 
1110   public:
1111     explicit OMPMapVars() = default;
1112     ~OMPMapVars() {
1113       assert(SavedLocals.empty() && "Did not restored original addresses.");
1114     };
1115 
1116     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1117     /// function \p CGF.
1118     /// \return true if at least one variable was set already, false otherwise.
1119     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1120                     Address TempAddr) {
1121       LocalVD = LocalVD->getCanonicalDecl();
1122       // Only save it once.
1123       if (SavedLocals.count(LocalVD)) return false;
1124 
1125       // Copy the existing local entry to SavedLocals.
1126       auto it = CGF.LocalDeclMap.find(LocalVD);
1127       if (it != CGF.LocalDeclMap.end())
1128         SavedLocals.try_emplace(LocalVD, it->second);
1129       else
1130         SavedLocals.try_emplace(LocalVD, Address::invalid());
1131 
1132       // Generate the private entry.
1133       QualType VarTy = LocalVD->getType();
1134       if (VarTy->isReferenceType()) {
1135         Address Temp = CGF.CreateMemTemp(VarTy);
1136         CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp);
1137         TempAddr = Temp;
1138       }
1139       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1140 
1141       return true;
1142     }
1143 
1144     /// Applies new addresses to the list of the variables.
1145     /// \return true if at least one variable is using new address, false
1146     /// otherwise.
1147     bool apply(CodeGenFunction &CGF) {
1148       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1149       SavedTempAddresses.clear();
1150       return !SavedLocals.empty();
1151     }
1152 
1153     /// Restores original addresses of the variables.
1154     void restore(CodeGenFunction &CGF) {
1155       if (!SavedLocals.empty()) {
1156         copyInto(SavedLocals, CGF.LocalDeclMap);
1157         SavedLocals.clear();
1158       }
1159     }
1160 
1161   private:
1162     /// Copy all the entries in the source map over the corresponding
1163     /// entries in the destination, which must exist.
1164     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1165       for (auto &[Decl, Addr] : Src) {
1166         if (!Addr.isValid())
1167           Dest.erase(Decl);
1168         else
1169           Dest.insert_or_assign(Decl, Addr);
1170       }
1171     }
1172   };
1173 
1174   /// The scope used to remap some variables as private in the OpenMP loop body
1175   /// (or other captured region emitted without outlining), and to restore old
1176   /// vars back on exit.
1177   class OMPPrivateScope : public RunCleanupsScope {
1178     OMPMapVars MappedVars;
1179     OMPPrivateScope(const OMPPrivateScope &) = delete;
1180     void operator=(const OMPPrivateScope &) = delete;
1181 
1182   public:
1183     /// Enter a new OpenMP private scope.
1184     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1185 
1186     /// Registers \p LocalVD variable as a private with \p Addr as the address
1187     /// of the corresponding private variable. \p
1188     /// PrivateGen is the address of the generated private variable.
1189     /// \return true if the variable is registered as private, false if it has
1190     /// been privatized already.
1191     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1192       assert(PerformCleanup && "adding private to dead scope");
1193       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1194     }
1195 
1196     /// Privatizes local variables previously registered as private.
1197     /// Registration is separate from the actual privatization to allow
1198     /// initializers use values of the original variables, not the private one.
1199     /// This is important, for example, if the private variable is a class
1200     /// variable initialized by a constructor that references other private
1201     /// variables. But at initialization original variables must be used, not
1202     /// private copies.
1203     /// \return true if at least one variable was privatized, false otherwise.
1204     bool Privatize() { return MappedVars.apply(CGF); }
1205 
1206     void ForceCleanup() {
1207       RunCleanupsScope::ForceCleanup();
1208       restoreMap();
1209     }
1210 
1211     /// Exit scope - all the mapped variables are restored.
1212     ~OMPPrivateScope() {
1213       if (PerformCleanup)
1214         ForceCleanup();
1215     }
1216 
1217     /// Checks if the global variable is captured in current function.
1218     bool isGlobalVarCaptured(const VarDecl *VD) const {
1219       VD = VD->getCanonicalDecl();
1220       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1221     }
1222 
1223     /// Restore all mapped variables w/o clean up. This is usefully when we want
1224     /// to reference the original variables but don't want the clean up because
1225     /// that could emit lifetime end too early, causing backend issue #56913.
1226     void restoreMap() { MappedVars.restore(CGF); }
1227   };
1228 
1229   /// Save/restore original map of previously emitted local vars in case when we
1230   /// need to duplicate emission of the same code several times in the same
1231   /// function for OpenMP code.
1232   class OMPLocalDeclMapRAII {
1233     CodeGenFunction &CGF;
1234     DeclMapTy SavedMap;
1235 
1236   public:
1237     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1238         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1239     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1240   };
1241 
1242   /// Takes the old cleanup stack size and emits the cleanup blocks
1243   /// that have been added.
1244   void
1245   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1246                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1247 
1248   /// Takes the old cleanup stack size and emits the cleanup blocks
1249   /// that have been added, then adds all lifetime-extended cleanups from
1250   /// the given position to the stack.
1251   void
1252   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1253                    size_t OldLifetimeExtendedStackSize,
1254                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1255 
1256   void ResolveBranchFixups(llvm::BasicBlock *Target);
1257 
1258   /// The given basic block lies in the current EH scope, but may be a
1259   /// target of a potentially scope-crossing jump; get a stable handle
1260   /// to which we can perform this jump later.
1261   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1262     return JumpDest(Target,
1263                     EHStack.getInnermostNormalCleanup(),
1264                     NextCleanupDestIndex++);
1265   }
1266 
1267   /// The given basic block lies in the current EH scope, but may be a
1268   /// target of a potentially scope-crossing jump; get a stable handle
1269   /// to which we can perform this jump later.
1270   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1271     return getJumpDestInCurrentScope(createBasicBlock(Name));
1272   }
1273 
1274   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1275   /// block through the normal cleanup handling code (if any) and then
1276   /// on to \arg Dest.
1277   void EmitBranchThroughCleanup(JumpDest Dest);
1278 
1279   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1280   /// specified destination obviously has no cleanups to run.  'false' is always
1281   /// a conservatively correct answer for this method.
1282   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1283 
1284   /// popCatchScope - Pops the catch scope at the top of the EHScope
1285   /// stack, emitting any required code (other than the catch handlers
1286   /// themselves).
1287   void popCatchScope();
1288 
1289   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1290   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1291   llvm::BasicBlock *
1292   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1293 
1294   /// An object to manage conditionally-evaluated expressions.
1295   class ConditionalEvaluation {
1296     llvm::BasicBlock *StartBB;
1297 
1298   public:
1299     ConditionalEvaluation(CodeGenFunction &CGF)
1300       : StartBB(CGF.Builder.GetInsertBlock()) {}
1301 
1302     void begin(CodeGenFunction &CGF) {
1303       assert(CGF.OutermostConditional != this);
1304       if (!CGF.OutermostConditional)
1305         CGF.OutermostConditional = this;
1306     }
1307 
1308     void end(CodeGenFunction &CGF) {
1309       assert(CGF.OutermostConditional != nullptr);
1310       if (CGF.OutermostConditional == this)
1311         CGF.OutermostConditional = nullptr;
1312     }
1313 
1314     /// Returns a block which will be executed prior to each
1315     /// evaluation of the conditional code.
1316     llvm::BasicBlock *getStartingBlock() const {
1317       return StartBB;
1318     }
1319   };
1320 
1321   /// isInConditionalBranch - Return true if we're currently emitting
1322   /// one branch or the other of a conditional expression.
1323   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1324 
1325   void setBeforeOutermostConditional(llvm::Value *value, Address addr,
1326                                      CodeGenFunction &CGF) {
1327     assert(isInConditionalBranch());
1328     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1329     auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF),
1330                                      block->back().getIterator());
1331     store->setAlignment(addr.getAlignment().getAsAlign());
1332   }
1333 
1334   /// An RAII object to record that we're evaluating a statement
1335   /// expression.
1336   class StmtExprEvaluation {
1337     CodeGenFunction &CGF;
1338 
1339     /// We have to save the outermost conditional: cleanups in a
1340     /// statement expression aren't conditional just because the
1341     /// StmtExpr is.
1342     ConditionalEvaluation *SavedOutermostConditional;
1343 
1344   public:
1345     StmtExprEvaluation(CodeGenFunction &CGF)
1346       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1347       CGF.OutermostConditional = nullptr;
1348     }
1349 
1350     ~StmtExprEvaluation() {
1351       CGF.OutermostConditional = SavedOutermostConditional;
1352       CGF.EnsureInsertPoint();
1353     }
1354   };
1355 
1356   /// An object which temporarily prevents a value from being
1357   /// destroyed by aggressive peephole optimizations that assume that
1358   /// all uses of a value have been realized in the IR.
1359   class PeepholeProtection {
1360     llvm::Instruction *Inst = nullptr;
1361     friend class CodeGenFunction;
1362 
1363   public:
1364     PeepholeProtection() = default;
1365   };
1366 
1367   /// A non-RAII class containing all the information about a bound
1368   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1369   /// this which makes individual mappings very simple; using this
1370   /// class directly is useful when you have a variable number of
1371   /// opaque values or don't want the RAII functionality for some
1372   /// reason.
1373   class OpaqueValueMappingData {
1374     const OpaqueValueExpr *OpaqueValue;
1375     bool BoundLValue;
1376     CodeGenFunction::PeepholeProtection Protection;
1377 
1378     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1379                            bool boundLValue)
1380       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1381   public:
1382     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1383 
1384     static bool shouldBindAsLValue(const Expr *expr) {
1385       // gl-values should be bound as l-values for obvious reasons.
1386       // Records should be bound as l-values because IR generation
1387       // always keeps them in memory.  Expressions of function type
1388       // act exactly like l-values but are formally required to be
1389       // r-values in C.
1390       return expr->isGLValue() ||
1391              expr->getType()->isFunctionType() ||
1392              hasAggregateEvaluationKind(expr->getType());
1393     }
1394 
1395     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1396                                        const OpaqueValueExpr *ov,
1397                                        const Expr *e) {
1398       if (shouldBindAsLValue(ov))
1399         return bind(CGF, ov, CGF.EmitLValue(e));
1400       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1401     }
1402 
1403     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1404                                        const OpaqueValueExpr *ov,
1405                                        const LValue &lv) {
1406       assert(shouldBindAsLValue(ov));
1407       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1408       return OpaqueValueMappingData(ov, true);
1409     }
1410 
1411     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1412                                        const OpaqueValueExpr *ov,
1413                                        const RValue &rv) {
1414       assert(!shouldBindAsLValue(ov));
1415       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1416 
1417       OpaqueValueMappingData data(ov, false);
1418 
1419       // Work around an extremely aggressive peephole optimization in
1420       // EmitScalarConversion which assumes that all other uses of a
1421       // value are extant.
1422       data.Protection = CGF.protectFromPeepholes(rv);
1423 
1424       return data;
1425     }
1426 
1427     bool isValid() const { return OpaqueValue != nullptr; }
1428     void clear() { OpaqueValue = nullptr; }
1429 
1430     void unbind(CodeGenFunction &CGF) {
1431       assert(OpaqueValue && "no data to unbind!");
1432 
1433       if (BoundLValue) {
1434         CGF.OpaqueLValues.erase(OpaqueValue);
1435       } else {
1436         CGF.OpaqueRValues.erase(OpaqueValue);
1437         CGF.unprotectFromPeepholes(Protection);
1438       }
1439     }
1440   };
1441 
1442   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1443   class OpaqueValueMapping {
1444     CodeGenFunction &CGF;
1445     OpaqueValueMappingData Data;
1446 
1447   public:
1448     static bool shouldBindAsLValue(const Expr *expr) {
1449       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1450     }
1451 
1452     /// Build the opaque value mapping for the given conditional
1453     /// operator if it's the GNU ?: extension.  This is a common
1454     /// enough pattern that the convenience operator is really
1455     /// helpful.
1456     ///
1457     OpaqueValueMapping(CodeGenFunction &CGF,
1458                        const AbstractConditionalOperator *op) : CGF(CGF) {
1459       if (isa<ConditionalOperator>(op))
1460         // Leave Data empty.
1461         return;
1462 
1463       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1464       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1465                                           e->getCommon());
1466     }
1467 
1468     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1469     /// expression is set to the expression the OVE represents.
1470     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1471         : CGF(CGF) {
1472       if (OV) {
1473         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1474                                       "for OVE with no source expression");
1475         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1476       }
1477     }
1478 
1479     OpaqueValueMapping(CodeGenFunction &CGF,
1480                        const OpaqueValueExpr *opaqueValue,
1481                        LValue lvalue)
1482       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1483     }
1484 
1485     OpaqueValueMapping(CodeGenFunction &CGF,
1486                        const OpaqueValueExpr *opaqueValue,
1487                        RValue rvalue)
1488       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1489     }
1490 
1491     void pop() {
1492       Data.unbind(CGF);
1493       Data.clear();
1494     }
1495 
1496     ~OpaqueValueMapping() {
1497       if (Data.isValid()) Data.unbind(CGF);
1498     }
1499   };
1500 
1501 private:
1502   CGDebugInfo *DebugInfo;
1503   /// Used to create unique names for artificial VLA size debug info variables.
1504   unsigned VLAExprCounter = 0;
1505   bool DisableDebugInfo = false;
1506 
1507   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1508   /// calling llvm.stacksave for multiple VLAs in the same scope.
1509   bool DidCallStackSave = false;
1510 
1511   /// IndirectBranch - The first time an indirect goto is seen we create a block
1512   /// with an indirect branch.  Every time we see the address of a label taken,
1513   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1514   /// codegen'd as a jump to the IndirectBranch's basic block.
1515   llvm::IndirectBrInst *IndirectBranch = nullptr;
1516 
1517   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1518   /// decls.
1519   DeclMapTy LocalDeclMap;
1520 
1521   // Keep track of the cleanups for callee-destructed parameters pushed to the
1522   // cleanup stack so that they can be deactivated later.
1523   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1524       CalleeDestructedParamCleanups;
1525 
1526   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1527   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1528   /// parameter.
1529   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1530       SizeArguments;
1531 
1532   /// Track escaped local variables with auto storage. Used during SEH
1533   /// outlining to produce a call to llvm.localescape.
1534   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1535 
1536   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1537   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1538 
1539   // BreakContinueStack - This keeps track of where break and continue
1540   // statements should jump to.
1541   struct BreakContinue {
1542     BreakContinue(JumpDest Break, JumpDest Continue)
1543       : BreakBlock(Break), ContinueBlock(Continue) {}
1544 
1545     JumpDest BreakBlock;
1546     JumpDest ContinueBlock;
1547   };
1548   SmallVector<BreakContinue, 8> BreakContinueStack;
1549 
1550   /// Handles cancellation exit points in OpenMP-related constructs.
1551   class OpenMPCancelExitStack {
1552     /// Tracks cancellation exit point and join point for cancel-related exit
1553     /// and normal exit.
1554     struct CancelExit {
1555       CancelExit() = default;
1556       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1557                  JumpDest ContBlock)
1558           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1559       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1560       /// true if the exit block has been emitted already by the special
1561       /// emitExit() call, false if the default codegen is used.
1562       bool HasBeenEmitted = false;
1563       JumpDest ExitBlock;
1564       JumpDest ContBlock;
1565     };
1566 
1567     SmallVector<CancelExit, 8> Stack;
1568 
1569   public:
1570     OpenMPCancelExitStack() : Stack(1) {}
1571     ~OpenMPCancelExitStack() = default;
1572     /// Fetches the exit block for the current OpenMP construct.
1573     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1574     /// Emits exit block with special codegen procedure specific for the related
1575     /// OpenMP construct + emits code for normal construct cleanup.
1576     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1577                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1578       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1579         assert(CGF.getOMPCancelDestination(Kind).isValid());
1580         assert(CGF.HaveInsertPoint());
1581         assert(!Stack.back().HasBeenEmitted);
1582         auto IP = CGF.Builder.saveAndClearIP();
1583         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1584         CodeGen(CGF);
1585         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1586         CGF.Builder.restoreIP(IP);
1587         Stack.back().HasBeenEmitted = true;
1588       }
1589       CodeGen(CGF);
1590     }
1591     /// Enter the cancel supporting \a Kind construct.
1592     /// \param Kind OpenMP directive that supports cancel constructs.
1593     /// \param HasCancel true, if the construct has inner cancel directive,
1594     /// false otherwise.
1595     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1596       Stack.push_back({Kind,
1597                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1598                                  : JumpDest(),
1599                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1600                                  : JumpDest()});
1601     }
1602     /// Emits default exit point for the cancel construct (if the special one
1603     /// has not be used) + join point for cancel/normal exits.
1604     void exit(CodeGenFunction &CGF) {
1605       if (getExitBlock().isValid()) {
1606         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1607         bool HaveIP = CGF.HaveInsertPoint();
1608         if (!Stack.back().HasBeenEmitted) {
1609           if (HaveIP)
1610             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1611           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1612           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1613         }
1614         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1615         if (!HaveIP) {
1616           CGF.Builder.CreateUnreachable();
1617           CGF.Builder.ClearInsertionPoint();
1618         }
1619       }
1620       Stack.pop_back();
1621     }
1622   };
1623   OpenMPCancelExitStack OMPCancelStack;
1624 
1625   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1626   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1627                                                     Stmt::Likelihood LH);
1628 
1629   CodeGenPGO PGO;
1630 
1631   /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1632   Address MCDCCondBitmapAddr = Address::invalid();
1633 
1634   /// Calculate branch weights appropriate for PGO data
1635   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1636                                      uint64_t FalseCount) const;
1637   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1638   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1639                                             uint64_t LoopCount) const;
1640 
1641 public:
1642   auto getIsCounterPair(const Stmt *S) const { return PGO.getIsCounterPair(S); }
1643 
1644   void markStmtAsUsed(bool Skipped, const Stmt *S) {
1645     PGO.markStmtAsUsed(Skipped, S);
1646   }
1647   void markStmtMaybeUsed(const Stmt *S) { PGO.markStmtMaybeUsed(S); }
1648 
1649   /// Increment the profiler's counter for the given statement by \p StepV.
1650   /// If \p StepV is null, the default increment is 1.
1651   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1652     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1653         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1654         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) {
1655       auto AL = ApplyDebugLocation::CreateArtificial(*this);
1656       PGO.emitCounterSetOrIncrement(Builder, S, StepV);
1657     }
1658     PGO.setCurrentStmt(S);
1659   }
1660 
1661   bool isMCDCCoverageEnabled() const {
1662     return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1663             CGM.getCodeGenOpts().MCDCCoverage &&
1664             !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1665   }
1666 
1667   /// Allocate a temp value on the stack that MCDC can use to track condition
1668   /// results.
1669   void maybeCreateMCDCCondBitmap() {
1670     if (isMCDCCoverageEnabled()) {
1671       PGO.emitMCDCParameters(Builder);
1672       MCDCCondBitmapAddr =
1673           CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1674     }
1675   }
1676 
1677   bool isBinaryLogicalOp(const Expr *E) const {
1678     const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1679     return (BOp && BOp->isLogicalOp());
1680   }
1681 
1682   /// Zero-init the MCDC temp value.
1683   void maybeResetMCDCCondBitmap(const Expr *E) {
1684     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1685       PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1686       PGO.setCurrentStmt(E);
1687     }
1688   }
1689 
1690   /// Increment the profiler's counter for the given expression by \p StepV.
1691   /// If \p StepV is null, the default increment is 1.
1692   void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1693     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1694       PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this);
1695       PGO.setCurrentStmt(E);
1696     }
1697   }
1698 
1699   /// Update the MCDC temp value with the condition's evaluated result.
1700   void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1701     if (isMCDCCoverageEnabled()) {
1702       PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this);
1703       PGO.setCurrentStmt(E);
1704     }
1705   }
1706 
1707   /// Get the profiler's count for the given statement.
1708   uint64_t getProfileCount(const Stmt *S) {
1709     return PGO.getStmtCount(S).value_or(0);
1710   }
1711 
1712   /// Set the profiler's current count.
1713   void setCurrentProfileCount(uint64_t Count) {
1714     PGO.setCurrentRegionCount(Count);
1715   }
1716 
1717   /// Get the profiler's current count. This is generally the count for the most
1718   /// recently incremented counter.
1719   uint64_t getCurrentProfileCount() {
1720     return PGO.getCurrentRegionCount();
1721   }
1722 
1723 private:
1724 
1725   /// SwitchInsn - This is nearest current switch instruction. It is null if
1726   /// current context is not in a switch.
1727   llvm::SwitchInst *SwitchInsn = nullptr;
1728   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1729   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1730 
1731   /// The likelihood attributes of the SwitchCase.
1732   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1733 
1734   /// CaseRangeBlock - This block holds if condition check for last case
1735   /// statement range in current switch instruction.
1736   llvm::BasicBlock *CaseRangeBlock = nullptr;
1737 
1738   /// OpaqueLValues - Keeps track of the current set of opaque value
1739   /// expressions.
1740   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1741   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1742 
1743   // VLASizeMap - This keeps track of the associated size for each VLA type.
1744   // We track this by the size expression rather than the type itself because
1745   // in certain situations, like a const qualifier applied to an VLA typedef,
1746   // multiple VLA types can share the same size expression.
1747   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1748   // enter/leave scopes.
1749   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1750 
1751   /// A block containing a single 'unreachable' instruction.  Created
1752   /// lazily by getUnreachableBlock().
1753   llvm::BasicBlock *UnreachableBlock = nullptr;
1754 
1755   /// Counts of the number return expressions in the function.
1756   unsigned NumReturnExprs = 0;
1757 
1758   /// Count the number of simple (constant) return expressions in the function.
1759   unsigned NumSimpleReturnExprs = 0;
1760 
1761   /// The last regular (non-return) debug location (breakpoint) in the function.
1762   SourceLocation LastStopPoint;
1763 
1764 public:
1765   /// Source location information about the default argument or member
1766   /// initializer expression we're evaluating, if any.
1767   CurrentSourceLocExprScope CurSourceLocExprScope;
1768   using SourceLocExprScopeGuard =
1769       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1770 
1771   /// A scope within which we are constructing the fields of an object which
1772   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1773   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1774   class FieldConstructionScope {
1775   public:
1776     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1777         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1778       CGF.CXXDefaultInitExprThis = This;
1779     }
1780     ~FieldConstructionScope() {
1781       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1782     }
1783 
1784   private:
1785     CodeGenFunction &CGF;
1786     Address OldCXXDefaultInitExprThis;
1787   };
1788 
1789   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1790   /// is overridden to be the object under construction.
1791   class CXXDefaultInitExprScope  {
1792   public:
1793     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1794         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1795           OldCXXThisAlignment(CGF.CXXThisAlignment),
1796           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1797       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer();
1798       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1799     }
1800     ~CXXDefaultInitExprScope() {
1801       CGF.CXXThisValue = OldCXXThisValue;
1802       CGF.CXXThisAlignment = OldCXXThisAlignment;
1803     }
1804 
1805   public:
1806     CodeGenFunction &CGF;
1807     llvm::Value *OldCXXThisValue;
1808     CharUnits OldCXXThisAlignment;
1809     SourceLocExprScopeGuard SourceLocScope;
1810   };
1811 
1812   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1813     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1814         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1815   };
1816 
1817   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1818   /// current loop index is overridden.
1819   class ArrayInitLoopExprScope {
1820   public:
1821     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1822       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1823       CGF.ArrayInitIndex = Index;
1824     }
1825     ~ArrayInitLoopExprScope() {
1826       CGF.ArrayInitIndex = OldArrayInitIndex;
1827     }
1828 
1829   private:
1830     CodeGenFunction &CGF;
1831     llvm::Value *OldArrayInitIndex;
1832   };
1833 
1834   class InlinedInheritingConstructorScope {
1835   public:
1836     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1837         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1838           OldCurCodeDecl(CGF.CurCodeDecl),
1839           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1840           OldCXXABIThisValue(CGF.CXXABIThisValue),
1841           OldCXXThisValue(CGF.CXXThisValue),
1842           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1843           OldCXXThisAlignment(CGF.CXXThisAlignment),
1844           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1845           OldCXXInheritedCtorInitExprArgs(
1846               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1847       CGF.CurGD = GD;
1848       CGF.CurFuncDecl = CGF.CurCodeDecl =
1849           cast<CXXConstructorDecl>(GD.getDecl());
1850       CGF.CXXABIThisDecl = nullptr;
1851       CGF.CXXABIThisValue = nullptr;
1852       CGF.CXXThisValue = nullptr;
1853       CGF.CXXABIThisAlignment = CharUnits();
1854       CGF.CXXThisAlignment = CharUnits();
1855       CGF.ReturnValue = Address::invalid();
1856       CGF.FnRetTy = QualType();
1857       CGF.CXXInheritedCtorInitExprArgs.clear();
1858     }
1859     ~InlinedInheritingConstructorScope() {
1860       CGF.CurGD = OldCurGD;
1861       CGF.CurFuncDecl = OldCurFuncDecl;
1862       CGF.CurCodeDecl = OldCurCodeDecl;
1863       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1864       CGF.CXXABIThisValue = OldCXXABIThisValue;
1865       CGF.CXXThisValue = OldCXXThisValue;
1866       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1867       CGF.CXXThisAlignment = OldCXXThisAlignment;
1868       CGF.ReturnValue = OldReturnValue;
1869       CGF.FnRetTy = OldFnRetTy;
1870       CGF.CXXInheritedCtorInitExprArgs =
1871           std::move(OldCXXInheritedCtorInitExprArgs);
1872     }
1873 
1874   private:
1875     CodeGenFunction &CGF;
1876     GlobalDecl OldCurGD;
1877     const Decl *OldCurFuncDecl;
1878     const Decl *OldCurCodeDecl;
1879     ImplicitParamDecl *OldCXXABIThisDecl;
1880     llvm::Value *OldCXXABIThisValue;
1881     llvm::Value *OldCXXThisValue;
1882     CharUnits OldCXXABIThisAlignment;
1883     CharUnits OldCXXThisAlignment;
1884     Address OldReturnValue;
1885     QualType OldFnRetTy;
1886     CallArgList OldCXXInheritedCtorInitExprArgs;
1887   };
1888 
1889   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1890   // region body, and finalization codegen callbacks. This will class will also
1891   // contain privatization functions used by the privatization call backs
1892   //
1893   // TODO: this is temporary class for things that are being moved out of
1894   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1895   // utility function for use with the OMPBuilder. Once that move to use the
1896   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1897   // directly, or a new helper class that will contain functions used by both
1898   // this and the OMPBuilder
1899 
1900   struct OMPBuilderCBHelpers {
1901 
1902     OMPBuilderCBHelpers() = delete;
1903     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1904     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1905 
1906     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1907 
1908     /// Cleanup action for allocate support.
1909     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1910 
1911     private:
1912       llvm::CallInst *RTLFnCI;
1913 
1914     public:
1915       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1916         RLFnCI->removeFromParent();
1917       }
1918 
1919       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1920         if (!CGF.HaveInsertPoint())
1921           return;
1922         CGF.Builder.Insert(RTLFnCI);
1923       }
1924     };
1925 
1926     /// Returns address of the threadprivate variable for the current
1927     /// thread. This Also create any necessary OMP runtime calls.
1928     ///
1929     /// \param VD VarDecl for Threadprivate variable.
1930     /// \param VDAddr Address of the Vardecl
1931     /// \param Loc  The location where the barrier directive was encountered
1932     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1933                                           const VarDecl *VD, Address VDAddr,
1934                                           SourceLocation Loc);
1935 
1936     /// Gets the OpenMP-specific address of the local variable /p VD.
1937     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1938                                              const VarDecl *VD);
1939     /// Get the platform-specific name separator.
1940     /// \param Parts different parts of the final name that needs separation
1941     /// \param FirstSeparator First separator used between the initial two
1942     ///        parts of the name.
1943     /// \param Separator separator used between all of the rest consecutinve
1944     ///        parts of the name
1945     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1946                                              StringRef FirstSeparator = ".",
1947                                              StringRef Separator = ".");
1948     /// Emit the Finalization for an OMP region
1949     /// \param CGF	The Codegen function this belongs to
1950     /// \param IP	Insertion point for generating the finalization code.
1951     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1952       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1953       assert(IP.getBlock()->end() != IP.getPoint() &&
1954              "OpenMP IR Builder should cause terminated block!");
1955 
1956       llvm::BasicBlock *IPBB = IP.getBlock();
1957       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1958       assert(DestBB && "Finalization block should have one successor!");
1959 
1960       // erase and replace with cleanup branch.
1961       IPBB->getTerminator()->eraseFromParent();
1962       CGF.Builder.SetInsertPoint(IPBB);
1963       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1964       CGF.EmitBranchThroughCleanup(Dest);
1965     }
1966 
1967     /// Emit the body of an OMP region
1968     /// \param CGF	          The Codegen function this belongs to
1969     /// \param RegionBodyStmt The body statement for the OpenMP region being
1970     ///                       generated
1971     /// \param AllocaIP       Where to insert alloca instructions
1972     /// \param CodeGenIP      Where to insert the region code
1973     /// \param RegionName     Name to be used for new blocks
1974     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1975                                          const Stmt *RegionBodyStmt,
1976                                          InsertPointTy AllocaIP,
1977                                          InsertPointTy CodeGenIP,
1978                                          Twine RegionName);
1979 
1980     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1981                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1982                                 ArrayRef<llvm::Value *> Args) {
1983       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1984       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1985         CodeGenIPBBTI->eraseFromParent();
1986 
1987       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1988 
1989       if (Fn->doesNotThrow())
1990         CGF.EmitNounwindRuntimeCall(Fn, Args);
1991       else
1992         CGF.EmitRuntimeCall(Fn, Args);
1993 
1994       if (CGF.Builder.saveIP().isSet())
1995         CGF.Builder.CreateBr(&FiniBB);
1996     }
1997 
1998     /// Emit the body of an OMP region that will be outlined in
1999     /// OpenMPIRBuilder::finalize().
2000     /// \param CGF	          The Codegen function this belongs to
2001     /// \param RegionBodyStmt The body statement for the OpenMP region being
2002     ///                       generated
2003     /// \param AllocaIP       Where to insert alloca instructions
2004     /// \param CodeGenIP      Where to insert the region code
2005     /// \param RegionName     Name to be used for new blocks
2006     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
2007                                           const Stmt *RegionBodyStmt,
2008                                           InsertPointTy AllocaIP,
2009                                           InsertPointTy CodeGenIP,
2010                                           Twine RegionName);
2011 
2012     /// RAII for preserving necessary info during Outlined region body codegen.
2013     class OutlinedRegionBodyRAII {
2014 
2015       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2016       CodeGenFunction::JumpDest OldReturnBlock;
2017       CodeGenFunction &CGF;
2018 
2019     public:
2020       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2021                              llvm::BasicBlock &RetBB)
2022           : CGF(cgf) {
2023         assert(AllocaIP.isSet() &&
2024                "Must specify Insertion point for allocas of outlined function");
2025         OldAllocaIP = CGF.AllocaInsertPt;
2026         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2027 
2028         OldReturnBlock = CGF.ReturnBlock;
2029         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
2030       }
2031 
2032       ~OutlinedRegionBodyRAII() {
2033         CGF.AllocaInsertPt = OldAllocaIP;
2034         CGF.ReturnBlock = OldReturnBlock;
2035       }
2036     };
2037 
2038     /// RAII for preserving necessary info during inlined region body codegen.
2039     class InlinedRegionBodyRAII {
2040 
2041       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2042       CodeGenFunction &CGF;
2043 
2044     public:
2045       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2046                             llvm::BasicBlock &FiniBB)
2047           : CGF(cgf) {
2048         // Alloca insertion block should be in the entry block of the containing
2049         // function so it expects an empty AllocaIP in which case will reuse the
2050         // old alloca insertion point, or a new AllocaIP in the same block as
2051         // the old one
2052         assert((!AllocaIP.isSet() ||
2053                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
2054                "Insertion point should be in the entry block of containing "
2055                "function!");
2056         OldAllocaIP = CGF.AllocaInsertPt;
2057         if (AllocaIP.isSet())
2058           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2059 
2060         // TODO: Remove the call, after making sure the counter is not used by
2061         //       the EHStack.
2062         // Since this is an inlined region, it should not modify the
2063         // ReturnBlock, and should reuse the one for the enclosing outlined
2064         // region. So, the JumpDest being return by the function is discarded
2065         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
2066       }
2067 
2068       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
2069     };
2070   };
2071 
2072 private:
2073   /// CXXThisDecl - When generating code for a C++ member function,
2074   /// this will hold the implicit 'this' declaration.
2075   ImplicitParamDecl *CXXABIThisDecl = nullptr;
2076   llvm::Value *CXXABIThisValue = nullptr;
2077   llvm::Value *CXXThisValue = nullptr;
2078   CharUnits CXXABIThisAlignment;
2079   CharUnits CXXThisAlignment;
2080 
2081   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
2082   /// this expression.
2083   Address CXXDefaultInitExprThis = Address::invalid();
2084 
2085   /// The current array initialization index when evaluating an
2086   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
2087   llvm::Value *ArrayInitIndex = nullptr;
2088 
2089   /// The values of function arguments to use when evaluating
2090   /// CXXInheritedCtorInitExprs within this context.
2091   CallArgList CXXInheritedCtorInitExprArgs;
2092 
2093   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
2094   /// destructor, this will hold the implicit argument (e.g. VTT).
2095   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
2096   llvm::Value *CXXStructorImplicitParamValue = nullptr;
2097 
2098   /// OutermostConditional - Points to the outermost active
2099   /// conditional control.  This is used so that we know if a
2100   /// temporary should be destroyed conditionally.
2101   ConditionalEvaluation *OutermostConditional = nullptr;
2102 
2103   /// The current lexical scope.
2104   LexicalScope *CurLexicalScope = nullptr;
2105 
2106   /// The current source location that should be used for exception
2107   /// handling code.
2108   SourceLocation CurEHLocation;
2109 
2110   /// BlockByrefInfos - For each __block variable, contains
2111   /// information about the layout of the variable.
2112   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2113 
2114   /// Used by -fsanitize=nullability-return to determine whether the return
2115   /// value can be checked.
2116   llvm::Value *RetValNullabilityPrecondition = nullptr;
2117 
2118   /// Check if -fsanitize=nullability-return instrumentation is required for
2119   /// this function.
2120   bool requiresReturnValueNullabilityCheck() const {
2121     return RetValNullabilityPrecondition;
2122   }
2123 
2124   /// Used to store precise source locations for return statements by the
2125   /// runtime return value checks.
2126   Address ReturnLocation = Address::invalid();
2127 
2128   /// Check if the return value of this function requires sanitization.
2129   bool requiresReturnValueCheck() const;
2130 
2131   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2132   bool hasInAllocaArg(const CXXMethodDecl *MD);
2133 
2134   llvm::BasicBlock *TerminateLandingPad = nullptr;
2135   llvm::BasicBlock *TerminateHandler = nullptr;
2136   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2137 
2138   /// Terminate funclets keyed by parent funclet pad.
2139   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2140 
2141   /// Largest vector width used in ths function. Will be used to create a
2142   /// function attribute.
2143   unsigned LargestVectorWidth = 0;
2144 
2145   /// True if we need emit the life-time markers. This is initially set in
2146   /// the constructor, but could be overwritten to true if this is a coroutine.
2147   bool ShouldEmitLifetimeMarkers;
2148 
2149   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2150   /// the function metadata.
2151   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2152 
2153 public:
2154   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2155   ~CodeGenFunction();
2156 
2157   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2158   ASTContext &getContext() const { return CGM.getContext(); }
2159   CGDebugInfo *getDebugInfo() {
2160     if (DisableDebugInfo)
2161       return nullptr;
2162     return DebugInfo;
2163   }
2164   void disableDebugInfo() { DisableDebugInfo = true; }
2165   void enableDebugInfo() { DisableDebugInfo = false; }
2166 
2167   bool shouldUseFusedARCCalls() {
2168     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2169   }
2170 
2171   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2172 
2173   /// Returns a pointer to the function's exception object and selector slot,
2174   /// which is assigned in every landing pad.
2175   Address getExceptionSlot();
2176   Address getEHSelectorSlot();
2177 
2178   /// Returns the contents of the function's exception object and selector
2179   /// slots.
2180   llvm::Value *getExceptionFromSlot();
2181   llvm::Value *getSelectorFromSlot();
2182 
2183   RawAddress getNormalCleanupDestSlot();
2184 
2185   llvm::BasicBlock *getUnreachableBlock() {
2186     if (!UnreachableBlock) {
2187       UnreachableBlock = createBasicBlock("unreachable");
2188       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2189     }
2190     return UnreachableBlock;
2191   }
2192 
2193   llvm::BasicBlock *getInvokeDest() {
2194     if (!EHStack.requiresLandingPad()) return nullptr;
2195     return getInvokeDestImpl();
2196   }
2197 
2198   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2199 
2200   const TargetInfo &getTarget() const { return Target; }
2201   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2202   const TargetCodeGenInfo &getTargetHooks() const {
2203     return CGM.getTargetCodeGenInfo();
2204   }
2205 
2206   //===--------------------------------------------------------------------===//
2207   //                                  Cleanups
2208   //===--------------------------------------------------------------------===//
2209 
2210   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2211 
2212   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2213                                         Address arrayEndPointer,
2214                                         QualType elementType,
2215                                         CharUnits elementAlignment,
2216                                         Destroyer *destroyer);
2217   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2218                                       llvm::Value *arrayEnd,
2219                                       QualType elementType,
2220                                       CharUnits elementAlignment,
2221                                       Destroyer *destroyer);
2222 
2223   void pushDestroy(QualType::DestructionKind dtorKind,
2224                    Address addr, QualType type);
2225   void pushEHDestroy(QualType::DestructionKind dtorKind,
2226                      Address addr, QualType type);
2227   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2228                    Destroyer *destroyer, bool useEHCleanupForArray);
2229   void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind,
2230                                        Address addr, QualType type);
2231   void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr,
2232                                        QualType type, Destroyer *destroyer,
2233                                        bool useEHCleanupForArray);
2234   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2235                                    QualType type, Destroyer *destroyer,
2236                                    bool useEHCleanupForArray);
2237   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2238                                    llvm::Value *CompletePtr,
2239                                    QualType ElementType);
2240   void pushStackRestore(CleanupKind kind, Address SPMem);
2241   void pushKmpcAllocFree(CleanupKind Kind,
2242                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2243   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2244                    bool useEHCleanupForArray);
2245   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2246                                         Destroyer *destroyer,
2247                                         bool useEHCleanupForArray,
2248                                         const VarDecl *VD);
2249   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2250                         QualType elementType, CharUnits elementAlign,
2251                         Destroyer *destroyer,
2252                         bool checkZeroLength, bool useEHCleanup);
2253 
2254   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2255 
2256   /// Determines whether an EH cleanup is required to destroy a type
2257   /// with the given destruction kind.
2258   bool needsEHCleanup(QualType::DestructionKind kind) {
2259     switch (kind) {
2260     case QualType::DK_none:
2261       return false;
2262     case QualType::DK_cxx_destructor:
2263     case QualType::DK_objc_weak_lifetime:
2264     case QualType::DK_nontrivial_c_struct:
2265       return getLangOpts().Exceptions;
2266     case QualType::DK_objc_strong_lifetime:
2267       return getLangOpts().Exceptions &&
2268              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2269     }
2270     llvm_unreachable("bad destruction kind");
2271   }
2272 
2273   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2274     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2275   }
2276 
2277   //===--------------------------------------------------------------------===//
2278   //                                  Objective-C
2279   //===--------------------------------------------------------------------===//
2280 
2281   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2282 
2283   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2284 
2285   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2286   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2287                           const ObjCPropertyImplDecl *PID);
2288   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2289                               const ObjCPropertyImplDecl *propImpl,
2290                               const ObjCMethodDecl *GetterMothodDecl,
2291                               llvm::Constant *AtomicHelperFn);
2292 
2293   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2294                                   ObjCMethodDecl *MD, bool ctor);
2295 
2296   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2297   /// for the given property.
2298   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2299                           const ObjCPropertyImplDecl *PID);
2300   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2301                               const ObjCPropertyImplDecl *propImpl,
2302                               llvm::Constant *AtomicHelperFn);
2303 
2304   //===--------------------------------------------------------------------===//
2305   //                                  Block Bits
2306   //===--------------------------------------------------------------------===//
2307 
2308   /// Emit block literal.
2309   /// \return an LLVM value which is a pointer to a struct which contains
2310   /// information about the block, including the block invoke function, the
2311   /// captured variables, etc.
2312   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2313 
2314   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2315                                         const CGBlockInfo &Info,
2316                                         const DeclMapTy &ldm,
2317                                         bool IsLambdaConversionToBlock,
2318                                         bool BuildGlobalBlock);
2319 
2320   /// Check if \p T is a C++ class that has a destructor that can throw.
2321   static bool cxxDestructorCanThrow(QualType T);
2322 
2323   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2324   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2325   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2326                                              const ObjCPropertyImplDecl *PID);
2327   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2328                                              const ObjCPropertyImplDecl *PID);
2329   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2330 
2331   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2332                          bool CanThrow);
2333 
2334   class AutoVarEmission;
2335 
2336   void emitByrefStructureInit(const AutoVarEmission &emission);
2337 
2338   /// Enter a cleanup to destroy a __block variable.  Note that this
2339   /// cleanup should be a no-op if the variable hasn't left the stack
2340   /// yet; if a cleanup is required for the variable itself, that needs
2341   /// to be done externally.
2342   ///
2343   /// \param Kind Cleanup kind.
2344   ///
2345   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2346   /// structure that will be passed to _Block_object_dispose. When
2347   /// \p LoadBlockVarAddr is true, the address of the field of the block
2348   /// structure that holds the address of the __block structure.
2349   ///
2350   /// \param Flags The flag that will be passed to _Block_object_dispose.
2351   ///
2352   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2353   /// \p Addr to get the address of the __block structure.
2354   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2355                          bool LoadBlockVarAddr, bool CanThrow);
2356 
2357   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2358                                 llvm::Value *ptr);
2359 
2360   Address LoadBlockStruct();
2361   Address GetAddrOfBlockDecl(const VarDecl *var);
2362 
2363   /// BuildBlockByrefAddress - Computes the location of the
2364   /// data in a variable which is declared as __block.
2365   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2366                                 bool followForward = true);
2367   Address emitBlockByrefAddress(Address baseAddr,
2368                                 const BlockByrefInfo &info,
2369                                 bool followForward,
2370                                 const llvm::Twine &name);
2371 
2372   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2373 
2374   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2375 
2376   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2377                     const CGFunctionInfo &FnInfo);
2378 
2379   /// Annotate the function with an attribute that disables TSan checking at
2380   /// runtime.
2381   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2382 
2383   /// Emit code for the start of a function.
2384   /// \param Loc       The location to be associated with the function.
2385   /// \param StartLoc  The location of the function body.
2386   void StartFunction(GlobalDecl GD,
2387                      QualType RetTy,
2388                      llvm::Function *Fn,
2389                      const CGFunctionInfo &FnInfo,
2390                      const FunctionArgList &Args,
2391                      SourceLocation Loc = SourceLocation(),
2392                      SourceLocation StartLoc = SourceLocation());
2393 
2394   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2395 
2396   void EmitConstructorBody(FunctionArgList &Args);
2397   void EmitDestructorBody(FunctionArgList &Args);
2398   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2399   void EmitFunctionBody(const Stmt *Body);
2400   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2401 
2402   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2403                                   CallArgList &CallArgs,
2404                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2405                                   llvm::Constant *CallOpFn = nullptr);
2406   void EmitLambdaBlockInvokeBody();
2407   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2408   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2409                                       CallArgList &CallArgs);
2410   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2411                                 const CGFunctionInfo **ImplFnInfo,
2412                                 llvm::Function **ImplFn);
2413   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2414   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2415     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2416   }
2417   void EmitAsanPrologueOrEpilogue(bool Prologue);
2418 
2419   /// Emit the unified return block, trying to avoid its emission when
2420   /// possible.
2421   /// \return The debug location of the user written return statement if the
2422   /// return block is avoided.
2423   llvm::DebugLoc EmitReturnBlock();
2424 
2425   /// FinishFunction - Complete IR generation of the current function. It is
2426   /// legal to call this function even if there is no current insertion point.
2427   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2428 
2429   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2430                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2431 
2432   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2433                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2434 
2435   void FinishThunk();
2436 
2437   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2438   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2439                          llvm::FunctionCallee Callee);
2440 
2441   /// Generate a thunk for the given method.
2442   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2443                      GlobalDecl GD, const ThunkInfo &Thunk,
2444                      bool IsUnprototyped);
2445 
2446   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2447                                        const CGFunctionInfo &FnInfo,
2448                                        GlobalDecl GD, const ThunkInfo &Thunk);
2449 
2450   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2451                         FunctionArgList &Args);
2452 
2453   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2454 
2455   /// Struct with all information about dynamic [sub]class needed to set vptr.
2456   struct VPtr {
2457     BaseSubobject Base;
2458     const CXXRecordDecl *NearestVBase;
2459     CharUnits OffsetFromNearestVBase;
2460     const CXXRecordDecl *VTableClass;
2461   };
2462 
2463   /// Initialize the vtable pointer of the given subobject.
2464   void InitializeVTablePointer(const VPtr &vptr);
2465 
2466   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2467 
2468   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2469   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2470 
2471   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2472                          CharUnits OffsetFromNearestVBase,
2473                          bool BaseIsNonVirtualPrimaryBase,
2474                          const CXXRecordDecl *VTableClass,
2475                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2476 
2477   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2478 
2479   // VTableTrapMode - whether we guarantee that loading the
2480   // vtable is guaranteed to trap on authentication failure,
2481   // even if the resulting vtable pointer is unused.
2482   enum class VTableAuthMode {
2483     Authenticate,
2484     MustTrap,
2485     UnsafeUbsanStrip // Should only be used for Vptr UBSan check
2486   };
2487   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2488   /// to by This.
2489   llvm::Value *
2490   GetVTablePtr(Address This, llvm::Type *VTableTy,
2491                const CXXRecordDecl *VTableClass,
2492                VTableAuthMode AuthMode = VTableAuthMode::Authenticate);
2493 
2494   enum CFITypeCheckKind {
2495     CFITCK_VCall,
2496     CFITCK_NVCall,
2497     CFITCK_DerivedCast,
2498     CFITCK_UnrelatedCast,
2499     CFITCK_ICall,
2500     CFITCK_NVMFCall,
2501     CFITCK_VMFCall,
2502   };
2503 
2504   /// Derived is the presumed address of an object of type T after a
2505   /// cast. If T is a polymorphic class type, emit a check that the virtual
2506   /// table for Derived belongs to a class derived from T.
2507   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2508                                  CFITypeCheckKind TCK, SourceLocation Loc);
2509 
2510   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2511   /// If vptr CFI is enabled, emit a check that VTable is valid.
2512   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2513                                  CFITypeCheckKind TCK, SourceLocation Loc);
2514 
2515   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2516   /// RD using llvm.type.test.
2517   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2518                           CFITypeCheckKind TCK, SourceLocation Loc);
2519 
2520   /// If whole-program virtual table optimization is enabled, emit an assumption
2521   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2522   /// enabled, emit a check that VTable is a member of RD's type identifier.
2523   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2524                                     llvm::Value *VTable, SourceLocation Loc);
2525 
2526   /// Returns whether we should perform a type checked load when loading a
2527   /// virtual function for virtual calls to members of RD. This is generally
2528   /// true when both vcall CFI and whole-program-vtables are enabled.
2529   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2530 
2531   /// Emit a type checked load from the given vtable.
2532   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2533                                          llvm::Value *VTable,
2534                                          llvm::Type *VTableTy,
2535                                          uint64_t VTableByteOffset);
2536 
2537   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2538   /// given phase of destruction for a destructor.  The end result
2539   /// should call destructors on members and base classes in reverse
2540   /// order of their construction.
2541   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2542 
2543   /// ShouldInstrumentFunction - Return true if the current function should be
2544   /// instrumented with __cyg_profile_func_* calls
2545   bool ShouldInstrumentFunction();
2546 
2547   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2548   /// should not be instrumented with sanitizers.
2549   bool ShouldSkipSanitizerInstrumentation();
2550 
2551   /// ShouldXRayInstrument - Return true if the current function should be
2552   /// instrumented with XRay nop sleds.
2553   bool ShouldXRayInstrumentFunction() const;
2554 
2555   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2556   /// XRay custom event handling calls.
2557   bool AlwaysEmitXRayCustomEvents() const;
2558 
2559   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2560   /// XRay typed event handling calls.
2561   bool AlwaysEmitXRayTypedEvents() const;
2562 
2563   /// Return a type hash constant for a function instrumented by
2564   /// -fsanitize=function.
2565   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2566 
2567   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2568   /// arguments for the given function. This is also responsible for naming the
2569   /// LLVM function arguments.
2570   void EmitFunctionProlog(const CGFunctionInfo &FI,
2571                           llvm::Function *Fn,
2572                           const FunctionArgList &Args);
2573 
2574   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2575   /// given temporary.
2576   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2577                           SourceLocation EndLoc);
2578 
2579   /// Emit a test that checks if the return value \p RV is nonnull.
2580   void EmitReturnValueCheck(llvm::Value *RV);
2581 
2582   /// EmitStartEHSpec - Emit the start of the exception spec.
2583   void EmitStartEHSpec(const Decl *D);
2584 
2585   /// EmitEndEHSpec - Emit the end of the exception spec.
2586   void EmitEndEHSpec(const Decl *D);
2587 
2588   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2589   llvm::BasicBlock *getTerminateLandingPad();
2590 
2591   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2592   /// terminate.
2593   llvm::BasicBlock *getTerminateFunclet();
2594 
2595   /// getTerminateHandler - Return a handler (not a landing pad, just
2596   /// a catch handler) that just calls terminate.  This is used when
2597   /// a terminate scope encloses a try.
2598   llvm::BasicBlock *getTerminateHandler();
2599 
2600   llvm::Type *ConvertTypeForMem(QualType T);
2601   llvm::Type *ConvertType(QualType T);
2602   llvm::Type *convertTypeForLoadStore(QualType ASTTy,
2603                                       llvm::Type *LLVMTy = nullptr);
2604   llvm::Type *ConvertType(const TypeDecl *T) {
2605     return ConvertType(getContext().getTypeDeclType(T));
2606   }
2607 
2608   /// LoadObjCSelf - Load the value of self. This function is only valid while
2609   /// generating code for an Objective-C method.
2610   llvm::Value *LoadObjCSelf();
2611 
2612   /// TypeOfSelfObject - Return type of object that this self represents.
2613   QualType TypeOfSelfObject();
2614 
2615   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2616   static TypeEvaluationKind getEvaluationKind(QualType T);
2617 
2618   static bool hasScalarEvaluationKind(QualType T) {
2619     return getEvaluationKind(T) == TEK_Scalar;
2620   }
2621 
2622   static bool hasAggregateEvaluationKind(QualType T) {
2623     return getEvaluationKind(T) == TEK_Aggregate;
2624   }
2625 
2626   /// createBasicBlock - Create an LLVM basic block.
2627   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2628                                      llvm::Function *parent = nullptr,
2629                                      llvm::BasicBlock *before = nullptr) {
2630     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2631   }
2632 
2633   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2634   /// label maps to.
2635   JumpDest getJumpDestForLabel(const LabelDecl *S);
2636 
2637   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2638   /// another basic block, simplify it. This assumes that no other code could
2639   /// potentially reference the basic block.
2640   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2641 
2642   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2643   /// adding a fall-through branch from the current insert block if
2644   /// necessary. It is legal to call this function even if there is no current
2645   /// insertion point.
2646   ///
2647   /// IsFinished - If true, indicates that the caller has finished emitting
2648   /// branches to the given block and does not expect to emit code into it. This
2649   /// means the block can be ignored if it is unreachable.
2650   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2651 
2652   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2653   /// near its uses, and leave the insertion point in it.
2654   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2655 
2656   /// EmitBranch - Emit a branch to the specified basic block from the current
2657   /// insert block, taking care to avoid creation of branches from dummy
2658   /// blocks. It is legal to call this function even if there is no current
2659   /// insertion point.
2660   ///
2661   /// This function clears the current insertion point. The caller should follow
2662   /// calls to this function with calls to Emit*Block prior to generation new
2663   /// code.
2664   void EmitBranch(llvm::BasicBlock *Block);
2665 
2666   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2667   /// indicates that the current code being emitted is unreachable.
2668   bool HaveInsertPoint() const {
2669     return Builder.GetInsertBlock() != nullptr;
2670   }
2671 
2672   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2673   /// emitted IR has a place to go. Note that by definition, if this function
2674   /// creates a block then that block is unreachable; callers may do better to
2675   /// detect when no insertion point is defined and simply skip IR generation.
2676   void EnsureInsertPoint() {
2677     if (!HaveInsertPoint())
2678       EmitBlock(createBasicBlock());
2679   }
2680 
2681   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2682   /// specified stmt yet.
2683   void ErrorUnsupported(const Stmt *S, const char *Type);
2684 
2685   //===--------------------------------------------------------------------===//
2686   //                                  Helpers
2687   //===--------------------------------------------------------------------===//
2688 
2689   Address mergeAddressesInConditionalExpr(Address LHS, Address RHS,
2690                                           llvm::BasicBlock *LHSBlock,
2691                                           llvm::BasicBlock *RHSBlock,
2692                                           llvm::BasicBlock *MergeBlock,
2693                                           QualType MergedType) {
2694     Builder.SetInsertPoint(MergeBlock);
2695     llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond");
2696     PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock);
2697     PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock);
2698     LHS.replaceBasePointer(PtrPhi);
2699     LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment()));
2700     return LHS;
2701   }
2702 
2703   /// Construct an address with the natural alignment of T. If a pointer to T
2704   /// is expected to be signed, the pointer passed to this function must have
2705   /// been signed, and the returned Address will have the pointer authentication
2706   /// information needed to authenticate the signed pointer.
2707   Address makeNaturalAddressForPointer(
2708       llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(),
2709       bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr,
2710       TBAAAccessInfo *TBAAInfo = nullptr,
2711       KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
2712     if (Alignment.isZero())
2713       Alignment =
2714           CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType);
2715     return Address(Ptr, ConvertTypeForMem(T), Alignment,
2716                    CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr,
2717                    IsKnownNonNull);
2718   }
2719 
2720   LValue MakeAddrLValue(Address Addr, QualType T,
2721                         AlignmentSource Source = AlignmentSource::Type) {
2722     return MakeAddrLValue(Addr, T, LValueBaseInfo(Source),
2723                           CGM.getTBAAAccessInfo(T));
2724   }
2725 
2726   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2727                         TBAAAccessInfo TBAAInfo) {
2728     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2729   }
2730 
2731   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2732                         AlignmentSource Source = AlignmentSource::Type) {
2733     return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T,
2734                           LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2735   }
2736 
2737   /// Same as MakeAddrLValue above except that the pointer is known to be
2738   /// unsigned.
2739   LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2740                            AlignmentSource Source = AlignmentSource::Type) {
2741     Address Addr(V, ConvertTypeForMem(T), Alignment);
2742     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2743                             CGM.getTBAAAccessInfo(T));
2744   }
2745 
2746   LValue
2747   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2748                             AlignmentSource Source = AlignmentSource::Type) {
2749     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2750                             TBAAAccessInfo());
2751   }
2752 
2753   /// Given a value of type T* that may not be to a complete object, construct
2754   /// an l-value with the natural pointee alignment of T.
2755   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2756 
2757   LValue
2758   MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
2759                              KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
2760 
2761   /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known
2762   /// to be unsigned.
2763   LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T);
2764 
2765   LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T);
2766 
2767   Address EmitLoadOfReference(LValue RefLVal,
2768                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2769                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2770   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2771   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2772                                    AlignmentSource Source =
2773                                        AlignmentSource::Type) {
2774     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2775                                     CGM.getTBAAAccessInfo(RefTy));
2776     return EmitLoadOfReferenceLValue(RefLVal);
2777   }
2778 
2779   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2780   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2781   /// it is loaded from.
2782   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2783                             LValueBaseInfo *BaseInfo = nullptr,
2784                             TBAAAccessInfo *TBAAInfo = nullptr);
2785   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2786 
2787 private:
2788   struct AllocaTracker {
2789     void Add(llvm::AllocaInst *I) { Allocas.push_back(I); }
2790     llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); }
2791 
2792   private:
2793     llvm::SmallVector<llvm::AllocaInst *> Allocas;
2794   };
2795   AllocaTracker *Allocas = nullptr;
2796 
2797 public:
2798   // Captures all the allocas created during the scope of its RAII object.
2799   struct AllocaTrackerRAII {
2800     AllocaTrackerRAII(CodeGenFunction &CGF)
2801         : CGF(CGF), OldTracker(CGF.Allocas) {
2802       CGF.Allocas = &Tracker;
2803     }
2804     ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; }
2805 
2806     llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); }
2807 
2808   private:
2809     CodeGenFunction &CGF;
2810     AllocaTracker *OldTracker;
2811     AllocaTracker Tracker;
2812   };
2813 
2814   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2815   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2816   /// insertion point of the builder. The caller is responsible for setting an
2817   /// appropriate alignment on
2818   /// the alloca.
2819   ///
2820   /// \p ArraySize is the number of array elements to be allocated if it
2821   ///    is not nullptr.
2822   ///
2823   /// LangAS::Default is the address space of pointers to local variables and
2824   /// temporaries, as exposed in the source language. In certain
2825   /// configurations, this is not the same as the alloca address space, and a
2826   /// cast is needed to lift the pointer from the alloca AS into
2827   /// LangAS::Default. This can happen when the target uses a restricted
2828   /// address space for the stack but the source language requires
2829   /// LangAS::Default to be a generic address space. The latter condition is
2830   /// common for most programming languages; OpenCL is an exception in that
2831   /// LangAS::Default is the private address space, which naturally maps
2832   /// to the stack.
2833   ///
2834   /// Because the address of a temporary is often exposed to the program in
2835   /// various ways, this function will perform the cast. The original alloca
2836   /// instruction is returned through \p Alloca if it is not nullptr.
2837   ///
2838   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2839   /// more efficient if the caller knows that the address will not be exposed.
2840   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2841                                      llvm::Value *ArraySize = nullptr);
2842   RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2843                               const Twine &Name = "tmp",
2844                               llvm::Value *ArraySize = nullptr,
2845                               RawAddress *Alloca = nullptr);
2846   RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2847                                          const Twine &Name = "tmp",
2848                                          llvm::Value *ArraySize = nullptr);
2849 
2850   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2851   /// default ABI alignment of the given LLVM type.
2852   ///
2853   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2854   /// any given AST type that happens to have been lowered to the
2855   /// given IR type.  This should only ever be used for function-local,
2856   /// IR-driven manipulations like saving and restoring a value.  Do
2857   /// not hand this address off to arbitrary IRGen routines, and especially
2858   /// do not pass it as an argument to a function that might expect a
2859   /// properly ABI-aligned value.
2860   RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2861                                           const Twine &Name = "tmp");
2862 
2863   /// CreateIRTemp - Create a temporary IR object of the given type, with
2864   /// appropriate alignment. This routine should only be used when an temporary
2865   /// value needs to be stored into an alloca (for example, to avoid explicit
2866   /// PHI construction), but the type is the IR type, not the type appropriate
2867   /// for storing in memory.
2868   ///
2869   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2870   /// ConvertType instead of ConvertTypeForMem.
2871   RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp");
2872 
2873   /// CreateMemTemp - Create a temporary memory object of the given type, with
2874   /// appropriate alignmen and cast it to the default address space. Returns
2875   /// the original alloca instruction by \p Alloca if it is not nullptr.
2876   RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp",
2877                            RawAddress *Alloca = nullptr);
2878   RawAddress CreateMemTemp(QualType T, CharUnits Align,
2879                            const Twine &Name = "tmp",
2880                            RawAddress *Alloca = nullptr);
2881 
2882   /// CreateMemTemp - Create a temporary memory object of the given type, with
2883   /// appropriate alignmen without casting it to the default address space.
2884   RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2885   RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align,
2886                                       const Twine &Name = "tmp");
2887 
2888   /// CreateAggTemp - Create a temporary memory object for the given
2889   /// aggregate type.
2890   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2891                              RawAddress *Alloca = nullptr) {
2892     return AggValueSlot::forAddr(
2893         CreateMemTemp(T, Name, Alloca), T.getQualifiers(),
2894         AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers,
2895         AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap);
2896   }
2897 
2898   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2899   /// expression and compare the result against zero, returning an Int1Ty value.
2900   llvm::Value *EvaluateExprAsBool(const Expr *E);
2901 
2902   /// Retrieve the implicit cast expression of the rhs in a binary operator
2903   /// expression by passing pointers to Value and QualType
2904   /// This is used for implicit bitfield conversion checks, which
2905   /// must compare with the value before potential truncation.
2906   llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E,
2907                                                      llvm::Value **Previous,
2908                                                      QualType *SrcType);
2909 
2910   /// Emit a check that an [implicit] conversion of a bitfield. It is not UB,
2911   /// so we use the value after conversion.
2912   void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType,
2913                                    llvm::Value *Dst, QualType DstType,
2914                                    const CGBitFieldInfo &Info,
2915                                    SourceLocation Loc);
2916 
2917   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2918   void EmitIgnoredExpr(const Expr *E);
2919 
2920   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2921   /// any type.  The result is returned as an RValue struct.  If this is an
2922   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2923   /// the result should be returned.
2924   ///
2925   /// \param ignoreResult True if the resulting value isn't used.
2926   RValue EmitAnyExpr(const Expr *E,
2927                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2928                      bool ignoreResult = false);
2929 
2930   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2931   // or the value of the expression, depending on how va_list is defined.
2932   Address EmitVAListRef(const Expr *E);
2933 
2934   /// Emit a "reference" to a __builtin_ms_va_list; this is
2935   /// always the value of the expression, because a __builtin_ms_va_list is a
2936   /// pointer to a char.
2937   Address EmitMSVAListRef(const Expr *E);
2938 
2939   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2940   /// always be accessible even if no aggregate location is provided.
2941   RValue EmitAnyExprToTemp(const Expr *E);
2942 
2943   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2944   /// arbitrary expression into the given memory location.
2945   void EmitAnyExprToMem(const Expr *E, Address Location,
2946                         Qualifiers Quals, bool IsInitializer);
2947 
2948   void EmitAnyExprToExn(const Expr *E, Address Addr);
2949 
2950   /// EmitInitializationToLValue - Emit an initializer to an LValue.
2951   void EmitInitializationToLValue(
2952       const Expr *E, LValue LV,
2953       AggValueSlot::IsZeroed_t IsZeroed = AggValueSlot::IsNotZeroed);
2954 
2955   /// EmitExprAsInit - Emits the code necessary to initialize a
2956   /// location in memory with the given initializer.
2957   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2958                       bool capturedByInit);
2959 
2960   /// hasVolatileMember - returns true if aggregate type has a volatile
2961   /// member.
2962   bool hasVolatileMember(QualType T) {
2963     if (const RecordType *RT = T->getAs<RecordType>()) {
2964       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2965       return RD->hasVolatileMember();
2966     }
2967     return false;
2968   }
2969 
2970   /// Determine whether a return value slot may overlap some other object.
2971   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2972     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2973     // class subobjects. These cases may need to be revisited depending on the
2974     // resolution of the relevant core issue.
2975     return AggValueSlot::DoesNotOverlap;
2976   }
2977 
2978   /// Determine whether a field initialization may overlap some other object.
2979   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2980 
2981   /// Determine whether a base class initialization may overlap some other
2982   /// object.
2983   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2984                                                 const CXXRecordDecl *BaseRD,
2985                                                 bool IsVirtual);
2986 
2987   /// Emit an aggregate assignment.
2988   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2989     bool IsVolatile = hasVolatileMember(EltTy);
2990     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2991   }
2992 
2993   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2994                              AggValueSlot::Overlap_t MayOverlap) {
2995     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2996   }
2997 
2998   /// EmitAggregateCopy - Emit an aggregate copy.
2999   ///
3000   /// \param isVolatile \c true iff either the source or the destination is
3001   ///        volatile.
3002   /// \param MayOverlap Whether the tail padding of the destination might be
3003   ///        occupied by some other object. More efficient code can often be
3004   ///        generated if not.
3005   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
3006                          AggValueSlot::Overlap_t MayOverlap,
3007                          bool isVolatile = false);
3008 
3009   /// GetAddrOfLocalVar - Return the address of a local variable.
3010   Address GetAddrOfLocalVar(const VarDecl *VD) {
3011     auto it = LocalDeclMap.find(VD);
3012     assert(it != LocalDeclMap.end() &&
3013            "Invalid argument to GetAddrOfLocalVar(), no decl!");
3014     return it->second;
3015   }
3016 
3017   /// Given an opaque value expression, return its LValue mapping if it exists,
3018   /// otherwise create one.
3019   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
3020 
3021   /// Given an opaque value expression, return its RValue mapping if it exists,
3022   /// otherwise create one.
3023   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
3024 
3025   /// Get the index of the current ArrayInitLoopExpr, if any.
3026   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
3027 
3028   /// getAccessedFieldNo - Given an encoded value and a result number, return
3029   /// the input field number being accessed.
3030   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
3031 
3032   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
3033   llvm::BasicBlock *GetIndirectGotoBlock();
3034 
3035   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
3036   static bool IsWrappedCXXThis(const Expr *E);
3037 
3038   /// EmitNullInitialization - Generate code to set a value of the given type to
3039   /// null, If the type contains data member pointers, they will be initialized
3040   /// to -1 in accordance with the Itanium C++ ABI.
3041   void EmitNullInitialization(Address DestPtr, QualType Ty);
3042 
3043   /// Emits a call to an LLVM variable-argument intrinsic, either
3044   /// \c llvm.va_start or \c llvm.va_end.
3045   /// \param ArgValue A reference to the \c va_list as emitted by either
3046   /// \c EmitVAListRef or \c EmitMSVAListRef.
3047   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
3048   /// calls \c llvm.va_end.
3049   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
3050 
3051   /// Generate code to get an argument from the passed in pointer
3052   /// and update it accordingly.
3053   /// \param VE The \c VAArgExpr for which to generate code.
3054   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
3055   /// either \c EmitVAListRef or \c EmitMSVAListRef.
3056   /// \returns A pointer to the argument.
3057   // FIXME: We should be able to get rid of this method and use the va_arg
3058   // instruction in LLVM instead once it works well enough.
3059   RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
3060                    AggValueSlot Slot = AggValueSlot::ignored());
3061 
3062   /// emitArrayLength - Compute the length of an array, even if it's a
3063   /// VLA, and drill down to the base element type.
3064   llvm::Value *emitArrayLength(const ArrayType *arrayType,
3065                                QualType &baseType,
3066                                Address &addr);
3067 
3068   /// EmitVLASize - Capture all the sizes for the VLA expressions in
3069   /// the given variably-modified type and store them in the VLASizeMap.
3070   ///
3071   /// This function can be called with a null (unreachable) insert point.
3072   void EmitVariablyModifiedType(QualType Ty);
3073 
3074   struct VlaSizePair {
3075     llvm::Value *NumElts;
3076     QualType Type;
3077 
3078     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
3079   };
3080 
3081   /// Return the number of elements for a single dimension
3082   /// for the given array type.
3083   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
3084   VlaSizePair getVLAElements1D(QualType vla);
3085 
3086   /// Returns an LLVM value that corresponds to the size,
3087   /// in non-variably-sized elements, of a variable length array type,
3088   /// plus that largest non-variably-sized element type.  Assumes that
3089   /// the type has already been emitted with EmitVariablyModifiedType.
3090   VlaSizePair getVLASize(const VariableArrayType *vla);
3091   VlaSizePair getVLASize(QualType vla);
3092 
3093   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
3094   /// generating code for an C++ member function.
3095   llvm::Value *LoadCXXThis() {
3096     assert(CXXThisValue && "no 'this' value for this function");
3097     return CXXThisValue;
3098   }
3099   Address LoadCXXThisAddress();
3100 
3101   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
3102   /// virtual bases.
3103   // FIXME: Every place that calls LoadCXXVTT is something
3104   // that needs to be abstracted properly.
3105   llvm::Value *LoadCXXVTT() {
3106     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
3107     return CXXStructorImplicitParamValue;
3108   }
3109 
3110   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
3111   /// complete class to the given direct base.
3112   Address
3113   GetAddressOfDirectBaseInCompleteClass(Address Value,
3114                                         const CXXRecordDecl *Derived,
3115                                         const CXXRecordDecl *Base,
3116                                         bool BaseIsVirtual);
3117 
3118   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
3119 
3120   /// GetAddressOfBaseClass - This function will add the necessary delta to the
3121   /// load of 'this' and returns address of the base class.
3122   Address GetAddressOfBaseClass(Address Value,
3123                                 const CXXRecordDecl *Derived,
3124                                 CastExpr::path_const_iterator PathBegin,
3125                                 CastExpr::path_const_iterator PathEnd,
3126                                 bool NullCheckValue, SourceLocation Loc);
3127 
3128   Address GetAddressOfDerivedClass(Address Value,
3129                                    const CXXRecordDecl *Derived,
3130                                    CastExpr::path_const_iterator PathBegin,
3131                                    CastExpr::path_const_iterator PathEnd,
3132                                    bool NullCheckValue);
3133 
3134   /// GetVTTParameter - Return the VTT parameter that should be passed to a
3135   /// base constructor/destructor with virtual bases.
3136   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
3137   /// to ItaniumCXXABI.cpp together with all the references to VTT.
3138   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
3139                                bool Delegating);
3140 
3141   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
3142                                       CXXCtorType CtorType,
3143                                       const FunctionArgList &Args,
3144                                       SourceLocation Loc);
3145   // It's important not to confuse this and the previous function. Delegating
3146   // constructors are the C++0x feature. The constructor delegate optimization
3147   // is used to reduce duplication in the base and complete consturctors where
3148   // they are substantially the same.
3149   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3150                                         const FunctionArgList &Args);
3151 
3152   /// Emit a call to an inheriting constructor (that is, one that invokes a
3153   /// constructor inherited from a base class) by inlining its definition. This
3154   /// is necessary if the ABI does not support forwarding the arguments to the
3155   /// base class constructor (because they're variadic or similar).
3156   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3157                                                CXXCtorType CtorType,
3158                                                bool ForVirtualBase,
3159                                                bool Delegating,
3160                                                CallArgList &Args);
3161 
3162   /// Emit a call to a constructor inherited from a base class, passing the
3163   /// current constructor's arguments along unmodified (without even making
3164   /// a copy).
3165   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
3166                                        bool ForVirtualBase, Address This,
3167                                        bool InheritedFromVBase,
3168                                        const CXXInheritedCtorInitExpr *E);
3169 
3170   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3171                               bool ForVirtualBase, bool Delegating,
3172                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
3173 
3174   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3175                               bool ForVirtualBase, bool Delegating,
3176                               Address This, CallArgList &Args,
3177                               AggValueSlot::Overlap_t Overlap,
3178                               SourceLocation Loc, bool NewPointerIsChecked,
3179                               llvm::CallBase **CallOrInvoke = nullptr);
3180 
3181   /// Emit assumption load for all bases. Requires to be called only on
3182   /// most-derived class and not under construction of the object.
3183   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
3184 
3185   /// Emit assumption that vptr load == global vtable.
3186   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
3187 
3188   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
3189                                       Address This, Address Src,
3190                                       const CXXConstructExpr *E);
3191 
3192   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3193                                   const ArrayType *ArrayTy,
3194                                   Address ArrayPtr,
3195                                   const CXXConstructExpr *E,
3196                                   bool NewPointerIsChecked,
3197                                   bool ZeroInitialization = false);
3198 
3199   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3200                                   llvm::Value *NumElements,
3201                                   Address ArrayPtr,
3202                                   const CXXConstructExpr *E,
3203                                   bool NewPointerIsChecked,
3204                                   bool ZeroInitialization = false);
3205 
3206   static Destroyer destroyCXXObject;
3207 
3208   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
3209                              bool ForVirtualBase, bool Delegating, Address This,
3210                              QualType ThisTy);
3211 
3212   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
3213                                llvm::Type *ElementTy, Address NewPtr,
3214                                llvm::Value *NumElements,
3215                                llvm::Value *AllocSizeWithoutCookie);
3216 
3217   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
3218                         Address Ptr);
3219 
3220   void EmitSehCppScopeBegin();
3221   void EmitSehCppScopeEnd();
3222   void EmitSehTryScopeBegin();
3223   void EmitSehTryScopeEnd();
3224 
3225   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
3226   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
3227 
3228   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3229   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3230 
3231   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3232                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
3233                       CharUnits CookieSize = CharUnits());
3234 
3235   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3236                                   const CallExpr *TheCallExpr, bool IsDelete);
3237 
3238   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3239   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3240   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3241 
3242   /// Situations in which we might emit a check for the suitability of a
3243   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3244   /// compiler-rt.
3245   enum TypeCheckKind {
3246     /// Checking the operand of a load. Must be suitably sized and aligned.
3247     TCK_Load,
3248     /// Checking the destination of a store. Must be suitably sized and aligned.
3249     TCK_Store,
3250     /// Checking the bound value in a reference binding. Must be suitably sized
3251     /// and aligned, but is not required to refer to an object (until the
3252     /// reference is used), per core issue 453.
3253     TCK_ReferenceBinding,
3254     /// Checking the object expression in a non-static data member access. Must
3255     /// be an object within its lifetime.
3256     TCK_MemberAccess,
3257     /// Checking the 'this' pointer for a call to a non-static member function.
3258     /// Must be an object within its lifetime.
3259     TCK_MemberCall,
3260     /// Checking the 'this' pointer for a constructor call.
3261     TCK_ConstructorCall,
3262     /// Checking the operand of a static_cast to a derived pointer type. Must be
3263     /// null or an object within its lifetime.
3264     TCK_DowncastPointer,
3265     /// Checking the operand of a static_cast to a derived reference type. Must
3266     /// be an object within its lifetime.
3267     TCK_DowncastReference,
3268     /// Checking the operand of a cast to a base object. Must be suitably sized
3269     /// and aligned.
3270     TCK_Upcast,
3271     /// Checking the operand of a cast to a virtual base object. Must be an
3272     /// object within its lifetime.
3273     TCK_UpcastToVirtualBase,
3274     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3275     TCK_NonnullAssign,
3276     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3277     /// null or an object within its lifetime.
3278     TCK_DynamicOperation
3279   };
3280 
3281   /// Determine whether the pointer type check \p TCK permits null pointers.
3282   static bool isNullPointerAllowed(TypeCheckKind TCK);
3283 
3284   /// Determine whether the pointer type check \p TCK requires a vptr check.
3285   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3286 
3287   /// Whether any type-checking sanitizers are enabled. If \c false,
3288   /// calls to EmitTypeCheck can be skipped.
3289   bool sanitizePerformTypeCheck() const;
3290 
3291   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV,
3292                      QualType Type, SanitizerSet SkippedChecks = SanitizerSet(),
3293                      llvm::Value *ArraySize = nullptr) {
3294     if (!sanitizePerformTypeCheck())
3295       return;
3296     EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(),
3297                   SkippedChecks, ArraySize);
3298   }
3299 
3300   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr,
3301                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3302                      SanitizerSet SkippedChecks = SanitizerSet(),
3303                      llvm::Value *ArraySize = nullptr) {
3304     if (!sanitizePerformTypeCheck())
3305       return;
3306     EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment,
3307                   SkippedChecks, ArraySize);
3308   }
3309 
3310   /// Emit a check that \p V is the address of storage of the
3311   /// appropriate size and alignment for an object of type \p Type
3312   /// (or if ArraySize is provided, for an array of that bound).
3313   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3314                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3315                      SanitizerSet SkippedChecks = SanitizerSet(),
3316                      llvm::Value *ArraySize = nullptr);
3317 
3318   /// Emit a check that \p Base points into an array object, which
3319   /// we can access at index \p Index. \p Accessed should be \c false if we
3320   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3321   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3322                        QualType IndexType, bool Accessed);
3323   void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3324                            llvm::Value *Index, QualType IndexType,
3325                            QualType IndexedType, bool Accessed);
3326 
3327   // Find a struct's flexible array member and get its offset. It may be
3328   // embedded inside multiple sub-structs, but must still be the last field.
3329   const FieldDecl *
3330   FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD,
3331                                         const FieldDecl *FAMDecl,
3332                                         uint64_t &Offset);
3333 
3334   llvm::Value *GetCountedByFieldExprGEP(const Expr *Base,
3335                                         const FieldDecl *FAMDecl,
3336                                         const FieldDecl *CountDecl);
3337 
3338   /// Build an expression accessing the "counted_by" field.
3339   llvm::Value *EmitLoadOfCountedByField(const Expr *Base,
3340                                         const FieldDecl *FAMDecl,
3341                                         const FieldDecl *CountDecl);
3342 
3343   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3344                                        bool isInc, bool isPre);
3345   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3346                                          bool isInc, bool isPre);
3347 
3348   /// Converts Location to a DebugLoc, if debug information is enabled.
3349   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3350 
3351   /// Get the record field index as represented in debug info.
3352   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3353 
3354 
3355   //===--------------------------------------------------------------------===//
3356   //                            Declaration Emission
3357   //===--------------------------------------------------------------------===//
3358 
3359   /// EmitDecl - Emit a declaration.
3360   ///
3361   /// This function can be called with a null (unreachable) insert point.
3362   void EmitDecl(const Decl &D);
3363 
3364   /// EmitVarDecl - Emit a local variable declaration.
3365   ///
3366   /// This function can be called with a null (unreachable) insert point.
3367   void EmitVarDecl(const VarDecl &D);
3368 
3369   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3370                       bool capturedByInit);
3371 
3372   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3373                              llvm::Value *Address);
3374 
3375   /// Determine whether the given initializer is trivial in the sense
3376   /// that it requires no code to be generated.
3377   bool isTrivialInitializer(const Expr *Init);
3378 
3379   /// EmitAutoVarDecl - Emit an auto variable declaration.
3380   ///
3381   /// This function can be called with a null (unreachable) insert point.
3382   void EmitAutoVarDecl(const VarDecl &D);
3383 
3384   class AutoVarEmission {
3385     friend class CodeGenFunction;
3386 
3387     const VarDecl *Variable;
3388 
3389     /// The address of the alloca for languages with explicit address space
3390     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3391     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3392     /// as a global constant.
3393     Address Addr;
3394 
3395     llvm::Value *NRVOFlag;
3396 
3397     /// True if the variable is a __block variable that is captured by an
3398     /// escaping block.
3399     bool IsEscapingByRef;
3400 
3401     /// True if the variable is of aggregate type and has a constant
3402     /// initializer.
3403     bool IsConstantAggregate;
3404 
3405     /// Non-null if we should use lifetime annotations.
3406     llvm::Value *SizeForLifetimeMarkers;
3407 
3408     /// Address with original alloca instruction. Invalid if the variable was
3409     /// emitted as a global constant.
3410     RawAddress AllocaAddr;
3411 
3412     struct Invalid {};
3413     AutoVarEmission(Invalid)
3414         : Variable(nullptr), Addr(Address::invalid()),
3415           AllocaAddr(RawAddress::invalid()) {}
3416 
3417     AutoVarEmission(const VarDecl &variable)
3418         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3419           IsEscapingByRef(false), IsConstantAggregate(false),
3420           SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {}
3421 
3422     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3423 
3424   public:
3425     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3426 
3427     bool useLifetimeMarkers() const {
3428       return SizeForLifetimeMarkers != nullptr;
3429     }
3430     llvm::Value *getSizeForLifetimeMarkers() const {
3431       assert(useLifetimeMarkers());
3432       return SizeForLifetimeMarkers;
3433     }
3434 
3435     /// Returns the raw, allocated address, which is not necessarily
3436     /// the address of the object itself. It is casted to default
3437     /// address space for address space agnostic languages.
3438     Address getAllocatedAddress() const {
3439       return Addr;
3440     }
3441 
3442     /// Returns the address for the original alloca instruction.
3443     RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; }
3444 
3445     /// Returns the address of the object within this declaration.
3446     /// Note that this does not chase the forwarding pointer for
3447     /// __block decls.
3448     Address getObjectAddress(CodeGenFunction &CGF) const {
3449       if (!IsEscapingByRef) return Addr;
3450 
3451       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3452     }
3453   };
3454   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3455   void EmitAutoVarInit(const AutoVarEmission &emission);
3456   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3457   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3458                               QualType::DestructionKind dtorKind);
3459 
3460   /// Emits the alloca and debug information for the size expressions for each
3461   /// dimension of an array. It registers the association of its (1-dimensional)
3462   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3463   /// reference this node when creating the DISubrange object to describe the
3464   /// array types.
3465   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3466                                               const VarDecl &D,
3467                                               bool EmitDebugInfo);
3468 
3469   void EmitStaticVarDecl(const VarDecl &D,
3470                          llvm::GlobalValue::LinkageTypes Linkage);
3471 
3472   class ParamValue {
3473     union {
3474       Address Addr;
3475       llvm::Value *Value;
3476     };
3477 
3478     bool IsIndirect;
3479 
3480     ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {}
3481     ParamValue(Address A) : Addr(A), IsIndirect(true) {}
3482 
3483   public:
3484     static ParamValue forDirect(llvm::Value *value) {
3485       return ParamValue(value);
3486     }
3487     static ParamValue forIndirect(Address addr) {
3488       assert(!addr.getAlignment().isZero());
3489       return ParamValue(addr);
3490     }
3491 
3492     bool isIndirect() const { return IsIndirect; }
3493     llvm::Value *getAnyValue() const {
3494       if (!isIndirect())
3495         return Value;
3496       assert(!Addr.hasOffset() && "unexpected offset");
3497       return Addr.getBasePointer();
3498     }
3499 
3500     llvm::Value *getDirectValue() const {
3501       assert(!isIndirect());
3502       return Value;
3503     }
3504 
3505     Address getIndirectAddress() const {
3506       assert(isIndirect());
3507       return Addr;
3508     }
3509   };
3510 
3511   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3512   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3513 
3514   /// protectFromPeepholes - Protect a value that we're intending to
3515   /// store to the side, but which will probably be used later, from
3516   /// aggressive peepholing optimizations that might delete it.
3517   ///
3518   /// Pass the result to unprotectFromPeepholes to declare that
3519   /// protection is no longer required.
3520   ///
3521   /// There's no particular reason why this shouldn't apply to
3522   /// l-values, it's just that no existing peepholes work on pointers.
3523   PeepholeProtection protectFromPeepholes(RValue rvalue);
3524   void unprotectFromPeepholes(PeepholeProtection protection);
3525 
3526   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3527                                     SourceLocation Loc,
3528                                     SourceLocation AssumptionLoc,
3529                                     llvm::Value *Alignment,
3530                                     llvm::Value *OffsetValue,
3531                                     llvm::Value *TheCheck,
3532                                     llvm::Instruction *Assumption);
3533 
3534   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3535                                SourceLocation Loc, SourceLocation AssumptionLoc,
3536                                llvm::Value *Alignment,
3537                                llvm::Value *OffsetValue = nullptr);
3538 
3539   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3540                                SourceLocation AssumptionLoc,
3541                                llvm::Value *Alignment,
3542                                llvm::Value *OffsetValue = nullptr);
3543 
3544   //===--------------------------------------------------------------------===//
3545   //                             Statement Emission
3546   //===--------------------------------------------------------------------===//
3547 
3548   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3549   void EmitStopPoint(const Stmt *S);
3550 
3551   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3552   /// this function even if there is no current insertion point.
3553   ///
3554   /// This function may clear the current insertion point; callers should use
3555   /// EnsureInsertPoint if they wish to subsequently generate code without first
3556   /// calling EmitBlock, EmitBranch, or EmitStmt.
3557   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = {});
3558 
3559   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3560   /// necessarily require an insertion point or debug information; typically
3561   /// because the statement amounts to a jump or a container of other
3562   /// statements.
3563   ///
3564   /// \return True if the statement was handled.
3565   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3566 
3567   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3568                            AggValueSlot AVS = AggValueSlot::ignored());
3569   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3570                                        bool GetLast = false,
3571                                        AggValueSlot AVS =
3572                                                 AggValueSlot::ignored());
3573 
3574   /// EmitLabel - Emit the block for the given label. It is legal to call this
3575   /// function even if there is no current insertion point.
3576   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3577 
3578   void EmitLabelStmt(const LabelStmt &S);
3579   void EmitAttributedStmt(const AttributedStmt &S);
3580   void EmitGotoStmt(const GotoStmt &S);
3581   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3582   void EmitIfStmt(const IfStmt &S);
3583 
3584   void EmitWhileStmt(const WhileStmt &S, ArrayRef<const Attr *> Attrs = {});
3585   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = {});
3586   void EmitForStmt(const ForStmt &S, ArrayRef<const Attr *> Attrs = {});
3587   void EmitReturnStmt(const ReturnStmt &S);
3588   void EmitDeclStmt(const DeclStmt &S);
3589   void EmitBreakStmt(const BreakStmt &S);
3590   void EmitContinueStmt(const ContinueStmt &S);
3591   void EmitSwitchStmt(const SwitchStmt &S);
3592   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3593   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3594   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3595   void EmitAsmStmt(const AsmStmt &S);
3596 
3597   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3598   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3599   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3600   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3601   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3602 
3603   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3604   void EmitCoreturnStmt(const CoreturnStmt &S);
3605   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3606                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3607                          bool ignoreResult = false);
3608   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3609   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3610                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3611                          bool ignoreResult = false);
3612   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3613   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3614 
3615   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3616   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3617 
3618   void EmitCXXTryStmt(const CXXTryStmt &S);
3619   void EmitSEHTryStmt(const SEHTryStmt &S);
3620   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3621   void EnterSEHTryStmt(const SEHTryStmt &S);
3622   void ExitSEHTryStmt(const SEHTryStmt &S);
3623   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3624                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3625 
3626   void pushSEHCleanup(CleanupKind kind,
3627                       llvm::Function *FinallyFunc);
3628   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3629                               const Stmt *OutlinedStmt);
3630 
3631   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3632                                             const SEHExceptStmt &Except);
3633 
3634   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3635                                              const SEHFinallyStmt &Finally);
3636 
3637   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3638                                 llvm::Value *ParentFP,
3639                                 llvm::Value *EntryEBP);
3640   llvm::Value *EmitSEHExceptionCode();
3641   llvm::Value *EmitSEHExceptionInfo();
3642   llvm::Value *EmitSEHAbnormalTermination();
3643 
3644   /// Emit simple code for OpenMP directives in Simd-only mode.
3645   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3646 
3647   /// Scan the outlined statement for captures from the parent function. For
3648   /// each capture, mark the capture as escaped and emit a call to
3649   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3650   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3651                           bool IsFilter);
3652 
3653   /// Recovers the address of a local in a parent function. ParentVar is the
3654   /// address of the variable used in the immediate parent function. It can
3655   /// either be an alloca or a call to llvm.localrecover if there are nested
3656   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3657   /// frame.
3658   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3659                                     Address ParentVar,
3660                                     llvm::Value *ParentFP);
3661 
3662   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3663                            ArrayRef<const Attr *> Attrs = {});
3664 
3665   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3666   class OMPCancelStackRAII {
3667     CodeGenFunction &CGF;
3668 
3669   public:
3670     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3671                        bool HasCancel)
3672         : CGF(CGF) {
3673       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3674     }
3675     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3676   };
3677 
3678   /// Returns calculated size of the specified type.
3679   llvm::Value *getTypeSize(QualType Ty);
3680   LValue InitCapturedStruct(const CapturedStmt &S);
3681   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3682   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3683   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3684   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3685                                                      SourceLocation Loc);
3686   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3687                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3688   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3689                           SourceLocation Loc);
3690   /// Perform element by element copying of arrays with type \a
3691   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3692   /// generated by \a CopyGen.
3693   ///
3694   /// \param DestAddr Address of the destination array.
3695   /// \param SrcAddr Address of the source array.
3696   /// \param OriginalType Type of destination and source arrays.
3697   /// \param CopyGen Copying procedure that copies value of single array element
3698   /// to another single array element.
3699   void EmitOMPAggregateAssign(
3700       Address DestAddr, Address SrcAddr, QualType OriginalType,
3701       const llvm::function_ref<void(Address, Address)> CopyGen);
3702   /// Emit proper copying of data from one variable to another.
3703   ///
3704   /// \param OriginalType Original type of the copied variables.
3705   /// \param DestAddr Destination address.
3706   /// \param SrcAddr Source address.
3707   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3708   /// type of the base array element).
3709   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3710   /// the base array element).
3711   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3712   /// DestVD.
3713   void EmitOMPCopy(QualType OriginalType,
3714                    Address DestAddr, Address SrcAddr,
3715                    const VarDecl *DestVD, const VarDecl *SrcVD,
3716                    const Expr *Copy);
3717   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3718   /// \a X = \a E \a BO \a E.
3719   ///
3720   /// \param X Value to be updated.
3721   /// \param E Update value.
3722   /// \param BO Binary operation for update operation.
3723   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3724   /// expression, false otherwise.
3725   /// \param AO Atomic ordering of the generated atomic instructions.
3726   /// \param CommonGen Code generator for complex expressions that cannot be
3727   /// expressed through atomicrmw instruction.
3728   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3729   /// generated, <false, RValue::get(nullptr)> otherwise.
3730   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3731       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3732       llvm::AtomicOrdering AO, SourceLocation Loc,
3733       const llvm::function_ref<RValue(RValue)> CommonGen);
3734   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3735                                  OMPPrivateScope &PrivateScope);
3736   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3737                             OMPPrivateScope &PrivateScope);
3738   void EmitOMPUseDevicePtrClause(
3739       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3740       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3741           CaptureDeviceAddrMap);
3742   void EmitOMPUseDeviceAddrClause(
3743       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3744       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3745           CaptureDeviceAddrMap);
3746   /// Emit code for copyin clause in \a D directive. The next code is
3747   /// generated at the start of outlined functions for directives:
3748   /// \code
3749   /// threadprivate_var1 = master_threadprivate_var1;
3750   /// operator=(threadprivate_var2, master_threadprivate_var2);
3751   /// ...
3752   /// __kmpc_barrier(&loc, global_tid);
3753   /// \endcode
3754   ///
3755   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3756   /// \returns true if at least one copyin variable is found, false otherwise.
3757   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3758   /// Emit initial code for lastprivate variables. If some variable is
3759   /// not also firstprivate, then the default initialization is used. Otherwise
3760   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3761   /// method.
3762   ///
3763   /// \param D Directive that may have 'lastprivate' directives.
3764   /// \param PrivateScope Private scope for capturing lastprivate variables for
3765   /// proper codegen in internal captured statement.
3766   ///
3767   /// \returns true if there is at least one lastprivate variable, false
3768   /// otherwise.
3769   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3770                                     OMPPrivateScope &PrivateScope);
3771   /// Emit final copying of lastprivate values to original variables at
3772   /// the end of the worksharing or simd directive.
3773   ///
3774   /// \param D Directive that has at least one 'lastprivate' directives.
3775   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3776   /// it is the last iteration of the loop code in associated directive, or to
3777   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3778   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3779                                      bool NoFinals,
3780                                      llvm::Value *IsLastIterCond = nullptr);
3781   /// Emit initial code for linear clauses.
3782   void EmitOMPLinearClause(const OMPLoopDirective &D,
3783                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3784   /// Emit final code for linear clauses.
3785   /// \param CondGen Optional conditional code for final part of codegen for
3786   /// linear clause.
3787   void EmitOMPLinearClauseFinal(
3788       const OMPLoopDirective &D,
3789       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3790   /// Emit initial code for reduction variables. Creates reduction copies
3791   /// and initializes them with the values according to OpenMP standard.
3792   ///
3793   /// \param D Directive (possibly) with the 'reduction' clause.
3794   /// \param PrivateScope Private scope for capturing reduction variables for
3795   /// proper codegen in internal captured statement.
3796   ///
3797   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3798                                   OMPPrivateScope &PrivateScope,
3799                                   bool ForInscan = false);
3800   /// Emit final update of reduction values to original variables at
3801   /// the end of the directive.
3802   ///
3803   /// \param D Directive that has at least one 'reduction' directives.
3804   /// \param ReductionKind The kind of reduction to perform.
3805   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3806                                    const OpenMPDirectiveKind ReductionKind);
3807   /// Emit initial code for linear variables. Creates private copies
3808   /// and initializes them with the values according to OpenMP standard.
3809   ///
3810   /// \param D Directive (possibly) with the 'linear' clause.
3811   /// \return true if at least one linear variable is found that should be
3812   /// initialized with the value of the original variable, false otherwise.
3813   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3814 
3815   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3816                                         llvm::Function * /*OutlinedFn*/,
3817                                         const OMPTaskDataTy & /*Data*/)>
3818       TaskGenTy;
3819   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3820                                  const OpenMPDirectiveKind CapturedRegion,
3821                                  const RegionCodeGenTy &BodyGen,
3822                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3823   struct OMPTargetDataInfo {
3824     Address BasePointersArray = Address::invalid();
3825     Address PointersArray = Address::invalid();
3826     Address SizesArray = Address::invalid();
3827     Address MappersArray = Address::invalid();
3828     unsigned NumberOfTargetItems = 0;
3829     explicit OMPTargetDataInfo() = default;
3830     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3831                       Address SizesArray, Address MappersArray,
3832                       unsigned NumberOfTargetItems)
3833         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3834           SizesArray(SizesArray), MappersArray(MappersArray),
3835           NumberOfTargetItems(NumberOfTargetItems) {}
3836   };
3837   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3838                                        const RegionCodeGenTy &BodyGen,
3839                                        OMPTargetDataInfo &InputInfo);
3840   void processInReduction(const OMPExecutableDirective &S,
3841                           OMPTaskDataTy &Data,
3842                           CodeGenFunction &CGF,
3843                           const CapturedStmt *CS,
3844                           OMPPrivateScope &Scope);
3845   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3846   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3847   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3848   void EmitOMPTileDirective(const OMPTileDirective &S);
3849   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3850   void EmitOMPReverseDirective(const OMPReverseDirective &S);
3851   void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S);
3852   void EmitOMPForDirective(const OMPForDirective &S);
3853   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3854   void EmitOMPScopeDirective(const OMPScopeDirective &S);
3855   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3856   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3857   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3858   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3859   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3860   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3861   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3862   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3863   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3864   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3865   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3866   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3867   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3868   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3869   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3870   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3871   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3872   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3873   void EmitOMPScanDirective(const OMPScanDirective &S);
3874   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3875   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3876   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3877   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3878   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3879   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3880   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3881   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3882   void
3883   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3884   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3885   void
3886   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3887   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3888   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3889   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3890   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3891   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3892   void EmitOMPMaskedTaskLoopDirective(const OMPMaskedTaskLoopDirective &S);
3893   void
3894   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3895   void
3896   EmitOMPMaskedTaskLoopSimdDirective(const OMPMaskedTaskLoopSimdDirective &S);
3897   void EmitOMPParallelMasterTaskLoopDirective(
3898       const OMPParallelMasterTaskLoopDirective &S);
3899   void EmitOMPParallelMaskedTaskLoopDirective(
3900       const OMPParallelMaskedTaskLoopDirective &S);
3901   void EmitOMPParallelMasterTaskLoopSimdDirective(
3902       const OMPParallelMasterTaskLoopSimdDirective &S);
3903   void EmitOMPParallelMaskedTaskLoopSimdDirective(
3904       const OMPParallelMaskedTaskLoopSimdDirective &S);
3905   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3906   void EmitOMPDistributeParallelForDirective(
3907       const OMPDistributeParallelForDirective &S);
3908   void EmitOMPDistributeParallelForSimdDirective(
3909       const OMPDistributeParallelForSimdDirective &S);
3910   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3911   void EmitOMPTargetParallelForSimdDirective(
3912       const OMPTargetParallelForSimdDirective &S);
3913   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3914   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3915   void
3916   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3917   void EmitOMPTeamsDistributeParallelForSimdDirective(
3918       const OMPTeamsDistributeParallelForSimdDirective &S);
3919   void EmitOMPTeamsDistributeParallelForDirective(
3920       const OMPTeamsDistributeParallelForDirective &S);
3921   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3922   void EmitOMPTargetTeamsDistributeDirective(
3923       const OMPTargetTeamsDistributeDirective &S);
3924   void EmitOMPTargetTeamsDistributeParallelForDirective(
3925       const OMPTargetTeamsDistributeParallelForDirective &S);
3926   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3927       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3928   void EmitOMPTargetTeamsDistributeSimdDirective(
3929       const OMPTargetTeamsDistributeSimdDirective &S);
3930   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3931   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3932   void EmitOMPTargetParallelGenericLoopDirective(
3933       const OMPTargetParallelGenericLoopDirective &S);
3934   void EmitOMPTargetTeamsGenericLoopDirective(
3935       const OMPTargetTeamsGenericLoopDirective &S);
3936   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3937   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3938   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3939   void EmitOMPAssumeDirective(const OMPAssumeDirective &S);
3940 
3941   /// Emit device code for the target directive.
3942   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3943                                           StringRef ParentName,
3944                                           const OMPTargetDirective &S);
3945   static void
3946   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3947                                       const OMPTargetParallelDirective &S);
3948   /// Emit device code for the target parallel for directive.
3949   static void EmitOMPTargetParallelForDeviceFunction(
3950       CodeGenModule &CGM, StringRef ParentName,
3951       const OMPTargetParallelForDirective &S);
3952   /// Emit device code for the target parallel for simd directive.
3953   static void EmitOMPTargetParallelForSimdDeviceFunction(
3954       CodeGenModule &CGM, StringRef ParentName,
3955       const OMPTargetParallelForSimdDirective &S);
3956   /// Emit device code for the target teams directive.
3957   static void
3958   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3959                                    const OMPTargetTeamsDirective &S);
3960   /// Emit device code for the target teams distribute directive.
3961   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3962       CodeGenModule &CGM, StringRef ParentName,
3963       const OMPTargetTeamsDistributeDirective &S);
3964   /// Emit device code for the target teams distribute simd directive.
3965   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3966       CodeGenModule &CGM, StringRef ParentName,
3967       const OMPTargetTeamsDistributeSimdDirective &S);
3968   /// Emit device code for the target simd directive.
3969   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3970                                               StringRef ParentName,
3971                                               const OMPTargetSimdDirective &S);
3972   /// Emit device code for the target teams distribute parallel for simd
3973   /// directive.
3974   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3975       CodeGenModule &CGM, StringRef ParentName,
3976       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3977 
3978   /// Emit device code for the target teams loop directive.
3979   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3980       CodeGenModule &CGM, StringRef ParentName,
3981       const OMPTargetTeamsGenericLoopDirective &S);
3982 
3983   /// Emit device code for the target parallel loop directive.
3984   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3985       CodeGenModule &CGM, StringRef ParentName,
3986       const OMPTargetParallelGenericLoopDirective &S);
3987 
3988   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3989       CodeGenModule &CGM, StringRef ParentName,
3990       const OMPTargetTeamsDistributeParallelForDirective &S);
3991 
3992   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3993   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3994   /// future it is meant to be the number of loops expected in the loop nests
3995   /// (usually specified by the "collapse" clause) that are collapsed to a
3996   /// single loop by this function.
3997   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3998                                                              int Depth);
3999 
4000   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
4001   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
4002 
4003   /// Emit inner loop of the worksharing/simd construct.
4004   ///
4005   /// \param S Directive, for which the inner loop must be emitted.
4006   /// \param RequiresCleanup true, if directive has some associated private
4007   /// variables.
4008   /// \param LoopCond Bollean condition for loop continuation.
4009   /// \param IncExpr Increment expression for loop control variable.
4010   /// \param BodyGen Generator for the inner body of the inner loop.
4011   /// \param PostIncGen Genrator for post-increment code (required for ordered
4012   /// loop directvies).
4013   void EmitOMPInnerLoop(
4014       const OMPExecutableDirective &S, bool RequiresCleanup,
4015       const Expr *LoopCond, const Expr *IncExpr,
4016       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
4017       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
4018 
4019   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
4020   /// Emit initial code for loop counters of loop-based directives.
4021   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
4022                                   OMPPrivateScope &LoopScope);
4023 
4024   /// Helper for the OpenMP loop directives.
4025   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
4026 
4027   /// Emit code for the worksharing loop-based directive.
4028   /// \return true, if this construct has any lastprivate clause, false -
4029   /// otherwise.
4030   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
4031                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
4032                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
4033 
4034   /// Emit code for the distribute loop-based directive.
4035   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
4036                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
4037 
4038   /// Helpers for the OpenMP loop directives.
4039   void EmitOMPSimdInit(const OMPLoopDirective &D);
4040   void EmitOMPSimdFinal(
4041       const OMPLoopDirective &D,
4042       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
4043 
4044   /// Emits the lvalue for the expression with possibly captured variable.
4045   LValue EmitOMPSharedLValue(const Expr *E);
4046 
4047 private:
4048   /// Helpers for blocks.
4049   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
4050 
4051   /// struct with the values to be passed to the OpenMP loop-related functions
4052   struct OMPLoopArguments {
4053     /// loop lower bound
4054     Address LB = Address::invalid();
4055     /// loop upper bound
4056     Address UB = Address::invalid();
4057     /// loop stride
4058     Address ST = Address::invalid();
4059     /// isLastIteration argument for runtime functions
4060     Address IL = Address::invalid();
4061     /// Chunk value generated by sema
4062     llvm::Value *Chunk = nullptr;
4063     /// EnsureUpperBound
4064     Expr *EUB = nullptr;
4065     /// IncrementExpression
4066     Expr *IncExpr = nullptr;
4067     /// Loop initialization
4068     Expr *Init = nullptr;
4069     /// Loop exit condition
4070     Expr *Cond = nullptr;
4071     /// Update of LB after a whole chunk has been executed
4072     Expr *NextLB = nullptr;
4073     /// Update of UB after a whole chunk has been executed
4074     Expr *NextUB = nullptr;
4075     /// Distinguish between the for distribute and sections
4076     OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown;
4077     OMPLoopArguments() = default;
4078     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
4079                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
4080                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
4081                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
4082                      Expr *NextUB = nullptr)
4083         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
4084           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
4085           NextUB(NextUB) {}
4086   };
4087   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
4088                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
4089                         const OMPLoopArguments &LoopArgs,
4090                         const CodeGenLoopTy &CodeGenLoop,
4091                         const CodeGenOrderedTy &CodeGenOrdered);
4092   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
4093                            bool IsMonotonic, const OMPLoopDirective &S,
4094                            OMPPrivateScope &LoopScope, bool Ordered,
4095                            const OMPLoopArguments &LoopArgs,
4096                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
4097   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
4098                                   const OMPLoopDirective &S,
4099                                   OMPPrivateScope &LoopScope,
4100                                   const OMPLoopArguments &LoopArgs,
4101                                   const CodeGenLoopTy &CodeGenLoopContent);
4102   /// Emit code for sections directive.
4103   void EmitSections(const OMPExecutableDirective &S);
4104 
4105 public:
4106   //===--------------------------------------------------------------------===//
4107   //                         OpenACC Emission
4108   //===--------------------------------------------------------------------===//
4109   void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) {
4110     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4111     // simply emitting its structured block, but in the future we will implement
4112     // some sort of IR.
4113     EmitStmt(S.getStructuredBlock());
4114   }
4115 
4116   void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) {
4117     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4118     // simply emitting its loop, but in the future we will implement
4119     // some sort of IR.
4120     EmitStmt(S.getLoop());
4121   }
4122 
4123   void EmitOpenACCCombinedConstruct(const OpenACCCombinedConstruct &S) {
4124     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4125     // simply emitting its loop, but in the future we will implement
4126     // some sort of IR.
4127     EmitStmt(S.getLoop());
4128   }
4129 
4130   void EmitOpenACCDataConstruct(const OpenACCDataConstruct &S) {
4131     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4132     // simply emitting its structured block, but in the future we will implement
4133     // some sort of IR.
4134     EmitStmt(S.getStructuredBlock());
4135   }
4136 
4137   void EmitOpenACCEnterDataConstruct(const OpenACCEnterDataConstruct &S) {
4138     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4139     // but in the future we will implement some sort of IR.
4140   }
4141 
4142   void EmitOpenACCExitDataConstruct(const OpenACCExitDataConstruct &S) {
4143     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4144     // but in the future we will implement some sort of IR.
4145   }
4146 
4147   void EmitOpenACCHostDataConstruct(const OpenACCHostDataConstruct &S) {
4148     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4149     // simply emitting its structured block, but in the future we will implement
4150     // some sort of IR.
4151     EmitStmt(S.getStructuredBlock());
4152   }
4153 
4154   void EmitOpenACCWaitConstruct(const OpenACCWaitConstruct &S) {
4155     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4156     // but in the future we will implement some sort of IR.
4157   }
4158 
4159   void EmitOpenACCInitConstruct(const OpenACCInitConstruct &S) {
4160     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4161     // but in the future we will implement some sort of IR.
4162   }
4163 
4164   void EmitOpenACCShutdownConstruct(const OpenACCShutdownConstruct &S) {
4165     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4166     // but in the future we will implement some sort of IR.
4167   }
4168 
4169   void EmitOpenACCSetConstruct(const OpenACCSetConstruct &S) {
4170     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4171     // but in the future we will implement some sort of IR.
4172   }
4173 
4174   void EmitOpenACCUpdateConstruct(const OpenACCUpdateConstruct &S) {
4175     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4176     // but in the future we will implement some sort of IR.
4177   }
4178 
4179   //===--------------------------------------------------------------------===//
4180   //                         LValue Expression Emission
4181   //===--------------------------------------------------------------------===//
4182 
4183   /// Create a check that a scalar RValue is non-null.
4184   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
4185 
4186   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
4187   RValue GetUndefRValue(QualType Ty);
4188 
4189   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
4190   /// and issue an ErrorUnsupported style diagnostic (using the
4191   /// provided Name).
4192   RValue EmitUnsupportedRValue(const Expr *E,
4193                                const char *Name);
4194 
4195   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
4196   /// an ErrorUnsupported style diagnostic (using the provided Name).
4197   LValue EmitUnsupportedLValue(const Expr *E,
4198                                const char *Name);
4199 
4200   /// EmitLValue - Emit code to compute a designator that specifies the location
4201   /// of the expression.
4202   ///
4203   /// This can return one of two things: a simple address or a bitfield
4204   /// reference.  In either case, the LLVM Value* in the LValue structure is
4205   /// guaranteed to be an LLVM pointer type.
4206   ///
4207   /// If this returns a bitfield reference, nothing about the pointee type of
4208   /// the LLVM value is known: For example, it may not be a pointer to an
4209   /// integer.
4210   ///
4211   /// If this returns a normal address, and if the lvalue's C type is fixed
4212   /// size, this method guarantees that the returned pointer type will point to
4213   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
4214   /// variable length type, this is not possible.
4215   ///
4216   LValue EmitLValue(const Expr *E,
4217                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4218 
4219 private:
4220   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
4221 
4222 public:
4223   /// Same as EmitLValue but additionally we generate checking code to
4224   /// guard against undefined behavior.  This is only suitable when we know
4225   /// that the address will be used to access the object.
4226   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
4227 
4228   RValue convertTempToRValue(Address addr, QualType type,
4229                              SourceLocation Loc);
4230 
4231   void EmitAtomicInit(Expr *E, LValue lvalue);
4232 
4233   bool LValueIsSuitableForInlineAtomic(LValue Src);
4234 
4235   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
4236                         AggValueSlot Slot = AggValueSlot::ignored());
4237 
4238   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
4239                         llvm::AtomicOrdering AO, bool IsVolatile = false,
4240                         AggValueSlot slot = AggValueSlot::ignored());
4241 
4242   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
4243 
4244   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
4245                        bool IsVolatile, bool isInit);
4246 
4247   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
4248       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
4249       llvm::AtomicOrdering Success =
4250           llvm::AtomicOrdering::SequentiallyConsistent,
4251       llvm::AtomicOrdering Failure =
4252           llvm::AtomicOrdering::SequentiallyConsistent,
4253       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
4254 
4255   /// Emit an atomicrmw instruction, and applying relevant metadata when
4256   /// applicable.
4257   llvm::AtomicRMWInst *emitAtomicRMWInst(
4258       llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val,
4259       llvm::AtomicOrdering Order = llvm::AtomicOrdering::SequentiallyConsistent,
4260       llvm::SyncScope::ID SSID = llvm::SyncScope::System,
4261       const AtomicExpr *AE = nullptr);
4262 
4263   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
4264                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
4265                         bool IsVolatile);
4266 
4267   /// EmitToMemory - Change a scalar value from its value
4268   /// representation to its in-memory representation.
4269   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
4270 
4271   /// EmitFromMemory - Change a scalar value from its memory
4272   /// representation to its value representation.
4273   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
4274 
4275   /// Check if the scalar \p Value is within the valid range for the given
4276   /// type \p Ty.
4277   ///
4278   /// Returns true if a check is needed (even if the range is unknown).
4279   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
4280                             SourceLocation Loc);
4281 
4282   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4283   /// care to appropriately convert from the memory representation to
4284   /// the LLVM value representation.
4285   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4286                                 SourceLocation Loc,
4287                                 AlignmentSource Source = AlignmentSource::Type,
4288                                 bool isNontemporal = false) {
4289     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
4290                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
4291   }
4292 
4293   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4294                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
4295                                 TBAAAccessInfo TBAAInfo,
4296                                 bool isNontemporal = false);
4297 
4298   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4299   /// care to appropriately convert from the memory representation to
4300   /// the LLVM value representation.  The l-value must be a simple
4301   /// l-value.
4302   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
4303 
4304   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4305   /// care to appropriately convert from the memory representation to
4306   /// the LLVM value representation.
4307   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4308                          bool Volatile, QualType Ty,
4309                          AlignmentSource Source = AlignmentSource::Type,
4310                          bool isInit = false, bool isNontemporal = false) {
4311     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
4312                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
4313   }
4314 
4315   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4316                          bool Volatile, QualType Ty,
4317                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
4318                          bool isInit = false, bool isNontemporal = false);
4319 
4320   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4321   /// care to appropriately convert from the memory representation to
4322   /// the LLVM value representation.  The l-value must be a simple
4323   /// l-value.  The isInit flag indicates whether this is an initialization.
4324   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
4325   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
4326 
4327   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
4328   /// this method emits the address of the lvalue, then loads the result as an
4329   /// rvalue, returning the rvalue.
4330   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
4331   RValue EmitLoadOfExtVectorElementLValue(LValue V);
4332   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
4333   RValue EmitLoadOfGlobalRegLValue(LValue LV);
4334 
4335   /// Like EmitLoadOfLValue but also handles complex and aggregate types.
4336   RValue EmitLoadOfAnyValue(LValue V,
4337                             AggValueSlot Slot = AggValueSlot::ignored(),
4338                             SourceLocation Loc = {});
4339 
4340   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
4341   /// lvalue, where both are guaranteed to the have the same type, and that type
4342   /// is 'Ty'.
4343   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
4344   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
4345   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
4346 
4347   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
4348   /// as EmitStoreThroughLValue.
4349   ///
4350   /// \param Result [out] - If non-null, this will be set to a Value* for the
4351   /// bit-field contents after the store, appropriate for use as the result of
4352   /// an assignment to the bit-field.
4353   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4354                                       llvm::Value **Result=nullptr);
4355 
4356   /// Emit an l-value for an assignment (simple or compound) of complex type.
4357   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4358   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4359   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4360                                              llvm::Value *&Result);
4361 
4362   // Note: only available for agg return types
4363   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4364   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4365   // Note: only available for agg return types
4366   LValue EmitCallExprLValue(const CallExpr *E,
4367                             llvm::CallBase **CallOrInvoke = nullptr);
4368   // Note: only available for agg return types
4369   LValue EmitVAArgExprLValue(const VAArgExpr *E);
4370   LValue EmitDeclRefLValue(const DeclRefExpr *E);
4371   LValue EmitStringLiteralLValue(const StringLiteral *E);
4372   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4373   LValue EmitPredefinedLValue(const PredefinedExpr *E);
4374   LValue EmitUnaryOpLValue(const UnaryOperator *E);
4375   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4376                                 bool Accessed = false);
4377   llvm::Value *EmitMatrixIndexExpr(const Expr *E);
4378   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4379   LValue EmitArraySectionExpr(const ArraySectionExpr *E,
4380                               bool IsLowerBound = true);
4381   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4382   LValue EmitMemberExpr(const MemberExpr *E);
4383   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4384   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4385   LValue EmitInitListLValue(const InitListExpr *E);
4386   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4387   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4388   LValue EmitCastLValue(const CastExpr *E);
4389   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4390   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4391   LValue EmitHLSLArrayAssignLValue(const BinaryOperator *E);
4392 
4393   std::pair<LValue, LValue> EmitHLSLOutArgLValues(const HLSLOutArgExpr *E,
4394                                                   QualType Ty);
4395   LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args,
4396                             QualType Ty);
4397 
4398   Address EmitExtVectorElementLValue(LValue V);
4399 
4400   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4401 
4402   Address EmitArrayToPointerDecay(const Expr *Array,
4403                                   LValueBaseInfo *BaseInfo = nullptr,
4404                                   TBAAAccessInfo *TBAAInfo = nullptr);
4405 
4406   class ConstantEmission {
4407     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4408     ConstantEmission(llvm::Constant *C, bool isReference)
4409       : ValueAndIsReference(C, isReference) {}
4410   public:
4411     ConstantEmission() {}
4412     static ConstantEmission forReference(llvm::Constant *C) {
4413       return ConstantEmission(C, true);
4414     }
4415     static ConstantEmission forValue(llvm::Constant *C) {
4416       return ConstantEmission(C, false);
4417     }
4418 
4419     explicit operator bool() const {
4420       return ValueAndIsReference.getOpaqueValue() != nullptr;
4421     }
4422 
4423     bool isReference() const { return ValueAndIsReference.getInt(); }
4424     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4425       assert(isReference());
4426       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4427                                             refExpr->getType());
4428     }
4429 
4430     llvm::Constant *getValue() const {
4431       assert(!isReference());
4432       return ValueAndIsReference.getPointer();
4433     }
4434   };
4435 
4436   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4437   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4438   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4439 
4440   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4441                                 AggValueSlot slot = AggValueSlot::ignored());
4442   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4443 
4444   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4445                               const ObjCIvarDecl *Ivar);
4446   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4447                                            const ObjCIvarDecl *Ivar);
4448   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4449   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4450   LValue EmitLValueForLambdaField(const FieldDecl *Field,
4451                                   llvm::Value *ThisValue);
4452 
4453   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4454   /// if the Field is a reference, this will return the address of the reference
4455   /// and not the address of the value stored in the reference.
4456   LValue EmitLValueForFieldInitialization(LValue Base,
4457                                           const FieldDecl* Field);
4458 
4459   LValue EmitLValueForIvar(QualType ObjectTy,
4460                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4461                            unsigned CVRQualifiers);
4462 
4463   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4464   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4465   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4466   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4467 
4468   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4469   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4470   LValue EmitStmtExprLValue(const StmtExpr *E);
4471   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4472   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4473   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4474 
4475   //===--------------------------------------------------------------------===//
4476   //                         Scalar Expression Emission
4477   //===--------------------------------------------------------------------===//
4478 
4479   /// EmitCall - Generate a call of the given function, expecting the given
4480   /// result type, and using the given argument list which specifies both the
4481   /// LLVM arguments and the types they were derived from.
4482   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4483                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4484                   llvm::CallBase **CallOrInvoke, bool IsMustTail,
4485                   SourceLocation Loc,
4486                   bool IsVirtualFunctionPointerThunk = false);
4487   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4488                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4489                   llvm::CallBase **CallOrInvoke = nullptr,
4490                   bool IsMustTail = false) {
4491     return EmitCall(CallInfo, Callee, ReturnValue, Args, CallOrInvoke,
4492                     IsMustTail, SourceLocation());
4493   }
4494   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4495                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr,
4496                   llvm::CallBase **CallOrInvoke = nullptr,
4497                   CGFunctionInfo const **ResolvedFnInfo = nullptr);
4498 
4499   // If a Call or Invoke instruction was emitted for this CallExpr, this method
4500   // writes the pointer to `CallOrInvoke` if it's not null.
4501   RValue EmitCallExpr(const CallExpr *E,
4502                       ReturnValueSlot ReturnValue = ReturnValueSlot(),
4503                       llvm::CallBase **CallOrInvoke = nullptr);
4504   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4505                             llvm::CallBase **CallOrInvoke = nullptr);
4506   CGCallee EmitCallee(const Expr *E);
4507 
4508   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4509   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4510 
4511   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4512                                   const Twine &name = "");
4513   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4514                                   ArrayRef<llvm::Value *> args,
4515                                   const Twine &name = "");
4516   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4517                                           const Twine &name = "");
4518   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4519                                           ArrayRef<Address> args,
4520                                           const Twine &name = "");
4521   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4522                                           ArrayRef<llvm::Value *> args,
4523                                           const Twine &name = "");
4524 
4525   SmallVector<llvm::OperandBundleDef, 1>
4526   getBundlesForFunclet(llvm::Value *Callee);
4527 
4528   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4529                                    ArrayRef<llvm::Value *> Args,
4530                                    const Twine &Name = "");
4531   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4532                                           ArrayRef<llvm::Value *> args,
4533                                           const Twine &name = "");
4534   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4535                                           const Twine &name = "");
4536   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4537                                        ArrayRef<llvm::Value *> args);
4538 
4539   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4540                                      NestedNameSpecifier *Qual,
4541                                      llvm::Type *Ty);
4542 
4543   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4544                                                CXXDtorType Type,
4545                                                const CXXRecordDecl *RD);
4546 
4547   bool isPointerKnownNonNull(const Expr *E);
4548 
4549   /// Create the discriminator from the storage address and the entity hash.
4550   llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress,
4551                                                  llvm::Value *Discriminator);
4552   CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema,
4553                                         llvm::Value *StorageAddress,
4554                                         GlobalDecl SchemaDecl,
4555                                         QualType SchemaType);
4556 
4557   llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info,
4558                                    llvm::Value *Pointer);
4559 
4560   llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info,
4561                                    llvm::Value *Pointer);
4562 
4563   llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType,
4564                                      const CGPointerAuthInfo &CurAuthInfo,
4565                                      const CGPointerAuthInfo &NewAuthInfo,
4566                                      bool IsKnownNonNull);
4567   llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer,
4568                                          const CGPointerAuthInfo &CurInfo,
4569                                          const CGPointerAuthInfo &NewInfo);
4570 
4571   void EmitPointerAuthOperandBundle(
4572       const CGPointerAuthInfo &Info,
4573       SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4574 
4575   llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr,
4576                                         QualType SourceType, QualType DestType);
4577   Address authPointerToPointerCast(Address Ptr, QualType SourceType,
4578                                    QualType DestType);
4579 
4580   Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy);
4581 
4582   llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) {
4583     return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer();
4584   }
4585 
4586   // Return the copy constructor name with the prefix "__copy_constructor_"
4587   // removed.
4588   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4589                                                      CharUnits Alignment,
4590                                                      bool IsVolatile,
4591                                                      ASTContext &Ctx);
4592 
4593   // Return the destructor name with the prefix "__destructor_" removed.
4594   static std::string getNonTrivialDestructorStr(QualType QT,
4595                                                 CharUnits Alignment,
4596                                                 bool IsVolatile,
4597                                                 ASTContext &Ctx);
4598 
4599   // These functions emit calls to the special functions of non-trivial C
4600   // structs.
4601   void defaultInitNonTrivialCStructVar(LValue Dst);
4602   void callCStructDefaultConstructor(LValue Dst);
4603   void callCStructDestructor(LValue Dst);
4604   void callCStructCopyConstructor(LValue Dst, LValue Src);
4605   void callCStructMoveConstructor(LValue Dst, LValue Src);
4606   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4607   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4608 
4609   RValue EmitCXXMemberOrOperatorCall(
4610       const CXXMethodDecl *Method, const CGCallee &Callee,
4611       ReturnValueSlot ReturnValue, llvm::Value *This,
4612       llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E,
4613       CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke);
4614   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4615                                llvm::Value *This, QualType ThisTy,
4616                                llvm::Value *ImplicitParam,
4617                                QualType ImplicitParamTy, const CallExpr *E,
4618                                llvm::CallBase **CallOrInvoke = nullptr);
4619   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4620                                ReturnValueSlot ReturnValue,
4621                                llvm::CallBase **CallOrInvoke = nullptr);
4622   RValue EmitCXXMemberOrOperatorMemberCallExpr(
4623       const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
4624       bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
4625       const Expr *Base, llvm::CallBase **CallOrInvoke);
4626   // Compute the object pointer.
4627   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4628                                           llvm::Value *memberPtr,
4629                                           const MemberPointerType *memberPtrType,
4630                                           LValueBaseInfo *BaseInfo = nullptr,
4631                                           TBAAAccessInfo *TBAAInfo = nullptr);
4632   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4633                                       ReturnValueSlot ReturnValue,
4634                                       llvm::CallBase **CallOrInvoke);
4635 
4636   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4637                                        const CXXMethodDecl *MD,
4638                                        ReturnValueSlot ReturnValue,
4639                                        llvm::CallBase **CallOrInvoke);
4640   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4641 
4642   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4643                                 ReturnValueSlot ReturnValue,
4644                                 llvm::CallBase **CallOrInvoke);
4645 
4646   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4647   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4648 
4649   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4650                          const CallExpr *E, ReturnValueSlot ReturnValue);
4651 
4652   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4653 
4654   /// Emit IR for __builtin_os_log_format.
4655   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4656 
4657   /// Emit IR for __builtin_is_aligned.
4658   RValue EmitBuiltinIsAligned(const CallExpr *E);
4659   /// Emit IR for __builtin_align_up/__builtin_align_down.
4660   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4661 
4662   llvm::Function *generateBuiltinOSLogHelperFunction(
4663       const analyze_os_log::OSLogBufferLayout &Layout,
4664       CharUnits BufferAlignment);
4665 
4666   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue,
4667                            llvm::CallBase **CallOrInvoke);
4668 
4669   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4670   /// is unhandled by the current target.
4671   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4672                                      ReturnValueSlot ReturnValue);
4673 
4674   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4675                                              const llvm::CmpInst::Predicate Fp,
4676                                              const llvm::CmpInst::Predicate Ip,
4677                                              const llvm::Twine &Name = "");
4678   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4679                                   ReturnValueSlot ReturnValue,
4680                                   llvm::Triple::ArchType Arch);
4681   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4682                                      ReturnValueSlot ReturnValue,
4683                                      llvm::Triple::ArchType Arch);
4684   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4685                                      ReturnValueSlot ReturnValue,
4686                                      llvm::Triple::ArchType Arch);
4687   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4688                                    QualType RTy);
4689   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4690                                    QualType RTy);
4691 
4692   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4693                                          unsigned LLVMIntrinsic,
4694                                          unsigned AltLLVMIntrinsic,
4695                                          const char *NameHint,
4696                                          unsigned Modifier,
4697                                          const CallExpr *E,
4698                                          SmallVectorImpl<llvm::Value *> &Ops,
4699                                          Address PtrOp0, Address PtrOp1,
4700                                          llvm::Triple::ArchType Arch);
4701 
4702   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4703                                           unsigned Modifier, llvm::Type *ArgTy,
4704                                           const CallExpr *E);
4705   llvm::Value *EmitNeonCall(llvm::Function *F,
4706                             SmallVectorImpl<llvm::Value*> &O,
4707                             const char *name,
4708                             unsigned shift = 0, bool rightshift = false);
4709   llvm::Value *EmitFP8NeonCall(unsigned IID, ArrayRef<llvm::Type *> Tys,
4710                                SmallVectorImpl<llvm::Value *> &O,
4711                                const CallExpr *E, const char *name);
4712   llvm::Value *EmitFP8NeonCvtCall(unsigned IID, llvm::Type *Ty0,
4713                                   llvm::Type *Ty1, bool Extract,
4714                                   SmallVectorImpl<llvm::Value *> &Ops,
4715                                   const CallExpr *E, const char *name);
4716   llvm::Value *EmitFP8NeonFDOTCall(unsigned IID, bool ExtendLaneArg,
4717                                    llvm::Type *RetTy,
4718                                    SmallVectorImpl<llvm::Value *> &Ops,
4719                                    const CallExpr *E, const char *name);
4720   llvm::Value *EmitFP8NeonFMLACall(unsigned IID, bool ExtendLaneArg,
4721                                    llvm::Type *RetTy,
4722                                    SmallVectorImpl<llvm::Value *> &Ops,
4723                                    const CallExpr *E, const char *name);
4724   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4725                              const llvm::ElementCount &Count);
4726   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4727   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4728                                    bool negateForRightShift);
4729   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4730                                  llvm::Type *Ty, bool usgn, const char *name);
4731   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4732   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4733   /// access builtin.  Only required if it can't be inferred from the base
4734   /// pointer operand.
4735   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4736 
4737   SmallVector<llvm::Type *, 2>
4738   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4739                       ArrayRef<llvm::Value *> Ops);
4740   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4741   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4742   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4743   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4744                                     ArrayRef<llvm::Value *> Ops);
4745   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4746                                   llvm::Type *ReturnType,
4747                                   ArrayRef<llvm::Value *> Ops);
4748   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4749   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4750   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4751   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4752   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4753                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4754                             unsigned BuiltinID);
4755   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4756                            llvm::ArrayRef<llvm::Value *> Ops,
4757                            unsigned BuiltinID);
4758   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4759                                     llvm::ScalableVectorType *VTy);
4760   llvm::Value *EmitSVEPredicateTupleCast(llvm::Value *PredTuple,
4761                                          llvm::StructType *Ty);
4762   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4763                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4764                                  unsigned IntID);
4765   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4766                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4767                                    unsigned IntID);
4768   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4769                                  SmallVectorImpl<llvm::Value *> &Ops,
4770                                  unsigned BuiltinID, bool IsZExtReturn);
4771   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4772                                   SmallVectorImpl<llvm::Value *> &Ops,
4773                                   unsigned BuiltinID);
4774   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4775                                    SmallVectorImpl<llvm::Value *> &Ops,
4776                                    unsigned BuiltinID);
4777   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4778                                      SmallVectorImpl<llvm::Value *> &Ops,
4779                                      unsigned IntID);
4780   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4781                                  SmallVectorImpl<llvm::Value *> &Ops,
4782                                  unsigned IntID);
4783   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4784                                   SmallVectorImpl<llvm::Value *> &Ops,
4785                                   unsigned IntID);
4786   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4787 
4788   llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4789                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4790                              unsigned IntID);
4791   llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4792                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4793                                 unsigned IntID);
4794   llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4795                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4796                            unsigned IntID);
4797   llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4798                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4799                              unsigned IntID);
4800 
4801   void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4802                                       SmallVectorImpl<llvm::Value *> &Ops,
4803                                       SVETypeFlags TypeFlags);
4804 
4805   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4806 
4807   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4808                                       llvm::Triple::ArchType Arch);
4809   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4810 
4811   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4812   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4813   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4814   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4815   llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4816                                    ReturnValueSlot ReturnValue);
4817   llvm::Value *EmitSPIRVBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4818   llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4819                                            const CallExpr *E);
4820   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4821   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4822   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4823                                           const CallExpr *E);
4824   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4825   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4826                                     ReturnValueSlot ReturnValue);
4827 
4828   llvm::Value *EmitRISCVCpuSupports(const CallExpr *E);
4829   llvm::Value *EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs);
4830   llvm::Value *EmitRISCVCpuInit();
4831   llvm::Value *EmitRISCVCpuIs(const CallExpr *E);
4832   llvm::Value *EmitRISCVCpuIs(StringRef CPUStr);
4833 
4834   void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
4835                                       const CallExpr *E);
4836   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4837                                llvm::AtomicOrdering &AO,
4838                                llvm::SyncScope::ID &SSID);
4839 
4840   enum class MSVCIntrin;
4841   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4842 
4843   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4844 
4845   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4846   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4847   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4848   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4849   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4850   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4851                                 const ObjCMethodDecl *MethodWithObjects);
4852   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4853   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4854                              ReturnValueSlot Return = ReturnValueSlot());
4855 
4856   /// Retrieves the default cleanup kind for an ARC cleanup.
4857   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4858   CleanupKind getARCCleanupKind() {
4859     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4860              ? NormalAndEHCleanup : NormalCleanup;
4861   }
4862 
4863   // ARC primitives.
4864   void EmitARCInitWeak(Address addr, llvm::Value *value);
4865   void EmitARCDestroyWeak(Address addr);
4866   llvm::Value *EmitARCLoadWeak(Address addr);
4867   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4868   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4869   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4870   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4871   void EmitARCCopyWeak(Address dst, Address src);
4872   void EmitARCMoveWeak(Address dst, Address src);
4873   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4874   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4875   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4876                                   bool resultIgnored);
4877   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4878                                       bool resultIgnored);
4879   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4880   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4881   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4882   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4883   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4884   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4885   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4886   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4887   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4888   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4889 
4890   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4891   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4892                                       llvm::Type *returnType);
4893   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4894 
4895   std::pair<LValue,llvm::Value*>
4896   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4897   std::pair<LValue,llvm::Value*>
4898   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4899   std::pair<LValue,llvm::Value*>
4900   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4901 
4902   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4903                              llvm::Type *returnType);
4904   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4905                                      llvm::Type *returnType);
4906   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4907 
4908   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4909   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4910   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4911 
4912   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4913   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4914                                             bool allowUnsafeClaim);
4915   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4916   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4917   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4918 
4919   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4920 
4921   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4922 
4923   static Destroyer destroyARCStrongImprecise;
4924   static Destroyer destroyARCStrongPrecise;
4925   static Destroyer destroyARCWeak;
4926   static Destroyer emitARCIntrinsicUse;
4927   static Destroyer destroyNonTrivialCStruct;
4928 
4929   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4930   llvm::Value *EmitObjCAutoreleasePoolPush();
4931   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4932   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4933   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4934 
4935   /// Emits a reference binding to the passed in expression.
4936   RValue EmitReferenceBindingToExpr(const Expr *E);
4937 
4938   //===--------------------------------------------------------------------===//
4939   //                           Expression Emission
4940   //===--------------------------------------------------------------------===//
4941 
4942   // Expressions are broken into three classes: scalar, complex, aggregate.
4943 
4944   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4945   /// scalar type, returning the result.
4946   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4947 
4948   /// Emit a conversion from the specified type to the specified destination
4949   /// type, both of which are LLVM scalar types.
4950   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4951                                     QualType DstTy, SourceLocation Loc);
4952 
4953   /// Emit a conversion from the specified complex type to the specified
4954   /// destination type, where the destination type is an LLVM scalar type.
4955   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4956                                              QualType DstTy,
4957                                              SourceLocation Loc);
4958 
4959   /// EmitAggExpr - Emit the computation of the specified expression
4960   /// of aggregate type.  The result is computed into the given slot,
4961   /// which may be null to indicate that the value is not needed.
4962   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4963 
4964   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4965   /// aggregate type into a temporary LValue.
4966   LValue EmitAggExprToLValue(const Expr *E);
4967 
4968   enum ExprValueKind { EVK_RValue, EVK_NonRValue };
4969 
4970   /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into
4971   /// destination address.
4972   void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src,
4973                             ExprValueKind SrcKind);
4974 
4975   /// Create a store to \arg DstPtr from \arg Src, truncating the stored value
4976   /// to at most \arg DstSize bytes.
4977   void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize,
4978                           bool DstIsVolatile);
4979 
4980   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4981   /// make sure it survives garbage collection until this point.
4982   void EmitExtendGCLifetime(llvm::Value *object);
4983 
4984   /// EmitComplexExpr - Emit the computation of the specified expression of
4985   /// complex type, returning the result.
4986   ComplexPairTy EmitComplexExpr(const Expr *E,
4987                                 bool IgnoreReal = false,
4988                                 bool IgnoreImag = false);
4989 
4990   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4991   /// type and place its result into the specified l-value.
4992   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4993 
4994   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4995   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4996 
4997   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4998   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4999 
5000   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
5001   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
5002   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
5003   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
5004 
5005   Address emitAddrOfRealComponent(Address complex, QualType complexType);
5006   Address emitAddrOfImagComponent(Address complex, QualType complexType);
5007 
5008   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
5009   /// global variable that has already been created for it.  If the initializer
5010   /// has a different type than GV does, this may free GV and return a different
5011   /// one.  Otherwise it just returns GV.
5012   llvm::GlobalVariable *
5013   AddInitializerToStaticVarDecl(const VarDecl &D,
5014                                 llvm::GlobalVariable *GV);
5015 
5016   // Emit an @llvm.invariant.start call for the given memory region.
5017   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
5018 
5019   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
5020   /// variable with global storage.
5021   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
5022                                 bool PerformInit);
5023 
5024   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
5025                                    llvm::Constant *Addr);
5026 
5027   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
5028                                       llvm::FunctionCallee Dtor,
5029                                       llvm::Constant *Addr,
5030                                       llvm::FunctionCallee &AtExit);
5031 
5032   /// Call atexit() with a function that passes the given argument to
5033   /// the given function.
5034   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
5035                                     llvm::Constant *addr);
5036 
5037   /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
5038   /// support an 'atexit()' function.
5039   void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
5040                                   llvm::Constant *addr);
5041 
5042   /// Call atexit() with function dtorStub.
5043   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
5044 
5045   /// Call unatexit() with function dtorStub.
5046   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
5047 
5048   /// Emit code in this function to perform a guarded variable
5049   /// initialization.  Guarded initializations are used when it's not
5050   /// possible to prove that an initialization will be done exactly
5051   /// once, e.g. with a static local variable or a static data member
5052   /// of a class template.
5053   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
5054                           bool PerformInit);
5055 
5056   enum class GuardKind { VariableGuard, TlsGuard };
5057 
5058   /// Emit a branch to select whether or not to perform guarded initialization.
5059   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
5060                                 llvm::BasicBlock *InitBlock,
5061                                 llvm::BasicBlock *NoInitBlock,
5062                                 GuardKind Kind, const VarDecl *D);
5063 
5064   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
5065   /// variables.
5066   void
5067   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
5068                             ArrayRef<llvm::Function *> CXXThreadLocals,
5069                             ConstantAddress Guard = ConstantAddress::invalid());
5070 
5071   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
5072   /// variables.
5073   void GenerateCXXGlobalCleanUpFunc(
5074       llvm::Function *Fn,
5075       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
5076                           llvm::Constant *>>
5077           DtorsOrStermFinalizers);
5078 
5079   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
5080                                         const VarDecl *D,
5081                                         llvm::GlobalVariable *Addr,
5082                                         bool PerformInit);
5083 
5084   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
5085 
5086   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
5087 
5088   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
5089 
5090   RValue EmitAtomicExpr(AtomicExpr *E);
5091 
5092   void EmitFakeUse(Address Addr);
5093 
5094   //===--------------------------------------------------------------------===//
5095   //                         Annotations Emission
5096   //===--------------------------------------------------------------------===//
5097 
5098   /// Emit an annotation call (intrinsic).
5099   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
5100                                   llvm::Value *AnnotatedVal,
5101                                   StringRef AnnotationStr,
5102                                   SourceLocation Location,
5103                                   const AnnotateAttr *Attr);
5104 
5105   /// Emit local annotations for the local variable V, declared by D.
5106   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
5107 
5108   /// Emit field annotations for the given field & value. Returns the
5109   /// annotation result.
5110   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
5111 
5112   //===--------------------------------------------------------------------===//
5113   //                             Internal Helpers
5114   //===--------------------------------------------------------------------===//
5115 
5116   /// ContainsLabel - Return true if the statement contains a label in it.  If
5117   /// this statement is not executed normally, it not containing a label means
5118   /// that we can just remove the code.
5119   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
5120 
5121   /// containsBreak - Return true if the statement contains a break out of it.
5122   /// If the statement (recursively) contains a switch or loop with a break
5123   /// inside of it, this is fine.
5124   static bool containsBreak(const Stmt *S);
5125 
5126   /// Determine if the given statement might introduce a declaration into the
5127   /// current scope, by being a (possibly-labelled) DeclStmt.
5128   static bool mightAddDeclToScope(const Stmt *S);
5129 
5130   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5131   /// to a constant, or if it does but contains a label, return false.  If it
5132   /// constant folds return true and set the boolean result in Result.
5133   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
5134                                     bool AllowLabels = false);
5135 
5136   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5137   /// to a constant, or if it does but contains a label, return false.  If it
5138   /// constant folds return true and set the folded value.
5139   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
5140                                     bool AllowLabels = false);
5141 
5142   /// Ignore parentheses and logical-NOT to track conditions consistently.
5143   static const Expr *stripCond(const Expr *C);
5144 
5145   /// isInstrumentedCondition - Determine whether the given condition is an
5146   /// instrumentable condition (i.e. no "&&" or "||").
5147   static bool isInstrumentedCondition(const Expr *C);
5148 
5149   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
5150   /// increments a profile counter based on the semantics of the given logical
5151   /// operator opcode.  This is used to instrument branch condition coverage
5152   /// for logical operators.
5153   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
5154                                 llvm::BasicBlock *TrueBlock,
5155                                 llvm::BasicBlock *FalseBlock,
5156                                 uint64_t TrueCount = 0,
5157                                 Stmt::Likelihood LH = Stmt::LH_None,
5158                                 const Expr *CntrIdx = nullptr);
5159 
5160   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
5161   /// if statement) to the specified blocks.  Based on the condition, this might
5162   /// try to simplify the codegen of the conditional based on the branch.
5163   /// TrueCount should be the number of times we expect the condition to
5164   /// evaluate to true based on PGO data.
5165   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
5166                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
5167                             Stmt::Likelihood LH = Stmt::LH_None,
5168                             const Expr *ConditionalOp = nullptr);
5169 
5170   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
5171   /// nonnull, if \p LHS is marked _Nonnull.
5172   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
5173 
5174   /// An enumeration which makes it easier to specify whether or not an
5175   /// operation is a subtraction.
5176   enum { NotSubtraction = false, IsSubtraction = true };
5177 
5178   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
5179   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
5180   /// \p SignedIndices indicates whether any of the GEP indices are signed.
5181   /// \p IsSubtraction indicates whether the expression used to form the GEP
5182   /// is a subtraction.
5183   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
5184                                       ArrayRef<llvm::Value *> IdxList,
5185                                       bool SignedIndices,
5186                                       bool IsSubtraction,
5187                                       SourceLocation Loc,
5188                                       const Twine &Name = "");
5189 
5190   Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList,
5191                                  llvm::Type *elementType, bool SignedIndices,
5192                                  bool IsSubtraction, SourceLocation Loc,
5193                                  CharUnits Align, const Twine &Name = "");
5194 
5195   /// Specifies which type of sanitizer check to apply when handling a
5196   /// particular builtin.
5197   enum BuiltinCheckKind {
5198     BCK_CTZPassedZero,
5199     BCK_CLZPassedZero,
5200     BCK_AssumePassedFalse,
5201   };
5202 
5203   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
5204   /// enabled, a runtime check specified by \p Kind is also emitted.
5205   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
5206 
5207   /// Emits an argument for a call to a `__builtin_assume`. If the builtin
5208   /// sanitizer is enabled, a runtime check is also emitted.
5209   llvm::Value *EmitCheckedArgForAssume(const Expr *E);
5210 
5211   /// Emit a description of a type in a format suitable for passing to
5212   /// a runtime sanitizer handler.
5213   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
5214 
5215   /// Convert a value into a format suitable for passing to a runtime
5216   /// sanitizer handler.
5217   llvm::Value *EmitCheckValue(llvm::Value *V);
5218 
5219   /// Emit a description of a source location in a format suitable for
5220   /// passing to a runtime sanitizer handler.
5221   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
5222 
5223   void EmitKCFIOperandBundle(const CGCallee &Callee,
5224                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
5225 
5226   /// Create a basic block that will either trap or call a handler function in
5227   /// the UBSan runtime with the provided arguments, and create a conditional
5228   /// branch to it.
5229   void
5230   EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
5231                 Checked,
5232             SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
5233             ArrayRef<llvm::Value *> DynamicArgs);
5234 
5235   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
5236   /// if Cond if false.
5237   void EmitCfiSlowPathCheck(SanitizerKind::SanitizerOrdinal Ordinal,
5238                             llvm::Value *Cond, llvm::ConstantInt *TypeId,
5239                             llvm::Value *Ptr,
5240                             ArrayRef<llvm::Constant *> StaticArgs);
5241 
5242   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
5243   /// checking is enabled. Otherwise, just emit an unreachable instruction.
5244   void EmitUnreachable(SourceLocation Loc);
5245 
5246   /// Create a basic block that will call the trap intrinsic, and emit a
5247   /// conditional branch to it, for the -ftrapv checks.
5248   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID,
5249                      bool NoMerge = false);
5250 
5251   /// Emit a call to trap or debugtrap and attach function attribute
5252   /// "trap-func-name" if specified.
5253   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
5254 
5255   /// Emit a stub for the cross-DSO CFI check function.
5256   void EmitCfiCheckStub();
5257 
5258   /// Emit a cross-DSO CFI failure handling function.
5259   void EmitCfiCheckFail();
5260 
5261   /// Create a check for a function parameter that may potentially be
5262   /// declared as non-null.
5263   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
5264                            AbstractCallee AC, unsigned ParmNum);
5265 
5266   void EmitNonNullArgCheck(Address Addr, QualType ArgType,
5267                            SourceLocation ArgLoc, AbstractCallee AC,
5268                            unsigned ParmNum);
5269 
5270   /// EmitWriteback - Emit callbacks for function.
5271   void EmitWritebacks(const CallArgList &Args);
5272 
5273   /// EmitCallArg - Emit a single call argument.
5274   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
5275 
5276   /// EmitDelegateCallArg - We are performing a delegate call; that
5277   /// is, the current function is delegating to another one.  Produce
5278   /// a r-value suitable for passing the given parameter.
5279   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
5280                            SourceLocation loc);
5281 
5282   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
5283   /// point operation, expressed as the maximum relative error in ulp.
5284   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
5285 
5286   /// Set the minimum required accuracy of the given sqrt operation
5287   /// based on CodeGenOpts.
5288   void SetSqrtFPAccuracy(llvm::Value *Val);
5289 
5290   /// Set the minimum required accuracy of the given sqrt operation based on
5291   /// CodeGenOpts.
5292   void SetDivFPAccuracy(llvm::Value *Val);
5293 
5294   /// Set the codegen fast-math flags.
5295   void SetFastMathFlags(FPOptions FPFeatures);
5296 
5297   // Truncate or extend a boolean vector to the requested number of elements.
5298   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
5299                                      unsigned NumElementsDst,
5300                                      const llvm::Twine &Name = "");
5301 
5302 private:
5303   // Emits a convergence_loop instruction for the given |BB|, with |ParentToken|
5304   // as it's parent convergence instr.
5305   llvm::ConvergenceControlInst *emitConvergenceLoopToken(llvm::BasicBlock *BB);
5306 
5307   // Adds a convergence_ctrl token with |ParentToken| as parent convergence
5308   // instr to the call |Input|.
5309   llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input);
5310 
5311   // Find the convergence_entry instruction |F|, or emits ones if none exists.
5312   // Returns the convergence instruction.
5313   llvm::ConvergenceControlInst *
5314   getOrEmitConvergenceEntryToken(llvm::Function *F);
5315 
5316 private:
5317   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
5318   void EmitReturnOfRValue(RValue RV, QualType Ty);
5319 
5320   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
5321 
5322   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
5323       DeferredReplacements;
5324 
5325   /// Set the address of a local variable.
5326   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
5327     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
5328     LocalDeclMap.insert({VD, Addr});
5329   }
5330 
5331   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
5332   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
5333   ///
5334   /// \param AI - The first function argument of the expansion.
5335   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
5336                           llvm::Function::arg_iterator &AI);
5337 
5338   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
5339   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
5340   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
5341   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
5342                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
5343                         unsigned &IRCallArgPos);
5344 
5345   std::pair<llvm::Value *, llvm::Type *>
5346   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
5347                std::string &ConstraintStr);
5348 
5349   std::pair<llvm::Value *, llvm::Type *>
5350   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
5351                      QualType InputType, std::string &ConstraintStr,
5352                      SourceLocation Loc);
5353 
5354   /// Attempts to statically evaluate the object size of E. If that
5355   /// fails, emits code to figure the size of E out for us. This is
5356   /// pass_object_size aware.
5357   ///
5358   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
5359   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
5360                                                llvm::IntegerType *ResType,
5361                                                llvm::Value *EmittedE,
5362                                                bool IsDynamic);
5363 
5364   /// Emits the size of E, as required by __builtin_object_size. This
5365   /// function is aware of pass_object_size parameters, and will act accordingly
5366   /// if E is a parameter with the pass_object_size attribute.
5367   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
5368                                      llvm::IntegerType *ResType,
5369                                      llvm::Value *EmittedE,
5370                                      bool IsDynamic);
5371 
5372   llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
5373                                            llvm::IntegerType *ResType);
5374 
5375   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
5376                                        Address Loc);
5377 
5378 public:
5379   enum class EvaluationOrder {
5380     ///! No language constraints on evaluation order.
5381     Default,
5382     ///! Language semantics require left-to-right evaluation.
5383     ForceLeftToRight,
5384     ///! Language semantics require right-to-left evaluation.
5385     ForceRightToLeft
5386   };
5387 
5388   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
5389   // an ObjCMethodDecl.
5390   struct PrototypeWrapper {
5391     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
5392 
5393     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
5394     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
5395   };
5396 
5397   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
5398                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
5399                     AbstractCallee AC = AbstractCallee(),
5400                     unsigned ParamsToSkip = 0,
5401                     EvaluationOrder Order = EvaluationOrder::Default);
5402 
5403   /// EmitPointerWithAlignment - Given an expression with a pointer type,
5404   /// emit the value and compute our best estimate of the alignment of the
5405   /// pointee.
5406   ///
5407   /// \param BaseInfo - If non-null, this will be initialized with
5408   /// information about the source of the alignment and the may-alias
5409   /// attribute.  Note that this function will conservatively fall back on
5410   /// the type when it doesn't recognize the expression and may-alias will
5411   /// be set to false.
5412   ///
5413   /// One reasonable way to use this information is when there's a language
5414   /// guarantee that the pointer must be aligned to some stricter value, and
5415   /// we're simply trying to ensure that sufficiently obvious uses of under-
5416   /// aligned objects don't get miscompiled; for example, a placement new
5417   /// into the address of a local variable.  In such a case, it's quite
5418   /// reasonable to just ignore the returned alignment when it isn't from an
5419   /// explicit source.
5420   Address
5421   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
5422                            TBAAAccessInfo *TBAAInfo = nullptr,
5423                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
5424 
5425   /// If \p E references a parameter with pass_object_size info or a constant
5426   /// array size modifier, emit the object size divided by the size of \p EltTy.
5427   /// Otherwise return null.
5428   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
5429 
5430   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
5431 
5432   struct FMVResolverOption {
5433     llvm::Function *Function;
5434     llvm::SmallVector<StringRef, 8> Features;
5435     std::optional<StringRef> Architecture;
5436 
5437     FMVResolverOption(llvm::Function *F, ArrayRef<StringRef> Feats,
5438                       std::optional<StringRef> Arch = std::nullopt)
5439         : Function(F), Features(Feats), Architecture(Arch) {}
5440   };
5441 
5442   // Emits the body of a multiversion function's resolver. Assumes that the
5443   // options are already sorted in the proper order, with the 'default' option
5444   // last (if it exists).
5445   void EmitMultiVersionResolver(llvm::Function *Resolver,
5446                                 ArrayRef<FMVResolverOption> Options);
5447   void EmitX86MultiVersionResolver(llvm::Function *Resolver,
5448                                    ArrayRef<FMVResolverOption> Options);
5449   void EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
5450                                        ArrayRef<FMVResolverOption> Options);
5451   void EmitRISCVMultiVersionResolver(llvm::Function *Resolver,
5452                                      ArrayRef<FMVResolverOption> Options);
5453 
5454 private:
5455   QualType getVarArgType(const Expr *Arg);
5456 
5457   void EmitDeclMetadata();
5458 
5459   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
5460                                   const AutoVarEmission &emission);
5461 
5462   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
5463 
5464   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
5465   llvm::Value *EmitX86CpuIs(const CallExpr *E);
5466   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
5467   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
5468   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
5469   llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
5470   llvm::Value *EmitX86CpuInit();
5471   llvm::Value *FormX86ResolverCondition(const FMVResolverOption &RO);
5472   llvm::Value *EmitAArch64CpuInit();
5473   llvm::Value *FormAArch64ResolverCondition(const FMVResolverOption &RO);
5474   llvm::Value *EmitAArch64CpuSupports(const CallExpr *E);
5475   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5476 };
5477 
5478 inline DominatingLLVMValue::saved_type
5479 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5480   if (!needsSaving(value)) return saved_type(value, false);
5481 
5482   // Otherwise, we need an alloca.
5483   auto align = CharUnits::fromQuantity(
5484       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5485   Address alloca =
5486       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5487   CGF.Builder.CreateStore(value, alloca);
5488 
5489   return saved_type(alloca.emitRawPointer(CGF), true);
5490 }
5491 
5492 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5493                                                  saved_type value) {
5494   // If the value says it wasn't saved, trust that it's still dominating.
5495   if (!value.getInt()) return value.getPointer();
5496 
5497   // Otherwise, it should be an alloca instruction, as set up in save().
5498   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5499   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5500                                        alloca->getAlign());
5501 }
5502 
5503 }  // end namespace CodeGen
5504 
5505 // Map the LangOption for floating point exception behavior into
5506 // the corresponding enum in the IR.
5507 llvm::fp::ExceptionBehavior
5508 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5509 }  // end namespace clang
5510 
5511 #endif
5512