xref: /llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp (revision 8dbb33762cfb8d8606d28a71293f437ddffee4af)
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
49 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/ImmutableList.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <cassert>
64 #include <optional>
65 #include <utility>
66 
67 #define DEBUG_TYPE "static-analyzer-call-event"
68 
69 using namespace clang;
70 using namespace ento;
71 
72 QualType CallEvent::getResultType() const {
73   ASTContext &Ctx = getState()->getStateManager().getContext();
74   const Expr *E = getOriginExpr();
75   if (!E)
76     return Ctx.VoidTy;
77   return Ctx.getReferenceQualifiedType(E);
78 }
79 
80 static bool isCallback(QualType T) {
81   // If a parameter is a block or a callback, assume it can modify pointer.
82   if (T->isBlockPointerType() ||
83       T->isFunctionPointerType() ||
84       T->isObjCSelType())
85     return true;
86 
87   // Check if a callback is passed inside a struct (for both, struct passed by
88   // reference and by value). Dig just one level into the struct for now.
89 
90   if (T->isAnyPointerType() || T->isReferenceType())
91     T = T->getPointeeType();
92 
93   if (const RecordType *RT = T->getAsStructureType()) {
94     const RecordDecl *RD = RT->getDecl();
95     for (const auto *I : RD->fields()) {
96       QualType FieldT = I->getType();
97       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
98         return true;
99     }
100   }
101   return false;
102 }
103 
104 static bool isVoidPointerToNonConst(QualType T) {
105   if (const auto *PT = T->getAs<PointerType>()) {
106     QualType PointeeTy = PT->getPointeeType();
107     if (PointeeTy.isConstQualified())
108       return false;
109     return PointeeTy->isVoidType();
110   } else
111     return false;
112 }
113 
114 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
115   unsigned NumOfArgs = getNumArgs();
116 
117   // If calling using a function pointer, assume the function does not
118   // satisfy the callback.
119   // TODO: We could check the types of the arguments here.
120   if (!getDecl())
121     return false;
122 
123   unsigned Idx = 0;
124   for (CallEvent::param_type_iterator I = param_type_begin(),
125                                       E = param_type_end();
126        I != E && Idx < NumOfArgs; ++I, ++Idx) {
127     // If the parameter is 0, it's harmless.
128     if (getArgSVal(Idx).isZeroConstant())
129       continue;
130 
131     if (Condition(*I))
132       return true;
133   }
134   return false;
135 }
136 
137 bool CallEvent::hasNonZeroCallbackArg() const {
138   return hasNonNullArgumentsWithType(isCallback);
139 }
140 
141 bool CallEvent::hasVoidPointerToNonConstArg() const {
142   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
143 }
144 
145 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
146   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
147   if (!FD)
148     return false;
149 
150   return CheckerContext::isCLibraryFunction(FD, FunctionName);
151 }
152 
153 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
154   const Decl *D = getDecl();
155   if (!D)
156     return nullptr;
157 
158   AnalysisDeclContext *ADC =
159       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
160 
161   return ADC;
162 }
163 
164 const StackFrameContext *
165 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
166   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
167   if (!ADC)
168     return nullptr;
169 
170   const Expr *E = getOriginExpr();
171   if (!E)
172     return nullptr;
173 
174   // Recover CFG block via reverse lookup.
175   // TODO: If we were to keep CFG element information as part of the CallEvent
176   // instead of doing this reverse lookup, we would be able to build the stack
177   // frame for non-expression-based calls, and also we wouldn't need the reverse
178   // lookup.
179   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
180   const CFGBlock *B = Map->getBlock(E);
181   assert(B);
182 
183   // Also recover CFG index by scanning the CFG block.
184   unsigned Idx = 0, Sz = B->size();
185   for (; Idx < Sz; ++Idx)
186     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
187       if (StmtElem->getStmt() == E)
188         break;
189   assert(Idx < Sz);
190 
191   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
192 }
193 
194 const ParamVarRegion
195 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
196   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
197   // We cannot construct a VarRegion without a stack frame.
198   if (!SFC)
199     return nullptr;
200 
201   const ParamVarRegion *PVR =
202     State->getStateManager().getRegionManager().getParamVarRegion(
203         getOriginExpr(), Index, SFC);
204   return PVR;
205 }
206 
207 /// Returns true if a type is a pointer-to-const or reference-to-const
208 /// with no further indirection.
209 static bool isPointerToConst(QualType Ty) {
210   QualType PointeeTy = Ty->getPointeeType();
211   if (PointeeTy == QualType())
212     return false;
213   if (!PointeeTy.isConstQualified())
214     return false;
215   if (PointeeTy->isAnyPointerType())
216     return false;
217   return true;
218 }
219 
220 // Try to retrieve the function declaration and find the function parameter
221 // types which are pointers/references to a non-pointer const.
222 // We will not invalidate the corresponding argument regions.
223 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
224                                  const CallEvent &Call) {
225   unsigned Idx = 0;
226   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
227                                       E = Call.param_type_end();
228        I != E; ++I, ++Idx) {
229     if (isPointerToConst(*I))
230       PreserveArgs.insert(Idx);
231   }
232 }
233 
234 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
235                                              ProgramStateRef Orig) const {
236   ProgramStateRef Result = (Orig ? Orig : getState());
237 
238   // Don't invalidate anything if the callee is marked pure/const.
239   if (const Decl *callee = getDecl())
240     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
241       return Result;
242 
243   SmallVector<SVal, 8> ValuesToInvalidate;
244   RegionAndSymbolInvalidationTraits ETraits;
245 
246   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
247 
248   // Indexes of arguments whose values will be preserved by the call.
249   llvm::SmallSet<unsigned, 4> PreserveArgs;
250   if (!argumentsMayEscape())
251     findPtrToConstParams(PreserveArgs, *this);
252 
253   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
254     // Mark this region for invalidation.  We batch invalidate regions
255     // below for efficiency.
256     if (PreserveArgs.count(Idx))
257       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
258         ETraits.setTrait(MR->getBaseRegion(),
259                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
260         // TODO: Factor this out + handle the lower level const pointers.
261 
262     ValuesToInvalidate.push_back(getArgSVal(Idx));
263 
264     // If a function accepts an object by argument (which would of course be a
265     // temporary that isn't lifetime-extended), invalidate the object itself,
266     // not only other objects reachable from it. This is necessary because the
267     // destructor has access to the temporary object after the call.
268     // TODO: Support placement arguments once we start
269     // constructing them directly.
270     // TODO: This is unnecessary when there's no destructor, but that's
271     // currently hard to figure out.
272     if (getKind() != CE_CXXAllocator)
273       if (isArgumentConstructedDirectly(Idx))
274         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
275           if (const TypedValueRegion *TVR =
276                   getParameterLocation(*AdjIdx, BlockCount))
277             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
278   }
279 
280   // Invalidate designated regions using the batch invalidation API.
281   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
282   //  global variables.
283   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
284                                    BlockCount, getLocationContext(),
285                                    /*CausedByPointerEscape*/ true,
286                                    /*Symbols=*/nullptr, this, &ETraits);
287 }
288 
289 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
290                                         const ProgramPointTag *Tag) const {
291 
292   if (const Expr *E = getOriginExpr()) {
293     if (IsPreVisit)
294       return PreStmt(E, getLocationContext(), Tag);
295     return PostStmt(E, getLocationContext(), Tag);
296   }
297 
298   const Decl *D = getDecl();
299   assert(D && "Cannot get a program point without a statement or decl");
300   assert(ElemRef.getParent() &&
301          "Cannot get a program point without a CFGElementRef");
302 
303   SourceLocation Loc = getSourceRange().getBegin();
304   if (IsPreVisit)
305     return PreImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
306   return PostImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
307 }
308 
309 SVal CallEvent::getArgSVal(unsigned Index) const {
310   const Expr *ArgE = getArgExpr(Index);
311   if (!ArgE)
312     return UnknownVal();
313   return getSVal(ArgE);
314 }
315 
316 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
317   const Expr *ArgE = getArgExpr(Index);
318   if (!ArgE)
319     return {};
320   return ArgE->getSourceRange();
321 }
322 
323 SVal CallEvent::getReturnValue() const {
324   const Expr *E = getOriginExpr();
325   if (!E)
326     return UndefinedVal();
327   return getSVal(E);
328 }
329 
330 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
331 
332 void CallEvent::dump(raw_ostream &Out) const {
333   ASTContext &Ctx = getState()->getStateManager().getContext();
334   if (const Expr *E = getOriginExpr()) {
335     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
336     return;
337   }
338 
339   if (const Decl *D = getDecl()) {
340     Out << "Call to ";
341     D->print(Out, Ctx.getPrintingPolicy());
342     return;
343   }
344 
345   Out << "Unknown call (type " << getKindAsString() << ")";
346 }
347 
348 bool CallEvent::isCallStmt(const Stmt *S) {
349   return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
350 }
351 
352 QualType CallEvent::getDeclaredResultType(const Decl *D) {
353   assert(D);
354   if (const auto *FD = dyn_cast<FunctionDecl>(D))
355     return FD->getReturnType();
356   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
357     return MD->getReturnType();
358   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
359     // Blocks are difficult because the return type may not be stored in the
360     // BlockDecl itself. The AST should probably be enhanced, but for now we
361     // just do what we can.
362     // If the block is declared without an explicit argument list, the
363     // signature-as-written just includes the return type, not the entire
364     // function type.
365     // FIXME: All blocks should have signatures-as-written, even if the return
366     // type is inferred. (That's signified with a dependent result type.)
367     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
368       QualType Ty = TSI->getType();
369       if (const FunctionType *FT = Ty->getAs<FunctionType>())
370         Ty = FT->getReturnType();
371       if (!Ty->isDependentType())
372         return Ty;
373     }
374 
375     return {};
376   }
377 
378   llvm_unreachable("unknown callable kind");
379 }
380 
381 bool CallEvent::isVariadic(const Decl *D) {
382   assert(D);
383 
384   if (const auto *FD = dyn_cast<FunctionDecl>(D))
385     return FD->isVariadic();
386   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
387     return MD->isVariadic();
388   if (const auto *BD = dyn_cast<BlockDecl>(D))
389     return BD->isVariadic();
390 
391   llvm_unreachable("unknown callable kind");
392 }
393 
394 static bool isTransparentUnion(QualType T) {
395   const RecordType *UT = T->getAsUnionType();
396   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
397 }
398 
399 // In some cases, symbolic cases should be transformed before we associate
400 // them with parameters.  This function incapsulates such cases.
401 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
402                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
403   QualType ParamType = Parameter->getType();
404   QualType ArgumentType = ArgumentExpr->getType();
405 
406   // Transparent unions allow users to easily convert values of union field
407   // types into union-typed objects.
408   //
409   // Also, more importantly, they allow users to define functions with different
410   // different parameter types, substituting types matching transparent union
411   // field types with the union type itself.
412   //
413   // Here, we check specifically for latter cases and prevent binding
414   // field-typed values to union-typed regions.
415   if (isTransparentUnion(ParamType) &&
416       // Let's check that we indeed trying to bind different types.
417       !isTransparentUnion(ArgumentType)) {
418     BasicValueFactory &BVF = SVB.getBasicValueFactory();
419 
420     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
421     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
422 
423     // Wrap it with compound value.
424     return SVB.makeCompoundVal(ParamType, CompoundSVals);
425   }
426 
427   return Value;
428 }
429 
430 /// Cast the argument value to the type of the parameter at the function
431 /// declaration.
432 /// Returns the argument value if it didn't need a cast.
433 /// Or returns the cast argument if it needed a cast.
434 /// Or returns 'Unknown' if it would need a cast but the callsite and the
435 /// runtime definition don't match in terms of argument and parameter count.
436 static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
437                                        SVal ArgVal, SValBuilder &SVB) {
438   const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
439   if (!CallExprDecl)
440     return ArgVal;
441 
442   const FunctionDecl *Definition = CallExprDecl;
443   Definition->hasBody(Definition);
444 
445   // The function decl of the Call (in the AST) will not have any parameter
446   // declarations, if it was 'only' declared without a prototype. However, the
447   // engine will find the appropriate runtime definition - basically a
448   // redeclaration, which has a function body (and a function prototype).
449   if (CallExprDecl->hasPrototype() || !Definition->hasPrototype())
450     return ArgVal;
451 
452   // Only do this cast if the number arguments at the callsite matches with
453   // the parameters at the runtime definition.
454   if (Call.getNumArgs() != Definition->getNumParams())
455     return UnknownVal();
456 
457   const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
458   const ParmVarDecl *Param = Definition->getParamDecl(ArgIdx);
459   return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
460 }
461 
462 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
463                                          CallEvent::BindingsTy &Bindings,
464                                          SValBuilder &SVB,
465                                          const CallEvent &Call,
466                                          ArrayRef<ParmVarDecl*> parameters) {
467   MemRegionManager &MRMgr = SVB.getRegionManager();
468 
469   // If the function has fewer parameters than the call has arguments, we simply
470   // do not bind any values to them.
471   unsigned NumArgs = Call.getNumArgs();
472   unsigned Idx = 0;
473   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
474   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
475     assert(*I && "Formal parameter has no decl?");
476 
477     // TODO: Support allocator calls.
478     if (Call.getKind() != CE_CXXAllocator)
479       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
480         continue;
481 
482     // TODO: Allocators should receive the correct size and possibly alignment,
483     // determined in compile-time but not represented as arg-expressions,
484     // which makes getArgSVal() fail and return UnknownVal.
485     SVal ArgVal = Call.getArgSVal(Idx);
486     const Expr *ArgExpr = Call.getArgExpr(Idx);
487 
488     if (ArgVal.isUnknown())
489       continue;
490 
491     // Cast the argument value to match the type of the parameter in some
492     // edge-cases.
493     ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
494 
495     Loc ParamLoc = SVB.makeLoc(
496         MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
497     Bindings.push_back(
498         std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
499   }
500 
501   // FIXME: Variadic arguments are not handled at all right now.
502 }
503 
504 const ConstructionContext *CallEvent::getConstructionContext() const {
505   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
506   if (!StackFrame)
507     return nullptr;
508 
509   const CFGElement Element = StackFrame->getCallSiteCFGElement();
510   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
511     return Ctor->getConstructionContext();
512   }
513 
514   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
515     return RecCall->getConstructionContext();
516   }
517 
518   return nullptr;
519 }
520 
521 const CallEventRef<> CallEvent::getCaller() const {
522   const auto *CallLocationContext = this->getLocationContext();
523   if (!CallLocationContext || CallLocationContext->inTopFrame())
524     return nullptr;
525 
526   const auto *CallStackFrameContext = CallLocationContext->getStackFrame();
527   if (!CallStackFrameContext)
528     return nullptr;
529 
530   CallEventManager &CEMgr = State->getStateManager().getCallEventManager();
531   return CEMgr.getCaller(CallStackFrameContext, State);
532 }
533 
534 bool CallEvent::isCalledFromSystemHeader() const {
535   if (const CallEventRef<> Caller = getCaller())
536     return Caller->isInSystemHeader();
537 
538   return false;
539 }
540 
541 std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
542   const auto *CC = getConstructionContext();
543   if (!CC)
544     return std::nullopt;
545 
546   EvalCallOptions CallOpts;
547   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
548   SVal RetVal = Engine.computeObjectUnderConstruction(
549       getOriginExpr(), getState(), &Engine.getBuilderContext(),
550       getLocationContext(), CC, CallOpts);
551   return RetVal;
552 }
553 
554 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
555   const FunctionDecl *D = getDecl();
556   if (!D)
557     return {};
558   return D->parameters();
559 }
560 
561 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
562   const FunctionDecl *FD = getDecl();
563   if (!FD)
564     return {};
565 
566   // Note that the AnalysisDeclContext will have the FunctionDecl with
567   // the definition (if one exists).
568   AnalysisDeclContext *AD =
569     getLocationContext()->getAnalysisDeclContext()->
570     getManager()->getContext(FD);
571   bool IsAutosynthesized;
572   Stmt* Body = AD->getBody(IsAutosynthesized);
573   LLVM_DEBUG({
574     if (IsAutosynthesized)
575       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
576                    << "\n";
577   });
578 
579   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
580   cross_tu::CrossTranslationUnitContext &CTUCtx =
581       *Engine.getCrossTranslationUnitContext();
582 
583   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
584 
585   if (Body) {
586     const Decl* Decl = AD->getDecl();
587     if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(Decl)) {
588       // A newly created definition, but we had error(s) during the import.
589       if (CTUCtx.hasError(Decl))
590         return {};
591       return RuntimeDefinition(Decl, /*Foreign=*/true);
592     }
593     return RuntimeDefinition(Decl, /*Foreign=*/false);
594   }
595 
596   // Try to get CTU definition only if CTUDir is provided.
597   if (!Opts.IsNaiveCTUEnabled)
598     return {};
599 
600   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
601       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
602                                   Opts.DisplayCTUProgress);
603 
604   if (!CTUDeclOrError) {
605     handleAllErrors(CTUDeclOrError.takeError(),
606                     [&](const cross_tu::IndexError &IE) {
607                       CTUCtx.emitCrossTUDiagnostics(IE);
608                     });
609     return {};
610   }
611 
612   return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
613 }
614 
615 void AnyFunctionCall::getInitialStackFrameContents(
616                                         const StackFrameContext *CalleeCtx,
617                                         BindingsTy &Bindings) const {
618   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
619   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
620   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
621                                D->parameters());
622 }
623 
624 bool AnyFunctionCall::argumentsMayEscape() const {
625   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
626     return true;
627 
628   const FunctionDecl *D = getDecl();
629   if (!D)
630     return true;
631 
632   const IdentifierInfo *II = D->getIdentifier();
633   if (!II)
634     return false;
635 
636   // This set of "escaping" APIs is
637 
638   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
639   //   value into thread local storage. The value can later be retrieved with
640   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
641   //   parameter is 'const void *', the region escapes through the call.
642   if (II->isStr("pthread_setspecific"))
643     return true;
644 
645   // - xpc_connection_set_context stores a value which can be retrieved later
646   //   with xpc_connection_get_context.
647   if (II->isStr("xpc_connection_set_context"))
648     return true;
649 
650   // - funopen - sets a buffer for future IO calls.
651   if (II->isStr("funopen"))
652     return true;
653 
654   // - __cxa_demangle - can reallocate memory and can return the pointer to
655   // the input buffer.
656   if (II->isStr("__cxa_demangle"))
657     return true;
658 
659   StringRef FName = II->getName();
660 
661   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
662   //   buffer even if it is const.
663   if (FName.ends_with("NoCopy"))
664     return true;
665 
666   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
667   //   be deallocated by NSMapRemove.
668   if (FName.starts_with("NS") && FName.contains("Insert"))
669     return true;
670 
671   // - Many CF containers allow objects to escape through custom
672   //   allocators/deallocators upon container construction. (PR12101)
673   if (FName.starts_with("CF") || FName.starts_with("CG")) {
674     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
675            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
676            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
677            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
678            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
679            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
680   }
681 
682   return false;
683 }
684 
685 const FunctionDecl *SimpleFunctionCall::getDecl() const {
686   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
687   if (D)
688     return D;
689 
690   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
691 }
692 
693 const FunctionDecl *CXXInstanceCall::getDecl() const {
694   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
695   if (!CE)
696     return AnyFunctionCall::getDecl();
697 
698   const FunctionDecl *D = CE->getDirectCallee();
699   if (D)
700     return D;
701 
702   return getSVal(CE->getCallee()).getAsFunctionDecl();
703 }
704 
705 void CXXInstanceCall::getExtraInvalidatedValues(
706     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
707   SVal ThisVal = getCXXThisVal();
708   Values.push_back(ThisVal);
709 
710   // Don't invalidate if the method is const and there are no mutable fields.
711   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
712     if (!D->isConst())
713       return;
714 
715     // Get the record decl for the class of 'This'. D->getParent() may return
716     // a base class decl, rather than the class of the instance which needs to
717     // be checked for mutable fields.
718     const CXXRecordDecl *ParentRecord = getDeclForDynamicType().first;
719     if (!ParentRecord || !ParentRecord->hasDefinition())
720       return;
721 
722     if (ParentRecord->hasMutableFields())
723       return;
724 
725     // Preserve CXXThis.
726     const MemRegion *ThisRegion = ThisVal.getAsRegion();
727     if (!ThisRegion)
728       return;
729 
730     ETraits->setTrait(ThisRegion->getBaseRegion(),
731                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
732   }
733 }
734 
735 SVal CXXInstanceCall::getCXXThisVal() const {
736   const Expr *Base = getCXXThisExpr();
737   // FIXME: This doesn't handle an overloaded ->* operator.
738   SVal ThisVal = Base ? getSVal(Base) : UnknownVal();
739 
740   if (isa<NonLoc>(ThisVal)) {
741     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
742     QualType OriginalTy = ThisVal.getType(SVB.getContext());
743     return SVB.evalCast(ThisVal, Base->getType(), OriginalTy);
744   }
745 
746   assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
747   return ThisVal;
748 }
749 
750 std::pair<const CXXRecordDecl *, bool>
751 CXXInstanceCall::getDeclForDynamicType() const {
752   const MemRegion *R = getCXXThisVal().getAsRegion();
753   if (!R)
754     return {};
755 
756   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
757   if (!DynType.isValid())
758     return {};
759 
760   assert(!DynType.getType()->getPointeeType().isNull());
761   return {DynType.getType()->getPointeeCXXRecordDecl(),
762           DynType.canBeASubClass()};
763 }
764 
765 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
766   // Do we have a decl at all?
767   const Decl *D = getDecl();
768   if (!D)
769     return {};
770 
771   // If the method is non-virtual, we know we can inline it.
772   const auto *MD = cast<CXXMethodDecl>(D);
773   if (!MD->isVirtual())
774     return AnyFunctionCall::getRuntimeDefinition();
775 
776   auto [RD, CanBeSubClass] = getDeclForDynamicType();
777   if (!RD || !RD->hasDefinition())
778     return {};
779 
780   // Find the decl for this method in that class.
781   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
782   if (!Result) {
783     // We might not even get the original statically-resolved method due to
784     // some particularly nasty casting (e.g. casts to sister classes).
785     // However, we should at least be able to search up and down our own class
786     // hierarchy, and some real bugs have been caught by checking this.
787     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
788 
789     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
790     // the static type. However, because we currently don't update
791     // DynamicTypeInfo when an object is cast, we can't actually be sure the
792     // DynamicTypeInfo is up to date. This assert should be re-enabled once
793     // this is fixed.
794     //
795     // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
796 
797     return {};
798   }
799 
800   // Does the decl that we found have an implementation?
801   const FunctionDecl *Definition;
802   if (!Result->hasBody(Definition)) {
803     if (!CanBeSubClass)
804       return AnyFunctionCall::getRuntimeDefinition();
805     return {};
806   }
807 
808   // We found a definition. If we're not sure that this devirtualization is
809   // actually what will happen at runtime, make sure to provide the region so
810   // that ExprEngine can decide what to do with it.
811   if (CanBeSubClass)
812     return RuntimeDefinition(Definition,
813                              getCXXThisVal().getAsRegion()->StripCasts());
814   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
815 }
816 
817 void CXXInstanceCall::getInitialStackFrameContents(
818                                             const StackFrameContext *CalleeCtx,
819                                             BindingsTy &Bindings) const {
820   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
821 
822   // Handle the binding of 'this' in the new stack frame.
823   SVal ThisVal = getCXXThisVal();
824   if (!ThisVal.isUnknown()) {
825     ProgramStateManager &StateMgr = getState()->getStateManager();
826     SValBuilder &SVB = StateMgr.getSValBuilder();
827 
828     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
829     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
830 
831     // If we devirtualized to a different member function, we need to make sure
832     // we have the proper layering of CXXBaseObjectRegions.
833     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
834       ASTContext &Ctx = SVB.getContext();
835       const CXXRecordDecl *Class = MD->getParent();
836       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
837 
838       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
839       std::optional<SVal> V =
840           StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
841       if (!V) {
842         // We might have suffered some sort of placement new earlier, so
843         // we're constructing in a completely unexpected storage.
844         // Fall back to a generic pointer cast for this-value.
845         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
846         const CXXRecordDecl *StaticClass = StaticMD->getParent();
847         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
848         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
849       } else
850         ThisVal = *V;
851     }
852 
853     if (!ThisVal.isUnknown())
854       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
855   }
856 }
857 
858 const Expr *CXXMemberCall::getCXXThisExpr() const {
859   return getOriginExpr()->getImplicitObjectArgument();
860 }
861 
862 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
863   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
864   // id-expression in the class member access expression is a qualified-id,
865   // that function is called. Otherwise, its final overrider in the dynamic type
866   // of the object expression is called.
867   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
868     if (ME->hasQualifier())
869       return AnyFunctionCall::getRuntimeDefinition();
870 
871   return CXXInstanceCall::getRuntimeDefinition();
872 }
873 
874 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
875   return getOriginExpr()->getArg(0);
876 }
877 
878 const BlockDataRegion *BlockCall::getBlockRegion() const {
879   const Expr *Callee = getOriginExpr()->getCallee();
880   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
881 
882   return dyn_cast_or_null<BlockDataRegion>(DataReg);
883 }
884 
885 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
886   const BlockDecl *D = getDecl();
887   if (!D)
888     return {};
889   return D->parameters();
890 }
891 
892 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
893                   RegionAndSymbolInvalidationTraits *ETraits) const {
894   // FIXME: This also needs to invalidate captured globals.
895   if (const MemRegion *R = getBlockRegion())
896     Values.push_back(loc::MemRegionVal(R));
897 }
898 
899 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
900                                              BindingsTy &Bindings) const {
901   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
902   ArrayRef<ParmVarDecl*> Params;
903   if (isConversionFromLambda()) {
904     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
905     Params = LambdaOperatorDecl->parameters();
906 
907     // For blocks converted from a C++ lambda, the callee declaration is the
908     // operator() method on the lambda so we bind "this" to
909     // the lambda captured by the block.
910     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
911     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
912     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
913     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
914   } else {
915     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
916   }
917 
918   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
919                                Params);
920 }
921 
922 SVal AnyCXXConstructorCall::getCXXThisVal() const {
923   if (Data)
924     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
925   return UnknownVal();
926 }
927 
928 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
929                            RegionAndSymbolInvalidationTraits *ETraits) const {
930   SVal V = getCXXThisVal();
931   if (SymbolRef Sym = V.getAsSymbol(true))
932     ETraits->setTrait(Sym,
933                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
934 
935   // Standard classes don't reinterpret-cast and modify super regions.
936   const bool IsStdClassCtor = isWithinStdNamespace(getDecl());
937   if (const MemRegion *Obj = V.getAsRegion(); Obj && IsStdClassCtor) {
938     ETraits->setTrait(
939         Obj, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
940   }
941 
942   Values.push_back(V);
943 }
944 
945 void AnyCXXConstructorCall::getInitialStackFrameContents(
946                                              const StackFrameContext *CalleeCtx,
947                                              BindingsTy &Bindings) const {
948   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
949 
950   SVal ThisVal = getCXXThisVal();
951   if (!ThisVal.isUnknown()) {
952     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
953     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
954     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
955     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
956   }
957 }
958 
959 const StackFrameContext *
960 CXXInheritedConstructorCall::getInheritingStackFrame() const {
961   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
962   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
963     SFC = SFC->getParent()->getStackFrame();
964   return SFC;
965 }
966 
967 SVal CXXDestructorCall::getCXXThisVal() const {
968   if (Data)
969     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
970   return UnknownVal();
971 }
972 
973 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
974   // Base destructors are always called non-virtually.
975   // Skip CXXInstanceCall's devirtualization logic in this case.
976   if (isBaseDestructor())
977     return AnyFunctionCall::getRuntimeDefinition();
978 
979   return CXXInstanceCall::getRuntimeDefinition();
980 }
981 
982 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
983   const ObjCMethodDecl *D = getDecl();
984   if (!D)
985     return {};
986   return D->parameters();
987 }
988 
989 void ObjCMethodCall::getExtraInvalidatedValues(
990     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
991 
992   // If the method call is a setter for property known to be backed by
993   // an instance variable, don't invalidate the entire receiver, just
994   // the storage for that instance variable.
995   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
996     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
997       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
998       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
999         ETraits->setTrait(
1000           IvarRegion,
1001           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1002         ETraits->setTrait(
1003           IvarRegion,
1004           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1005         Values.push_back(IvarLVal);
1006       }
1007       return;
1008     }
1009   }
1010 
1011   Values.push_back(getReceiverSVal());
1012 }
1013 
1014 SVal ObjCMethodCall::getReceiverSVal() const {
1015   // FIXME: Is this the best way to handle class receivers?
1016   if (!isInstanceMessage())
1017     return UnknownVal();
1018 
1019   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
1020     return getSVal(RecE);
1021 
1022   // An instance message with no expression means we are sending to super.
1023   // In this case the object reference is the same as 'self'.
1024   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
1025   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1026   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
1027   return SelfVal;
1028 }
1029 
1030 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1031   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1032       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1033       return true;
1034 
1035   if (!isInstanceMessage())
1036     return false;
1037 
1038   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1039   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1040 
1041   return (RecVal == SelfVal);
1042 }
1043 
1044 SourceRange ObjCMethodCall::getSourceRange() const {
1045   switch (getMessageKind()) {
1046   case OCM_Message:
1047     return getOriginExpr()->getSourceRange();
1048   case OCM_PropertyAccess:
1049   case OCM_Subscript:
1050     return getContainingPseudoObjectExpr()->getSourceRange();
1051   }
1052   llvm_unreachable("unknown message kind");
1053 }
1054 
1055 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1056 
1057 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1058   assert(Data && "Lazy lookup not yet performed.");
1059   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1060   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1061 }
1062 
1063 static const Expr *
1064 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1065   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1066 
1067   // This handles the funny case of assigning to the result of a getter.
1068   // This can happen if the getter returns a non-const reference.
1069   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1070     Syntactic = BO->getLHS()->IgnoreParens();
1071 
1072   return Syntactic;
1073 }
1074 
1075 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1076   if (!Data) {
1077     // Find the parent, ignoring implicit casts.
1078     const ParentMap &PM = getLocationContext()->getParentMap();
1079     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1080 
1081     // Check if parent is a PseudoObjectExpr.
1082     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1083       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1084 
1085       ObjCMessageKind K;
1086       switch (Syntactic->getStmtClass()) {
1087       case Stmt::ObjCPropertyRefExprClass:
1088         K = OCM_PropertyAccess;
1089         break;
1090       case Stmt::ObjCSubscriptRefExprClass:
1091         K = OCM_Subscript;
1092         break;
1093       default:
1094         // FIXME: Can this ever happen?
1095         K = OCM_Message;
1096         break;
1097       }
1098 
1099       if (K != OCM_Message) {
1100         const_cast<ObjCMethodCall *>(this)->Data
1101           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1102         assert(getMessageKind() == K);
1103         return K;
1104       }
1105     }
1106 
1107     const_cast<ObjCMethodCall *>(this)->Data
1108       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1109     assert(getMessageKind() == OCM_Message);
1110     return OCM_Message;
1111   }
1112 
1113   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1114   if (!Info.getPointer())
1115     return OCM_Message;
1116   return static_cast<ObjCMessageKind>(Info.getInt());
1117 }
1118 
1119 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1120   // Look for properties accessed with property syntax (foo.bar = ...)
1121   if (getMessageKind() == OCM_PropertyAccess) {
1122     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1123     assert(POE && "Property access without PseudoObjectExpr?");
1124 
1125     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1126     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1127 
1128     if (RefExpr->isExplicitProperty())
1129       return RefExpr->getExplicitProperty();
1130   }
1131 
1132   // Look for properties accessed with method syntax ([foo setBar:...]).
1133   const ObjCMethodDecl *MD = getDecl();
1134   if (!MD || !MD->isPropertyAccessor())
1135     return nullptr;
1136 
1137   // Note: This is potentially quite slow.
1138   return MD->findPropertyDecl();
1139 }
1140 
1141 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1142                                              Selector Sel) const {
1143   assert(IDecl);
1144   AnalysisManager &AMgr =
1145       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1146   // If the class interface is declared inside the main file, assume it is not
1147   // subcassed.
1148   // TODO: It could actually be subclassed if the subclass is private as well.
1149   // This is probably very rare.
1150   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1151   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1152     return false;
1153 
1154   // Assume that property accessors are not overridden.
1155   if (getMessageKind() == OCM_PropertyAccess)
1156     return false;
1157 
1158   // We assume that if the method is public (declared outside of main file) or
1159   // has a parent which publicly declares the method, the method could be
1160   // overridden in a subclass.
1161 
1162   // Find the first declaration in the class hierarchy that declares
1163   // the selector.
1164   ObjCMethodDecl *D = nullptr;
1165   while (true) {
1166     D = IDecl->lookupMethod(Sel, true);
1167 
1168     // Cannot find a public definition.
1169     if (!D)
1170       return false;
1171 
1172     // If outside the main file,
1173     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1174       return true;
1175 
1176     if (D->isOverriding()) {
1177       // Search in the superclass on the next iteration.
1178       IDecl = D->getClassInterface();
1179       if (!IDecl)
1180         return false;
1181 
1182       IDecl = IDecl->getSuperClass();
1183       if (!IDecl)
1184         return false;
1185 
1186       continue;
1187     }
1188 
1189     return false;
1190   };
1191 
1192   llvm_unreachable("The while loop should always terminate.");
1193 }
1194 
1195 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1196   if (!MD)
1197     return MD;
1198 
1199   // Find the redeclaration that defines the method.
1200   if (!MD->hasBody()) {
1201     for (auto *I : MD->redecls())
1202       if (I->hasBody())
1203         MD = cast<ObjCMethodDecl>(I);
1204   }
1205   return MD;
1206 }
1207 
1208 struct PrivateMethodKey {
1209   const ObjCInterfaceDecl *Interface;
1210   Selector LookupSelector;
1211   bool IsClassMethod;
1212 };
1213 
1214 namespace llvm {
1215 template <> struct DenseMapInfo<PrivateMethodKey> {
1216   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1217   using SelectorInfo = DenseMapInfo<Selector>;
1218 
1219   static inline PrivateMethodKey getEmptyKey() {
1220     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1221   }
1222 
1223   static inline PrivateMethodKey getTombstoneKey() {
1224     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1225             true};
1226   }
1227 
1228   static unsigned getHashValue(const PrivateMethodKey &Key) {
1229     return llvm::hash_combine(
1230         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1231         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1232         Key.IsClassMethod);
1233   }
1234 
1235   static bool isEqual(const PrivateMethodKey &LHS,
1236                       const PrivateMethodKey &RHS) {
1237     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1238            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1239            LHS.IsClassMethod == RHS.IsClassMethod;
1240   }
1241 };
1242 } // end namespace llvm
1243 
1244 static const ObjCMethodDecl *
1245 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1246                         Selector LookupSelector, bool InstanceMethod) {
1247   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1248   // when in many cases it returns null.  We cache the results so
1249   // that repeated queries on the same ObjCIntefaceDecl and Selector
1250   // don't incur the same cost.  On some test cases, we can see the
1251   // same query being issued thousands of times.
1252   //
1253   // NOTE: This cache is essentially a "global" variable, but it
1254   // only gets lazily created when we get here.  The value of the
1255   // cache probably comes from it being global across ExprEngines,
1256   // where the same queries may get issued.  If we are worried about
1257   // concurrency, or possibly loading/unloading ASTs, etc., we may
1258   // need to revisit this someday.  In terms of memory, this table
1259   // stays around until clang quits, which also may be bad if we
1260   // need to release memory.
1261   using PrivateMethodCache =
1262       llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
1263 
1264   static PrivateMethodCache PMC;
1265   std::optional<const ObjCMethodDecl *> &Val =
1266       PMC[{Interface, LookupSelector, InstanceMethod}];
1267 
1268   // Query lookupPrivateMethod() if the cache does not hit.
1269   if (!Val) {
1270     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1271 
1272     if (!*Val) {
1273       // Query 'lookupMethod' as a backup.
1274       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1275     }
1276   }
1277 
1278   return *Val;
1279 }
1280 
1281 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1282   const ObjCMessageExpr *E = getOriginExpr();
1283   assert(E);
1284   Selector Sel = E->getSelector();
1285 
1286   if (E->isInstanceMessage()) {
1287     // Find the receiver type.
1288     const ObjCObjectType *ReceiverT = nullptr;
1289     bool CanBeSubClassed = false;
1290     bool LookingForInstanceMethod = true;
1291     QualType SupersType = E->getSuperType();
1292     const MemRegion *Receiver = nullptr;
1293 
1294     if (!SupersType.isNull()) {
1295       // The receiver is guaranteed to be 'super' in this case.
1296       // Super always means the type of immediate predecessor to the method
1297       // where the call occurs.
1298       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1299     } else {
1300       Receiver = getReceiverSVal().getAsRegion();
1301       if (!Receiver)
1302         return {};
1303 
1304       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1305       if (!DTI.isValid()) {
1306         assert(isa<AllocaRegion>(Receiver) &&
1307                "Unhandled untyped region class!");
1308         return {};
1309       }
1310 
1311       QualType DynType = DTI.getType();
1312       CanBeSubClassed = DTI.canBeASubClass();
1313 
1314       const auto *ReceiverDynT =
1315           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1316 
1317       if (ReceiverDynT) {
1318         ReceiverT = ReceiverDynT->getObjectType();
1319 
1320         // It can be actually class methods called with Class object as a
1321         // receiver. This type of messages is treated by the compiler as
1322         // instance (not class).
1323         if (ReceiverT->isObjCClass()) {
1324 
1325           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1326           // For [self classMethod], return compiler visible declaration.
1327           if (Receiver == SelfVal.getAsRegion()) {
1328             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1329           }
1330 
1331           // Otherwise, let's check if we know something about the type
1332           // inside of this class object.
1333           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1334             DynamicTypeInfo DTI =
1335                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1336             if (DTI.isValid()) {
1337               // Let's use this type for lookup.
1338               ReceiverT =
1339                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1340 
1341               CanBeSubClassed = DTI.canBeASubClass();
1342               // And it should be a class method instead.
1343               LookingForInstanceMethod = false;
1344             }
1345           }
1346         }
1347 
1348         if (CanBeSubClassed)
1349           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1350             // Even if `DynamicTypeInfo` told us that it can be
1351             // not necessarily this type, but its descendants, we still want
1352             // to check again if this selector can be actually overridden.
1353             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1354       }
1355     }
1356 
1357     // Lookup the instance method implementation.
1358     if (ReceiverT)
1359       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1360         const ObjCMethodDecl *MD =
1361             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1362 
1363         if (MD && !MD->hasBody())
1364           MD = MD->getCanonicalDecl();
1365 
1366         if (CanBeSubClassed)
1367           return RuntimeDefinition(MD, Receiver);
1368         else
1369           return RuntimeDefinition(MD, nullptr);
1370       }
1371   } else {
1372     // This is a class method.
1373     // If we have type info for the receiver class, we are calling via
1374     // class name.
1375     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1376       // Find/Return the method implementation.
1377       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1378     }
1379   }
1380 
1381   return {};
1382 }
1383 
1384 bool ObjCMethodCall::argumentsMayEscape() const {
1385   if (isInSystemHeader() && !isInstanceMessage()) {
1386     Selector Sel = getSelector();
1387     if (Sel.getNumArgs() == 1 &&
1388         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1389       return true;
1390   }
1391 
1392   return CallEvent::argumentsMayEscape();
1393 }
1394 
1395 void ObjCMethodCall::getInitialStackFrameContents(
1396                                              const StackFrameContext *CalleeCtx,
1397                                              BindingsTy &Bindings) const {
1398   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1399   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1400   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1401                                D->parameters());
1402 
1403   SVal SelfVal = getReceiverSVal();
1404   if (!SelfVal.isUnknown()) {
1405     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1406     MemRegionManager &MRMgr = SVB.getRegionManager();
1407     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1408     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1409   }
1410 }
1411 
1412 CallEventRef<>
1413 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1414                                 const LocationContext *LCtx,
1415                                 CFGBlock::ConstCFGElementRef ElemRef) {
1416   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1417     return create<CXXMemberCall>(MCE, State, LCtx, ElemRef);
1418 
1419   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1420     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1421     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) {
1422       if (MD->isImplicitObjectMemberFunction())
1423         return create<CXXMemberOperatorCall>(OpCE, State, LCtx, ElemRef);
1424       if (MD->isStatic())
1425         return create<CXXStaticOperatorCall>(OpCE, State, LCtx, ElemRef);
1426     }
1427 
1428   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1429     return create<BlockCall>(CE, State, LCtx, ElemRef);
1430   }
1431 
1432   // Otherwise, it's a normal function call, static member function call, or
1433   // something we can't reason about.
1434   return create<SimpleFunctionCall>(CE, State, LCtx, ElemRef);
1435 }
1436 
1437 CallEventRef<>
1438 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1439                             ProgramStateRef State) {
1440   const LocationContext *ParentCtx = CalleeCtx->getParent();
1441   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1442   CFGBlock::ConstCFGElementRef ElemRef = {CalleeCtx->getCallSiteBlock(),
1443                                           CalleeCtx->getIndex()};
1444   assert(CallerCtx && "This should not be used for top-level stack frames");
1445 
1446   const Stmt *CallSite = CalleeCtx->getCallSite();
1447 
1448   if (CallSite) {
1449     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx, ElemRef))
1450       return Out;
1451 
1452     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1453     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1454     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1455     SVal ThisVal = State->getSVal(ThisPtr);
1456 
1457     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1458       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx,
1459                                    ElemRef);
1460     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1461       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1462                                             CallerCtx, ElemRef);
1463     else {
1464       // All other cases are handled by getCall.
1465       llvm_unreachable("This is not an inlineable statement");
1466     }
1467   }
1468 
1469   // Fall back to the CFG. The only thing we haven't handled yet is
1470   // destructors, though this could change in the future.
1471   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1472   CFGElement E = (*B)[CalleeCtx->getIndex()];
1473   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1474          "All other CFG elements should have exprs");
1475 
1476   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1477   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1478   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1479   SVal ThisVal = State->getSVal(ThisPtr);
1480 
1481   const Stmt *Trigger;
1482   if (std::optional<CFGAutomaticObjDtor> AutoDtor =
1483           E.getAs<CFGAutomaticObjDtor>())
1484     Trigger = AutoDtor->getTriggerStmt();
1485   else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1486     Trigger = DeleteDtor->getDeleteExpr();
1487   else
1488     Trigger = Dtor->getBody();
1489 
1490   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1491                               E.getAs<CFGBaseDtor>().has_value(), State,
1492                               CallerCtx, ElemRef);
1493 }
1494 
1495 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1496                                          const LocationContext *LC,
1497                                          CFGBlock::ConstCFGElementRef ElemRef) {
1498   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1499     return getSimpleCall(CE, State, LC, ElemRef);
1500   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1501     return getCXXAllocatorCall(NE, State, LC, ElemRef);
1502   } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
1503     return getCXXDeallocatorCall(DE, State, LC, ElemRef);
1504   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1505     return getObjCMethodCall(ME, State, LC, ElemRef);
1506   } else {
1507     return nullptr;
1508   }
1509 }
1510