1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ABIInfoImpl.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/Builtins.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/Sequence.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include <optional> 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantAggregateBuilder 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 class ConstExprEmitter; 44 45 llvm::Constant *getPadding(const CodeGenModule &CGM, CharUnits PadSize) { 46 llvm::Type *Ty = CGM.CharTy; 47 if (PadSize > CharUnits::One()) 48 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 49 if (CGM.shouldZeroInitPadding()) { 50 return llvm::Constant::getNullValue(Ty); 51 } 52 return llvm::UndefValue::get(Ty); 53 } 54 55 struct ConstantAggregateBuilderUtils { 56 CodeGenModule &CGM; 57 58 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 59 60 CharUnits getAlignment(const llvm::Constant *C) const { 61 return CharUnits::fromQuantity( 62 CGM.getDataLayout().getABITypeAlign(C->getType())); 63 } 64 65 CharUnits getSize(llvm::Type *Ty) const { 66 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 67 } 68 69 CharUnits getSize(const llvm::Constant *C) const { 70 return getSize(C->getType()); 71 } 72 73 llvm::Constant *getPadding(CharUnits PadSize) const { 74 return ::getPadding(CGM, PadSize); 75 } 76 77 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 78 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 79 return llvm::ConstantAggregateZero::get(Ty); 80 } 81 }; 82 83 /// Incremental builder for an llvm::Constant* holding a struct or array 84 /// constant. 85 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 86 /// The elements of the constant. These two arrays must have the same size; 87 /// Offsets[i] describes the offset of Elems[i] within the constant. The 88 /// elements are kept in increasing offset order, and we ensure that there 89 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 90 /// 91 /// This may contain explicit padding elements (in order to create a 92 /// natural layout), but need not. Gaps between elements are implicitly 93 /// considered to be filled with undef. 94 llvm::SmallVector<llvm::Constant*, 32> Elems; 95 llvm::SmallVector<CharUnits, 32> Offsets; 96 97 /// The size of the constant (the maximum end offset of any added element). 98 /// May be larger than the end of Elems.back() if we split the last element 99 /// and removed some trailing undefs. 100 CharUnits Size = CharUnits::Zero(); 101 102 /// This is true only if laying out Elems in order as the elements of a 103 /// non-packed LLVM struct will give the correct layout. 104 bool NaturalLayout = true; 105 106 bool split(size_t Index, CharUnits Hint); 107 std::optional<size_t> splitAt(CharUnits Pos); 108 109 static llvm::Constant *buildFrom(CodeGenModule &CGM, 110 ArrayRef<llvm::Constant *> Elems, 111 ArrayRef<CharUnits> Offsets, 112 CharUnits StartOffset, CharUnits Size, 113 bool NaturalLayout, llvm::Type *DesiredTy, 114 bool AllowOversized); 115 116 public: 117 ConstantAggregateBuilder(CodeGenModule &CGM) 118 : ConstantAggregateBuilderUtils(CGM) {} 119 120 /// Update or overwrite the value starting at \p Offset with \c C. 121 /// 122 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 123 /// a constant that has already been added. This flag is only used to 124 /// detect bugs. 125 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 126 127 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 128 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 129 130 /// Attempt to condense the value starting at \p Offset to a constant of type 131 /// \p DesiredTy. 132 void condense(CharUnits Offset, llvm::Type *DesiredTy); 133 134 /// Produce a constant representing the entire accumulated value, ideally of 135 /// the specified type. If \p AllowOversized, the constant might be larger 136 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 137 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 138 /// even if we can't represent it as that type. 139 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 140 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 141 NaturalLayout, DesiredTy, AllowOversized); 142 } 143 }; 144 145 template<typename Container, typename Range = std::initializer_list< 146 typename Container::value_type>> 147 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 148 assert(BeginOff <= EndOff && "invalid replacement range"); 149 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 150 } 151 152 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 153 bool AllowOverwrite) { 154 // Common case: appending to a layout. 155 if (Offset >= Size) { 156 CharUnits Align = getAlignment(C); 157 CharUnits AlignedSize = Size.alignTo(Align); 158 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 159 NaturalLayout = false; 160 else if (AlignedSize < Offset) { 161 Elems.push_back(getPadding(Offset - Size)); 162 Offsets.push_back(Size); 163 } 164 Elems.push_back(C); 165 Offsets.push_back(Offset); 166 Size = Offset + getSize(C); 167 return true; 168 } 169 170 // Uncommon case: constant overlaps what we've already created. 171 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 172 if (!FirstElemToReplace) 173 return false; 174 175 CharUnits CSize = getSize(C); 176 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 177 if (!LastElemToReplace) 178 return false; 179 180 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 181 "unexpectedly overwriting field"); 182 183 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 184 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 185 Size = std::max(Size, Offset + CSize); 186 NaturalLayout = false; 187 return true; 188 } 189 190 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 191 bool AllowOverwrite) { 192 const ASTContext &Context = CGM.getContext(); 193 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 194 195 // Offset of where we want the first bit to go within the bits of the 196 // current char. 197 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 198 199 // We split bit-fields up into individual bytes. Walk over the bytes and 200 // update them. 201 for (CharUnits OffsetInChars = 202 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 203 /**/; ++OffsetInChars) { 204 // Number of bits we want to fill in this char. 205 unsigned WantedBits = 206 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 207 208 // Get a char containing the bits we want in the right places. The other 209 // bits have unspecified values. 210 llvm::APInt BitsThisChar = Bits; 211 if (BitsThisChar.getBitWidth() < CharWidth) 212 BitsThisChar = BitsThisChar.zext(CharWidth); 213 if (CGM.getDataLayout().isBigEndian()) { 214 // Figure out how much to shift by. We may need to left-shift if we have 215 // less than one byte of Bits left. 216 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 217 if (Shift > 0) 218 BitsThisChar.lshrInPlace(Shift); 219 else if (Shift < 0) 220 BitsThisChar = BitsThisChar.shl(-Shift); 221 } else { 222 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 223 } 224 if (BitsThisChar.getBitWidth() > CharWidth) 225 BitsThisChar = BitsThisChar.trunc(CharWidth); 226 227 if (WantedBits == CharWidth) { 228 // Got a full byte: just add it directly. 229 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 230 OffsetInChars, AllowOverwrite); 231 } else { 232 // Partial byte: update the existing integer if there is one. If we 233 // can't split out a 1-CharUnit range to update, then we can't add 234 // these bits and fail the entire constant emission. 235 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 236 if (!FirstElemToUpdate) 237 return false; 238 std::optional<size_t> LastElemToUpdate = 239 splitAt(OffsetInChars + CharUnits::One()); 240 if (!LastElemToUpdate) 241 return false; 242 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 243 "should have at most one element covering one byte"); 244 245 // Figure out which bits we want and discard the rest. 246 llvm::APInt UpdateMask(CharWidth, 0); 247 if (CGM.getDataLayout().isBigEndian()) 248 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 249 CharWidth - OffsetWithinChar); 250 else 251 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 252 BitsThisChar &= UpdateMask; 253 254 if (*FirstElemToUpdate == *LastElemToUpdate || 255 Elems[*FirstElemToUpdate]->isNullValue() || 256 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 257 // All existing bits are either zero or undef. 258 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 259 OffsetInChars, /*AllowOverwrite*/ true); 260 } else { 261 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 262 // In order to perform a partial update, we need the existing bitwise 263 // value, which we can only extract for a constant int. 264 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 265 if (!CI) 266 return false; 267 // Because this is a 1-CharUnit range, the constant occupying it must 268 // be exactly one CharUnit wide. 269 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 270 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 271 "unexpectedly overwriting bitfield"); 272 BitsThisChar |= (CI->getValue() & ~UpdateMask); 273 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 274 } 275 } 276 277 // Stop if we've added all the bits. 278 if (WantedBits == Bits.getBitWidth()) 279 break; 280 281 // Remove the consumed bits from Bits. 282 if (!CGM.getDataLayout().isBigEndian()) 283 Bits.lshrInPlace(WantedBits); 284 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 285 286 // The remanining bits go at the start of the following bytes. 287 OffsetWithinChar = 0; 288 } 289 290 return true; 291 } 292 293 /// Returns a position within Elems and Offsets such that all elements 294 /// before the returned index end before Pos and all elements at or after 295 /// the returned index begin at or after Pos. Splits elements as necessary 296 /// to ensure this. Returns std::nullopt if we find something we can't split. 297 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 298 if (Pos >= Size) 299 return Offsets.size(); 300 301 while (true) { 302 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 303 if (FirstAfterPos == Offsets.begin()) 304 return 0; 305 306 // If we already have an element starting at Pos, we're done. 307 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 308 if (Offsets[LastAtOrBeforePosIndex] == Pos) 309 return LastAtOrBeforePosIndex; 310 311 // We found an element starting before Pos. Check for overlap. 312 if (Offsets[LastAtOrBeforePosIndex] + 313 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 314 return LastAtOrBeforePosIndex + 1; 315 316 // Try to decompose it into smaller constants. 317 if (!split(LastAtOrBeforePosIndex, Pos)) 318 return std::nullopt; 319 } 320 } 321 322 /// Split the constant at index Index, if possible. Return true if we did. 323 /// Hint indicates the location at which we'd like to split, but may be 324 /// ignored. 325 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 326 NaturalLayout = false; 327 llvm::Constant *C = Elems[Index]; 328 CharUnits Offset = Offsets[Index]; 329 330 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 331 // Expand the sequence into its contained elements. 332 // FIXME: This assumes vector elements are byte-sized. 333 replace(Elems, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return CA->getOperand(Op); })); 336 if (isa<llvm::ArrayType>(CA->getType()) || 337 isa<llvm::VectorType>(CA->getType())) { 338 // Array or vector. 339 llvm::Type *ElemTy = 340 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 341 CharUnits ElemSize = getSize(ElemTy); 342 replace( 343 Offsets, Index, Index + 1, 344 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 345 [&](unsigned Op) { return Offset + Op * ElemSize; })); 346 } else { 347 // Must be a struct. 348 auto *ST = cast<llvm::StructType>(CA->getType()); 349 const llvm::StructLayout *Layout = 350 CGM.getDataLayout().getStructLayout(ST); 351 replace(Offsets, Index, Index + 1, 352 llvm::map_range( 353 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 354 return Offset + CharUnits::fromQuantity( 355 Layout->getElementOffset(Op)); 356 })); 357 } 358 return true; 359 } 360 361 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 362 // Expand the sequence into its contained elements. 363 // FIXME: This assumes vector elements are byte-sized. 364 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 365 CharUnits ElemSize = getSize(CDS->getElementType()); 366 replace(Elems, Index, Index + 1, 367 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 368 [&](unsigned Elem) { 369 return CDS->getElementAsConstant(Elem); 370 })); 371 replace(Offsets, Index, Index + 1, 372 llvm::map_range( 373 llvm::seq(0u, CDS->getNumElements()), 374 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 375 return true; 376 } 377 378 if (isa<llvm::ConstantAggregateZero>(C)) { 379 // Split into two zeros at the hinted offset. 380 CharUnits ElemSize = getSize(C); 381 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 382 replace(Elems, Index, Index + 1, 383 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 384 replace(Offsets, Index, Index + 1, {Offset, Hint}); 385 return true; 386 } 387 388 if (isa<llvm::UndefValue>(C)) { 389 // Drop undef; it doesn't contribute to the final layout. 390 replace(Elems, Index, Index + 1, {}); 391 replace(Offsets, Index, Index + 1, {}); 392 return true; 393 } 394 395 // FIXME: We could split a ConstantInt if the need ever arose. 396 // We don't need to do this to handle bit-fields because we always eagerly 397 // split them into 1-byte chunks. 398 399 return false; 400 } 401 402 static llvm::Constant * 403 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 404 llvm::Type *CommonElementType, uint64_t ArrayBound, 405 SmallVectorImpl<llvm::Constant *> &Elements, 406 llvm::Constant *Filler); 407 408 llvm::Constant *ConstantAggregateBuilder::buildFrom( 409 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 410 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 411 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 412 ConstantAggregateBuilderUtils Utils(CGM); 413 414 if (Elems.empty()) 415 return llvm::UndefValue::get(DesiredTy); 416 417 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 418 419 // If we want an array type, see if all the elements are the same type and 420 // appropriately spaced. 421 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 422 assert(!AllowOversized && "oversized array emission not supported"); 423 424 bool CanEmitArray = true; 425 llvm::Type *CommonType = Elems[0]->getType(); 426 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 427 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 428 SmallVector<llvm::Constant*, 32> ArrayElements; 429 for (size_t I = 0; I != Elems.size(); ++I) { 430 // Skip zeroes; we'll use a zero value as our array filler. 431 if (Elems[I]->isNullValue()) 432 continue; 433 434 // All remaining elements must be the same type. 435 if (Elems[I]->getType() != CommonType || 436 Offset(I) % ElemSize != 0) { 437 CanEmitArray = false; 438 break; 439 } 440 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 441 ArrayElements.back() = Elems[I]; 442 } 443 444 if (CanEmitArray) { 445 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 446 ArrayElements, Filler); 447 } 448 449 // Can't emit as an array, carry on to emit as a struct. 450 } 451 452 // The size of the constant we plan to generate. This is usually just 453 // the size of the initialized type, but in AllowOversized mode (i.e. 454 // flexible array init), it can be larger. 455 CharUnits DesiredSize = Utils.getSize(DesiredTy); 456 if (Size > DesiredSize) { 457 assert(AllowOversized && "Elems are oversized"); 458 DesiredSize = Size; 459 } 460 461 // The natural alignment of an unpacked LLVM struct with the given elements. 462 CharUnits Align = CharUnits::One(); 463 for (llvm::Constant *C : Elems) 464 Align = std::max(Align, Utils.getAlignment(C)); 465 466 // The natural size of an unpacked LLVM struct with the given elements. 467 CharUnits AlignedSize = Size.alignTo(Align); 468 469 bool Packed = false; 470 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 471 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 472 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { 473 // The natural layout would be too big; force use of a packed layout. 474 NaturalLayout = false; 475 Packed = true; 476 } else if (DesiredSize > AlignedSize) { 477 // The natural layout would be too small. Add padding to fix it. (This 478 // is ignored if we choose a packed layout.) 479 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 480 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 481 UnpackedElems = UnpackedElemStorage; 482 } 483 484 // If we don't have a natural layout, insert padding as necessary. 485 // As we go, double-check to see if we can actually just emit Elems 486 // as a non-packed struct and do so opportunistically if possible. 487 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 488 if (!NaturalLayout) { 489 CharUnits SizeSoFar = CharUnits::Zero(); 490 for (size_t I = 0; I != Elems.size(); ++I) { 491 CharUnits Align = Utils.getAlignment(Elems[I]); 492 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 493 CharUnits DesiredOffset = Offset(I); 494 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 495 496 if (DesiredOffset != NaturalOffset) 497 Packed = true; 498 if (DesiredOffset != SizeSoFar) 499 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 500 PackedElems.push_back(Elems[I]); 501 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 502 } 503 // If we're using the packed layout, pad it out to the desired size if 504 // necessary. 505 if (Packed) { 506 assert(SizeSoFar <= DesiredSize && 507 "requested size is too small for contents"); 508 if (SizeSoFar < DesiredSize) 509 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 510 } 511 } 512 513 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 514 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 515 516 // Pick the type to use. If the type is layout identical to the desired 517 // type then use it, otherwise use whatever the builder produced for us. 518 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 519 if (DesiredSTy->isLayoutIdentical(STy)) 520 STy = DesiredSTy; 521 } 522 523 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 524 } 525 526 void ConstantAggregateBuilder::condense(CharUnits Offset, 527 llvm::Type *DesiredTy) { 528 CharUnits Size = getSize(DesiredTy); 529 530 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 531 if (!FirstElemToReplace) 532 return; 533 size_t First = *FirstElemToReplace; 534 535 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size); 536 if (!LastElemToReplace) 537 return; 538 size_t Last = *LastElemToReplace; 539 540 size_t Length = Last - First; 541 if (Length == 0) 542 return; 543 544 if (Length == 1 && Offsets[First] == Offset && 545 getSize(Elems[First]) == Size) { 546 // Re-wrap single element structs if necessary. Otherwise, leave any single 547 // element constant of the right size alone even if it has the wrong type. 548 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 549 if (STy && STy->getNumElements() == 1 && 550 STy->getElementType(0) == Elems[First]->getType()) 551 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 552 return; 553 } 554 555 llvm::Constant *Replacement = buildFrom( 556 CGM, ArrayRef(Elems).slice(First, Length), 557 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 558 /*known to have natural layout=*/false, DesiredTy, false); 559 replace(Elems, First, Last, {Replacement}); 560 replace(Offsets, First, Last, {Offset}); 561 } 562 563 //===----------------------------------------------------------------------===// 564 // ConstStructBuilder 565 //===----------------------------------------------------------------------===// 566 567 class ConstStructBuilder { 568 CodeGenModule &CGM; 569 ConstantEmitter &Emitter; 570 ConstantAggregateBuilder &Builder; 571 CharUnits StartOffset; 572 573 public: 574 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 575 const InitListExpr *ILE, 576 QualType StructTy); 577 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 578 const APValue &Value, QualType ValTy); 579 static bool UpdateStruct(ConstantEmitter &Emitter, 580 ConstantAggregateBuilder &Const, CharUnits Offset, 581 const InitListExpr *Updater); 582 583 private: 584 ConstStructBuilder(ConstantEmitter &Emitter, 585 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 586 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 587 StartOffset(StartOffset) {} 588 589 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 590 llvm::Constant *InitExpr, bool AllowOverwrite = false); 591 592 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 593 bool AllowOverwrite = false); 594 595 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 596 llvm::Constant *InitExpr, bool AllowOverwrite = false); 597 598 bool Build(const InitListExpr *ILE, bool AllowOverwrite); 599 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 600 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 601 bool DoZeroInitPadding(const ASTRecordLayout &Layout, unsigned FieldNo, 602 const FieldDecl &Field, bool AllowOverwrite, 603 CharUnits &SizeSoFar, bool &ZeroFieldSize); 604 bool DoZeroInitPadding(const ASTRecordLayout &Layout, bool AllowOverwrite, 605 CharUnits SizeSoFar); 606 llvm::Constant *Finalize(QualType Ty); 607 }; 608 609 bool ConstStructBuilder::AppendField( 610 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 611 bool AllowOverwrite) { 612 const ASTContext &Context = CGM.getContext(); 613 614 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 615 616 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 617 } 618 619 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 620 llvm::Constant *InitCst, 621 bool AllowOverwrite) { 622 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 623 } 624 625 bool ConstStructBuilder::AppendBitField(const FieldDecl *Field, 626 uint64_t FieldOffset, llvm::Constant *C, 627 bool AllowOverwrite) { 628 629 llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C); 630 if (!CI) { 631 // Constants for long _BitInt types are sometimes split into individual 632 // bytes. Try to fold these back into an integer constant. If that doesn't 633 // work out, then we are trying to initialize a bitfield with a non-trivial 634 // constant, this must require run-time code. 635 llvm::Type *LoadType = 636 CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType()); 637 llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst( 638 C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout()); 639 CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant); 640 if (!CI) 641 return false; 642 } 643 644 const CGRecordLayout &RL = 645 CGM.getTypes().getCGRecordLayout(Field->getParent()); 646 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 647 llvm::APInt FieldValue = CI->getValue(); 648 649 // Promote the size of FieldValue if necessary 650 // FIXME: This should never occur, but currently it can because initializer 651 // constants are cast to bool, and because clang is not enforcing bitfield 652 // width limits. 653 if (Info.Size > FieldValue.getBitWidth()) 654 FieldValue = FieldValue.zext(Info.Size); 655 656 // Truncate the size of FieldValue to the bit field size. 657 if (Info.Size < FieldValue.getBitWidth()) 658 FieldValue = FieldValue.trunc(Info.Size); 659 660 return Builder.addBits(FieldValue, 661 CGM.getContext().toBits(StartOffset) + FieldOffset, 662 AllowOverwrite); 663 } 664 665 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 666 ConstantAggregateBuilder &Const, 667 CharUnits Offset, QualType Type, 668 const InitListExpr *Updater) { 669 if (Type->isRecordType()) 670 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 671 672 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 673 if (!CAT) 674 return false; 675 QualType ElemType = CAT->getElementType(); 676 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 677 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 678 679 llvm::Constant *FillC = nullptr; 680 if (const Expr *Filler = Updater->getArrayFiller()) { 681 if (!isa<NoInitExpr>(Filler)) { 682 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 683 if (!FillC) 684 return false; 685 } 686 } 687 688 unsigned NumElementsToUpdate = 689 FillC ? CAT->getZExtSize() : Updater->getNumInits(); 690 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 691 const Expr *Init = nullptr; 692 if (I < Updater->getNumInits()) 693 Init = Updater->getInit(I); 694 695 if (!Init && FillC) { 696 if (!Const.add(FillC, Offset, true)) 697 return false; 698 } else if (!Init || isa<NoInitExpr>(Init)) { 699 continue; 700 } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) { 701 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 702 ChildILE)) 703 return false; 704 // Attempt to reduce the array element to a single constant if necessary. 705 Const.condense(Offset, ElemTy); 706 } else { 707 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 708 if (!Const.add(Val, Offset, true)) 709 return false; 710 } 711 } 712 713 return true; 714 } 715 716 bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) { 717 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 718 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 719 720 unsigned FieldNo = -1; 721 unsigned ElementNo = 0; 722 723 // Bail out if we have base classes. We could support these, but they only 724 // arise in C++1z where we will have already constant folded most interesting 725 // cases. FIXME: There are still a few more cases we can handle this way. 726 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 727 if (CXXRD->getNumBases()) 728 return false; 729 730 const bool ZeroInitPadding = CGM.shouldZeroInitPadding(); 731 bool ZeroFieldSize = false; 732 CharUnits SizeSoFar = CharUnits::Zero(); 733 734 for (FieldDecl *Field : RD->fields()) { 735 ++FieldNo; 736 737 // If this is a union, skip all the fields that aren't being initialized. 738 if (RD->isUnion() && 739 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 740 continue; 741 742 // Don't emit anonymous bitfields. 743 if (Field->isUnnamedBitField()) 744 continue; 745 746 // Get the initializer. A struct can include fields without initializers, 747 // we just use explicit null values for them. 748 const Expr *Init = nullptr; 749 if (ElementNo < ILE->getNumInits()) 750 Init = ILE->getInit(ElementNo++); 751 if (isa_and_nonnull<NoInitExpr>(Init)) { 752 if (ZeroInitPadding && 753 !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar, 754 ZeroFieldSize)) 755 return false; 756 continue; 757 } 758 759 // Zero-sized fields are not emitted, but their initializers may still 760 // prevent emission of this struct as a constant. 761 if (isEmptyFieldForLayout(CGM.getContext(), Field)) { 762 if (Init && Init->HasSideEffects(CGM.getContext())) 763 return false; 764 continue; 765 } 766 767 if (ZeroInitPadding && 768 !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar, 769 ZeroFieldSize)) 770 return false; 771 772 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 773 // represents additional overwriting of our current constant value, and not 774 // a new constant to emit independently. 775 if (AllowOverwrite && 776 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 777 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 778 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 779 Layout.getFieldOffset(FieldNo)); 780 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 781 Field->getType(), SubILE)) 782 return false; 783 // If we split apart the field's value, try to collapse it down to a 784 // single value now. 785 Builder.condense(StartOffset + Offset, 786 CGM.getTypes().ConvertTypeForMem(Field->getType())); 787 continue; 788 } 789 } 790 791 llvm::Constant *EltInit = 792 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 793 : Emitter.emitNullForMemory(Field->getType()); 794 if (!EltInit) 795 return false; 796 797 if (ZeroInitPadding && ZeroFieldSize) 798 SizeSoFar += CharUnits::fromQuantity( 799 CGM.getDataLayout().getTypeAllocSize(EltInit->getType())); 800 801 if (!Field->isBitField()) { 802 // Handle non-bitfield members. 803 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 804 AllowOverwrite)) 805 return false; 806 // After emitting a non-empty field with [[no_unique_address]], we may 807 // need to overwrite its tail padding. 808 if (Field->hasAttr<NoUniqueAddressAttr>()) 809 AllowOverwrite = true; 810 } else { 811 // Otherwise we have a bitfield. 812 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit, 813 AllowOverwrite)) 814 return false; 815 } 816 } 817 818 if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar)) 819 return false; 820 821 return true; 822 } 823 824 namespace { 825 struct BaseInfo { 826 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 827 : Decl(Decl), Offset(Offset), Index(Index) { 828 } 829 830 const CXXRecordDecl *Decl; 831 CharUnits Offset; 832 unsigned Index; 833 834 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 835 }; 836 } 837 838 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 839 bool IsPrimaryBase, 840 const CXXRecordDecl *VTableClass, 841 CharUnits Offset) { 842 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 843 844 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 845 // Add a vtable pointer, if we need one and it hasn't already been added. 846 if (Layout.hasOwnVFPtr()) { 847 llvm::Constant *VTableAddressPoint = 848 CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset), 849 VTableClass); 850 if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) { 851 VTableAddressPoint = Emitter.tryEmitConstantSignedPointer( 852 VTableAddressPoint, *Authentication); 853 if (!VTableAddressPoint) 854 return false; 855 } 856 if (!AppendBytes(Offset, VTableAddressPoint)) 857 return false; 858 } 859 860 // Accumulate and sort bases, in order to visit them in address order, which 861 // may not be the same as declaration order. 862 SmallVector<BaseInfo, 8> Bases; 863 Bases.reserve(CD->getNumBases()); 864 unsigned BaseNo = 0; 865 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 866 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 867 assert(!Base->isVirtual() && "should not have virtual bases here"); 868 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 869 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 870 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 871 } 872 llvm::stable_sort(Bases); 873 874 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 875 BaseInfo &Base = Bases[I]; 876 877 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 878 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 879 VTableClass, Offset + Base.Offset); 880 } 881 } 882 883 unsigned FieldNo = 0; 884 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 885 const bool ZeroInitPadding = CGM.shouldZeroInitPadding(); 886 bool ZeroFieldSize = false; 887 CharUnits SizeSoFar = CharUnits::Zero(); 888 889 bool AllowOverwrite = false; 890 for (RecordDecl::field_iterator Field = RD->field_begin(), 891 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 892 // If this is a union, skip all the fields that aren't being initialized. 893 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 894 continue; 895 896 // Don't emit anonymous bitfields or zero-sized fields. 897 if (Field->isUnnamedBitField() || 898 isEmptyFieldForLayout(CGM.getContext(), *Field)) 899 continue; 900 901 // Emit the value of the initializer. 902 const APValue &FieldValue = 903 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 904 llvm::Constant *EltInit = 905 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 906 if (!EltInit) 907 return false; 908 909 if (ZeroInitPadding) { 910 if (!DoZeroInitPadding(Layout, FieldNo, **Field, AllowOverwrite, 911 SizeSoFar, ZeroFieldSize)) 912 return false; 913 if (ZeroFieldSize) 914 SizeSoFar += CharUnits::fromQuantity( 915 CGM.getDataLayout().getTypeAllocSize(EltInit->getType())); 916 } 917 918 if (!Field->isBitField()) { 919 // Handle non-bitfield members. 920 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 921 EltInit, AllowOverwrite)) 922 return false; 923 // After emitting a non-empty field with [[no_unique_address]], we may 924 // need to overwrite its tail padding. 925 if (Field->hasAttr<NoUniqueAddressAttr>()) 926 AllowOverwrite = true; 927 } else { 928 // Otherwise we have a bitfield. 929 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 930 EltInit, AllowOverwrite)) 931 return false; 932 } 933 } 934 if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar)) 935 return false; 936 937 return true; 938 } 939 940 bool ConstStructBuilder::DoZeroInitPadding( 941 const ASTRecordLayout &Layout, unsigned FieldNo, const FieldDecl &Field, 942 bool AllowOverwrite, CharUnits &SizeSoFar, bool &ZeroFieldSize) { 943 uint64_t StartBitOffset = Layout.getFieldOffset(FieldNo); 944 CharUnits StartOffset = CGM.getContext().toCharUnitsFromBits(StartBitOffset); 945 if (SizeSoFar < StartOffset) 946 if (!AppendBytes(SizeSoFar, getPadding(CGM, StartOffset - SizeSoFar), 947 AllowOverwrite)) 948 return false; 949 950 if (!Field.isBitField()) { 951 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field.getType()); 952 SizeSoFar = StartOffset + FieldSize; 953 ZeroFieldSize = FieldSize.isZero(); 954 } else { 955 const CGRecordLayout &RL = 956 CGM.getTypes().getCGRecordLayout(Field.getParent()); 957 const CGBitFieldInfo &Info = RL.getBitFieldInfo(&Field); 958 uint64_t EndBitOffset = StartBitOffset + Info.Size; 959 SizeSoFar = CGM.getContext().toCharUnitsFromBits(EndBitOffset); 960 if (EndBitOffset % CGM.getContext().getCharWidth() != 0) { 961 SizeSoFar++; 962 } 963 ZeroFieldSize = Info.Size == 0; 964 } 965 return true; 966 } 967 968 bool ConstStructBuilder::DoZeroInitPadding(const ASTRecordLayout &Layout, 969 bool AllowOverwrite, 970 CharUnits SizeSoFar) { 971 CharUnits TotalSize = Layout.getSize(); 972 if (SizeSoFar < TotalSize) 973 if (!AppendBytes(SizeSoFar, getPadding(CGM, TotalSize - SizeSoFar), 974 AllowOverwrite)) 975 return false; 976 SizeSoFar = TotalSize; 977 return true; 978 } 979 980 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 981 Type = Type.getNonReferenceType(); 982 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 983 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 984 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 985 } 986 987 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 988 const InitListExpr *ILE, 989 QualType ValTy) { 990 ConstantAggregateBuilder Const(Emitter.CGM); 991 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 992 993 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 994 return nullptr; 995 996 return Builder.Finalize(ValTy); 997 } 998 999 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 1000 const APValue &Val, 1001 QualType ValTy) { 1002 ConstantAggregateBuilder Const(Emitter.CGM); 1003 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 1004 1005 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 1006 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 1007 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 1008 return nullptr; 1009 1010 return Builder.Finalize(ValTy); 1011 } 1012 1013 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 1014 ConstantAggregateBuilder &Const, 1015 CharUnits Offset, 1016 const InitListExpr *Updater) { 1017 return ConstStructBuilder(Emitter, Const, Offset) 1018 .Build(Updater, /*AllowOverwrite*/ true); 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // ConstExprEmitter 1023 //===----------------------------------------------------------------------===// 1024 1025 static ConstantAddress 1026 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter, 1027 const CompoundLiteralExpr *E) { 1028 CodeGenModule &CGM = emitter.CGM; 1029 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 1030 if (llvm::GlobalVariable *Addr = 1031 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 1032 return ConstantAddress(Addr, Addr->getValueType(), Align); 1033 1034 LangAS addressSpace = E->getType().getAddressSpace(); 1035 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 1036 addressSpace, E->getType()); 1037 if (!C) { 1038 assert(!E->isFileScope() && 1039 "file-scope compound literal did not have constant initializer!"); 1040 return ConstantAddress::invalid(); 1041 } 1042 1043 auto GV = new llvm::GlobalVariable( 1044 CGM.getModule(), C->getType(), 1045 E->getType().isConstantStorage(CGM.getContext(), true, false), 1046 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr, 1047 llvm::GlobalVariable::NotThreadLocal, 1048 CGM.getContext().getTargetAddressSpace(addressSpace)); 1049 emitter.finalize(GV); 1050 GV->setAlignment(Align.getAsAlign()); 1051 CGM.setAddrOfConstantCompoundLiteral(E, GV); 1052 return ConstantAddress(GV, GV->getValueType(), Align); 1053 } 1054 1055 static llvm::Constant * 1056 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 1057 llvm::Type *CommonElementType, uint64_t ArrayBound, 1058 SmallVectorImpl<llvm::Constant *> &Elements, 1059 llvm::Constant *Filler) { 1060 // Figure out how long the initial prefix of non-zero elements is. 1061 uint64_t NonzeroLength = ArrayBound; 1062 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 1063 NonzeroLength = Elements.size(); 1064 if (NonzeroLength == Elements.size()) { 1065 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 1066 --NonzeroLength; 1067 } 1068 1069 if (NonzeroLength == 0) 1070 return llvm::ConstantAggregateZero::get(DesiredType); 1071 1072 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 1073 uint64_t TrailingZeroes = ArrayBound - NonzeroLength; 1074 if (TrailingZeroes >= 8) { 1075 assert(Elements.size() >= NonzeroLength && 1076 "missing initializer for non-zero element"); 1077 1078 // If all the elements had the same type up to the trailing zeroes, emit a 1079 // struct of two arrays (the nonzero data and the zeroinitializer). 1080 if (CommonElementType && NonzeroLength >= 8) { 1081 llvm::Constant *Initial = llvm::ConstantArray::get( 1082 llvm::ArrayType::get(CommonElementType, NonzeroLength), 1083 ArrayRef(Elements).take_front(NonzeroLength)); 1084 Elements.resize(2); 1085 Elements[0] = Initial; 1086 } else { 1087 Elements.resize(NonzeroLength + 1); 1088 } 1089 1090 auto *FillerType = 1091 CommonElementType ? CommonElementType : DesiredType->getElementType(); 1092 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 1093 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 1094 CommonElementType = nullptr; 1095 } else if (Elements.size() != ArrayBound) { 1096 // Otherwise pad to the right size with the filler if necessary. 1097 Elements.resize(ArrayBound, Filler); 1098 if (Filler->getType() != CommonElementType) 1099 CommonElementType = nullptr; 1100 } 1101 1102 // If all elements have the same type, just emit an array constant. 1103 if (CommonElementType) 1104 return llvm::ConstantArray::get( 1105 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 1106 1107 // We have mixed types. Use a packed struct. 1108 llvm::SmallVector<llvm::Type *, 16> Types; 1109 Types.reserve(Elements.size()); 1110 for (llvm::Constant *Elt : Elements) 1111 Types.push_back(Elt->getType()); 1112 llvm::StructType *SType = 1113 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1114 return llvm::ConstantStruct::get(SType, Elements); 1115 } 1116 1117 // This class only needs to handle arrays, structs and unions. Outside C++11 1118 // mode, we don't currently constant fold those types. All other types are 1119 // handled by constant folding. 1120 // 1121 // Constant folding is currently missing support for a few features supported 1122 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 1123 class ConstExprEmitter 1124 : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> { 1125 CodeGenModule &CGM; 1126 ConstantEmitter &Emitter; 1127 llvm::LLVMContext &VMContext; 1128 public: 1129 ConstExprEmitter(ConstantEmitter &emitter) 1130 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1131 } 1132 1133 //===--------------------------------------------------------------------===// 1134 // Visitor Methods 1135 //===--------------------------------------------------------------------===// 1136 1137 llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; } 1138 1139 llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) { 1140 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1141 return Result; 1142 return Visit(CE->getSubExpr(), T); 1143 } 1144 1145 llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) { 1146 return Visit(PE->getSubExpr(), T); 1147 } 1148 1149 llvm::Constant * 1150 VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE, 1151 QualType T) { 1152 return Visit(PE->getReplacement(), T); 1153 } 1154 1155 llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE, 1156 QualType T) { 1157 return Visit(GE->getResultExpr(), T); 1158 } 1159 1160 llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) { 1161 return Visit(CE->getChosenSubExpr(), T); 1162 } 1163 1164 llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E, 1165 QualType T) { 1166 return Visit(E->getInitializer(), T); 1167 } 1168 1169 llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) { 1170 QualType FromType = E->getType(); 1171 // See also HandleIntToIntCast in ExprConstant.cpp 1172 if (FromType->isIntegerType()) 1173 if (llvm::Constant *C = Visit(E, FromType)) 1174 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) { 1175 unsigned SrcWidth = CGM.getContext().getIntWidth(FromType); 1176 unsigned DstWidth = CGM.getContext().getIntWidth(DestType); 1177 if (DstWidth == SrcWidth) 1178 return CI; 1179 llvm::APInt A = FromType->isSignedIntegerType() 1180 ? CI->getValue().sextOrTrunc(DstWidth) 1181 : CI->getValue().zextOrTrunc(DstWidth); 1182 return llvm::ConstantInt::get(CGM.getLLVMContext(), A); 1183 } 1184 return nullptr; 1185 } 1186 1187 llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) { 1188 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1189 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1190 const Expr *subExpr = E->getSubExpr(); 1191 1192 switch (E->getCastKind()) { 1193 case CK_ToUnion: { 1194 // GCC cast to union extension 1195 assert(E->getType()->isUnionType() && 1196 "Destination type is not union type!"); 1197 1198 auto field = E->getTargetUnionField(); 1199 1200 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1201 if (!C) return nullptr; 1202 1203 auto destTy = ConvertType(destType); 1204 if (C->getType() == destTy) return C; 1205 1206 // Build a struct with the union sub-element as the first member, 1207 // and padded to the appropriate size. 1208 SmallVector<llvm::Constant*, 2> Elts; 1209 SmallVector<llvm::Type*, 2> Types; 1210 Elts.push_back(C); 1211 Types.push_back(C->getType()); 1212 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1213 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1214 1215 assert(CurSize <= TotalSize && "Union size mismatch!"); 1216 if (unsigned NumPadBytes = TotalSize - CurSize) { 1217 llvm::Constant *Padding = 1218 getPadding(CGM, CharUnits::fromQuantity(NumPadBytes)); 1219 Elts.push_back(Padding); 1220 Types.push_back(Padding->getType()); 1221 } 1222 1223 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1224 return llvm::ConstantStruct::get(STy, Elts); 1225 } 1226 1227 case CK_AddressSpaceConversion: { 1228 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1229 if (!C) return nullptr; 1230 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1231 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1232 llvm::Type *destTy = ConvertType(E->getType()); 1233 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1234 destAS, destTy); 1235 } 1236 1237 case CK_LValueToRValue: { 1238 // We don't really support doing lvalue-to-rvalue conversions here; any 1239 // interesting conversions should be done in Evaluate(). But as a 1240 // special case, allow compound literals to support the gcc extension 1241 // allowing "struct x {int x;} x = (struct x) {};". 1242 if (const auto *E = 1243 dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens())) 1244 return Visit(E->getInitializer(), destType); 1245 return nullptr; 1246 } 1247 1248 case CK_AtomicToNonAtomic: 1249 case CK_NonAtomicToAtomic: 1250 case CK_NoOp: 1251 case CK_ConstructorConversion: 1252 return Visit(subExpr, destType); 1253 1254 case CK_ArrayToPointerDecay: 1255 if (const auto *S = dyn_cast<StringLiteral>(subExpr)) 1256 return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer(); 1257 return nullptr; 1258 case CK_NullToPointer: 1259 if (Visit(subExpr, destType)) 1260 return CGM.EmitNullConstant(destType); 1261 return nullptr; 1262 1263 case CK_IntToOCLSampler: 1264 llvm_unreachable("global sampler variables are not generated"); 1265 1266 case CK_IntegralCast: 1267 return ProduceIntToIntCast(subExpr, destType); 1268 1269 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1270 1271 case CK_BuiltinFnToFnPtr: 1272 llvm_unreachable("builtin functions are handled elsewhere"); 1273 1274 case CK_ReinterpretMemberPointer: 1275 case CK_DerivedToBaseMemberPointer: 1276 case CK_BaseToDerivedMemberPointer: { 1277 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1278 if (!C) return nullptr; 1279 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1280 } 1281 1282 // These will never be supported. 1283 case CK_ObjCObjectLValueCast: 1284 case CK_ARCProduceObject: 1285 case CK_ARCConsumeObject: 1286 case CK_ARCReclaimReturnedObject: 1287 case CK_ARCExtendBlockObject: 1288 case CK_CopyAndAutoreleaseBlockObject: 1289 return nullptr; 1290 1291 // These don't need to be handled here because Evaluate knows how to 1292 // evaluate them in the cases where they can be folded. 1293 case CK_BitCast: 1294 case CK_ToVoid: 1295 case CK_Dynamic: 1296 case CK_LValueBitCast: 1297 case CK_LValueToRValueBitCast: 1298 case CK_NullToMemberPointer: 1299 case CK_UserDefinedConversion: 1300 case CK_CPointerToObjCPointerCast: 1301 case CK_BlockPointerToObjCPointerCast: 1302 case CK_AnyPointerToBlockPointerCast: 1303 case CK_FunctionToPointerDecay: 1304 case CK_BaseToDerived: 1305 case CK_DerivedToBase: 1306 case CK_UncheckedDerivedToBase: 1307 case CK_MemberPointerToBoolean: 1308 case CK_VectorSplat: 1309 case CK_FloatingRealToComplex: 1310 case CK_FloatingComplexToReal: 1311 case CK_FloatingComplexToBoolean: 1312 case CK_FloatingComplexCast: 1313 case CK_FloatingComplexToIntegralComplex: 1314 case CK_IntegralRealToComplex: 1315 case CK_IntegralComplexToReal: 1316 case CK_IntegralComplexToBoolean: 1317 case CK_IntegralComplexCast: 1318 case CK_IntegralComplexToFloatingComplex: 1319 case CK_PointerToIntegral: 1320 case CK_PointerToBoolean: 1321 case CK_BooleanToSignedIntegral: 1322 case CK_IntegralToPointer: 1323 case CK_IntegralToBoolean: 1324 case CK_IntegralToFloating: 1325 case CK_FloatingToIntegral: 1326 case CK_FloatingToBoolean: 1327 case CK_FloatingCast: 1328 case CK_FloatingToFixedPoint: 1329 case CK_FixedPointToFloating: 1330 case CK_FixedPointCast: 1331 case CK_FixedPointToBoolean: 1332 case CK_FixedPointToIntegral: 1333 case CK_IntegralToFixedPoint: 1334 case CK_ZeroToOCLOpaqueType: 1335 case CK_MatrixCast: 1336 case CK_HLSLVectorTruncation: 1337 case CK_HLSLArrayRValue: 1338 return nullptr; 1339 } 1340 llvm_unreachable("Invalid CastKind"); 1341 } 1342 1343 llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE, 1344 QualType T) { 1345 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1346 // constant expression. 1347 return Visit(DIE->getExpr(), T); 1348 } 1349 1350 llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) { 1351 return Visit(E->getSubExpr(), T); 1352 } 1353 1354 llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) { 1355 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue()); 1356 } 1357 1358 static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType, 1359 QualType DestType, const llvm::APSInt &Value) { 1360 if (!Ctx.hasSameType(SrcType, DestType)) { 1361 if (DestType->isFloatingType()) { 1362 llvm::APFloat Result = 1363 llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1); 1364 llvm::RoundingMode RM = 1365 E->getFPFeaturesInEffect(Ctx.getLangOpts()).getRoundingMode(); 1366 if (RM == llvm::RoundingMode::Dynamic) 1367 RM = llvm::RoundingMode::NearestTiesToEven; 1368 Result.convertFromAPInt(Value, Value.isSigned(), RM); 1369 return APValue(Result); 1370 } 1371 } 1372 return APValue(Value); 1373 } 1374 1375 llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) { 1376 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1377 assert(CAT && "can't emit array init for non-constant-bound array"); 1378 uint64_t NumInitElements = ILE->getNumInits(); 1379 const uint64_t NumElements = CAT->getZExtSize(); 1380 for (const auto *Init : ILE->inits()) { 1381 if (const auto *Embed = 1382 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1383 NumInitElements += Embed->getDataElementCount() - 1; 1384 if (NumInitElements > NumElements) { 1385 NumInitElements = NumElements; 1386 break; 1387 } 1388 } 1389 } 1390 1391 // Initialising an array requires us to automatically 1392 // initialise any elements that have not been initialised explicitly 1393 uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements); 1394 1395 QualType EltType = CAT->getElementType(); 1396 1397 // Initialize remaining array elements. 1398 llvm::Constant *fillC = nullptr; 1399 if (const Expr *filler = ILE->getArrayFiller()) { 1400 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1401 if (!fillC) 1402 return nullptr; 1403 } 1404 1405 // Copy initializer elements. 1406 SmallVector<llvm::Constant *, 16> Elts; 1407 if (fillC && fillC->isNullValue()) 1408 Elts.reserve(NumInitableElts + 1); 1409 else 1410 Elts.reserve(NumElements); 1411 1412 llvm::Type *CommonElementType = nullptr; 1413 auto Emit = [&](const Expr *Init, unsigned ArrayIndex) { 1414 llvm::Constant *C = nullptr; 1415 C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1416 if (!C) 1417 return false; 1418 if (ArrayIndex == 0) 1419 CommonElementType = C->getType(); 1420 else if (C->getType() != CommonElementType) 1421 CommonElementType = nullptr; 1422 Elts.push_back(C); 1423 return true; 1424 }; 1425 1426 unsigned ArrayIndex = 0; 1427 QualType DestTy = CAT->getElementType(); 1428 for (unsigned i = 0; i < ILE->getNumInits(); ++i) { 1429 const Expr *Init = ILE->getInit(i); 1430 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1431 StringLiteral *SL = EmbedS->getDataStringLiteral(); 1432 llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy), 1433 DestTy->isUnsignedIntegerType()); 1434 llvm::Constant *C; 1435 for (unsigned I = EmbedS->getStartingElementPos(), 1436 N = EmbedS->getDataElementCount(); 1437 I != EmbedS->getStartingElementPos() + N; ++I) { 1438 Value = SL->getCodeUnit(I); 1439 if (DestTy->isIntegerType()) { 1440 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value); 1441 } else { 1442 C = Emitter.tryEmitPrivateForMemory( 1443 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy, 1444 Value), 1445 EltType); 1446 } 1447 if (!C) 1448 return nullptr; 1449 Elts.push_back(C); 1450 ArrayIndex++; 1451 } 1452 if ((ArrayIndex - EmbedS->getDataElementCount()) == 0) 1453 CommonElementType = C->getType(); 1454 else if (C->getType() != CommonElementType) 1455 CommonElementType = nullptr; 1456 } else { 1457 if (!Emit(Init, ArrayIndex)) 1458 return nullptr; 1459 ArrayIndex++; 1460 } 1461 } 1462 1463 llvm::ArrayType *Desired = 1464 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1465 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1466 fillC); 1467 } 1468 1469 llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE, 1470 QualType T) { 1471 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1472 } 1473 1474 llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E, 1475 QualType T) { 1476 return CGM.EmitNullConstant(T); 1477 } 1478 1479 llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) { 1480 if (ILE->isTransparent()) 1481 return Visit(ILE->getInit(0), T); 1482 1483 if (ILE->getType()->isArrayType()) 1484 return EmitArrayInitialization(ILE, T); 1485 1486 if (ILE->getType()->isRecordType()) 1487 return EmitRecordInitialization(ILE, T); 1488 1489 return nullptr; 1490 } 1491 1492 llvm::Constant * 1493 VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E, 1494 QualType destType) { 1495 auto C = Visit(E->getBase(), destType); 1496 if (!C) 1497 return nullptr; 1498 1499 ConstantAggregateBuilder Const(CGM); 1500 Const.add(C, CharUnits::Zero(), false); 1501 1502 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1503 E->getUpdater())) 1504 return nullptr; 1505 1506 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1507 bool HasFlexibleArray = false; 1508 if (const auto *RT = destType->getAs<RecordType>()) 1509 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1510 return Const.build(ValTy, HasFlexibleArray); 1511 } 1512 1513 llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E, 1514 QualType Ty) { 1515 if (!E->getConstructor()->isTrivial()) 1516 return nullptr; 1517 1518 // Only default and copy/move constructors can be trivial. 1519 if (E->getNumArgs()) { 1520 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1521 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1522 "trivial ctor has argument but isn't a copy/move ctor"); 1523 1524 const Expr *Arg = E->getArg(0); 1525 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1526 "argument to copy ctor is of wrong type"); 1527 1528 // Look through the temporary; it's just converting the value to an 1529 // lvalue to pass it to the constructor. 1530 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg)) 1531 return Visit(MTE->getSubExpr(), Ty); 1532 // Don't try to support arbitrary lvalue-to-rvalue conversions for now. 1533 return nullptr; 1534 } 1535 1536 return CGM.EmitNullConstant(Ty); 1537 } 1538 1539 llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) { 1540 // This is a string literal initializing an array in an initializer. 1541 return CGM.GetConstantArrayFromStringLiteral(E); 1542 } 1543 1544 llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) { 1545 // This must be an @encode initializing an array in a static initializer. 1546 // Don't emit it as the address of the string, emit the string data itself 1547 // as an inline array. 1548 std::string Str; 1549 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1550 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1551 assert(CAT && "String data not of constant array type!"); 1552 1553 // Resize the string to the right size, adding zeros at the end, or 1554 // truncating as needed. 1555 Str.resize(CAT->getZExtSize(), '\0'); 1556 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1557 } 1558 1559 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1560 return Visit(E->getSubExpr(), T); 1561 } 1562 1563 llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) { 1564 if (llvm::Constant *C = Visit(U->getSubExpr(), T)) 1565 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) 1566 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue()); 1567 return nullptr; 1568 } 1569 1570 llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) { 1571 return Visit(E->getSelectedExpr(), T); 1572 } 1573 1574 // Utility methods 1575 llvm::Type *ConvertType(QualType T) { 1576 return CGM.getTypes().ConvertType(T); 1577 } 1578 }; 1579 1580 } // end anonymous namespace. 1581 1582 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1583 AbstractState saved) { 1584 Abstract = saved.OldValue; 1585 1586 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1587 "created a placeholder while doing an abstract emission?"); 1588 1589 // No validation necessary for now. 1590 // No cleanup to do for now. 1591 return C; 1592 } 1593 1594 llvm::Constant * 1595 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1596 auto state = pushAbstract(); 1597 auto C = tryEmitPrivateForVarInit(D); 1598 return validateAndPopAbstract(C, state); 1599 } 1600 1601 llvm::Constant * 1602 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1603 auto state = pushAbstract(); 1604 auto C = tryEmitPrivate(E, destType); 1605 return validateAndPopAbstract(C, state); 1606 } 1607 1608 llvm::Constant * 1609 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1610 auto state = pushAbstract(); 1611 auto C = tryEmitPrivate(value, destType); 1612 return validateAndPopAbstract(C, state); 1613 } 1614 1615 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1616 if (!CE->hasAPValueResult()) 1617 return nullptr; 1618 1619 QualType RetType = CE->getType(); 1620 if (CE->isGLValue()) 1621 RetType = CGM.getContext().getLValueReferenceType(RetType); 1622 1623 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1624 } 1625 1626 llvm::Constant * 1627 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1628 auto state = pushAbstract(); 1629 auto C = tryEmitPrivate(E, destType); 1630 C = validateAndPopAbstract(C, state); 1631 if (!C) { 1632 CGM.Error(E->getExprLoc(), 1633 "internal error: could not emit constant value \"abstractly\""); 1634 C = CGM.EmitNullConstant(destType); 1635 } 1636 return C; 1637 } 1638 1639 llvm::Constant * 1640 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1641 QualType destType, 1642 bool EnablePtrAuthFunctionTypeDiscrimination) { 1643 auto state = pushAbstract(); 1644 auto C = 1645 tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination); 1646 C = validateAndPopAbstract(C, state); 1647 if (!C) { 1648 CGM.Error(loc, 1649 "internal error: could not emit constant value \"abstractly\""); 1650 C = CGM.EmitNullConstant(destType); 1651 } 1652 return C; 1653 } 1654 1655 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1656 initializeNonAbstract(D.getType().getAddressSpace()); 1657 return markIfFailed(tryEmitPrivateForVarInit(D)); 1658 } 1659 1660 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1661 LangAS destAddrSpace, 1662 QualType destType) { 1663 initializeNonAbstract(destAddrSpace); 1664 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1665 } 1666 1667 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1668 LangAS destAddrSpace, 1669 QualType destType) { 1670 initializeNonAbstract(destAddrSpace); 1671 auto C = tryEmitPrivateForMemory(value, destType); 1672 assert(C && "couldn't emit constant value non-abstractly?"); 1673 return C; 1674 } 1675 1676 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1677 assert(!Abstract && "cannot get current address for abstract constant"); 1678 1679 1680 1681 // Make an obviously ill-formed global that should blow up compilation 1682 // if it survives. 1683 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1684 llvm::GlobalValue::PrivateLinkage, 1685 /*init*/ nullptr, 1686 /*name*/ "", 1687 /*before*/ nullptr, 1688 llvm::GlobalVariable::NotThreadLocal, 1689 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1690 1691 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1692 1693 return global; 1694 } 1695 1696 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1697 llvm::GlobalValue *placeholder) { 1698 assert(!PlaceholderAddresses.empty()); 1699 assert(PlaceholderAddresses.back().first == nullptr); 1700 assert(PlaceholderAddresses.back().second == placeholder); 1701 PlaceholderAddresses.back().first = signal; 1702 } 1703 1704 namespace { 1705 struct ReplacePlaceholders { 1706 CodeGenModule &CGM; 1707 1708 /// The base address of the global. 1709 llvm::Constant *Base; 1710 llvm::Type *BaseValueTy = nullptr; 1711 1712 /// The placeholder addresses that were registered during emission. 1713 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1714 1715 /// The locations of the placeholder signals. 1716 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1717 1718 /// The current index stack. We use a simple unsigned stack because 1719 /// we assume that placeholders will be relatively sparse in the 1720 /// initializer, but we cache the index values we find just in case. 1721 llvm::SmallVector<unsigned, 8> Indices; 1722 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1723 1724 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1725 ArrayRef<std::pair<llvm::Constant*, 1726 llvm::GlobalVariable*>> addresses) 1727 : CGM(CGM), Base(base), 1728 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1729 } 1730 1731 void replaceInInitializer(llvm::Constant *init) { 1732 // Remember the type of the top-most initializer. 1733 BaseValueTy = init->getType(); 1734 1735 // Initialize the stack. 1736 Indices.push_back(0); 1737 IndexValues.push_back(nullptr); 1738 1739 // Recurse into the initializer. 1740 findLocations(init); 1741 1742 // Check invariants. 1743 assert(IndexValues.size() == Indices.size() && "mismatch"); 1744 assert(Indices.size() == 1 && "didn't pop all indices"); 1745 1746 // Do the replacement; this basically invalidates 'init'. 1747 assert(Locations.size() == PlaceholderAddresses.size() && 1748 "missed a placeholder?"); 1749 1750 // We're iterating over a hashtable, so this would be a source of 1751 // non-determinism in compiler output *except* that we're just 1752 // messing around with llvm::Constant structures, which never itself 1753 // does anything that should be visible in compiler output. 1754 for (auto &entry : Locations) { 1755 assert(entry.first->getName() == "" && "not a placeholder!"); 1756 entry.first->replaceAllUsesWith(entry.second); 1757 entry.first->eraseFromParent(); 1758 } 1759 } 1760 1761 private: 1762 void findLocations(llvm::Constant *init) { 1763 // Recurse into aggregates. 1764 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1765 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1766 Indices.push_back(i); 1767 IndexValues.push_back(nullptr); 1768 1769 findLocations(agg->getOperand(i)); 1770 1771 IndexValues.pop_back(); 1772 Indices.pop_back(); 1773 } 1774 return; 1775 } 1776 1777 // Otherwise, check for registered constants. 1778 while (true) { 1779 auto it = PlaceholderAddresses.find(init); 1780 if (it != PlaceholderAddresses.end()) { 1781 setLocation(it->second); 1782 break; 1783 } 1784 1785 // Look through bitcasts or other expressions. 1786 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1787 init = expr->getOperand(0); 1788 } else { 1789 break; 1790 } 1791 } 1792 } 1793 1794 void setLocation(llvm::GlobalVariable *placeholder) { 1795 assert(!Locations.contains(placeholder) && 1796 "already found location for placeholder!"); 1797 1798 // Lazily fill in IndexValues with the values from Indices. 1799 // We do this in reverse because we should always have a strict 1800 // prefix of indices from the start. 1801 assert(Indices.size() == IndexValues.size()); 1802 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1803 if (IndexValues[i]) { 1804 #ifndef NDEBUG 1805 for (size_t j = 0; j != i + 1; ++j) { 1806 assert(IndexValues[j] && 1807 isa<llvm::ConstantInt>(IndexValues[j]) && 1808 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1809 == Indices[j]); 1810 } 1811 #endif 1812 break; 1813 } 1814 1815 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1816 } 1817 1818 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr( 1819 BaseValueTy, Base, IndexValues); 1820 1821 Locations.insert({placeholder, location}); 1822 } 1823 }; 1824 } 1825 1826 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1827 assert(InitializedNonAbstract && 1828 "finalizing emitter that was used for abstract emission?"); 1829 assert(!Finalized && "finalizing emitter multiple times"); 1830 assert(global->getInitializer()); 1831 1832 // Note that we might also be Failed. 1833 Finalized = true; 1834 1835 if (!PlaceholderAddresses.empty()) { 1836 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1837 .replaceInInitializer(global->getInitializer()); 1838 PlaceholderAddresses.clear(); // satisfy 1839 } 1840 } 1841 1842 ConstantEmitter::~ConstantEmitter() { 1843 assert((!InitializedNonAbstract || Finalized || Failed) && 1844 "not finalized after being initialized for non-abstract emission"); 1845 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1846 } 1847 1848 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1849 if (auto AT = type->getAs<AtomicType>()) { 1850 return CGM.getContext().getQualifiedType(AT->getValueType(), 1851 type.getQualifiers()); 1852 } 1853 return type; 1854 } 1855 1856 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1857 // Make a quick check if variable can be default NULL initialized 1858 // and avoid going through rest of code which may do, for c++11, 1859 // initialization of memory to all NULLs. 1860 if (!D.hasLocalStorage()) { 1861 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1862 if (Ty->isRecordType()) 1863 if (const CXXConstructExpr *E = 1864 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1865 const CXXConstructorDecl *CD = E->getConstructor(); 1866 if (CD->isTrivial() && CD->isDefaultConstructor()) 1867 return CGM.EmitNullConstant(D.getType()); 1868 } 1869 } 1870 InConstantContext = D.hasConstantInitialization(); 1871 1872 QualType destType = D.getType(); 1873 const Expr *E = D.getInit(); 1874 assert(E && "No initializer to emit"); 1875 1876 if (!destType->isReferenceType()) { 1877 QualType nonMemoryDestType = getNonMemoryType(CGM, destType); 1878 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType)) 1879 return emitForMemory(C, destType); 1880 } 1881 1882 // Try to emit the initializer. Note that this can allow some things that 1883 // are not allowed by tryEmitPrivateForMemory alone. 1884 if (APValue *value = D.evaluateValue()) 1885 return tryEmitPrivateForMemory(*value, destType); 1886 1887 return nullptr; 1888 } 1889 1890 llvm::Constant * 1891 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1892 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1893 auto C = tryEmitAbstract(E, nonMemoryDestType); 1894 return (C ? emitForMemory(C, destType) : nullptr); 1895 } 1896 1897 llvm::Constant * 1898 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1899 QualType destType) { 1900 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1901 auto C = tryEmitAbstract(value, nonMemoryDestType); 1902 return (C ? emitForMemory(C, destType) : nullptr); 1903 } 1904 1905 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1906 QualType destType) { 1907 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1908 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1909 return (C ? emitForMemory(C, destType) : nullptr); 1910 } 1911 1912 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1913 QualType destType) { 1914 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1915 auto C = tryEmitPrivate(value, nonMemoryDestType); 1916 return (C ? emitForMemory(C, destType) : nullptr); 1917 } 1918 1919 /// Try to emit a constant signed pointer, given a raw pointer and the 1920 /// destination ptrauth qualifier. 1921 /// 1922 /// This can fail if the qualifier needs address discrimination and the 1923 /// emitter is in an abstract mode. 1924 llvm::Constant * 1925 ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer, 1926 PointerAuthQualifier Schema) { 1927 assert(Schema && "applying trivial ptrauth schema"); 1928 1929 if (Schema.hasKeyNone()) 1930 return UnsignedPointer; 1931 1932 unsigned Key = Schema.getKey(); 1933 1934 // Create an address placeholder if we're using address discrimination. 1935 llvm::GlobalValue *StorageAddress = nullptr; 1936 if (Schema.isAddressDiscriminated()) { 1937 // We can't do this if the emitter is in an abstract state. 1938 if (isAbstract()) 1939 return nullptr; 1940 1941 StorageAddress = getCurrentAddrPrivate(); 1942 } 1943 1944 llvm::ConstantInt *Discriminator = 1945 llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator()); 1946 1947 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( 1948 UnsignedPointer, Key, StorageAddress, Discriminator); 1949 1950 if (Schema.isAddressDiscriminated()) 1951 registerCurrentAddrPrivate(SignedPointer, StorageAddress); 1952 1953 return SignedPointer; 1954 } 1955 1956 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1957 llvm::Constant *C, 1958 QualType destType) { 1959 // For an _Atomic-qualified constant, we may need to add tail padding. 1960 if (auto AT = destType->getAs<AtomicType>()) { 1961 QualType destValueType = AT->getValueType(); 1962 C = emitForMemory(CGM, C, destValueType); 1963 1964 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1965 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1966 if (innerSize == outerSize) 1967 return C; 1968 1969 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1970 llvm::Constant *elts[] = { 1971 C, 1972 llvm::ConstantAggregateZero::get( 1973 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1974 }; 1975 return llvm::ConstantStruct::getAnon(elts); 1976 } 1977 1978 // Zero-extend bool. 1979 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) { 1980 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1981 llvm::Constant *Res = llvm::ConstantFoldCastOperand( 1982 llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout()); 1983 assert(Res && "Constant folding must succeed"); 1984 return Res; 1985 } 1986 1987 if (destType->isBitIntType()) { 1988 ConstantAggregateBuilder Builder(CGM); 1989 llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType); 1990 // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so 1991 // casting to ConstantInt is safe here. 1992 auto *CI = cast<llvm::ConstantInt>(C); 1993 llvm::Constant *Res = llvm::ConstantFoldCastOperand( 1994 destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt 1995 : llvm::Instruction::ZExt, 1996 CI, LoadStoreTy, CGM.getDataLayout()); 1997 if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) { 1998 // Long _BitInt has array of bytes as in-memory type. 1999 // So, split constant into individual bytes. 2000 llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType); 2001 llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue(); 2002 Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false); 2003 return Builder.build(DesiredTy, /*AllowOversized*/ false); 2004 } 2005 return Res; 2006 } 2007 2008 return C; 2009 } 2010 2011 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 2012 QualType destType) { 2013 assert(!destType->isVoidType() && "can't emit a void constant"); 2014 2015 if (!destType->isReferenceType()) 2016 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType)) 2017 return C; 2018 2019 Expr::EvalResult Result; 2020 2021 bool Success = false; 2022 2023 if (destType->isReferenceType()) 2024 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 2025 else 2026 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 2027 2028 if (Success && !Result.HasSideEffects) 2029 return tryEmitPrivate(Result.Val, destType); 2030 2031 return nullptr; 2032 } 2033 2034 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 2035 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 2036 } 2037 2038 namespace { 2039 /// A struct which can be used to peephole certain kinds of finalization 2040 /// that normally happen during l-value emission. 2041 struct ConstantLValue { 2042 llvm::Constant *Value; 2043 bool HasOffsetApplied; 2044 2045 /*implicit*/ ConstantLValue(llvm::Constant *value, 2046 bool hasOffsetApplied = false) 2047 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 2048 2049 /*implicit*/ ConstantLValue(ConstantAddress address) 2050 : ConstantLValue(address.getPointer()) {} 2051 }; 2052 2053 /// A helper class for emitting constant l-values. 2054 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 2055 ConstantLValue> { 2056 CodeGenModule &CGM; 2057 ConstantEmitter &Emitter; 2058 const APValue &Value; 2059 QualType DestType; 2060 bool EnablePtrAuthFunctionTypeDiscrimination; 2061 2062 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 2063 friend StmtVisitorBase; 2064 2065 public: 2066 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 2067 QualType destType, 2068 bool EnablePtrAuthFunctionTypeDiscrimination = true) 2069 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType), 2070 EnablePtrAuthFunctionTypeDiscrimination( 2071 EnablePtrAuthFunctionTypeDiscrimination) {} 2072 2073 llvm::Constant *tryEmit(); 2074 2075 private: 2076 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 2077 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 2078 2079 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 2080 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 2081 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 2082 ConstantLValue VisitStringLiteral(const StringLiteral *E); 2083 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 2084 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 2085 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 2086 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 2087 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 2088 ConstantLValue VisitCallExpr(const CallExpr *E); 2089 ConstantLValue VisitBlockExpr(const BlockExpr *E); 2090 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 2091 ConstantLValue VisitMaterializeTemporaryExpr( 2092 const MaterializeTemporaryExpr *E); 2093 2094 ConstantLValue emitPointerAuthSignConstant(const CallExpr *E); 2095 llvm::Constant *emitPointerAuthPointer(const Expr *E); 2096 unsigned emitPointerAuthKey(const Expr *E); 2097 std::pair<llvm::Constant *, llvm::ConstantInt *> 2098 emitPointerAuthDiscriminator(const Expr *E); 2099 2100 bool hasNonZeroOffset() const { 2101 return !Value.getLValueOffset().isZero(); 2102 } 2103 2104 /// Return the value offset. 2105 llvm::Constant *getOffset() { 2106 return llvm::ConstantInt::get(CGM.Int64Ty, 2107 Value.getLValueOffset().getQuantity()); 2108 } 2109 2110 /// Apply the value offset to the given constant. 2111 llvm::Constant *applyOffset(llvm::Constant *C) { 2112 if (!hasNonZeroOffset()) 2113 return C; 2114 2115 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 2116 } 2117 }; 2118 2119 } 2120 2121 llvm::Constant *ConstantLValueEmitter::tryEmit() { 2122 const APValue::LValueBase &base = Value.getLValueBase(); 2123 2124 // The destination type should be a pointer or reference 2125 // type, but it might also be a cast thereof. 2126 // 2127 // FIXME: the chain of casts required should be reflected in the APValue. 2128 // We need this in order to correctly handle things like a ptrtoint of a 2129 // non-zero null pointer and addrspace casts that aren't trivially 2130 // represented in LLVM IR. 2131 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 2132 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 2133 2134 // If there's no base at all, this is a null or absolute pointer, 2135 // possibly cast back to an integer type. 2136 if (!base) { 2137 return tryEmitAbsolute(destTy); 2138 } 2139 2140 // Otherwise, try to emit the base. 2141 ConstantLValue result = tryEmitBase(base); 2142 2143 // If that failed, we're done. 2144 llvm::Constant *value = result.Value; 2145 if (!value) return nullptr; 2146 2147 // Apply the offset if necessary and not already done. 2148 if (!result.HasOffsetApplied) { 2149 value = applyOffset(value); 2150 } 2151 2152 // Convert to the appropriate type; this could be an lvalue for 2153 // an integer. FIXME: performAddrSpaceCast 2154 if (isa<llvm::PointerType>(destTy)) 2155 return llvm::ConstantExpr::getPointerCast(value, destTy); 2156 2157 return llvm::ConstantExpr::getPtrToInt(value, destTy); 2158 } 2159 2160 /// Try to emit an absolute l-value, such as a null pointer or an integer 2161 /// bitcast to pointer type. 2162 llvm::Constant * 2163 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 2164 // If we're producing a pointer, this is easy. 2165 auto destPtrTy = cast<llvm::PointerType>(destTy); 2166 if (Value.isNullPointer()) { 2167 // FIXME: integer offsets from non-zero null pointers. 2168 return CGM.getNullPointer(destPtrTy, DestType); 2169 } 2170 2171 // Convert the integer to a pointer-sized integer before converting it 2172 // to a pointer. 2173 // FIXME: signedness depends on the original integer type. 2174 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 2175 llvm::Constant *C; 2176 C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false, 2177 CGM.getDataLayout()); 2178 assert(C && "Must have folded, as Offset is a ConstantInt"); 2179 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 2180 return C; 2181 } 2182 2183 ConstantLValue 2184 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 2185 // Handle values. 2186 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 2187 // The constant always points to the canonical declaration. We want to look 2188 // at properties of the most recent declaration at the point of emission. 2189 D = cast<ValueDecl>(D->getMostRecentDecl()); 2190 2191 if (D->hasAttr<WeakRefAttr>()) 2192 return CGM.GetWeakRefReference(D).getPointer(); 2193 2194 auto PtrAuthSign = [&](llvm::Constant *C) { 2195 CGPointerAuthInfo AuthInfo; 2196 2197 if (EnablePtrAuthFunctionTypeDiscrimination) 2198 AuthInfo = CGM.getFunctionPointerAuthInfo(DestType); 2199 2200 if (AuthInfo) { 2201 if (hasNonZeroOffset()) 2202 return ConstantLValue(nullptr); 2203 2204 C = applyOffset(C); 2205 C = CGM.getConstantSignedPointer( 2206 C, AuthInfo.getKey(), nullptr, 2207 cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator())); 2208 return ConstantLValue(C, /*applied offset*/ true); 2209 } 2210 2211 return ConstantLValue(C); 2212 }; 2213 2214 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2215 return PtrAuthSign(CGM.getRawFunctionPointer(FD)); 2216 2217 if (const auto *VD = dyn_cast<VarDecl>(D)) { 2218 // We can never refer to a variable with local storage. 2219 if (!VD->hasLocalStorage()) { 2220 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 2221 return CGM.GetAddrOfGlobalVar(VD); 2222 2223 if (VD->isLocalVarDecl()) { 2224 return CGM.getOrCreateStaticVarDecl( 2225 *VD, CGM.getLLVMLinkageVarDefinition(VD)); 2226 } 2227 } 2228 } 2229 2230 if (const auto *GD = dyn_cast<MSGuidDecl>(D)) 2231 return CGM.GetAddrOfMSGuidDecl(GD); 2232 2233 if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) 2234 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); 2235 2236 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 2237 return CGM.GetAddrOfTemplateParamObject(TPO); 2238 2239 return nullptr; 2240 } 2241 2242 // Handle typeid(T). 2243 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) 2244 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 2245 2246 // Otherwise, it must be an expression. 2247 return Visit(base.get<const Expr*>()); 2248 } 2249 2250 ConstantLValue 2251 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 2252 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 2253 return Result; 2254 return Visit(E->getSubExpr()); 2255 } 2256 2257 ConstantLValue 2258 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2259 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF); 2260 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext()); 2261 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E); 2262 } 2263 2264 ConstantLValue 2265 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 2266 return CGM.GetAddrOfConstantStringFromLiteral(E); 2267 } 2268 2269 ConstantLValue 2270 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2271 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 2272 } 2273 2274 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 2275 QualType T, 2276 CodeGenModule &CGM) { 2277 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 2278 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T)); 2279 } 2280 2281 ConstantLValue 2282 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2283 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 2284 } 2285 2286 ConstantLValue 2287 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 2288 assert(E->isExpressibleAsConstantInitializer() && 2289 "this boxed expression can't be emitted as a compile-time constant"); 2290 const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 2291 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 2292 } 2293 2294 ConstantLValue 2295 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 2296 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 2297 } 2298 2299 ConstantLValue 2300 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 2301 assert(Emitter.CGF && "Invalid address of label expression outside function"); 2302 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 2303 return Ptr; 2304 } 2305 2306 ConstantLValue 2307 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 2308 unsigned builtin = E->getBuiltinCallee(); 2309 if (builtin == Builtin::BI__builtin_function_start) 2310 return CGM.GetFunctionStart( 2311 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 2312 2313 if (builtin == Builtin::BI__builtin_ptrauth_sign_constant) 2314 return emitPointerAuthSignConstant(E); 2315 2316 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 2317 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 2318 return nullptr; 2319 2320 const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2321 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2322 return CGM.getObjCRuntime().GenerateConstantString(Literal); 2323 } else { 2324 // FIXME: need to deal with UCN conversion issues. 2325 return CGM.GetAddrOfConstantCFString(Literal); 2326 } 2327 } 2328 2329 ConstantLValue 2330 ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) { 2331 llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0)); 2332 unsigned Key = emitPointerAuthKey(E->getArg(1)); 2333 auto [StorageAddress, OtherDiscriminator] = 2334 emitPointerAuthDiscriminator(E->getArg(2)); 2335 2336 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( 2337 UnsignedPointer, Key, StorageAddress, OtherDiscriminator); 2338 return SignedPointer; 2339 } 2340 2341 llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) { 2342 Expr::EvalResult Result; 2343 bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext()); 2344 assert(Succeeded); 2345 (void)Succeeded; 2346 2347 // The assertions here are all checked by Sema. 2348 assert(Result.Val.isLValue()); 2349 if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>())) 2350 assert(Result.Val.getLValueOffset().isZero()); 2351 return ConstantEmitter(CGM, Emitter.CGF) 2352 .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false); 2353 } 2354 2355 unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) { 2356 return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue(); 2357 } 2358 2359 std::pair<llvm::Constant *, llvm::ConstantInt *> 2360 ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) { 2361 E = E->IgnoreParens(); 2362 2363 if (const auto *Call = dyn_cast<CallExpr>(E)) { 2364 if (Call->getBuiltinCallee() == 2365 Builtin::BI__builtin_ptrauth_blend_discriminator) { 2366 llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract( 2367 Call->getArg(0), Call->getArg(0)->getType()); 2368 auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract( 2369 Call->getArg(1), Call->getArg(1)->getType())); 2370 return {Pointer, Extra}; 2371 } 2372 } 2373 2374 llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType()); 2375 if (Result->getType()->isPointerTy()) 2376 return {Result, nullptr}; 2377 return {nullptr, cast<llvm::ConstantInt>(Result)}; 2378 } 2379 2380 ConstantLValue 2381 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2382 StringRef functionName; 2383 if (auto CGF = Emitter.CGF) 2384 functionName = CGF->CurFn->getName(); 2385 else 2386 functionName = "global"; 2387 2388 return CGM.GetAddrOfGlobalBlock(E, functionName); 2389 } 2390 2391 ConstantLValue 2392 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2393 QualType T; 2394 if (E->isTypeOperand()) 2395 T = E->getTypeOperand(CGM.getContext()); 2396 else 2397 T = E->getExprOperand()->getType(); 2398 return CGM.GetAddrOfRTTIDescriptor(T); 2399 } 2400 2401 ConstantLValue 2402 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2403 const MaterializeTemporaryExpr *E) { 2404 assert(E->getStorageDuration() == SD_Static); 2405 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2406 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2407 } 2408 2409 llvm::Constant * 2410 ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType, 2411 bool EnablePtrAuthFunctionTypeDiscrimination) { 2412 switch (Value.getKind()) { 2413 case APValue::None: 2414 case APValue::Indeterminate: 2415 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2416 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2417 case APValue::LValue: 2418 return ConstantLValueEmitter(*this, Value, DestType, 2419 EnablePtrAuthFunctionTypeDiscrimination) 2420 .tryEmit(); 2421 case APValue::Int: 2422 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2423 case APValue::FixedPoint: 2424 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2425 Value.getFixedPoint().getValue()); 2426 case APValue::ComplexInt: { 2427 llvm::Constant *Complex[2]; 2428 2429 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2430 Value.getComplexIntReal()); 2431 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2432 Value.getComplexIntImag()); 2433 2434 // FIXME: the target may want to specify that this is packed. 2435 llvm::StructType *STy = 2436 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2437 return llvm::ConstantStruct::get(STy, Complex); 2438 } 2439 case APValue::Float: { 2440 const llvm::APFloat &Init = Value.getFloat(); 2441 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2442 !CGM.getContext().getLangOpts().NativeHalfType && 2443 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2444 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2445 Init.bitcastToAPInt()); 2446 else 2447 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2448 } 2449 case APValue::ComplexFloat: { 2450 llvm::Constant *Complex[2]; 2451 2452 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2453 Value.getComplexFloatReal()); 2454 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2455 Value.getComplexFloatImag()); 2456 2457 // FIXME: the target may want to specify that this is packed. 2458 llvm::StructType *STy = 2459 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2460 return llvm::ConstantStruct::get(STy, Complex); 2461 } 2462 case APValue::Vector: { 2463 unsigned NumElts = Value.getVectorLength(); 2464 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2465 2466 for (unsigned I = 0; I != NumElts; ++I) { 2467 const APValue &Elt = Value.getVectorElt(I); 2468 if (Elt.isInt()) 2469 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2470 else if (Elt.isFloat()) 2471 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2472 else if (Elt.isIndeterminate()) 2473 Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType( 2474 DestType->castAs<VectorType>()->getElementType())); 2475 else 2476 llvm_unreachable("unsupported vector element type"); 2477 } 2478 return llvm::ConstantVector::get(Inits); 2479 } 2480 case APValue::AddrLabelDiff: { 2481 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2482 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2483 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2484 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2485 if (!LHS || !RHS) return nullptr; 2486 2487 // Compute difference 2488 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2489 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2490 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2491 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2492 2493 // LLVM is a bit sensitive about the exact format of the 2494 // address-of-label difference; make sure to truncate after 2495 // the subtraction. 2496 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2497 } 2498 case APValue::Struct: 2499 case APValue::Union: 2500 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2501 case APValue::Array: { 2502 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2503 unsigned NumElements = Value.getArraySize(); 2504 unsigned NumInitElts = Value.getArrayInitializedElts(); 2505 2506 // Emit array filler, if there is one. 2507 llvm::Constant *Filler = nullptr; 2508 if (Value.hasArrayFiller()) { 2509 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2510 ArrayTy->getElementType()); 2511 if (!Filler) 2512 return nullptr; 2513 } 2514 2515 // Emit initializer elements. 2516 SmallVector<llvm::Constant*, 16> Elts; 2517 if (Filler && Filler->isNullValue()) 2518 Elts.reserve(NumInitElts + 1); 2519 else 2520 Elts.reserve(NumElements); 2521 2522 llvm::Type *CommonElementType = nullptr; 2523 for (unsigned I = 0; I < NumInitElts; ++I) { 2524 llvm::Constant *C = tryEmitPrivateForMemory( 2525 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2526 if (!C) return nullptr; 2527 2528 if (I == 0) 2529 CommonElementType = C->getType(); 2530 else if (C->getType() != CommonElementType) 2531 CommonElementType = nullptr; 2532 Elts.push_back(C); 2533 } 2534 2535 llvm::ArrayType *Desired = 2536 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2537 2538 // Fix the type of incomplete arrays if the initializer isn't empty. 2539 if (DestType->isIncompleteArrayType() && !Elts.empty()) 2540 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size()); 2541 2542 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2543 Filler); 2544 } 2545 case APValue::MemberPointer: 2546 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2547 } 2548 llvm_unreachable("Unknown APValue kind"); 2549 } 2550 2551 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2552 const CompoundLiteralExpr *E) { 2553 return EmittedCompoundLiterals.lookup(E); 2554 } 2555 2556 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2557 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2558 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2559 (void)Ok; 2560 assert(Ok && "CLE has already been emitted!"); 2561 } 2562 2563 ConstantAddress 2564 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2565 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2566 ConstantEmitter emitter(*this); 2567 return tryEmitGlobalCompoundLiteral(emitter, E); 2568 } 2569 2570 llvm::Constant * 2571 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2572 // Member pointer constants always have a very particular form. 2573 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2574 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2575 2576 // A member function pointer. 2577 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2578 return getCXXABI().EmitMemberFunctionPointer(method); 2579 2580 // Otherwise, a member data pointer. 2581 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2582 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2583 return getCXXABI().EmitMemberDataPointer(type, chars); 2584 } 2585 2586 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2587 llvm::Type *baseType, 2588 const CXXRecordDecl *base); 2589 2590 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2591 const RecordDecl *record, 2592 bool asCompleteObject) { 2593 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2594 llvm::StructType *structure = 2595 (asCompleteObject ? layout.getLLVMType() 2596 : layout.getBaseSubobjectLLVMType()); 2597 2598 unsigned numElements = structure->getNumElements(); 2599 std::vector<llvm::Constant *> elements(numElements); 2600 2601 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2602 // Fill in all the bases. 2603 if (CXXR) { 2604 for (const auto &I : CXXR->bases()) { 2605 if (I.isVirtual()) { 2606 // Ignore virtual bases; if we're laying out for a complete 2607 // object, we'll lay these out later. 2608 continue; 2609 } 2610 2611 const CXXRecordDecl *base = 2612 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2613 2614 // Ignore empty bases. 2615 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) || 2616 CGM.getContext() 2617 .getASTRecordLayout(base) 2618 .getNonVirtualSize() 2619 .isZero()) 2620 continue; 2621 2622 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2623 llvm::Type *baseType = structure->getElementType(fieldIndex); 2624 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2625 } 2626 } 2627 2628 // Fill in all the fields. 2629 for (const auto *Field : record->fields()) { 2630 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2631 // will fill in later.) 2632 if (!Field->isBitField() && 2633 !isEmptyFieldForLayout(CGM.getContext(), Field)) { 2634 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2635 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2636 } 2637 2638 // For unions, stop after the first named field. 2639 if (record->isUnion()) { 2640 if (Field->getIdentifier()) 2641 break; 2642 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2643 if (FieldRD->findFirstNamedDataMember()) 2644 break; 2645 } 2646 } 2647 2648 // Fill in the virtual bases, if we're working with the complete object. 2649 if (CXXR && asCompleteObject) { 2650 for (const auto &I : CXXR->vbases()) { 2651 const CXXRecordDecl *base = 2652 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2653 2654 // Ignore empty bases. 2655 if (isEmptyRecordForLayout(CGM.getContext(), I.getType())) 2656 continue; 2657 2658 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2659 2660 // We might have already laid this field out. 2661 if (elements[fieldIndex]) continue; 2662 2663 llvm::Type *baseType = structure->getElementType(fieldIndex); 2664 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2665 } 2666 } 2667 2668 // Now go through all other fields and zero them out. 2669 for (unsigned i = 0; i != numElements; ++i) { 2670 if (!elements[i]) 2671 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2672 } 2673 2674 return llvm::ConstantStruct::get(structure, elements); 2675 } 2676 2677 /// Emit the null constant for a base subobject. 2678 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2679 llvm::Type *baseType, 2680 const CXXRecordDecl *base) { 2681 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2682 2683 // Just zero out bases that don't have any pointer to data members. 2684 if (baseLayout.isZeroInitializableAsBase()) 2685 return llvm::Constant::getNullValue(baseType); 2686 2687 // Otherwise, we can just use its null constant. 2688 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2689 } 2690 2691 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2692 QualType T) { 2693 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2694 } 2695 2696 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2697 if (T->getAs<PointerType>()) 2698 return getNullPointer( 2699 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2700 2701 if (getTypes().isZeroInitializable(T)) 2702 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2703 2704 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2705 llvm::ArrayType *ATy = 2706 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2707 2708 QualType ElementTy = CAT->getElementType(); 2709 2710 llvm::Constant *Element = 2711 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2712 unsigned NumElements = CAT->getZExtSize(); 2713 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2714 return llvm::ConstantArray::get(ATy, Array); 2715 } 2716 2717 if (const RecordType *RT = T->getAs<RecordType>()) 2718 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2719 2720 assert(T->isMemberDataPointerType() && 2721 "Should only see pointers to data members here!"); 2722 2723 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2724 } 2725 2726 llvm::Constant * 2727 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2728 return ::EmitNullConstant(*this, Record, false); 2729 } 2730