xref: /llvm-project/clang/lib/CodeGen/CGExprConstant.cpp (revision 627746581b8fde4143533937130f420bbbdf9ddf)
1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfoImpl.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include <optional>
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===----------------------------------------------------------------------===//
39 //                            ConstantAggregateBuilder
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class ConstExprEmitter;
44 
45 llvm::Constant *getPadding(const CodeGenModule &CGM, CharUnits PadSize) {
46   llvm::Type *Ty = CGM.CharTy;
47   if (PadSize > CharUnits::One())
48     Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
49   if (CGM.shouldZeroInitPadding()) {
50     return llvm::Constant::getNullValue(Ty);
51   }
52   return llvm::UndefValue::get(Ty);
53 }
54 
55 struct ConstantAggregateBuilderUtils {
56   CodeGenModule &CGM;
57 
58   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
59 
60   CharUnits getAlignment(const llvm::Constant *C) const {
61     return CharUnits::fromQuantity(
62         CGM.getDataLayout().getABITypeAlign(C->getType()));
63   }
64 
65   CharUnits getSize(llvm::Type *Ty) const {
66     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
67   }
68 
69   CharUnits getSize(const llvm::Constant *C) const {
70     return getSize(C->getType());
71   }
72 
73   llvm::Constant *getPadding(CharUnits PadSize) const {
74     return ::getPadding(CGM, PadSize);
75   }
76 
77   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
78     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
79     return llvm::ConstantAggregateZero::get(Ty);
80   }
81 };
82 
83 /// Incremental builder for an llvm::Constant* holding a struct or array
84 /// constant.
85 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
86   /// The elements of the constant. These two arrays must have the same size;
87   /// Offsets[i] describes the offset of Elems[i] within the constant. The
88   /// elements are kept in increasing offset order, and we ensure that there
89   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
90   ///
91   /// This may contain explicit padding elements (in order to create a
92   /// natural layout), but need not. Gaps between elements are implicitly
93   /// considered to be filled with undef.
94   llvm::SmallVector<llvm::Constant*, 32> Elems;
95   llvm::SmallVector<CharUnits, 32> Offsets;
96 
97   /// The size of the constant (the maximum end offset of any added element).
98   /// May be larger than the end of Elems.back() if we split the last element
99   /// and removed some trailing undefs.
100   CharUnits Size = CharUnits::Zero();
101 
102   /// This is true only if laying out Elems in order as the elements of a
103   /// non-packed LLVM struct will give the correct layout.
104   bool NaturalLayout = true;
105 
106   bool split(size_t Index, CharUnits Hint);
107   std::optional<size_t> splitAt(CharUnits Pos);
108 
109   static llvm::Constant *buildFrom(CodeGenModule &CGM,
110                                    ArrayRef<llvm::Constant *> Elems,
111                                    ArrayRef<CharUnits> Offsets,
112                                    CharUnits StartOffset, CharUnits Size,
113                                    bool NaturalLayout, llvm::Type *DesiredTy,
114                                    bool AllowOversized);
115 
116 public:
117   ConstantAggregateBuilder(CodeGenModule &CGM)
118       : ConstantAggregateBuilderUtils(CGM) {}
119 
120   /// Update or overwrite the value starting at \p Offset with \c C.
121   ///
122   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
123   ///        a constant that has already been added. This flag is only used to
124   ///        detect bugs.
125   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
126 
127   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
128   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
129 
130   /// Attempt to condense the value starting at \p Offset to a constant of type
131   /// \p DesiredTy.
132   void condense(CharUnits Offset, llvm::Type *DesiredTy);
133 
134   /// Produce a constant representing the entire accumulated value, ideally of
135   /// the specified type. If \p AllowOversized, the constant might be larger
136   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
137   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
138   /// even if we can't represent it as that type.
139   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
140     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
141                      NaturalLayout, DesiredTy, AllowOversized);
142   }
143 };
144 
145 template<typename Container, typename Range = std::initializer_list<
146                                  typename Container::value_type>>
147 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
148   assert(BeginOff <= EndOff && "invalid replacement range");
149   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
150 }
151 
152 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
153                           bool AllowOverwrite) {
154   // Common case: appending to a layout.
155   if (Offset >= Size) {
156     CharUnits Align = getAlignment(C);
157     CharUnits AlignedSize = Size.alignTo(Align);
158     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
159       NaturalLayout = false;
160     else if (AlignedSize < Offset) {
161       Elems.push_back(getPadding(Offset - Size));
162       Offsets.push_back(Size);
163     }
164     Elems.push_back(C);
165     Offsets.push_back(Offset);
166     Size = Offset + getSize(C);
167     return true;
168   }
169 
170   // Uncommon case: constant overlaps what we've already created.
171   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
172   if (!FirstElemToReplace)
173     return false;
174 
175   CharUnits CSize = getSize(C);
176   std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
177   if (!LastElemToReplace)
178     return false;
179 
180   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
181          "unexpectedly overwriting field");
182 
183   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
184   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
185   Size = std::max(Size, Offset + CSize);
186   NaturalLayout = false;
187   return true;
188 }
189 
190 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
191                               bool AllowOverwrite) {
192   const ASTContext &Context = CGM.getContext();
193   const uint64_t CharWidth = CGM.getContext().getCharWidth();
194 
195   // Offset of where we want the first bit to go within the bits of the
196   // current char.
197   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
198 
199   // We split bit-fields up into individual bytes. Walk over the bytes and
200   // update them.
201   for (CharUnits OffsetInChars =
202            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
203        /**/; ++OffsetInChars) {
204     // Number of bits we want to fill in this char.
205     unsigned WantedBits =
206         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
207 
208     // Get a char containing the bits we want in the right places. The other
209     // bits have unspecified values.
210     llvm::APInt BitsThisChar = Bits;
211     if (BitsThisChar.getBitWidth() < CharWidth)
212       BitsThisChar = BitsThisChar.zext(CharWidth);
213     if (CGM.getDataLayout().isBigEndian()) {
214       // Figure out how much to shift by. We may need to left-shift if we have
215       // less than one byte of Bits left.
216       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
217       if (Shift > 0)
218         BitsThisChar.lshrInPlace(Shift);
219       else if (Shift < 0)
220         BitsThisChar = BitsThisChar.shl(-Shift);
221     } else {
222       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
223     }
224     if (BitsThisChar.getBitWidth() > CharWidth)
225       BitsThisChar = BitsThisChar.trunc(CharWidth);
226 
227     if (WantedBits == CharWidth) {
228       // Got a full byte: just add it directly.
229       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
230           OffsetInChars, AllowOverwrite);
231     } else {
232       // Partial byte: update the existing integer if there is one. If we
233       // can't split out a 1-CharUnit range to update, then we can't add
234       // these bits and fail the entire constant emission.
235       std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
236       if (!FirstElemToUpdate)
237         return false;
238       std::optional<size_t> LastElemToUpdate =
239           splitAt(OffsetInChars + CharUnits::One());
240       if (!LastElemToUpdate)
241         return false;
242       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
243              "should have at most one element covering one byte");
244 
245       // Figure out which bits we want and discard the rest.
246       llvm::APInt UpdateMask(CharWidth, 0);
247       if (CGM.getDataLayout().isBigEndian())
248         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
249                            CharWidth - OffsetWithinChar);
250       else
251         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
252       BitsThisChar &= UpdateMask;
253 
254       if (*FirstElemToUpdate == *LastElemToUpdate ||
255           Elems[*FirstElemToUpdate]->isNullValue() ||
256           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
257         // All existing bits are either zero or undef.
258         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
259             OffsetInChars, /*AllowOverwrite*/ true);
260       } else {
261         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
262         // In order to perform a partial update, we need the existing bitwise
263         // value, which we can only extract for a constant int.
264         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
265         if (!CI)
266           return false;
267         // Because this is a 1-CharUnit range, the constant occupying it must
268         // be exactly one CharUnit wide.
269         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
270         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
271                "unexpectedly overwriting bitfield");
272         BitsThisChar |= (CI->getValue() & ~UpdateMask);
273         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
274       }
275     }
276 
277     // Stop if we've added all the bits.
278     if (WantedBits == Bits.getBitWidth())
279       break;
280 
281     // Remove the consumed bits from Bits.
282     if (!CGM.getDataLayout().isBigEndian())
283       Bits.lshrInPlace(WantedBits);
284     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
285 
286     // The remanining bits go at the start of the following bytes.
287     OffsetWithinChar = 0;
288   }
289 
290   return true;
291 }
292 
293 /// Returns a position within Elems and Offsets such that all elements
294 /// before the returned index end before Pos and all elements at or after
295 /// the returned index begin at or after Pos. Splits elements as necessary
296 /// to ensure this. Returns std::nullopt if we find something we can't split.
297 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
298   if (Pos >= Size)
299     return Offsets.size();
300 
301   while (true) {
302     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
303     if (FirstAfterPos == Offsets.begin())
304       return 0;
305 
306     // If we already have an element starting at Pos, we're done.
307     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
308     if (Offsets[LastAtOrBeforePosIndex] == Pos)
309       return LastAtOrBeforePosIndex;
310 
311     // We found an element starting before Pos. Check for overlap.
312     if (Offsets[LastAtOrBeforePosIndex] +
313         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
314       return LastAtOrBeforePosIndex + 1;
315 
316     // Try to decompose it into smaller constants.
317     if (!split(LastAtOrBeforePosIndex, Pos))
318       return std::nullopt;
319   }
320 }
321 
322 /// Split the constant at index Index, if possible. Return true if we did.
323 /// Hint indicates the location at which we'd like to split, but may be
324 /// ignored.
325 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
326   NaturalLayout = false;
327   llvm::Constant *C = Elems[Index];
328   CharUnits Offset = Offsets[Index];
329 
330   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
331     // Expand the sequence into its contained elements.
332     // FIXME: This assumes vector elements are byte-sized.
333     replace(Elems, Index, Index + 1,
334             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
335                             [&](unsigned Op) { return CA->getOperand(Op); }));
336     if (isa<llvm::ArrayType>(CA->getType()) ||
337         isa<llvm::VectorType>(CA->getType())) {
338       // Array or vector.
339       llvm::Type *ElemTy =
340           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
341       CharUnits ElemSize = getSize(ElemTy);
342       replace(
343           Offsets, Index, Index + 1,
344           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
345                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
346     } else {
347       // Must be a struct.
348       auto *ST = cast<llvm::StructType>(CA->getType());
349       const llvm::StructLayout *Layout =
350           CGM.getDataLayout().getStructLayout(ST);
351       replace(Offsets, Index, Index + 1,
352               llvm::map_range(
353                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
354                     return Offset + CharUnits::fromQuantity(
355                                         Layout->getElementOffset(Op));
356                   }));
357     }
358     return true;
359   }
360 
361   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
362     // Expand the sequence into its contained elements.
363     // FIXME: This assumes vector elements are byte-sized.
364     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
365     CharUnits ElemSize = getSize(CDS->getElementType());
366     replace(Elems, Index, Index + 1,
367             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
368                             [&](unsigned Elem) {
369                               return CDS->getElementAsConstant(Elem);
370                             }));
371     replace(Offsets, Index, Index + 1,
372             llvm::map_range(
373                 llvm::seq(0u, CDS->getNumElements()),
374                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
375     return true;
376   }
377 
378   if (isa<llvm::ConstantAggregateZero>(C)) {
379     // Split into two zeros at the hinted offset.
380     CharUnits ElemSize = getSize(C);
381     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
382     replace(Elems, Index, Index + 1,
383             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
384     replace(Offsets, Index, Index + 1, {Offset, Hint});
385     return true;
386   }
387 
388   if (isa<llvm::UndefValue>(C)) {
389     // Drop undef; it doesn't contribute to the final layout.
390     replace(Elems, Index, Index + 1, {});
391     replace(Offsets, Index, Index + 1, {});
392     return true;
393   }
394 
395   // FIXME: We could split a ConstantInt if the need ever arose.
396   // We don't need to do this to handle bit-fields because we always eagerly
397   // split them into 1-byte chunks.
398 
399   return false;
400 }
401 
402 static llvm::Constant *
403 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
404                   llvm::Type *CommonElementType, uint64_t ArrayBound,
405                   SmallVectorImpl<llvm::Constant *> &Elements,
406                   llvm::Constant *Filler);
407 
408 llvm::Constant *ConstantAggregateBuilder::buildFrom(
409     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
410     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
411     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
412   ConstantAggregateBuilderUtils Utils(CGM);
413 
414   if (Elems.empty())
415     return llvm::UndefValue::get(DesiredTy);
416 
417   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
418 
419   // If we want an array type, see if all the elements are the same type and
420   // appropriately spaced.
421   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
422     assert(!AllowOversized && "oversized array emission not supported");
423 
424     bool CanEmitArray = true;
425     llvm::Type *CommonType = Elems[0]->getType();
426     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
427     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
428     SmallVector<llvm::Constant*, 32> ArrayElements;
429     for (size_t I = 0; I != Elems.size(); ++I) {
430       // Skip zeroes; we'll use a zero value as our array filler.
431       if (Elems[I]->isNullValue())
432         continue;
433 
434       // All remaining elements must be the same type.
435       if (Elems[I]->getType() != CommonType ||
436           Offset(I) % ElemSize != 0) {
437         CanEmitArray = false;
438         break;
439       }
440       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
441       ArrayElements.back() = Elems[I];
442     }
443 
444     if (CanEmitArray) {
445       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
446                                ArrayElements, Filler);
447     }
448 
449     // Can't emit as an array, carry on to emit as a struct.
450   }
451 
452   // The size of the constant we plan to generate.  This is usually just
453   // the size of the initialized type, but in AllowOversized mode (i.e.
454   // flexible array init), it can be larger.
455   CharUnits DesiredSize = Utils.getSize(DesiredTy);
456   if (Size > DesiredSize) {
457     assert(AllowOversized && "Elems are oversized");
458     DesiredSize = Size;
459   }
460 
461   // The natural alignment of an unpacked LLVM struct with the given elements.
462   CharUnits Align = CharUnits::One();
463   for (llvm::Constant *C : Elems)
464     Align = std::max(Align, Utils.getAlignment(C));
465 
466   // The natural size of an unpacked LLVM struct with the given elements.
467   CharUnits AlignedSize = Size.alignTo(Align);
468 
469   bool Packed = false;
470   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
471   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
472   if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
473     // The natural layout would be too big; force use of a packed layout.
474     NaturalLayout = false;
475     Packed = true;
476   } else if (DesiredSize > AlignedSize) {
477     // The natural layout would be too small. Add padding to fix it. (This
478     // is ignored if we choose a packed layout.)
479     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
480     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
481     UnpackedElems = UnpackedElemStorage;
482   }
483 
484   // If we don't have a natural layout, insert padding as necessary.
485   // As we go, double-check to see if we can actually just emit Elems
486   // as a non-packed struct and do so opportunistically if possible.
487   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
488   if (!NaturalLayout) {
489     CharUnits SizeSoFar = CharUnits::Zero();
490     for (size_t I = 0; I != Elems.size(); ++I) {
491       CharUnits Align = Utils.getAlignment(Elems[I]);
492       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
493       CharUnits DesiredOffset = Offset(I);
494       assert(DesiredOffset >= SizeSoFar && "elements out of order");
495 
496       if (DesiredOffset != NaturalOffset)
497         Packed = true;
498       if (DesiredOffset != SizeSoFar)
499         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
500       PackedElems.push_back(Elems[I]);
501       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
502     }
503     // If we're using the packed layout, pad it out to the desired size if
504     // necessary.
505     if (Packed) {
506       assert(SizeSoFar <= DesiredSize &&
507              "requested size is too small for contents");
508       if (SizeSoFar < DesiredSize)
509         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
510     }
511   }
512 
513   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
514       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
515 
516   // Pick the type to use.  If the type is layout identical to the desired
517   // type then use it, otherwise use whatever the builder produced for us.
518   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
519     if (DesiredSTy->isLayoutIdentical(STy))
520       STy = DesiredSTy;
521   }
522 
523   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
524 }
525 
526 void ConstantAggregateBuilder::condense(CharUnits Offset,
527                                         llvm::Type *DesiredTy) {
528   CharUnits Size = getSize(DesiredTy);
529 
530   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
531   if (!FirstElemToReplace)
532     return;
533   size_t First = *FirstElemToReplace;
534 
535   std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
536   if (!LastElemToReplace)
537     return;
538   size_t Last = *LastElemToReplace;
539 
540   size_t Length = Last - First;
541   if (Length == 0)
542     return;
543 
544   if (Length == 1 && Offsets[First] == Offset &&
545       getSize(Elems[First]) == Size) {
546     // Re-wrap single element structs if necessary. Otherwise, leave any single
547     // element constant of the right size alone even if it has the wrong type.
548     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
549     if (STy && STy->getNumElements() == 1 &&
550         STy->getElementType(0) == Elems[First]->getType())
551       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
552     return;
553   }
554 
555   llvm::Constant *Replacement = buildFrom(
556       CGM, ArrayRef(Elems).slice(First, Length),
557       ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
558       /*known to have natural layout=*/false, DesiredTy, false);
559   replace(Elems, First, Last, {Replacement});
560   replace(Offsets, First, Last, {Offset});
561 }
562 
563 //===----------------------------------------------------------------------===//
564 //                            ConstStructBuilder
565 //===----------------------------------------------------------------------===//
566 
567 class ConstStructBuilder {
568   CodeGenModule &CGM;
569   ConstantEmitter &Emitter;
570   ConstantAggregateBuilder &Builder;
571   CharUnits StartOffset;
572 
573 public:
574   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
575                                      const InitListExpr *ILE,
576                                      QualType StructTy);
577   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
578                                      const APValue &Value, QualType ValTy);
579   static bool UpdateStruct(ConstantEmitter &Emitter,
580                            ConstantAggregateBuilder &Const, CharUnits Offset,
581                            const InitListExpr *Updater);
582 
583 private:
584   ConstStructBuilder(ConstantEmitter &Emitter,
585                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
586       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
587         StartOffset(StartOffset) {}
588 
589   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
590                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
591 
592   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
593                    bool AllowOverwrite = false);
594 
595   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
596                       llvm::Constant *InitExpr, bool AllowOverwrite = false);
597 
598   bool Build(const InitListExpr *ILE, bool AllowOverwrite);
599   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
600              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
601   bool DoZeroInitPadding(const ASTRecordLayout &Layout, unsigned FieldNo,
602                          const FieldDecl &Field, bool AllowOverwrite,
603                          CharUnits &SizeSoFar, bool &ZeroFieldSize);
604   bool DoZeroInitPadding(const ASTRecordLayout &Layout, bool AllowOverwrite,
605                          CharUnits SizeSoFar);
606   llvm::Constant *Finalize(QualType Ty);
607 };
608 
609 bool ConstStructBuilder::AppendField(
610     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
611     bool AllowOverwrite) {
612   const ASTContext &Context = CGM.getContext();
613 
614   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
615 
616   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
617 }
618 
619 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
620                                      llvm::Constant *InitCst,
621                                      bool AllowOverwrite) {
622   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
623 }
624 
625 bool ConstStructBuilder::AppendBitField(const FieldDecl *Field,
626                                         uint64_t FieldOffset, llvm::Constant *C,
627                                         bool AllowOverwrite) {
628 
629   llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
630   if (!CI) {
631     // Constants for long _BitInt types are sometimes split into individual
632     // bytes. Try to fold these back into an integer constant. If that doesn't
633     // work out, then we are trying to initialize a bitfield with a non-trivial
634     // constant, this must require run-time code.
635     llvm::Type *LoadType =
636         CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType());
637     llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst(
638         C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
639     CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant);
640     if (!CI)
641       return false;
642   }
643 
644   const CGRecordLayout &RL =
645       CGM.getTypes().getCGRecordLayout(Field->getParent());
646   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
647   llvm::APInt FieldValue = CI->getValue();
648 
649   // Promote the size of FieldValue if necessary
650   // FIXME: This should never occur, but currently it can because initializer
651   // constants are cast to bool, and because clang is not enforcing bitfield
652   // width limits.
653   if (Info.Size > FieldValue.getBitWidth())
654     FieldValue = FieldValue.zext(Info.Size);
655 
656   // Truncate the size of FieldValue to the bit field size.
657   if (Info.Size < FieldValue.getBitWidth())
658     FieldValue = FieldValue.trunc(Info.Size);
659 
660   return Builder.addBits(FieldValue,
661                          CGM.getContext().toBits(StartOffset) + FieldOffset,
662                          AllowOverwrite);
663 }
664 
665 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
666                                       ConstantAggregateBuilder &Const,
667                                       CharUnits Offset, QualType Type,
668                                       const InitListExpr *Updater) {
669   if (Type->isRecordType())
670     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
671 
672   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
673   if (!CAT)
674     return false;
675   QualType ElemType = CAT->getElementType();
676   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
677   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
678 
679   llvm::Constant *FillC = nullptr;
680   if (const Expr *Filler = Updater->getArrayFiller()) {
681     if (!isa<NoInitExpr>(Filler)) {
682       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
683       if (!FillC)
684         return false;
685     }
686   }
687 
688   unsigned NumElementsToUpdate =
689       FillC ? CAT->getZExtSize() : Updater->getNumInits();
690   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
691     const Expr *Init = nullptr;
692     if (I < Updater->getNumInits())
693       Init = Updater->getInit(I);
694 
695     if (!Init && FillC) {
696       if (!Const.add(FillC, Offset, true))
697         return false;
698     } else if (!Init || isa<NoInitExpr>(Init)) {
699       continue;
700     } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) {
701       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
702                                      ChildILE))
703         return false;
704       // Attempt to reduce the array element to a single constant if necessary.
705       Const.condense(Offset, ElemTy);
706     } else {
707       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
708       if (!Const.add(Val, Offset, true))
709         return false;
710     }
711   }
712 
713   return true;
714 }
715 
716 bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
717   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
718   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
719 
720   unsigned FieldNo = -1;
721   unsigned ElementNo = 0;
722 
723   // Bail out if we have base classes. We could support these, but they only
724   // arise in C++1z where we will have already constant folded most interesting
725   // cases. FIXME: There are still a few more cases we can handle this way.
726   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
727     if (CXXRD->getNumBases())
728       return false;
729 
730   const bool ZeroInitPadding = CGM.shouldZeroInitPadding();
731   bool ZeroFieldSize = false;
732   CharUnits SizeSoFar = CharUnits::Zero();
733 
734   for (FieldDecl *Field : RD->fields()) {
735     ++FieldNo;
736 
737     // If this is a union, skip all the fields that aren't being initialized.
738     if (RD->isUnion() &&
739         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
740       continue;
741 
742     // Don't emit anonymous bitfields.
743     if (Field->isUnnamedBitField())
744       continue;
745 
746     // Get the initializer.  A struct can include fields without initializers,
747     // we just use explicit null values for them.
748     const Expr *Init = nullptr;
749     if (ElementNo < ILE->getNumInits())
750       Init = ILE->getInit(ElementNo++);
751     if (isa_and_nonnull<NoInitExpr>(Init)) {
752       if (ZeroInitPadding &&
753           !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar,
754                              ZeroFieldSize))
755         return false;
756       continue;
757     }
758 
759     // Zero-sized fields are not emitted, but their initializers may still
760     // prevent emission of this struct as a constant.
761     if (isEmptyFieldForLayout(CGM.getContext(), Field)) {
762       if (Init && Init->HasSideEffects(CGM.getContext()))
763         return false;
764       continue;
765     }
766 
767     if (ZeroInitPadding &&
768         !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar,
769                            ZeroFieldSize))
770       return false;
771 
772     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
773     // represents additional overwriting of our current constant value, and not
774     // a new constant to emit independently.
775     if (AllowOverwrite &&
776         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
777       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
778         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
779             Layout.getFieldOffset(FieldNo));
780         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
781                                        Field->getType(), SubILE))
782           return false;
783         // If we split apart the field's value, try to collapse it down to a
784         // single value now.
785         Builder.condense(StartOffset + Offset,
786                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
787         continue;
788       }
789     }
790 
791     llvm::Constant *EltInit =
792         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
793              : Emitter.emitNullForMemory(Field->getType());
794     if (!EltInit)
795       return false;
796 
797     if (ZeroInitPadding && ZeroFieldSize)
798       SizeSoFar += CharUnits::fromQuantity(
799           CGM.getDataLayout().getTypeAllocSize(EltInit->getType()));
800 
801     if (!Field->isBitField()) {
802       // Handle non-bitfield members.
803       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
804                        AllowOverwrite))
805         return false;
806       // After emitting a non-empty field with [[no_unique_address]], we may
807       // need to overwrite its tail padding.
808       if (Field->hasAttr<NoUniqueAddressAttr>())
809         AllowOverwrite = true;
810     } else {
811       // Otherwise we have a bitfield.
812       if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit,
813                           AllowOverwrite))
814         return false;
815     }
816   }
817 
818   if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar))
819     return false;
820 
821   return true;
822 }
823 
824 namespace {
825 struct BaseInfo {
826   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
827     : Decl(Decl), Offset(Offset), Index(Index) {
828   }
829 
830   const CXXRecordDecl *Decl;
831   CharUnits Offset;
832   unsigned Index;
833 
834   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
835 };
836 }
837 
838 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
839                                bool IsPrimaryBase,
840                                const CXXRecordDecl *VTableClass,
841                                CharUnits Offset) {
842   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
843 
844   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
845     // Add a vtable pointer, if we need one and it hasn't already been added.
846     if (Layout.hasOwnVFPtr()) {
847       llvm::Constant *VTableAddressPoint =
848           CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset),
849                                                 VTableClass);
850       if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) {
851         VTableAddressPoint = Emitter.tryEmitConstantSignedPointer(
852             VTableAddressPoint, *Authentication);
853         if (!VTableAddressPoint)
854           return false;
855       }
856       if (!AppendBytes(Offset, VTableAddressPoint))
857         return false;
858     }
859 
860     // Accumulate and sort bases, in order to visit them in address order, which
861     // may not be the same as declaration order.
862     SmallVector<BaseInfo, 8> Bases;
863     Bases.reserve(CD->getNumBases());
864     unsigned BaseNo = 0;
865     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
866          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
867       assert(!Base->isVirtual() && "should not have virtual bases here");
868       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
869       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
870       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
871     }
872     llvm::stable_sort(Bases);
873 
874     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
875       BaseInfo &Base = Bases[I];
876 
877       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
878       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
879             VTableClass, Offset + Base.Offset);
880     }
881   }
882 
883   unsigned FieldNo = 0;
884   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
885   const bool ZeroInitPadding = CGM.shouldZeroInitPadding();
886   bool ZeroFieldSize = false;
887   CharUnits SizeSoFar = CharUnits::Zero();
888 
889   bool AllowOverwrite = false;
890   for (RecordDecl::field_iterator Field = RD->field_begin(),
891        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
892     // If this is a union, skip all the fields that aren't being initialized.
893     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
894       continue;
895 
896     // Don't emit anonymous bitfields or zero-sized fields.
897     if (Field->isUnnamedBitField() ||
898         isEmptyFieldForLayout(CGM.getContext(), *Field))
899       continue;
900 
901     // Emit the value of the initializer.
902     const APValue &FieldValue =
903       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
904     llvm::Constant *EltInit =
905       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
906     if (!EltInit)
907       return false;
908 
909     if (ZeroInitPadding) {
910       if (!DoZeroInitPadding(Layout, FieldNo, **Field, AllowOverwrite,
911                              SizeSoFar, ZeroFieldSize))
912         return false;
913       if (ZeroFieldSize)
914         SizeSoFar += CharUnits::fromQuantity(
915             CGM.getDataLayout().getTypeAllocSize(EltInit->getType()));
916     }
917 
918     if (!Field->isBitField()) {
919       // Handle non-bitfield members.
920       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
921                        EltInit, AllowOverwrite))
922         return false;
923       // After emitting a non-empty field with [[no_unique_address]], we may
924       // need to overwrite its tail padding.
925       if (Field->hasAttr<NoUniqueAddressAttr>())
926         AllowOverwrite = true;
927     } else {
928       // Otherwise we have a bitfield.
929       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
930                           EltInit, AllowOverwrite))
931         return false;
932     }
933   }
934   if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar))
935     return false;
936 
937   return true;
938 }
939 
940 bool ConstStructBuilder::DoZeroInitPadding(
941     const ASTRecordLayout &Layout, unsigned FieldNo, const FieldDecl &Field,
942     bool AllowOverwrite, CharUnits &SizeSoFar, bool &ZeroFieldSize) {
943   uint64_t StartBitOffset = Layout.getFieldOffset(FieldNo);
944   CharUnits StartOffset = CGM.getContext().toCharUnitsFromBits(StartBitOffset);
945   if (SizeSoFar < StartOffset)
946     if (!AppendBytes(SizeSoFar, getPadding(CGM, StartOffset - SizeSoFar),
947                      AllowOverwrite))
948       return false;
949 
950   if (!Field.isBitField()) {
951     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field.getType());
952     SizeSoFar = StartOffset + FieldSize;
953     ZeroFieldSize = FieldSize.isZero();
954   } else {
955     const CGRecordLayout &RL =
956         CGM.getTypes().getCGRecordLayout(Field.getParent());
957     const CGBitFieldInfo &Info = RL.getBitFieldInfo(&Field);
958     uint64_t EndBitOffset = StartBitOffset + Info.Size;
959     SizeSoFar = CGM.getContext().toCharUnitsFromBits(EndBitOffset);
960     if (EndBitOffset % CGM.getContext().getCharWidth() != 0) {
961       SizeSoFar++;
962     }
963     ZeroFieldSize = Info.Size == 0;
964   }
965   return true;
966 }
967 
968 bool ConstStructBuilder::DoZeroInitPadding(const ASTRecordLayout &Layout,
969                                            bool AllowOverwrite,
970                                            CharUnits SizeSoFar) {
971   CharUnits TotalSize = Layout.getSize();
972   if (SizeSoFar < TotalSize)
973     if (!AppendBytes(SizeSoFar, getPadding(CGM, TotalSize - SizeSoFar),
974                      AllowOverwrite))
975       return false;
976   SizeSoFar = TotalSize;
977   return true;
978 }
979 
980 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
981   Type = Type.getNonReferenceType();
982   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
983   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
984   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
985 }
986 
987 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
988                                                 const InitListExpr *ILE,
989                                                 QualType ValTy) {
990   ConstantAggregateBuilder Const(Emitter.CGM);
991   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
992 
993   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
994     return nullptr;
995 
996   return Builder.Finalize(ValTy);
997 }
998 
999 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
1000                                                 const APValue &Val,
1001                                                 QualType ValTy) {
1002   ConstantAggregateBuilder Const(Emitter.CGM);
1003   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
1004 
1005   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
1006   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
1007   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
1008     return nullptr;
1009 
1010   return Builder.Finalize(ValTy);
1011 }
1012 
1013 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
1014                                       ConstantAggregateBuilder &Const,
1015                                       CharUnits Offset,
1016                                       const InitListExpr *Updater) {
1017   return ConstStructBuilder(Emitter, Const, Offset)
1018       .Build(Updater, /*AllowOverwrite*/ true);
1019 }
1020 
1021 //===----------------------------------------------------------------------===//
1022 //                             ConstExprEmitter
1023 //===----------------------------------------------------------------------===//
1024 
1025 static ConstantAddress
1026 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
1027                              const CompoundLiteralExpr *E) {
1028   CodeGenModule &CGM = emitter.CGM;
1029   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
1030   if (llvm::GlobalVariable *Addr =
1031           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
1032     return ConstantAddress(Addr, Addr->getValueType(), Align);
1033 
1034   LangAS addressSpace = E->getType().getAddressSpace();
1035   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
1036                                                     addressSpace, E->getType());
1037   if (!C) {
1038     assert(!E->isFileScope() &&
1039            "file-scope compound literal did not have constant initializer!");
1040     return ConstantAddress::invalid();
1041   }
1042 
1043   auto GV = new llvm::GlobalVariable(
1044       CGM.getModule(), C->getType(),
1045       E->getType().isConstantStorage(CGM.getContext(), true, false),
1046       llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
1047       llvm::GlobalVariable::NotThreadLocal,
1048       CGM.getContext().getTargetAddressSpace(addressSpace));
1049   emitter.finalize(GV);
1050   GV->setAlignment(Align.getAsAlign());
1051   CGM.setAddrOfConstantCompoundLiteral(E, GV);
1052   return ConstantAddress(GV, GV->getValueType(), Align);
1053 }
1054 
1055 static llvm::Constant *
1056 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
1057                   llvm::Type *CommonElementType, uint64_t ArrayBound,
1058                   SmallVectorImpl<llvm::Constant *> &Elements,
1059                   llvm::Constant *Filler) {
1060   // Figure out how long the initial prefix of non-zero elements is.
1061   uint64_t NonzeroLength = ArrayBound;
1062   if (Elements.size() < NonzeroLength && Filler->isNullValue())
1063     NonzeroLength = Elements.size();
1064   if (NonzeroLength == Elements.size()) {
1065     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
1066       --NonzeroLength;
1067   }
1068 
1069   if (NonzeroLength == 0)
1070     return llvm::ConstantAggregateZero::get(DesiredType);
1071 
1072   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
1073   uint64_t TrailingZeroes = ArrayBound - NonzeroLength;
1074   if (TrailingZeroes >= 8) {
1075     assert(Elements.size() >= NonzeroLength &&
1076            "missing initializer for non-zero element");
1077 
1078     // If all the elements had the same type up to the trailing zeroes, emit a
1079     // struct of two arrays (the nonzero data and the zeroinitializer).
1080     if (CommonElementType && NonzeroLength >= 8) {
1081       llvm::Constant *Initial = llvm::ConstantArray::get(
1082           llvm::ArrayType::get(CommonElementType, NonzeroLength),
1083           ArrayRef(Elements).take_front(NonzeroLength));
1084       Elements.resize(2);
1085       Elements[0] = Initial;
1086     } else {
1087       Elements.resize(NonzeroLength + 1);
1088     }
1089 
1090     auto *FillerType =
1091         CommonElementType ? CommonElementType : DesiredType->getElementType();
1092     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
1093     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
1094     CommonElementType = nullptr;
1095   } else if (Elements.size() != ArrayBound) {
1096     // Otherwise pad to the right size with the filler if necessary.
1097     Elements.resize(ArrayBound, Filler);
1098     if (Filler->getType() != CommonElementType)
1099       CommonElementType = nullptr;
1100   }
1101 
1102   // If all elements have the same type, just emit an array constant.
1103   if (CommonElementType)
1104     return llvm::ConstantArray::get(
1105         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1106 
1107   // We have mixed types. Use a packed struct.
1108   llvm::SmallVector<llvm::Type *, 16> Types;
1109   Types.reserve(Elements.size());
1110   for (llvm::Constant *Elt : Elements)
1111     Types.push_back(Elt->getType());
1112   llvm::StructType *SType =
1113       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1114   return llvm::ConstantStruct::get(SType, Elements);
1115 }
1116 
1117 // This class only needs to handle arrays, structs and unions. Outside C++11
1118 // mode, we don't currently constant fold those types.  All other types are
1119 // handled by constant folding.
1120 //
1121 // Constant folding is currently missing support for a few features supported
1122 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1123 class ConstExprEmitter
1124     : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1125   CodeGenModule &CGM;
1126   ConstantEmitter &Emitter;
1127   llvm::LLVMContext &VMContext;
1128 public:
1129   ConstExprEmitter(ConstantEmitter &emitter)
1130     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1131   }
1132 
1133   //===--------------------------------------------------------------------===//
1134   //                            Visitor Methods
1135   //===--------------------------------------------------------------------===//
1136 
1137   llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1138 
1139   llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1140     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1141       return Result;
1142     return Visit(CE->getSubExpr(), T);
1143   }
1144 
1145   llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1146     return Visit(PE->getSubExpr(), T);
1147   }
1148 
1149   llvm::Constant *
1150   VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1151                                     QualType T) {
1152     return Visit(PE->getReplacement(), T);
1153   }
1154 
1155   llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1156                                             QualType T) {
1157     return Visit(GE->getResultExpr(), T);
1158   }
1159 
1160   llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1161     return Visit(CE->getChosenSubExpr(), T);
1162   }
1163 
1164   llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1165                                            QualType T) {
1166     return Visit(E->getInitializer(), T);
1167   }
1168 
1169   llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) {
1170     QualType FromType = E->getType();
1171     // See also HandleIntToIntCast in ExprConstant.cpp
1172     if (FromType->isIntegerType())
1173       if (llvm::Constant *C = Visit(E, FromType))
1174         if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1175           unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1176           unsigned DstWidth = CGM.getContext().getIntWidth(DestType);
1177           if (DstWidth == SrcWidth)
1178             return CI;
1179           llvm::APInt A = FromType->isSignedIntegerType()
1180                               ? CI->getValue().sextOrTrunc(DstWidth)
1181                               : CI->getValue().zextOrTrunc(DstWidth);
1182           return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1183         }
1184     return nullptr;
1185   }
1186 
1187   llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1188     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1189       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1190     const Expr *subExpr = E->getSubExpr();
1191 
1192     switch (E->getCastKind()) {
1193     case CK_ToUnion: {
1194       // GCC cast to union extension
1195       assert(E->getType()->isUnionType() &&
1196              "Destination type is not union type!");
1197 
1198       auto field = E->getTargetUnionField();
1199 
1200       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1201       if (!C) return nullptr;
1202 
1203       auto destTy = ConvertType(destType);
1204       if (C->getType() == destTy) return C;
1205 
1206       // Build a struct with the union sub-element as the first member,
1207       // and padded to the appropriate size.
1208       SmallVector<llvm::Constant*, 2> Elts;
1209       SmallVector<llvm::Type*, 2> Types;
1210       Elts.push_back(C);
1211       Types.push_back(C->getType());
1212       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1213       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1214 
1215       assert(CurSize <= TotalSize && "Union size mismatch!");
1216       if (unsigned NumPadBytes = TotalSize - CurSize) {
1217         llvm::Constant *Padding =
1218             getPadding(CGM, CharUnits::fromQuantity(NumPadBytes));
1219         Elts.push_back(Padding);
1220         Types.push_back(Padding->getType());
1221       }
1222 
1223       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1224       return llvm::ConstantStruct::get(STy, Elts);
1225     }
1226 
1227     case CK_AddressSpaceConversion: {
1228       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1229       if (!C) return nullptr;
1230       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1231       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1232       llvm::Type *destTy = ConvertType(E->getType());
1233       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1234                                                              destAS, destTy);
1235     }
1236 
1237     case CK_LValueToRValue: {
1238       // We don't really support doing lvalue-to-rvalue conversions here; any
1239       // interesting conversions should be done in Evaluate().  But as a
1240       // special case, allow compound literals to support the gcc extension
1241       // allowing "struct x {int x;} x = (struct x) {};".
1242       if (const auto *E =
1243               dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1244         return Visit(E->getInitializer(), destType);
1245       return nullptr;
1246     }
1247 
1248     case CK_AtomicToNonAtomic:
1249     case CK_NonAtomicToAtomic:
1250     case CK_NoOp:
1251     case CK_ConstructorConversion:
1252       return Visit(subExpr, destType);
1253 
1254     case CK_ArrayToPointerDecay:
1255       if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1256         return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1257       return nullptr;
1258     case CK_NullToPointer:
1259       if (Visit(subExpr, destType))
1260         return CGM.EmitNullConstant(destType);
1261       return nullptr;
1262 
1263     case CK_IntToOCLSampler:
1264       llvm_unreachable("global sampler variables are not generated");
1265 
1266     case CK_IntegralCast:
1267       return ProduceIntToIntCast(subExpr, destType);
1268 
1269     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1270 
1271     case CK_BuiltinFnToFnPtr:
1272       llvm_unreachable("builtin functions are handled elsewhere");
1273 
1274     case CK_ReinterpretMemberPointer:
1275     case CK_DerivedToBaseMemberPointer:
1276     case CK_BaseToDerivedMemberPointer: {
1277       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1278       if (!C) return nullptr;
1279       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1280     }
1281 
1282     // These will never be supported.
1283     case CK_ObjCObjectLValueCast:
1284     case CK_ARCProduceObject:
1285     case CK_ARCConsumeObject:
1286     case CK_ARCReclaimReturnedObject:
1287     case CK_ARCExtendBlockObject:
1288     case CK_CopyAndAutoreleaseBlockObject:
1289       return nullptr;
1290 
1291     // These don't need to be handled here because Evaluate knows how to
1292     // evaluate them in the cases where they can be folded.
1293     case CK_BitCast:
1294     case CK_ToVoid:
1295     case CK_Dynamic:
1296     case CK_LValueBitCast:
1297     case CK_LValueToRValueBitCast:
1298     case CK_NullToMemberPointer:
1299     case CK_UserDefinedConversion:
1300     case CK_CPointerToObjCPointerCast:
1301     case CK_BlockPointerToObjCPointerCast:
1302     case CK_AnyPointerToBlockPointerCast:
1303     case CK_FunctionToPointerDecay:
1304     case CK_BaseToDerived:
1305     case CK_DerivedToBase:
1306     case CK_UncheckedDerivedToBase:
1307     case CK_MemberPointerToBoolean:
1308     case CK_VectorSplat:
1309     case CK_FloatingRealToComplex:
1310     case CK_FloatingComplexToReal:
1311     case CK_FloatingComplexToBoolean:
1312     case CK_FloatingComplexCast:
1313     case CK_FloatingComplexToIntegralComplex:
1314     case CK_IntegralRealToComplex:
1315     case CK_IntegralComplexToReal:
1316     case CK_IntegralComplexToBoolean:
1317     case CK_IntegralComplexCast:
1318     case CK_IntegralComplexToFloatingComplex:
1319     case CK_PointerToIntegral:
1320     case CK_PointerToBoolean:
1321     case CK_BooleanToSignedIntegral:
1322     case CK_IntegralToPointer:
1323     case CK_IntegralToBoolean:
1324     case CK_IntegralToFloating:
1325     case CK_FloatingToIntegral:
1326     case CK_FloatingToBoolean:
1327     case CK_FloatingCast:
1328     case CK_FloatingToFixedPoint:
1329     case CK_FixedPointToFloating:
1330     case CK_FixedPointCast:
1331     case CK_FixedPointToBoolean:
1332     case CK_FixedPointToIntegral:
1333     case CK_IntegralToFixedPoint:
1334     case CK_ZeroToOCLOpaqueType:
1335     case CK_MatrixCast:
1336     case CK_HLSLVectorTruncation:
1337     case CK_HLSLArrayRValue:
1338       return nullptr;
1339     }
1340     llvm_unreachable("Invalid CastKind");
1341   }
1342 
1343   llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1344                                           QualType T) {
1345     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1346     // constant expression.
1347     return Visit(DIE->getExpr(), T);
1348   }
1349 
1350   llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1351     return Visit(E->getSubExpr(), T);
1352   }
1353 
1354   llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1355     return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1356   }
1357 
1358   static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType,
1359                               QualType DestType, const llvm::APSInt &Value) {
1360     if (!Ctx.hasSameType(SrcType, DestType)) {
1361       if (DestType->isFloatingType()) {
1362         llvm::APFloat Result =
1363             llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1);
1364         llvm::RoundingMode RM =
1365             E->getFPFeaturesInEffect(Ctx.getLangOpts()).getRoundingMode();
1366         if (RM == llvm::RoundingMode::Dynamic)
1367           RM = llvm::RoundingMode::NearestTiesToEven;
1368         Result.convertFromAPInt(Value, Value.isSigned(), RM);
1369         return APValue(Result);
1370       }
1371     }
1372     return APValue(Value);
1373   }
1374 
1375   llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1376     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1377     assert(CAT && "can't emit array init for non-constant-bound array");
1378     uint64_t NumInitElements = ILE->getNumInits();
1379     const uint64_t NumElements = CAT->getZExtSize();
1380     for (const auto *Init : ILE->inits()) {
1381       if (const auto *Embed =
1382               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1383         NumInitElements += Embed->getDataElementCount() - 1;
1384         if (NumInitElements > NumElements) {
1385           NumInitElements = NumElements;
1386           break;
1387         }
1388       }
1389     }
1390 
1391     // Initialising an array requires us to automatically
1392     // initialise any elements that have not been initialised explicitly
1393     uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements);
1394 
1395     QualType EltType = CAT->getElementType();
1396 
1397     // Initialize remaining array elements.
1398     llvm::Constant *fillC = nullptr;
1399     if (const Expr *filler = ILE->getArrayFiller()) {
1400       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1401       if (!fillC)
1402         return nullptr;
1403     }
1404 
1405     // Copy initializer elements.
1406     SmallVector<llvm::Constant *, 16> Elts;
1407     if (fillC && fillC->isNullValue())
1408       Elts.reserve(NumInitableElts + 1);
1409     else
1410       Elts.reserve(NumElements);
1411 
1412     llvm::Type *CommonElementType = nullptr;
1413     auto Emit = [&](const Expr *Init, unsigned ArrayIndex) {
1414       llvm::Constant *C = nullptr;
1415       C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1416       if (!C)
1417         return false;
1418       if (ArrayIndex == 0)
1419         CommonElementType = C->getType();
1420       else if (C->getType() != CommonElementType)
1421         CommonElementType = nullptr;
1422       Elts.push_back(C);
1423       return true;
1424     };
1425 
1426     unsigned ArrayIndex = 0;
1427     QualType DestTy = CAT->getElementType();
1428     for (unsigned i = 0; i < ILE->getNumInits(); ++i) {
1429       const Expr *Init = ILE->getInit(i);
1430       if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1431         StringLiteral *SL = EmbedS->getDataStringLiteral();
1432         llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy),
1433                            DestTy->isUnsignedIntegerType());
1434         llvm::Constant *C;
1435         for (unsigned I = EmbedS->getStartingElementPos(),
1436                       N = EmbedS->getDataElementCount();
1437              I != EmbedS->getStartingElementPos() + N; ++I) {
1438           Value = SL->getCodeUnit(I);
1439           if (DestTy->isIntegerType()) {
1440             C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value);
1441           } else {
1442             C = Emitter.tryEmitPrivateForMemory(
1443                 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy,
1444                              Value),
1445                 EltType);
1446           }
1447           if (!C)
1448             return nullptr;
1449           Elts.push_back(C);
1450           ArrayIndex++;
1451         }
1452         if ((ArrayIndex - EmbedS->getDataElementCount()) == 0)
1453           CommonElementType = C->getType();
1454         else if (C->getType() != CommonElementType)
1455           CommonElementType = nullptr;
1456       } else {
1457         if (!Emit(Init, ArrayIndex))
1458           return nullptr;
1459         ArrayIndex++;
1460       }
1461     }
1462 
1463     llvm::ArrayType *Desired =
1464         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1465     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1466                              fillC);
1467   }
1468 
1469   llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1470                                            QualType T) {
1471     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1472   }
1473 
1474   llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1475                                              QualType T) {
1476     return CGM.EmitNullConstant(T);
1477   }
1478 
1479   llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1480     if (ILE->isTransparent())
1481       return Visit(ILE->getInit(0), T);
1482 
1483     if (ILE->getType()->isArrayType())
1484       return EmitArrayInitialization(ILE, T);
1485 
1486     if (ILE->getType()->isRecordType())
1487       return EmitRecordInitialization(ILE, T);
1488 
1489     return nullptr;
1490   }
1491 
1492   llvm::Constant *
1493   VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1494                                 QualType destType) {
1495     auto C = Visit(E->getBase(), destType);
1496     if (!C)
1497       return nullptr;
1498 
1499     ConstantAggregateBuilder Const(CGM);
1500     Const.add(C, CharUnits::Zero(), false);
1501 
1502     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1503                                    E->getUpdater()))
1504       return nullptr;
1505 
1506     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1507     bool HasFlexibleArray = false;
1508     if (const auto *RT = destType->getAs<RecordType>())
1509       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1510     return Const.build(ValTy, HasFlexibleArray);
1511   }
1512 
1513   llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1514                                         QualType Ty) {
1515     if (!E->getConstructor()->isTrivial())
1516       return nullptr;
1517 
1518     // Only default and copy/move constructors can be trivial.
1519     if (E->getNumArgs()) {
1520       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1521       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1522              "trivial ctor has argument but isn't a copy/move ctor");
1523 
1524       const Expr *Arg = E->getArg(0);
1525       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1526              "argument to copy ctor is of wrong type");
1527 
1528       // Look through the temporary; it's just converting the value to an
1529       // lvalue to pass it to the constructor.
1530       if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1531         return Visit(MTE->getSubExpr(), Ty);
1532       // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1533       return nullptr;
1534     }
1535 
1536     return CGM.EmitNullConstant(Ty);
1537   }
1538 
1539   llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1540     // This is a string literal initializing an array in an initializer.
1541     return CGM.GetConstantArrayFromStringLiteral(E);
1542   }
1543 
1544   llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1545     // This must be an @encode initializing an array in a static initializer.
1546     // Don't emit it as the address of the string, emit the string data itself
1547     // as an inline array.
1548     std::string Str;
1549     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1550     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1551     assert(CAT && "String data not of constant array type!");
1552 
1553     // Resize the string to the right size, adding zeros at the end, or
1554     // truncating as needed.
1555     Str.resize(CAT->getZExtSize(), '\0');
1556     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1557   }
1558 
1559   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1560     return Visit(E->getSubExpr(), T);
1561   }
1562 
1563   llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1564     if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1565       if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1566         return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1567     return nullptr;
1568   }
1569 
1570   llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1571     return Visit(E->getSelectedExpr(), T);
1572   }
1573 
1574   // Utility methods
1575   llvm::Type *ConvertType(QualType T) {
1576     return CGM.getTypes().ConvertType(T);
1577   }
1578 };
1579 
1580 }  // end anonymous namespace.
1581 
1582 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1583                                                         AbstractState saved) {
1584   Abstract = saved.OldValue;
1585 
1586   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1587          "created a placeholder while doing an abstract emission?");
1588 
1589   // No validation necessary for now.
1590   // No cleanup to do for now.
1591   return C;
1592 }
1593 
1594 llvm::Constant *
1595 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1596   auto state = pushAbstract();
1597   auto C = tryEmitPrivateForVarInit(D);
1598   return validateAndPopAbstract(C, state);
1599 }
1600 
1601 llvm::Constant *
1602 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1603   auto state = pushAbstract();
1604   auto C = tryEmitPrivate(E, destType);
1605   return validateAndPopAbstract(C, state);
1606 }
1607 
1608 llvm::Constant *
1609 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1610   auto state = pushAbstract();
1611   auto C = tryEmitPrivate(value, destType);
1612   return validateAndPopAbstract(C, state);
1613 }
1614 
1615 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1616   if (!CE->hasAPValueResult())
1617     return nullptr;
1618 
1619   QualType RetType = CE->getType();
1620   if (CE->isGLValue())
1621     RetType = CGM.getContext().getLValueReferenceType(RetType);
1622 
1623   return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1624 }
1625 
1626 llvm::Constant *
1627 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1628   auto state = pushAbstract();
1629   auto C = tryEmitPrivate(E, destType);
1630   C = validateAndPopAbstract(C, state);
1631   if (!C) {
1632     CGM.Error(E->getExprLoc(),
1633               "internal error: could not emit constant value \"abstractly\"");
1634     C = CGM.EmitNullConstant(destType);
1635   }
1636   return C;
1637 }
1638 
1639 llvm::Constant *
1640 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1641                               QualType destType,
1642                               bool EnablePtrAuthFunctionTypeDiscrimination) {
1643   auto state = pushAbstract();
1644   auto C =
1645       tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination);
1646   C = validateAndPopAbstract(C, state);
1647   if (!C) {
1648     CGM.Error(loc,
1649               "internal error: could not emit constant value \"abstractly\"");
1650     C = CGM.EmitNullConstant(destType);
1651   }
1652   return C;
1653 }
1654 
1655 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1656   initializeNonAbstract(D.getType().getAddressSpace());
1657   return markIfFailed(tryEmitPrivateForVarInit(D));
1658 }
1659 
1660 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1661                                                        LangAS destAddrSpace,
1662                                                        QualType destType) {
1663   initializeNonAbstract(destAddrSpace);
1664   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1665 }
1666 
1667 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1668                                                     LangAS destAddrSpace,
1669                                                     QualType destType) {
1670   initializeNonAbstract(destAddrSpace);
1671   auto C = tryEmitPrivateForMemory(value, destType);
1672   assert(C && "couldn't emit constant value non-abstractly?");
1673   return C;
1674 }
1675 
1676 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1677   assert(!Abstract && "cannot get current address for abstract constant");
1678 
1679 
1680 
1681   // Make an obviously ill-formed global that should blow up compilation
1682   // if it survives.
1683   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1684                                          llvm::GlobalValue::PrivateLinkage,
1685                                          /*init*/ nullptr,
1686                                          /*name*/ "",
1687                                          /*before*/ nullptr,
1688                                          llvm::GlobalVariable::NotThreadLocal,
1689                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1690 
1691   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1692 
1693   return global;
1694 }
1695 
1696 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1697                                            llvm::GlobalValue *placeholder) {
1698   assert(!PlaceholderAddresses.empty());
1699   assert(PlaceholderAddresses.back().first == nullptr);
1700   assert(PlaceholderAddresses.back().second == placeholder);
1701   PlaceholderAddresses.back().first = signal;
1702 }
1703 
1704 namespace {
1705   struct ReplacePlaceholders {
1706     CodeGenModule &CGM;
1707 
1708     /// The base address of the global.
1709     llvm::Constant *Base;
1710     llvm::Type *BaseValueTy = nullptr;
1711 
1712     /// The placeholder addresses that were registered during emission.
1713     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1714 
1715     /// The locations of the placeholder signals.
1716     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1717 
1718     /// The current index stack.  We use a simple unsigned stack because
1719     /// we assume that placeholders will be relatively sparse in the
1720     /// initializer, but we cache the index values we find just in case.
1721     llvm::SmallVector<unsigned, 8> Indices;
1722     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1723 
1724     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1725                         ArrayRef<std::pair<llvm::Constant*,
1726                                            llvm::GlobalVariable*>> addresses)
1727         : CGM(CGM), Base(base),
1728           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1729     }
1730 
1731     void replaceInInitializer(llvm::Constant *init) {
1732       // Remember the type of the top-most initializer.
1733       BaseValueTy = init->getType();
1734 
1735       // Initialize the stack.
1736       Indices.push_back(0);
1737       IndexValues.push_back(nullptr);
1738 
1739       // Recurse into the initializer.
1740       findLocations(init);
1741 
1742       // Check invariants.
1743       assert(IndexValues.size() == Indices.size() && "mismatch");
1744       assert(Indices.size() == 1 && "didn't pop all indices");
1745 
1746       // Do the replacement; this basically invalidates 'init'.
1747       assert(Locations.size() == PlaceholderAddresses.size() &&
1748              "missed a placeholder?");
1749 
1750       // We're iterating over a hashtable, so this would be a source of
1751       // non-determinism in compiler output *except* that we're just
1752       // messing around with llvm::Constant structures, which never itself
1753       // does anything that should be visible in compiler output.
1754       for (auto &entry : Locations) {
1755         assert(entry.first->getName() == "" && "not a placeholder!");
1756         entry.first->replaceAllUsesWith(entry.second);
1757         entry.first->eraseFromParent();
1758       }
1759     }
1760 
1761   private:
1762     void findLocations(llvm::Constant *init) {
1763       // Recurse into aggregates.
1764       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1765         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1766           Indices.push_back(i);
1767           IndexValues.push_back(nullptr);
1768 
1769           findLocations(agg->getOperand(i));
1770 
1771           IndexValues.pop_back();
1772           Indices.pop_back();
1773         }
1774         return;
1775       }
1776 
1777       // Otherwise, check for registered constants.
1778       while (true) {
1779         auto it = PlaceholderAddresses.find(init);
1780         if (it != PlaceholderAddresses.end()) {
1781           setLocation(it->second);
1782           break;
1783         }
1784 
1785         // Look through bitcasts or other expressions.
1786         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1787           init = expr->getOperand(0);
1788         } else {
1789           break;
1790         }
1791       }
1792     }
1793 
1794     void setLocation(llvm::GlobalVariable *placeholder) {
1795       assert(!Locations.contains(placeholder) &&
1796              "already found location for placeholder!");
1797 
1798       // Lazily fill in IndexValues with the values from Indices.
1799       // We do this in reverse because we should always have a strict
1800       // prefix of indices from the start.
1801       assert(Indices.size() == IndexValues.size());
1802       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1803         if (IndexValues[i]) {
1804 #ifndef NDEBUG
1805           for (size_t j = 0; j != i + 1; ++j) {
1806             assert(IndexValues[j] &&
1807                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1808                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1809                      == Indices[j]);
1810           }
1811 #endif
1812           break;
1813         }
1814 
1815         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1816       }
1817 
1818       llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1819           BaseValueTy, Base, IndexValues);
1820 
1821       Locations.insert({placeholder, location});
1822     }
1823   };
1824 }
1825 
1826 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1827   assert(InitializedNonAbstract &&
1828          "finalizing emitter that was used for abstract emission?");
1829   assert(!Finalized && "finalizing emitter multiple times");
1830   assert(global->getInitializer());
1831 
1832   // Note that we might also be Failed.
1833   Finalized = true;
1834 
1835   if (!PlaceholderAddresses.empty()) {
1836     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1837       .replaceInInitializer(global->getInitializer());
1838     PlaceholderAddresses.clear(); // satisfy
1839   }
1840 }
1841 
1842 ConstantEmitter::~ConstantEmitter() {
1843   assert((!InitializedNonAbstract || Finalized || Failed) &&
1844          "not finalized after being initialized for non-abstract emission");
1845   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1846 }
1847 
1848 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1849   if (auto AT = type->getAs<AtomicType>()) {
1850     return CGM.getContext().getQualifiedType(AT->getValueType(),
1851                                              type.getQualifiers());
1852   }
1853   return type;
1854 }
1855 
1856 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1857   // Make a quick check if variable can be default NULL initialized
1858   // and avoid going through rest of code which may do, for c++11,
1859   // initialization of memory to all NULLs.
1860   if (!D.hasLocalStorage()) {
1861     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1862     if (Ty->isRecordType())
1863       if (const CXXConstructExpr *E =
1864           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1865         const CXXConstructorDecl *CD = E->getConstructor();
1866         if (CD->isTrivial() && CD->isDefaultConstructor())
1867           return CGM.EmitNullConstant(D.getType());
1868       }
1869   }
1870   InConstantContext = D.hasConstantInitialization();
1871 
1872   QualType destType = D.getType();
1873   const Expr *E = D.getInit();
1874   assert(E && "No initializer to emit");
1875 
1876   if (!destType->isReferenceType()) {
1877     QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1878     if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1879       return emitForMemory(C, destType);
1880   }
1881 
1882   // Try to emit the initializer.  Note that this can allow some things that
1883   // are not allowed by tryEmitPrivateForMemory alone.
1884   if (APValue *value = D.evaluateValue())
1885     return tryEmitPrivateForMemory(*value, destType);
1886 
1887   return nullptr;
1888 }
1889 
1890 llvm::Constant *
1891 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1892   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1893   auto C = tryEmitAbstract(E, nonMemoryDestType);
1894   return (C ? emitForMemory(C, destType) : nullptr);
1895 }
1896 
1897 llvm::Constant *
1898 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1899                                           QualType destType) {
1900   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1901   auto C = tryEmitAbstract(value, nonMemoryDestType);
1902   return (C ? emitForMemory(C, destType) : nullptr);
1903 }
1904 
1905 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1906                                                          QualType destType) {
1907   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1908   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1909   return (C ? emitForMemory(C, destType) : nullptr);
1910 }
1911 
1912 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1913                                                          QualType destType) {
1914   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1915   auto C = tryEmitPrivate(value, nonMemoryDestType);
1916   return (C ? emitForMemory(C, destType) : nullptr);
1917 }
1918 
1919 /// Try to emit a constant signed pointer, given a raw pointer and the
1920 /// destination ptrauth qualifier.
1921 ///
1922 /// This can fail if the qualifier needs address discrimination and the
1923 /// emitter is in an abstract mode.
1924 llvm::Constant *
1925 ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer,
1926                                               PointerAuthQualifier Schema) {
1927   assert(Schema && "applying trivial ptrauth schema");
1928 
1929   if (Schema.hasKeyNone())
1930     return UnsignedPointer;
1931 
1932   unsigned Key = Schema.getKey();
1933 
1934   // Create an address placeholder if we're using address discrimination.
1935   llvm::GlobalValue *StorageAddress = nullptr;
1936   if (Schema.isAddressDiscriminated()) {
1937     // We can't do this if the emitter is in an abstract state.
1938     if (isAbstract())
1939       return nullptr;
1940 
1941     StorageAddress = getCurrentAddrPrivate();
1942   }
1943 
1944   llvm::ConstantInt *Discriminator =
1945       llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator());
1946 
1947   llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
1948       UnsignedPointer, Key, StorageAddress, Discriminator);
1949 
1950   if (Schema.isAddressDiscriminated())
1951     registerCurrentAddrPrivate(SignedPointer, StorageAddress);
1952 
1953   return SignedPointer;
1954 }
1955 
1956 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1957                                                llvm::Constant *C,
1958                                                QualType destType) {
1959   // For an _Atomic-qualified constant, we may need to add tail padding.
1960   if (auto AT = destType->getAs<AtomicType>()) {
1961     QualType destValueType = AT->getValueType();
1962     C = emitForMemory(CGM, C, destValueType);
1963 
1964     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1965     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1966     if (innerSize == outerSize)
1967       return C;
1968 
1969     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1970     llvm::Constant *elts[] = {
1971       C,
1972       llvm::ConstantAggregateZero::get(
1973           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1974     };
1975     return llvm::ConstantStruct::getAnon(elts);
1976   }
1977 
1978   // Zero-extend bool.
1979   if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1980     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1981     llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1982         llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1983     assert(Res && "Constant folding must succeed");
1984     return Res;
1985   }
1986 
1987   if (destType->isBitIntType()) {
1988     ConstantAggregateBuilder Builder(CGM);
1989     llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType);
1990     // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so
1991     // casting to ConstantInt is safe here.
1992     auto *CI = cast<llvm::ConstantInt>(C);
1993     llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1994         destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt
1995                                                      : llvm::Instruction::ZExt,
1996         CI, LoadStoreTy, CGM.getDataLayout());
1997     if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) {
1998       // Long _BitInt has array of bytes as in-memory type.
1999       // So, split constant into individual bytes.
2000       llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType);
2001       llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue();
2002       Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false);
2003       return Builder.build(DesiredTy, /*AllowOversized*/ false);
2004     }
2005     return Res;
2006   }
2007 
2008   return C;
2009 }
2010 
2011 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
2012                                                 QualType destType) {
2013   assert(!destType->isVoidType() && "can't emit a void constant");
2014 
2015   if (!destType->isReferenceType())
2016     if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
2017       return C;
2018 
2019   Expr::EvalResult Result;
2020 
2021   bool Success = false;
2022 
2023   if (destType->isReferenceType())
2024     Success = E->EvaluateAsLValue(Result, CGM.getContext());
2025   else
2026     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
2027 
2028   if (Success && !Result.HasSideEffects)
2029     return tryEmitPrivate(Result.Val, destType);
2030 
2031   return nullptr;
2032 }
2033 
2034 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
2035   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
2036 }
2037 
2038 namespace {
2039 /// A struct which can be used to peephole certain kinds of finalization
2040 /// that normally happen during l-value emission.
2041 struct ConstantLValue {
2042   llvm::Constant *Value;
2043   bool HasOffsetApplied;
2044 
2045   /*implicit*/ ConstantLValue(llvm::Constant *value,
2046                               bool hasOffsetApplied = false)
2047     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
2048 
2049   /*implicit*/ ConstantLValue(ConstantAddress address)
2050     : ConstantLValue(address.getPointer()) {}
2051 };
2052 
2053 /// A helper class for emitting constant l-values.
2054 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
2055                                                       ConstantLValue> {
2056   CodeGenModule &CGM;
2057   ConstantEmitter &Emitter;
2058   const APValue &Value;
2059   QualType DestType;
2060   bool EnablePtrAuthFunctionTypeDiscrimination;
2061 
2062   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
2063   friend StmtVisitorBase;
2064 
2065 public:
2066   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
2067                         QualType destType,
2068                         bool EnablePtrAuthFunctionTypeDiscrimination = true)
2069       : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType),
2070         EnablePtrAuthFunctionTypeDiscrimination(
2071             EnablePtrAuthFunctionTypeDiscrimination) {}
2072 
2073   llvm::Constant *tryEmit();
2074 
2075 private:
2076   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
2077   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
2078 
2079   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
2080   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
2081   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2082   ConstantLValue VisitStringLiteral(const StringLiteral *E);
2083   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
2084   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
2085   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
2086   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
2087   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
2088   ConstantLValue VisitCallExpr(const CallExpr *E);
2089   ConstantLValue VisitBlockExpr(const BlockExpr *E);
2090   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2091   ConstantLValue VisitMaterializeTemporaryExpr(
2092                                          const MaterializeTemporaryExpr *E);
2093 
2094   ConstantLValue emitPointerAuthSignConstant(const CallExpr *E);
2095   llvm::Constant *emitPointerAuthPointer(const Expr *E);
2096   unsigned emitPointerAuthKey(const Expr *E);
2097   std::pair<llvm::Constant *, llvm::ConstantInt *>
2098   emitPointerAuthDiscriminator(const Expr *E);
2099 
2100   bool hasNonZeroOffset() const {
2101     return !Value.getLValueOffset().isZero();
2102   }
2103 
2104   /// Return the value offset.
2105   llvm::Constant *getOffset() {
2106     return llvm::ConstantInt::get(CGM.Int64Ty,
2107                                   Value.getLValueOffset().getQuantity());
2108   }
2109 
2110   /// Apply the value offset to the given constant.
2111   llvm::Constant *applyOffset(llvm::Constant *C) {
2112     if (!hasNonZeroOffset())
2113       return C;
2114 
2115     return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
2116   }
2117 };
2118 
2119 }
2120 
2121 llvm::Constant *ConstantLValueEmitter::tryEmit() {
2122   const APValue::LValueBase &base = Value.getLValueBase();
2123 
2124   // The destination type should be a pointer or reference
2125   // type, but it might also be a cast thereof.
2126   //
2127   // FIXME: the chain of casts required should be reflected in the APValue.
2128   // We need this in order to correctly handle things like a ptrtoint of a
2129   // non-zero null pointer and addrspace casts that aren't trivially
2130   // represented in LLVM IR.
2131   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
2132   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
2133 
2134   // If there's no base at all, this is a null or absolute pointer,
2135   // possibly cast back to an integer type.
2136   if (!base) {
2137     return tryEmitAbsolute(destTy);
2138   }
2139 
2140   // Otherwise, try to emit the base.
2141   ConstantLValue result = tryEmitBase(base);
2142 
2143   // If that failed, we're done.
2144   llvm::Constant *value = result.Value;
2145   if (!value) return nullptr;
2146 
2147   // Apply the offset if necessary and not already done.
2148   if (!result.HasOffsetApplied) {
2149     value = applyOffset(value);
2150   }
2151 
2152   // Convert to the appropriate type; this could be an lvalue for
2153   // an integer.  FIXME: performAddrSpaceCast
2154   if (isa<llvm::PointerType>(destTy))
2155     return llvm::ConstantExpr::getPointerCast(value, destTy);
2156 
2157   return llvm::ConstantExpr::getPtrToInt(value, destTy);
2158 }
2159 
2160 /// Try to emit an absolute l-value, such as a null pointer or an integer
2161 /// bitcast to pointer type.
2162 llvm::Constant *
2163 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
2164   // If we're producing a pointer, this is easy.
2165   auto destPtrTy = cast<llvm::PointerType>(destTy);
2166   if (Value.isNullPointer()) {
2167     // FIXME: integer offsets from non-zero null pointers.
2168     return CGM.getNullPointer(destPtrTy, DestType);
2169   }
2170 
2171   // Convert the integer to a pointer-sized integer before converting it
2172   // to a pointer.
2173   // FIXME: signedness depends on the original integer type.
2174   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
2175   llvm::Constant *C;
2176   C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
2177                                     CGM.getDataLayout());
2178   assert(C && "Must have folded, as Offset is a ConstantInt");
2179   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
2180   return C;
2181 }
2182 
2183 ConstantLValue
2184 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
2185   // Handle values.
2186   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
2187     // The constant always points to the canonical declaration. We want to look
2188     // at properties of the most recent declaration at the point of emission.
2189     D = cast<ValueDecl>(D->getMostRecentDecl());
2190 
2191     if (D->hasAttr<WeakRefAttr>())
2192       return CGM.GetWeakRefReference(D).getPointer();
2193 
2194     auto PtrAuthSign = [&](llvm::Constant *C) {
2195       CGPointerAuthInfo AuthInfo;
2196 
2197       if (EnablePtrAuthFunctionTypeDiscrimination)
2198         AuthInfo = CGM.getFunctionPointerAuthInfo(DestType);
2199 
2200       if (AuthInfo) {
2201         if (hasNonZeroOffset())
2202           return ConstantLValue(nullptr);
2203 
2204         C = applyOffset(C);
2205         C = CGM.getConstantSignedPointer(
2206             C, AuthInfo.getKey(), nullptr,
2207             cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator()));
2208         return ConstantLValue(C, /*applied offset*/ true);
2209       }
2210 
2211       return ConstantLValue(C);
2212     };
2213 
2214     if (const auto *FD = dyn_cast<FunctionDecl>(D))
2215       return PtrAuthSign(CGM.getRawFunctionPointer(FD));
2216 
2217     if (const auto *VD = dyn_cast<VarDecl>(D)) {
2218       // We can never refer to a variable with local storage.
2219       if (!VD->hasLocalStorage()) {
2220         if (VD->isFileVarDecl() || VD->hasExternalStorage())
2221           return CGM.GetAddrOfGlobalVar(VD);
2222 
2223         if (VD->isLocalVarDecl()) {
2224           return CGM.getOrCreateStaticVarDecl(
2225               *VD, CGM.getLLVMLinkageVarDefinition(VD));
2226         }
2227       }
2228     }
2229 
2230     if (const auto *GD = dyn_cast<MSGuidDecl>(D))
2231       return CGM.GetAddrOfMSGuidDecl(GD);
2232 
2233     if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
2234       return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
2235 
2236     if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
2237       return CGM.GetAddrOfTemplateParamObject(TPO);
2238 
2239     return nullptr;
2240   }
2241 
2242   // Handle typeid(T).
2243   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
2244     return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
2245 
2246   // Otherwise, it must be an expression.
2247   return Visit(base.get<const Expr*>());
2248 }
2249 
2250 ConstantLValue
2251 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
2252   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
2253     return Result;
2254   return Visit(E->getSubExpr());
2255 }
2256 
2257 ConstantLValue
2258 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2259   ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
2260   CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2261   return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
2262 }
2263 
2264 ConstantLValue
2265 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2266   return CGM.GetAddrOfConstantStringFromLiteral(E);
2267 }
2268 
2269 ConstantLValue
2270 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2271   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2272 }
2273 
2274 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2275                                                     QualType T,
2276                                                     CodeGenModule &CGM) {
2277   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2278   return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2279 }
2280 
2281 ConstantLValue
2282 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2283   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2284 }
2285 
2286 ConstantLValue
2287 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2288   assert(E->isExpressibleAsConstantInitializer() &&
2289          "this boxed expression can't be emitted as a compile-time constant");
2290   const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2291   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2292 }
2293 
2294 ConstantLValue
2295 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2296   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2297 }
2298 
2299 ConstantLValue
2300 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2301   assert(Emitter.CGF && "Invalid address of label expression outside function");
2302   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2303   return Ptr;
2304 }
2305 
2306 ConstantLValue
2307 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2308   unsigned builtin = E->getBuiltinCallee();
2309   if (builtin == Builtin::BI__builtin_function_start)
2310     return CGM.GetFunctionStart(
2311         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2312 
2313   if (builtin == Builtin::BI__builtin_ptrauth_sign_constant)
2314     return emitPointerAuthSignConstant(E);
2315 
2316   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2317       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2318     return nullptr;
2319 
2320   const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2321   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2322     return CGM.getObjCRuntime().GenerateConstantString(Literal);
2323   } else {
2324     // FIXME: need to deal with UCN conversion issues.
2325     return CGM.GetAddrOfConstantCFString(Literal);
2326   }
2327 }
2328 
2329 ConstantLValue
2330 ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) {
2331   llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0));
2332   unsigned Key = emitPointerAuthKey(E->getArg(1));
2333   auto [StorageAddress, OtherDiscriminator] =
2334       emitPointerAuthDiscriminator(E->getArg(2));
2335 
2336   llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
2337       UnsignedPointer, Key, StorageAddress, OtherDiscriminator);
2338   return SignedPointer;
2339 }
2340 
2341 llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) {
2342   Expr::EvalResult Result;
2343   bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext());
2344   assert(Succeeded);
2345   (void)Succeeded;
2346 
2347   // The assertions here are all checked by Sema.
2348   assert(Result.Val.isLValue());
2349   if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>()))
2350     assert(Result.Val.getLValueOffset().isZero());
2351   return ConstantEmitter(CGM, Emitter.CGF)
2352       .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false);
2353 }
2354 
2355 unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) {
2356   return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue();
2357 }
2358 
2359 std::pair<llvm::Constant *, llvm::ConstantInt *>
2360 ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) {
2361   E = E->IgnoreParens();
2362 
2363   if (const auto *Call = dyn_cast<CallExpr>(E)) {
2364     if (Call->getBuiltinCallee() ==
2365         Builtin::BI__builtin_ptrauth_blend_discriminator) {
2366       llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract(
2367           Call->getArg(0), Call->getArg(0)->getType());
2368       auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract(
2369           Call->getArg(1), Call->getArg(1)->getType()));
2370       return {Pointer, Extra};
2371     }
2372   }
2373 
2374   llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType());
2375   if (Result->getType()->isPointerTy())
2376     return {Result, nullptr};
2377   return {nullptr, cast<llvm::ConstantInt>(Result)};
2378 }
2379 
2380 ConstantLValue
2381 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2382   StringRef functionName;
2383   if (auto CGF = Emitter.CGF)
2384     functionName = CGF->CurFn->getName();
2385   else
2386     functionName = "global";
2387 
2388   return CGM.GetAddrOfGlobalBlock(E, functionName);
2389 }
2390 
2391 ConstantLValue
2392 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2393   QualType T;
2394   if (E->isTypeOperand())
2395     T = E->getTypeOperand(CGM.getContext());
2396   else
2397     T = E->getExprOperand()->getType();
2398   return CGM.GetAddrOfRTTIDescriptor(T);
2399 }
2400 
2401 ConstantLValue
2402 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2403                                             const MaterializeTemporaryExpr *E) {
2404   assert(E->getStorageDuration() == SD_Static);
2405   const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2406   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2407 }
2408 
2409 llvm::Constant *
2410 ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType,
2411                                 bool EnablePtrAuthFunctionTypeDiscrimination) {
2412   switch (Value.getKind()) {
2413   case APValue::None:
2414   case APValue::Indeterminate:
2415     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2416     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2417   case APValue::LValue:
2418     return ConstantLValueEmitter(*this, Value, DestType,
2419                                  EnablePtrAuthFunctionTypeDiscrimination)
2420         .tryEmit();
2421   case APValue::Int:
2422     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2423   case APValue::FixedPoint:
2424     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2425                                   Value.getFixedPoint().getValue());
2426   case APValue::ComplexInt: {
2427     llvm::Constant *Complex[2];
2428 
2429     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2430                                         Value.getComplexIntReal());
2431     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2432                                         Value.getComplexIntImag());
2433 
2434     // FIXME: the target may want to specify that this is packed.
2435     llvm::StructType *STy =
2436         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2437     return llvm::ConstantStruct::get(STy, Complex);
2438   }
2439   case APValue::Float: {
2440     const llvm::APFloat &Init = Value.getFloat();
2441     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2442         !CGM.getContext().getLangOpts().NativeHalfType &&
2443         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2444       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2445                                     Init.bitcastToAPInt());
2446     else
2447       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2448   }
2449   case APValue::ComplexFloat: {
2450     llvm::Constant *Complex[2];
2451 
2452     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2453                                        Value.getComplexFloatReal());
2454     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2455                                        Value.getComplexFloatImag());
2456 
2457     // FIXME: the target may want to specify that this is packed.
2458     llvm::StructType *STy =
2459         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2460     return llvm::ConstantStruct::get(STy, Complex);
2461   }
2462   case APValue::Vector: {
2463     unsigned NumElts = Value.getVectorLength();
2464     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2465 
2466     for (unsigned I = 0; I != NumElts; ++I) {
2467       const APValue &Elt = Value.getVectorElt(I);
2468       if (Elt.isInt())
2469         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2470       else if (Elt.isFloat())
2471         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2472       else if (Elt.isIndeterminate())
2473         Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2474             DestType->castAs<VectorType>()->getElementType()));
2475       else
2476         llvm_unreachable("unsupported vector element type");
2477     }
2478     return llvm::ConstantVector::get(Inits);
2479   }
2480   case APValue::AddrLabelDiff: {
2481     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2482     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2483     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2484     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2485     if (!LHS || !RHS) return nullptr;
2486 
2487     // Compute difference
2488     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2489     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2490     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2491     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2492 
2493     // LLVM is a bit sensitive about the exact format of the
2494     // address-of-label difference; make sure to truncate after
2495     // the subtraction.
2496     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2497   }
2498   case APValue::Struct:
2499   case APValue::Union:
2500     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2501   case APValue::Array: {
2502     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2503     unsigned NumElements = Value.getArraySize();
2504     unsigned NumInitElts = Value.getArrayInitializedElts();
2505 
2506     // Emit array filler, if there is one.
2507     llvm::Constant *Filler = nullptr;
2508     if (Value.hasArrayFiller()) {
2509       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2510                                         ArrayTy->getElementType());
2511       if (!Filler)
2512         return nullptr;
2513     }
2514 
2515     // Emit initializer elements.
2516     SmallVector<llvm::Constant*, 16> Elts;
2517     if (Filler && Filler->isNullValue())
2518       Elts.reserve(NumInitElts + 1);
2519     else
2520       Elts.reserve(NumElements);
2521 
2522     llvm::Type *CommonElementType = nullptr;
2523     for (unsigned I = 0; I < NumInitElts; ++I) {
2524       llvm::Constant *C = tryEmitPrivateForMemory(
2525           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2526       if (!C) return nullptr;
2527 
2528       if (I == 0)
2529         CommonElementType = C->getType();
2530       else if (C->getType() != CommonElementType)
2531         CommonElementType = nullptr;
2532       Elts.push_back(C);
2533     }
2534 
2535     llvm::ArrayType *Desired =
2536         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2537 
2538     // Fix the type of incomplete arrays if the initializer isn't empty.
2539     if (DestType->isIncompleteArrayType() && !Elts.empty())
2540       Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2541 
2542     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2543                              Filler);
2544   }
2545   case APValue::MemberPointer:
2546     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2547   }
2548   llvm_unreachable("Unknown APValue kind");
2549 }
2550 
2551 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2552     const CompoundLiteralExpr *E) {
2553   return EmittedCompoundLiterals.lookup(E);
2554 }
2555 
2556 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2557     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2558   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2559   (void)Ok;
2560   assert(Ok && "CLE has already been emitted!");
2561 }
2562 
2563 ConstantAddress
2564 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2565   assert(E->isFileScope() && "not a file-scope compound literal expr");
2566   ConstantEmitter emitter(*this);
2567   return tryEmitGlobalCompoundLiteral(emitter, E);
2568 }
2569 
2570 llvm::Constant *
2571 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2572   // Member pointer constants always have a very particular form.
2573   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2574   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2575 
2576   // A member function pointer.
2577   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2578     return getCXXABI().EmitMemberFunctionPointer(method);
2579 
2580   // Otherwise, a member data pointer.
2581   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2582   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2583   return getCXXABI().EmitMemberDataPointer(type, chars);
2584 }
2585 
2586 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2587                                                llvm::Type *baseType,
2588                                                const CXXRecordDecl *base);
2589 
2590 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2591                                         const RecordDecl *record,
2592                                         bool asCompleteObject) {
2593   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2594   llvm::StructType *structure =
2595     (asCompleteObject ? layout.getLLVMType()
2596                       : layout.getBaseSubobjectLLVMType());
2597 
2598   unsigned numElements = structure->getNumElements();
2599   std::vector<llvm::Constant *> elements(numElements);
2600 
2601   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2602   // Fill in all the bases.
2603   if (CXXR) {
2604     for (const auto &I : CXXR->bases()) {
2605       if (I.isVirtual()) {
2606         // Ignore virtual bases; if we're laying out for a complete
2607         // object, we'll lay these out later.
2608         continue;
2609       }
2610 
2611       const CXXRecordDecl *base =
2612         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2613 
2614       // Ignore empty bases.
2615       if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) ||
2616           CGM.getContext()
2617               .getASTRecordLayout(base)
2618               .getNonVirtualSize()
2619               .isZero())
2620         continue;
2621 
2622       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2623       llvm::Type *baseType = structure->getElementType(fieldIndex);
2624       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2625     }
2626   }
2627 
2628   // Fill in all the fields.
2629   for (const auto *Field : record->fields()) {
2630     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2631     // will fill in later.)
2632     if (!Field->isBitField() &&
2633         !isEmptyFieldForLayout(CGM.getContext(), Field)) {
2634       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2635       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2636     }
2637 
2638     // For unions, stop after the first named field.
2639     if (record->isUnion()) {
2640       if (Field->getIdentifier())
2641         break;
2642       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2643         if (FieldRD->findFirstNamedDataMember())
2644           break;
2645     }
2646   }
2647 
2648   // Fill in the virtual bases, if we're working with the complete object.
2649   if (CXXR && asCompleteObject) {
2650     for (const auto &I : CXXR->vbases()) {
2651       const CXXRecordDecl *base =
2652         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2653 
2654       // Ignore empty bases.
2655       if (isEmptyRecordForLayout(CGM.getContext(), I.getType()))
2656         continue;
2657 
2658       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2659 
2660       // We might have already laid this field out.
2661       if (elements[fieldIndex]) continue;
2662 
2663       llvm::Type *baseType = structure->getElementType(fieldIndex);
2664       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2665     }
2666   }
2667 
2668   // Now go through all other fields and zero them out.
2669   for (unsigned i = 0; i != numElements; ++i) {
2670     if (!elements[i])
2671       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2672   }
2673 
2674   return llvm::ConstantStruct::get(structure, elements);
2675 }
2676 
2677 /// Emit the null constant for a base subobject.
2678 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2679                                                llvm::Type *baseType,
2680                                                const CXXRecordDecl *base) {
2681   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2682 
2683   // Just zero out bases that don't have any pointer to data members.
2684   if (baseLayout.isZeroInitializableAsBase())
2685     return llvm::Constant::getNullValue(baseType);
2686 
2687   // Otherwise, we can just use its null constant.
2688   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2689 }
2690 
2691 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2692                                                    QualType T) {
2693   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2694 }
2695 
2696 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2697   if (T->getAs<PointerType>())
2698     return getNullPointer(
2699         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2700 
2701   if (getTypes().isZeroInitializable(T))
2702     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2703 
2704   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2705     llvm::ArrayType *ATy =
2706       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2707 
2708     QualType ElementTy = CAT->getElementType();
2709 
2710     llvm::Constant *Element =
2711       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2712     unsigned NumElements = CAT->getZExtSize();
2713     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2714     return llvm::ConstantArray::get(ATy, Array);
2715   }
2716 
2717   if (const RecordType *RT = T->getAs<RecordType>())
2718     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2719 
2720   assert(T->isMemberDataPointerType() &&
2721          "Should only see pointers to data members here!");
2722 
2723   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2724 }
2725 
2726 llvm::Constant *
2727 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2728   return ::EmitNullConstant(*this, Record, false);
2729 }
2730