xref: /llvm-project/llvm/lib/CodeGen/BranchFolding.cpp (revision b1943f40e74dcfe4ebd6213e1a8a01403bd5ffa9)
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <iterator>
61 #include <numeric>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "branch-folder"
66 
67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts, "Number of branches optimized");
69 STATISTIC(NumTailMerge , "Number of block tails merged");
70 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
72 
73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
74                               cl::init(cl::BOU_UNSET), cl::Hidden);
75 
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79           cl::desc("Max number of predecessors to consider tail merging"),
80           cl::init(150), cl::Hidden);
81 
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 static cl::opt<unsigned>
84 TailMergeSize("tail-merge-size",
85               cl::desc("Min number of instructions to consider tail merging"),
86               cl::init(3), cl::Hidden);
87 
88 namespace {
89 
90   /// BranchFolderPass - Wrap branch folder in a machine function pass.
91   class BranchFolderPass : public MachineFunctionPass {
92   public:
93     static char ID;
94 
95     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
96 
97     bool runOnMachineFunction(MachineFunction &MF) override;
98 
99     void getAnalysisUsage(AnalysisUsage &AU) const override {
100       AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
101       AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
102       AU.addRequired<ProfileSummaryInfoWrapperPass>();
103       AU.addRequired<TargetPassConfig>();
104       MachineFunctionPass::getAnalysisUsage(AU);
105     }
106 
107     MachineFunctionProperties getRequiredProperties() const override {
108       return MachineFunctionProperties().set(
109           MachineFunctionProperties::Property::NoPHIs);
110     }
111   };
112 
113 } // end anonymous namespace
114 
115 char BranchFolderPass::ID = 0;
116 
117 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
118 
119 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
120                 "Control Flow Optimizer", false, false)
121 
122 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
123   if (skipFunction(MF.getFunction()))
124     return false;
125 
126   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
127   // TailMerge can create jump into if branches that make CFG irreducible for
128   // HW that requires structurized CFG.
129   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
130                          PassConfig->getEnableTailMerge();
131   MBFIWrapper MBBFreqInfo(
132       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI());
133   BranchFolder Folder(
134       EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135       getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(),
136       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
138                                  MF.getSubtarget().getRegisterInfo());
139 }
140 
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
142                            MBFIWrapper &FreqInfo,
143                            const MachineBranchProbabilityInfo &ProbInfo,
144                            ProfileSummaryInfo *PSI, unsigned MinTailLength)
145     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
146       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
147   switch (FlagEnableTailMerge) {
148   case cl::BOU_UNSET:
149     EnableTailMerge = DefaultEnableTailMerge;
150     break;
151   case cl::BOU_TRUE: EnableTailMerge = true; break;
152   case cl::BOU_FALSE: EnableTailMerge = false; break;
153   }
154 }
155 
156 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
157   assert(MBB->pred_empty() && "MBB must be dead!");
158   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
159 
160   MachineFunction *MF = MBB->getParent();
161   // drop all successors.
162   while (!MBB->succ_empty())
163     MBB->removeSuccessor(MBB->succ_end()-1);
164 
165   // Avoid matching if this pointer gets reused.
166   TriedMerging.erase(MBB);
167 
168   // Update call info.
169   for (const MachineInstr &MI : *MBB)
170     if (MI.shouldUpdateAdditionalCallInfo())
171       MF->eraseAdditionalCallInfo(&MI);
172 
173   // Remove the block.
174   MF->erase(MBB);
175   EHScopeMembership.erase(MBB);
176   if (MLI)
177     MLI->removeBlock(MBB);
178 }
179 
180 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
181                                     const TargetInstrInfo *tii,
182                                     const TargetRegisterInfo *tri,
183                                     MachineLoopInfo *mli, bool AfterPlacement) {
184   if (!tii) return false;
185 
186   TriedMerging.clear();
187 
188   MachineRegisterInfo &MRI = MF.getRegInfo();
189   AfterBlockPlacement = AfterPlacement;
190   TII = tii;
191   TRI = tri;
192   MLI = mli;
193   this->MRI = &MRI;
194 
195   if (MinCommonTailLength == 0) {
196     MinCommonTailLength = TailMergeSize.getNumOccurrences() > 0
197                               ? TailMergeSize
198                               : TII->getTailMergeSize(MF);
199   }
200 
201   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202   if (!UpdateLiveIns)
203     MRI.invalidateLiveness();
204 
205   bool MadeChange = false;
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// Iterate backwards from the given iterator \p I, towards the beginning of the
310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
311 /// pointing to that MI. If no such MI is found, return the end iterator.
312 static MachineBasicBlock::iterator
313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
314                                 MachineBasicBlock *MBB) {
315   while (I != MBB->begin()) {
316     --I;
317     if (countsAsInstruction(*I))
318       return I;
319   }
320   return MBB->end();
321 }
322 
323 /// Given two machine basic blocks, return the number of instructions they
324 /// actually have in common together at their end. If a common tail is found (at
325 /// least by one instruction), then iterators for the first shared instruction
326 /// in each block are returned as well.
327 ///
328 /// Non-instructions according to countsAsInstruction are ignored.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
330                                         MachineBasicBlock *MBB2,
331                                         MachineBasicBlock::iterator &I1,
332                                         MachineBasicBlock::iterator &I2) {
333   MachineBasicBlock::iterator MBBI1 = MBB1->end();
334   MachineBasicBlock::iterator MBBI2 = MBB2->end();
335 
336   unsigned TailLen = 0;
337   while (true) {
338     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
339     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
340     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
341       break;
342     if (!MBBI1->isIdenticalTo(*MBBI2) ||
343         // FIXME: This check is dubious. It's used to get around a problem where
344         // people incorrectly expect inline asm directives to remain in the same
345         // relative order. This is untenable because normal compiler
346         // optimizations (like this one) may reorder and/or merge these
347         // directives.
348         MBBI1->isInlineAsm()) {
349       break;
350     }
351     if (MBBI1->getFlag(MachineInstr::NoMerge) ||
352         MBBI2->getFlag(MachineInstr::NoMerge))
353       break;
354     ++TailLen;
355     I1 = MBBI1;
356     I2 = MBBI2;
357   }
358 
359   return TailLen;
360 }
361 
362 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
363                                            MachineBasicBlock &NewDest) {
364   if (UpdateLiveIns) {
365     // OldInst should always point to an instruction.
366     MachineBasicBlock &OldMBB = *OldInst->getParent();
367     LiveRegs.clear();
368     LiveRegs.addLiveOuts(OldMBB);
369     // Move backward to the place where will insert the jump.
370     MachineBasicBlock::iterator I = OldMBB.end();
371     do {
372       --I;
373       LiveRegs.stepBackward(*I);
374     } while (I != OldInst);
375 
376     // Merging the tails may have switched some undef operand to non-undef ones.
377     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
378     // register.
379     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
380       // We computed the liveins with computeLiveIn earlier and should only see
381       // full registers:
382       assert(P.LaneMask == LaneBitmask::getAll() &&
383              "Can only handle full register.");
384       MCRegister Reg = P.PhysReg;
385       if (!LiveRegs.available(*MRI, Reg))
386         continue;
387       DebugLoc DL;
388       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
389     }
390   }
391 
392   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
393   ++NumTailMerge;
394 }
395 
396 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
397                                             MachineBasicBlock::iterator BBI1,
398                                             const BasicBlock *BB) {
399   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
400     return nullptr;
401 
402   MachineFunction &MF = *CurMBB.getParent();
403 
404   // Create the fall-through block.
405   MachineFunction::iterator MBBI = CurMBB.getIterator();
406   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
407   CurMBB.getParent()->insert(++MBBI, NewMBB);
408 
409   // Move all the successors of this block to the specified block.
410   NewMBB->transferSuccessors(&CurMBB);
411 
412   // Add an edge from CurMBB to NewMBB for the fall-through.
413   CurMBB.addSuccessor(NewMBB);
414 
415   // Splice the code over.
416   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
417 
418   // NewMBB belongs to the same loop as CurMBB.
419   if (MLI)
420     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
421       ML->addBasicBlockToLoop(NewMBB, *MLI);
422 
423   // NewMBB inherits CurMBB's block frequency.
424   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
425 
426   if (UpdateLiveIns)
427     computeAndAddLiveIns(LiveRegs, *NewMBB);
428 
429   // Add the new block to the EH scope.
430   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
431   if (EHScopeI != EHScopeMembership.end()) {
432     auto n = EHScopeI->second;
433     EHScopeMembership[NewMBB] = n;
434   }
435 
436   return NewMBB;
437 }
438 
439 /// EstimateRuntime - Make a rough estimate for how long it will take to run
440 /// the specified code.
441 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
442                                 MachineBasicBlock::iterator E) {
443   unsigned Time = 0;
444   for (; I != E; ++I) {
445     if (!countsAsInstruction(*I))
446       continue;
447     if (I->isCall())
448       Time += 10;
449     else if (I->mayLoadOrStore())
450       Time += 2;
451     else
452       ++Time;
453   }
454   return Time;
455 }
456 
457 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
458 // branches temporarily for tail merging).  In the case where CurMBB ends
459 // with a conditional branch to the next block, optimize by reversing the
460 // test and conditionally branching to SuccMBB instead.
461 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
462                     const TargetInstrInfo *TII, const DebugLoc &BranchDL) {
463   MachineFunction *MF = CurMBB->getParent();
464   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
465   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
466   SmallVector<MachineOperand, 4> Cond;
467   DebugLoc dl = CurMBB->findBranchDebugLoc();
468   if (!dl)
469     dl = BranchDL;
470   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
471     MachineBasicBlock *NextBB = &*I;
472     if (TBB == NextBB && !Cond.empty() && !FBB) {
473       if (!TII->reverseBranchCondition(Cond)) {
474         TII->removeBranch(*CurMBB);
475         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
476         return;
477       }
478     }
479   }
480   TII->insertBranch(*CurMBB, SuccBB, nullptr,
481                     SmallVector<MachineOperand, 0>(), dl);
482 }
483 
484 bool
485 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
486   if (getHash() < o.getHash())
487     return true;
488   if (getHash() > o.getHash())
489     return false;
490   if (getBlock()->getNumber() < o.getBlock()->getNumber())
491     return true;
492   if (getBlock()->getNumber() > o.getBlock()->getNumber())
493     return false;
494   return false;
495 }
496 
497 /// CountTerminators - Count the number of terminators in the given
498 /// block and set I to the position of the first non-terminator, if there
499 /// is one, or MBB->end() otherwise.
500 static unsigned CountTerminators(MachineBasicBlock *MBB,
501                                  MachineBasicBlock::iterator &I) {
502   I = MBB->end();
503   unsigned NumTerms = 0;
504   while (true) {
505     if (I == MBB->begin()) {
506       I = MBB->end();
507       break;
508     }
509     --I;
510     if (!I->isTerminator()) break;
511     ++NumTerms;
512   }
513   return NumTerms;
514 }
515 
516 /// A no successor, non-return block probably ends in unreachable and is cold.
517 /// Also consider a block that ends in an indirect branch to be a return block,
518 /// since many targets use plain indirect branches to return.
519 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
520   if (!MBB->succ_empty())
521     return false;
522   if (MBB->empty())
523     return true;
524   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
525 }
526 
527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
528 /// and decide if it would be profitable to merge those tails.  Return the
529 /// length of the common tail and iterators to the first common instruction
530 /// in each block.
531 /// MBB1, MBB2      The blocks to check
532 /// MinCommonTailLength  Minimum size of tail block to be merged.
533 /// CommonTailLen   Out parameter to record the size of the shared tail between
534 ///                 MBB1 and MBB2
535 /// I1, I2          Iterator references that will be changed to point to the first
536 ///                 instruction in the common tail shared by MBB1,MBB2
537 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
538 ///                 relative to SuccBB
539 /// PredBB          The layout predecessor of SuccBB, if any.
540 /// EHScopeMembership  map from block to EH scope #.
541 /// AfterPlacement  True if we are merging blocks after layout. Stricter
542 ///                 thresholds apply to prevent undoing tail-duplication.
543 static bool
544 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
545                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
546                   MachineBasicBlock::iterator &I1,
547                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
548                   MachineBasicBlock *PredBB,
549                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
550                   bool AfterPlacement,
551                   MBFIWrapper &MBBFreqInfo,
552                   ProfileSummaryInfo *PSI) {
553   // It is never profitable to tail-merge blocks from two different EH scopes.
554   if (!EHScopeMembership.empty()) {
555     auto EHScope1 = EHScopeMembership.find(MBB1);
556     assert(EHScope1 != EHScopeMembership.end());
557     auto EHScope2 = EHScopeMembership.find(MBB2);
558     assert(EHScope2 != EHScopeMembership.end());
559     if (EHScope1->second != EHScope2->second)
560       return false;
561   }
562 
563   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
564   if (CommonTailLen == 0)
565     return false;
566   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
567                     << " and " << printMBBReference(*MBB2) << " is "
568                     << CommonTailLen << '\n');
569 
570   // Move the iterators to the beginning of the MBB if we only got debug
571   // instructions before the tail. This is to avoid splitting a block when we
572   // only got debug instructions before the tail (to be invariant on -g).
573   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
574     I1 = MBB1->begin();
575   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
576     I2 = MBB2->begin();
577 
578   bool FullBlockTail1 = I1 == MBB1->begin();
579   bool FullBlockTail2 = I2 == MBB2->begin();
580 
581   // It's almost always profitable to merge any number of non-terminator
582   // instructions with the block that falls through into the common successor.
583   // This is true only for a single successor. For multiple successors, we are
584   // trading a conditional branch for an unconditional one.
585   // TODO: Re-visit successor size for non-layout tail merging.
586   if ((MBB1 == PredBB || MBB2 == PredBB) &&
587       (!AfterPlacement || MBB1->succ_size() == 1)) {
588     MachineBasicBlock::iterator I;
589     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
590     if (CommonTailLen > NumTerms)
591       return true;
592   }
593 
594   // If these are identical non-return blocks with no successors, merge them.
595   // Such blocks are typically cold calls to noreturn functions like abort, and
596   // are unlikely to become a fallthrough target after machine block placement.
597   // Tail merging these blocks is unlikely to create additional unconditional
598   // branches, and will reduce the size of this cold code.
599   if (FullBlockTail1 && FullBlockTail2 &&
600       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
601     return true;
602 
603   // If one of the blocks can be completely merged and happens to be in
604   // a position where the other could fall through into it, merge any number
605   // of instructions, because it can be done without a branch.
606   // TODO: If the blocks are not adjacent, move one of them so that they are?
607   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
608     return true;
609   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
610     return true;
611 
612   // If both blocks are identical and end in a branch, merge them unless they
613   // both have a fallthrough predecessor and successor.
614   // We can only do this after block placement because it depends on whether
615   // there are fallthroughs, and we don't know until after layout.
616   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
617     auto BothFallThrough = [](MachineBasicBlock *MBB) {
618       if (!MBB->succ_empty() && !MBB->canFallThrough())
619         return false;
620       MachineFunction::iterator I(MBB);
621       MachineFunction *MF = MBB->getParent();
622       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
623     };
624     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
625       return true;
626   }
627 
628   // If both blocks have an unconditional branch temporarily stripped out,
629   // count that as an additional common instruction for the following
630   // heuristics. This heuristic is only accurate for single-succ blocks, so to
631   // make sure that during layout merging and duplicating don't crash, we check
632   // for that when merging during layout.
633   unsigned EffectiveTailLen = CommonTailLen;
634   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
635       (MBB1->succ_size() == 1 || !AfterPlacement) &&
636       !MBB1->back().isBarrier() &&
637       !MBB2->back().isBarrier())
638     ++EffectiveTailLen;
639 
640   // Check if the common tail is long enough to be worthwhile.
641   if (EffectiveTailLen >= MinCommonTailLength)
642     return true;
643 
644   // If we are optimizing for code size, 2 instructions in common is enough if
645   // we don't have to split a block.  At worst we will be introducing 1 new
646   // branch instruction, which is likely to be smaller than the 2
647   // instructions that would be deleted in the merge.
648   bool OptForSize = llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
649                     llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo);
650   return EffectiveTailLen >= 2 && OptForSize &&
651          (FullBlockTail1 || FullBlockTail2);
652 }
653 
654 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
655                                         unsigned MinCommonTailLength,
656                                         MachineBasicBlock *SuccBB,
657                                         MachineBasicBlock *PredBB) {
658   unsigned maxCommonTailLength = 0U;
659   SameTails.clear();
660   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
661   MPIterator HighestMPIter = std::prev(MergePotentials.end());
662   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
663                   B = MergePotentials.begin();
664        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
665     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
666       unsigned CommonTailLen;
667       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
668                             MinCommonTailLength,
669                             CommonTailLen, TrialBBI1, TrialBBI2,
670                             SuccBB, PredBB,
671                             EHScopeMembership,
672                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
673         if (CommonTailLen > maxCommonTailLength) {
674           SameTails.clear();
675           maxCommonTailLength = CommonTailLen;
676           HighestMPIter = CurMPIter;
677           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
678         }
679         if (HighestMPIter == CurMPIter &&
680             CommonTailLen == maxCommonTailLength)
681           SameTails.push_back(SameTailElt(I, TrialBBI2));
682       }
683       if (I == B)
684         break;
685     }
686   }
687   return maxCommonTailLength;
688 }
689 
690 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
691                                         MachineBasicBlock *SuccBB,
692                                         MachineBasicBlock *PredBB,
693                                         const DebugLoc &BranchDL) {
694   MPIterator CurMPIter, B;
695   for (CurMPIter = std::prev(MergePotentials.end()),
696       B = MergePotentials.begin();
697        CurMPIter->getHash() == CurHash; --CurMPIter) {
698     // Put the unconditional branch back, if we need one.
699     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
700     if (SuccBB && CurMBB != PredBB)
701       FixTail(CurMBB, SuccBB, TII, BranchDL);
702     if (CurMPIter == B)
703       break;
704   }
705   if (CurMPIter->getHash() != CurHash)
706     CurMPIter++;
707   MergePotentials.erase(CurMPIter, MergePotentials.end());
708 }
709 
710 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
711                                              MachineBasicBlock *SuccBB,
712                                              unsigned maxCommonTailLength,
713                                              unsigned &commonTailIndex) {
714   commonTailIndex = 0;
715   unsigned TimeEstimate = ~0U;
716   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
717     // Use PredBB if possible; that doesn't require a new branch.
718     if (SameTails[i].getBlock() == PredBB) {
719       commonTailIndex = i;
720       break;
721     }
722     // Otherwise, make a (fairly bogus) choice based on estimate of
723     // how long it will take the various blocks to execute.
724     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
725                                  SameTails[i].getTailStartPos());
726     if (t <= TimeEstimate) {
727       TimeEstimate = t;
728       commonTailIndex = i;
729     }
730   }
731 
732   MachineBasicBlock::iterator BBI =
733     SameTails[commonTailIndex].getTailStartPos();
734   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
735 
736   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
737                     << maxCommonTailLength);
738 
739   // If the split block unconditionally falls-thru to SuccBB, it will be
740   // merged. In control flow terms it should then take SuccBB's name. e.g. If
741   // SuccBB is an inner loop, the common tail is still part of the inner loop.
742   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
743     SuccBB->getBasicBlock() : MBB->getBasicBlock();
744   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
745   if (!newMBB) {
746     LLVM_DEBUG(dbgs() << "... failed!");
747     return false;
748   }
749 
750   SameTails[commonTailIndex].setBlock(newMBB);
751   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
752 
753   // If we split PredBB, newMBB is the new predecessor.
754   if (PredBB == MBB)
755     PredBB = newMBB;
756 
757   return true;
758 }
759 
760 static void
761 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
762                 MachineBasicBlock &MBBCommon) {
763   MachineBasicBlock *MBB = MBBIStartPos->getParent();
764   // Note CommonTailLen does not necessarily matches the size of
765   // the common BB nor all its instructions because of debug
766   // instructions differences.
767   unsigned CommonTailLen = 0;
768   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
769     ++CommonTailLen;
770 
771   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
772   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
773   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
774   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
775 
776   while (CommonTailLen--) {
777     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
778     (void)MBBIE;
779 
780     if (!countsAsInstruction(*MBBI)) {
781       ++MBBI;
782       continue;
783     }
784 
785     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
786       ++MBBICommon;
787 
788     assert(MBBICommon != MBBIECommon &&
789            "Reached BB end within common tail length!");
790     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
791 
792     // Merge MMOs from memory operations in the common block.
793     if (MBBICommon->mayLoadOrStore())
794       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
795     // Drop undef flags if they aren't present in all merged instructions.
796     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
797       MachineOperand &MO = MBBICommon->getOperand(I);
798       if (MO.isReg() && MO.isUndef()) {
799         const MachineOperand &OtherMO = MBBI->getOperand(I);
800         if (!OtherMO.isUndef())
801           MO.setIsUndef(false);
802       }
803     }
804 
805     ++MBBI;
806     ++MBBICommon;
807   }
808 }
809 
810 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
811   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
812 
813   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
814   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
815     if (i != commonTailIndex) {
816       NextCommonInsts[i] = SameTails[i].getTailStartPos();
817       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
818     } else {
819       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
820           "MBB is not a common tail only block");
821     }
822   }
823 
824   for (auto &MI : *MBB) {
825     if (!countsAsInstruction(MI))
826       continue;
827     DebugLoc DL = MI.getDebugLoc();
828     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
829       if (i == commonTailIndex)
830         continue;
831 
832       auto &Pos = NextCommonInsts[i];
833       assert(Pos != SameTails[i].getBlock()->end() &&
834           "Reached BB end within common tail");
835       while (!countsAsInstruction(*Pos)) {
836         ++Pos;
837         assert(Pos != SameTails[i].getBlock()->end() &&
838             "Reached BB end within common tail");
839       }
840       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
841       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
842       NextCommonInsts[i] = ++Pos;
843     }
844     MI.setDebugLoc(DL);
845   }
846 
847   if (UpdateLiveIns) {
848     LivePhysRegs NewLiveIns(*TRI);
849     computeLiveIns(NewLiveIns, *MBB);
850     LiveRegs.init(*TRI);
851 
852     // The flag merging may lead to some register uses no longer using the
853     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
854     for (MachineBasicBlock *Pred : MBB->predecessors()) {
855       LiveRegs.clear();
856       LiveRegs.addLiveOuts(*Pred);
857       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
858       for (Register Reg : NewLiveIns) {
859         if (!LiveRegs.available(*MRI, Reg))
860           continue;
861 
862         // Skip the register if we are about to add one of its super registers.
863         // TODO: Common this up with the same logic in addLineIns().
864         if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) {
865               return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg);
866             }))
867           continue;
868 
869         DebugLoc DL;
870         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
871                 Reg);
872       }
873     }
874 
875     MBB->clearLiveIns();
876     addLiveIns(*MBB, NewLiveIns);
877   }
878 }
879 
880 // See if any of the blocks in MergePotentials (which all have SuccBB as a
881 // successor, or all have no successor if it is null) can be tail-merged.
882 // If there is a successor, any blocks in MergePotentials that are not
883 // tail-merged and are not immediately before Succ must have an unconditional
884 // branch to Succ added (but the predecessor/successor lists need no
885 // adjustment). The lone predecessor of Succ that falls through into Succ,
886 // if any, is given in PredBB.
887 // MinCommonTailLength - Except for the special cases below, tail-merge if
888 // there are at least this many instructions in common.
889 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
890                                       MachineBasicBlock *PredBB,
891                                       unsigned MinCommonTailLength) {
892   bool MadeChange = false;
893 
894   LLVM_DEBUG({
895     dbgs() << "\nTryTailMergeBlocks: ";
896     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
897       dbgs() << printMBBReference(*MergePotentials[i].getBlock())
898              << (i == e - 1 ? "" : ", ");
899     dbgs() << "\n";
900     if (SuccBB) {
901       dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
902       if (PredBB)
903         dbgs() << "  which has fall-through from " << printMBBReference(*PredBB)
904                << "\n";
905     }
906     dbgs() << "Looking for common tails of at least " << MinCommonTailLength
907            << " instruction" << (MinCommonTailLength == 1 ? "" : "s") << '\n';
908   });
909 
910   // Sort by hash value so that blocks with identical end sequences sort
911   // together.
912   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
913 
914   // Walk through equivalence sets looking for actual exact matches.
915   while (MergePotentials.size() > 1) {
916     unsigned CurHash = MergePotentials.back().getHash();
917     const DebugLoc &BranchDL = MergePotentials.back().getBranchDebugLoc();
918 
919     // Build SameTails, identifying the set of blocks with this hash code
920     // and with the maximum number of instructions in common.
921     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
922                                                     MinCommonTailLength,
923                                                     SuccBB, PredBB);
924 
925     // If we didn't find any pair that has at least MinCommonTailLength
926     // instructions in common, remove all blocks with this hash code and retry.
927     if (SameTails.empty()) {
928       RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL);
929       continue;
930     }
931 
932     // If one of the blocks is the entire common tail (and is not the entry
933     // block/an EH pad, which we can't jump to), we can treat all blocks with
934     // this same tail at once.  Use PredBB if that is one of the possibilities,
935     // as that will not introduce any extra branches.
936     MachineBasicBlock *EntryBB =
937         &MergePotentials.front().getBlock()->getParent()->front();
938     unsigned commonTailIndex = SameTails.size();
939     // If there are two blocks, check to see if one can be made to fall through
940     // into the other.
941     if (SameTails.size() == 2 &&
942         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
943         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
944       commonTailIndex = 1;
945     else if (SameTails.size() == 2 &&
946              SameTails[1].getBlock()->isLayoutSuccessor(
947                  SameTails[0].getBlock()) &&
948              SameTails[0].tailIsWholeBlock() &&
949              !SameTails[0].getBlock()->isEHPad())
950       commonTailIndex = 0;
951     else {
952       // Otherwise just pick one, favoring the fall-through predecessor if
953       // there is one.
954       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
955         MachineBasicBlock *MBB = SameTails[i].getBlock();
956         if ((MBB == EntryBB || MBB->isEHPad()) &&
957             SameTails[i].tailIsWholeBlock())
958           continue;
959         if (MBB == PredBB) {
960           commonTailIndex = i;
961           break;
962         }
963         if (SameTails[i].tailIsWholeBlock())
964           commonTailIndex = i;
965       }
966     }
967 
968     if (commonTailIndex == SameTails.size() ||
969         (SameTails[commonTailIndex].getBlock() == PredBB &&
970          !SameTails[commonTailIndex].tailIsWholeBlock())) {
971       // None of the blocks consist entirely of the common tail.
972       // Split a block so that one does.
973       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
974                                      maxCommonTailLength, commonTailIndex)) {
975         RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL);
976         continue;
977       }
978     }
979 
980     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
981 
982     // Recompute common tail MBB's edge weights and block frequency.
983     setCommonTailEdgeWeights(*MBB);
984 
985     // Merge debug locations, MMOs and undef flags across identical instructions
986     // for common tail.
987     mergeCommonTails(commonTailIndex);
988 
989     // MBB is common tail.  Adjust all other BB's to jump to this one.
990     // Traversal must be forwards so erases work.
991     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
992                       << " for ");
993     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
994       if (commonTailIndex == i)
995         continue;
996       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
997                         << (i == e - 1 ? "" : ", "));
998       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
999       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1000       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1001       MergePotentials.erase(SameTails[i].getMPIter());
1002     }
1003     LLVM_DEBUG(dbgs() << "\n");
1004     // We leave commonTailIndex in the worklist in case there are other blocks
1005     // that match it with a smaller number of instructions.
1006     MadeChange = true;
1007   }
1008   return MadeChange;
1009 }
1010 
1011 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1012   bool MadeChange = false;
1013   if (!EnableTailMerge)
1014     return MadeChange;
1015 
1016   // First find blocks with no successors.
1017   // Block placement may create new tail merging opportunities for these blocks.
1018   MergePotentials.clear();
1019   for (MachineBasicBlock &MBB : MF) {
1020     if (MergePotentials.size() == TailMergeThreshold)
1021       break;
1022     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1023       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB,
1024                                                    MBB.findBranchDebugLoc()));
1025   }
1026 
1027   // If this is a large problem, avoid visiting the same basic blocks
1028   // multiple times.
1029   if (MergePotentials.size() == TailMergeThreshold)
1030     for (const MergePotentialsElt &Elt : MergePotentials)
1031       TriedMerging.insert(Elt.getBlock());
1032 
1033   // See if we can do any tail merging on those.
1034   if (MergePotentials.size() >= 2)
1035     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1036 
1037   // Look at blocks (IBB) with multiple predecessors (PBB).
1038   // We change each predecessor to a canonical form, by
1039   // (1) temporarily removing any unconditional branch from the predecessor
1040   // to IBB, and
1041   // (2) alter conditional branches so they branch to the other block
1042   // not IBB; this may require adding back an unconditional branch to IBB
1043   // later, where there wasn't one coming in.  E.g.
1044   //   Bcc IBB
1045   //   fallthrough to QBB
1046   // here becomes
1047   //   Bncc QBB
1048   // with a conceptual B to IBB after that, which never actually exists.
1049   // With those changes, we see whether the predecessors' tails match,
1050   // and merge them if so.  We change things out of canonical form and
1051   // back to the way they were later in the process.  (OptimizeBranches
1052   // would undo some of this, but we can't use it, because we'd get into
1053   // a compile-time infinite loop repeatedly doing and undoing the same
1054   // transformations.)
1055 
1056   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1057        I != E; ++I) {
1058     if (I->pred_size() < 2) continue;
1059     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1060     MachineBasicBlock *IBB = &*I;
1061     MachineBasicBlock *PredBB = &*std::prev(I);
1062     MergePotentials.clear();
1063     MachineLoop *ML;
1064 
1065     // Bail if merging after placement and IBB is the loop header because
1066     // -- If merging predecessors that belong to the same loop as IBB, the
1067     // common tail of merged predecessors may become the loop top if block
1068     // placement is called again and the predecessors may branch to this common
1069     // tail and require more branches. This can be relaxed if
1070     // MachineBlockPlacement::findBestLoopTop is more flexible.
1071     // --If merging predecessors that do not belong to the same loop as IBB, the
1072     // loop info of IBB's loop and the other loops may be affected. Calling the
1073     // block placement again may make big change to the layout and eliminate the
1074     // reason to do tail merging here.
1075     if (AfterBlockPlacement && MLI) {
1076       ML = MLI->getLoopFor(IBB);
1077       if (ML && IBB == ML->getHeader())
1078         continue;
1079     }
1080 
1081     for (MachineBasicBlock *PBB : I->predecessors()) {
1082       if (MergePotentials.size() == TailMergeThreshold)
1083         break;
1084 
1085       if (TriedMerging.count(PBB))
1086         continue;
1087 
1088       // Skip blocks that loop to themselves, can't tail merge these.
1089       if (PBB == IBB)
1090         continue;
1091 
1092       // Visit each predecessor only once.
1093       if (!UniquePreds.insert(PBB).second)
1094         continue;
1095 
1096       // Skip blocks which may jump to a landing pad or jump from an asm blob.
1097       // Can't tail merge these.
1098       if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1099         continue;
1100 
1101       // After block placement, only consider predecessors that belong to the
1102       // same loop as IBB.  The reason is the same as above when skipping loop
1103       // header.
1104       if (AfterBlockPlacement && MLI)
1105         if (ML != MLI->getLoopFor(PBB))
1106           continue;
1107 
1108       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1109       SmallVector<MachineOperand, 4> Cond;
1110       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1111         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1112         // branch.
1113         SmallVector<MachineOperand, 4> NewCond(Cond);
1114         if (!Cond.empty() && TBB == IBB) {
1115           if (TII->reverseBranchCondition(NewCond))
1116             continue;
1117           // This is the QBB case described above
1118           if (!FBB) {
1119             auto Next = ++PBB->getIterator();
1120             if (Next != MF.end())
1121               FBB = &*Next;
1122           }
1123         }
1124 
1125         // Remove the unconditional branch at the end, if any.
1126         DebugLoc dl = PBB->findBranchDebugLoc();
1127         if (TBB && (Cond.empty() || FBB)) {
1128           TII->removeBranch(*PBB);
1129           if (!Cond.empty())
1130             // reinsert conditional branch only, for now
1131             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1132                               NewCond, dl);
1133         }
1134 
1135         MergePotentials.push_back(
1136             MergePotentialsElt(HashEndOfMBB(*PBB), PBB, dl));
1137       }
1138     }
1139 
1140     // If this is a large problem, avoid visiting the same basic blocks multiple
1141     // times.
1142     if (MergePotentials.size() == TailMergeThreshold)
1143       for (MergePotentialsElt &Elt : MergePotentials)
1144         TriedMerging.insert(Elt.getBlock());
1145 
1146     if (MergePotentials.size() >= 2)
1147       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1148 
1149     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1150     // result of removing blocks in TryTailMergeBlocks.
1151     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1152     if (MergePotentials.size() == 1 &&
1153         MergePotentials.begin()->getBlock() != PredBB)
1154       FixTail(MergePotentials.begin()->getBlock(), IBB, TII,
1155               MergePotentials.begin()->getBranchDebugLoc());
1156   }
1157 
1158   return MadeChange;
1159 }
1160 
1161 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1162   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1163   BlockFrequency AccumulatedMBBFreq;
1164 
1165   // Aggregate edge frequency of successor edge j:
1166   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1167   //  where bb is a basic block that is in SameTails.
1168   for (const auto &Src : SameTails) {
1169     const MachineBasicBlock *SrcMBB = Src.getBlock();
1170     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1171     AccumulatedMBBFreq += BlockFreq;
1172 
1173     // It is not necessary to recompute edge weights if TailBB has less than two
1174     // successors.
1175     if (TailMBB.succ_size() <= 1)
1176       continue;
1177 
1178     auto EdgeFreq = EdgeFreqLs.begin();
1179 
1180     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1181          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1182       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1183   }
1184 
1185   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1186 
1187   if (TailMBB.succ_size() <= 1)
1188     return;
1189 
1190   auto SumEdgeFreq =
1191       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1192           .getFrequency();
1193   auto EdgeFreq = EdgeFreqLs.begin();
1194 
1195   if (SumEdgeFreq > 0) {
1196     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1197          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1198       auto Prob = BranchProbability::getBranchProbability(
1199           EdgeFreq->getFrequency(), SumEdgeFreq);
1200       TailMBB.setSuccProbability(SuccI, Prob);
1201     }
1202   }
1203 }
1204 
1205 //===----------------------------------------------------------------------===//
1206 //  Branch Optimization
1207 //===----------------------------------------------------------------------===//
1208 
1209 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1210   bool MadeChange = false;
1211 
1212   // Make sure blocks are numbered in order
1213   MF.RenumberBlocks();
1214   // Renumbering blocks alters EH scope membership, recalculate it.
1215   EHScopeMembership = getEHScopeMembership(MF);
1216 
1217   for (MachineBasicBlock &MBB :
1218        llvm::make_early_inc_range(llvm::drop_begin(MF))) {
1219     MadeChange |= OptimizeBlock(&MBB);
1220 
1221     // If it is dead, remove it.
1222     if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) {
1223       RemoveDeadBlock(&MBB);
1224       MadeChange = true;
1225       ++NumDeadBlocks;
1226     }
1227   }
1228 
1229   return MadeChange;
1230 }
1231 
1232 // Blocks should be considered empty if they contain only debug info;
1233 // else the debug info would affect codegen.
1234 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1235   return MBB->getFirstNonDebugInstr(true) == MBB->end();
1236 }
1237 
1238 // Blocks with only debug info and branches should be considered the same
1239 // as blocks with only branches.
1240 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1241   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1242   assert(I != MBB->end() && "empty block!");
1243   return I->isBranch();
1244 }
1245 
1246 /// IsBetterFallthrough - Return true if it would be clearly better to
1247 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1248 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1249 /// result in infinite loops.
1250 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1251                                 MachineBasicBlock *MBB2) {
1252   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1253 
1254   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1255   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1256   // optimize branches that branch to either a return block or an assert block
1257   // into a fallthrough to the return.
1258   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1259   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1260   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1261     return false;
1262 
1263   // If there is a clear successor ordering we make sure that one block
1264   // will fall through to the next
1265   if (MBB1->isSuccessor(MBB2)) return true;
1266   if (MBB2->isSuccessor(MBB1)) return false;
1267 
1268   return MBB2I->isCall() && !MBB1I->isCall();
1269 }
1270 
1271 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1272                                        MachineBasicBlock &MBB,
1273                                        MachineBasicBlock &PredMBB) {
1274   auto InsertBefore = PredMBB.getFirstTerminator();
1275   for (MachineInstr &MI : MBB.instrs())
1276     if (MI.isDebugInstr()) {
1277       TII->duplicate(PredMBB, InsertBefore, MI);
1278       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1279                         << MI);
1280     }
1281 }
1282 
1283 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1284                                      MachineBasicBlock &MBB,
1285                                      MachineBasicBlock &SuccMBB) {
1286   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1287   for (MachineInstr &MI : MBB.instrs())
1288     if (MI.isDebugInstr()) {
1289       TII->duplicate(SuccMBB, InsertBefore, MI);
1290       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1291                         << MI);
1292     }
1293 }
1294 
1295 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1296 // a basic block is removed we would lose the debug information unless we have
1297 // copied the information to a predecessor/successor.
1298 //
1299 // TODO: This function only handles some simple cases. An alternative would be
1300 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1301 // branch folding.
1302 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1303                                            MachineBasicBlock &MBB) {
1304   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1305   // If this MBB is the only predecessor of a successor it is legal to copy
1306   // DBG_VALUE instructions to the beginning of the successor.
1307   for (MachineBasicBlock *SuccBB : MBB.successors())
1308     if (SuccBB->pred_size() == 1)
1309       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1310   // If this MBB is the only successor of a predecessor it is legal to copy the
1311   // DBG_VALUE instructions to the end of the predecessor (just before the
1312   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1313   for (MachineBasicBlock *PredBB : MBB.predecessors())
1314     if (PredBB->succ_size() == 1)
1315       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1316 }
1317 
1318 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1319   bool MadeChange = false;
1320   MachineFunction &MF = *MBB->getParent();
1321 ReoptimizeBlock:
1322 
1323   MachineFunction::iterator FallThrough = MBB->getIterator();
1324   ++FallThrough;
1325 
1326   // Make sure MBB and FallThrough belong to the same EH scope.
1327   bool SameEHScope = true;
1328   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1329     auto MBBEHScope = EHScopeMembership.find(MBB);
1330     assert(MBBEHScope != EHScopeMembership.end());
1331     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1332     assert(FallThroughEHScope != EHScopeMembership.end());
1333     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1334   }
1335 
1336   // Analyze the branch in the current block. As a side-effect, this may cause
1337   // the block to become empty.
1338   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1339   SmallVector<MachineOperand, 4> CurCond;
1340   bool CurUnAnalyzable =
1341       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1342 
1343   // If this block is empty, make everyone use its fall-through, not the block
1344   // explicitly.  Landing pads should not do this since the landing-pad table
1345   // points to this block.  Blocks with their addresses taken shouldn't be
1346   // optimized away.
1347   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1348       SameEHScope) {
1349     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1350     // Dead block?  Leave for cleanup later.
1351     if (MBB->pred_empty()) return MadeChange;
1352 
1353     if (FallThrough == MF.end()) {
1354       // TODO: Simplify preds to not branch here if possible!
1355     } else if (FallThrough->isEHPad()) {
1356       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1357       // where a BB jumps to more than one landing pad.
1358       // TODO: Is it ever worth rewriting predecessors which don't already
1359       // jump to a landing pad, and so can safely jump to the fallthrough?
1360     } else if (MBB->isSuccessor(&*FallThrough)) {
1361       // Rewrite all predecessors of the old block to go to the fallthrough
1362       // instead.
1363       while (!MBB->pred_empty()) {
1364         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1365         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1366       }
1367       // Add rest successors of MBB to successors of FallThrough. Those
1368       // successors are not directly reachable via MBB, so it should be
1369       // landing-pad.
1370       for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
1371         if (*SI != &*FallThrough && !FallThrough->isSuccessor(*SI)) {
1372           assert((*SI)->isEHPad() && "Bad CFG");
1373           FallThrough->copySuccessor(MBB, SI);
1374         }
1375       // If MBB was the target of a jump table, update jump tables to go to the
1376       // fallthrough instead.
1377       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1378         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1379       MadeChange = true;
1380     }
1381     return MadeChange;
1382   }
1383 
1384   // Check to see if we can simplify the terminator of the block before this
1385   // one.
1386   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1387 
1388   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1389   SmallVector<MachineOperand, 4> PriorCond;
1390   bool PriorUnAnalyzable =
1391       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1392   if (!PriorUnAnalyzable) {
1393     // If the previous branch is conditional and both conditions go to the same
1394     // destination, remove the branch, replacing it with an unconditional one or
1395     // a fall-through.
1396     if (PriorTBB && PriorTBB == PriorFBB) {
1397       DebugLoc Dl = PrevBB.findBranchDebugLoc();
1398       TII->removeBranch(PrevBB);
1399       PriorCond.clear();
1400       if (PriorTBB != MBB)
1401         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl);
1402       MadeChange = true;
1403       ++NumBranchOpts;
1404       goto ReoptimizeBlock;
1405     }
1406 
1407     // If the previous block unconditionally falls through to this block and
1408     // this block has no other predecessors, move the contents of this block
1409     // into the prior block. This doesn't usually happen when SimplifyCFG
1410     // has been used, but it can happen if tail merging splits a fall-through
1411     // predecessor of a block.
1412     // This has to check PrevBB->succ_size() because EH edges are ignored by
1413     // analyzeBranch.
1414     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1415         PrevBB.succ_size() == 1 && PrevBB.isSuccessor(MBB) &&
1416         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1417       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1418                         << "From MBB: " << *MBB);
1419       // Remove redundant DBG_VALUEs first.
1420       if (!PrevBB.empty()) {
1421         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1422         --PrevBBIter;
1423         MachineBasicBlock::iterator MBBIter = MBB->begin();
1424         // Check if DBG_VALUE at the end of PrevBB is identical to the
1425         // DBG_VALUE at the beginning of MBB.
1426         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1427                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1428           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1429             break;
1430           MachineInstr &DuplicateDbg = *MBBIter;
1431           ++MBBIter; -- PrevBBIter;
1432           DuplicateDbg.eraseFromParent();
1433         }
1434       }
1435       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1436       PrevBB.removeSuccessor(PrevBB.succ_begin());
1437       assert(PrevBB.succ_empty());
1438       PrevBB.transferSuccessors(MBB);
1439       MadeChange = true;
1440       return MadeChange;
1441     }
1442 
1443     // If the previous branch *only* branches to *this* block (conditional or
1444     // not) remove the branch.
1445     if (PriorTBB == MBB && !PriorFBB) {
1446       TII->removeBranch(PrevBB);
1447       MadeChange = true;
1448       ++NumBranchOpts;
1449       goto ReoptimizeBlock;
1450     }
1451 
1452     // If the prior block branches somewhere else on the condition and here if
1453     // the condition is false, remove the uncond second branch.
1454     if (PriorFBB == MBB) {
1455       DebugLoc Dl = PrevBB.findBranchDebugLoc();
1456       TII->removeBranch(PrevBB);
1457       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl);
1458       MadeChange = true;
1459       ++NumBranchOpts;
1460       goto ReoptimizeBlock;
1461     }
1462 
1463     // If the prior block branches here on true and somewhere else on false, and
1464     // if the branch condition is reversible, reverse the branch to create a
1465     // fall-through.
1466     if (PriorTBB == MBB) {
1467       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1468       if (!TII->reverseBranchCondition(NewPriorCond)) {
1469         DebugLoc Dl = PrevBB.findBranchDebugLoc();
1470         TII->removeBranch(PrevBB);
1471         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, Dl);
1472         MadeChange = true;
1473         ++NumBranchOpts;
1474         goto ReoptimizeBlock;
1475       }
1476     }
1477 
1478     // If this block has no successors (e.g. it is a return block or ends with
1479     // a call to a no-return function like abort or __cxa_throw) and if the pred
1480     // falls through into this block, and if it would otherwise fall through
1481     // into the block after this, move this block to the end of the function.
1482     //
1483     // We consider it more likely that execution will stay in the function (e.g.
1484     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1485     // the assert condition out of the loop body.
1486     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1487         MachineFunction::iterator(PriorTBB) == FallThrough &&
1488         !MBB->canFallThrough()) {
1489       bool DoTransform = true;
1490 
1491       // We have to be careful that the succs of PredBB aren't both no-successor
1492       // blocks.  If neither have successors and if PredBB is the second from
1493       // last block in the function, we'd just keep swapping the two blocks for
1494       // last.  Only do the swap if one is clearly better to fall through than
1495       // the other.
1496       if (FallThrough == --MF.end() &&
1497           !IsBetterFallthrough(PriorTBB, MBB))
1498         DoTransform = false;
1499 
1500       if (DoTransform) {
1501         // Reverse the branch so we will fall through on the previous true cond.
1502         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1503         if (!TII->reverseBranchCondition(NewPriorCond)) {
1504           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1505                             << "To make fallthrough to: " << *PriorTBB << "\n");
1506 
1507           DebugLoc Dl = PrevBB.findBranchDebugLoc();
1508           TII->removeBranch(PrevBB);
1509           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, Dl);
1510 
1511           // Move this block to the end of the function.
1512           MBB->moveAfter(&MF.back());
1513           MadeChange = true;
1514           ++NumBranchOpts;
1515           return MadeChange;
1516         }
1517       }
1518     }
1519   }
1520 
1521   if (!IsEmptyBlock(MBB)) {
1522     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1523     if (TII->isUnconditionalTailCall(TailCall)) {
1524       SmallVector<MachineBasicBlock *> PredsChanged;
1525       for (auto &Pred : MBB->predecessors()) {
1526         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1527         SmallVector<MachineOperand, 4> PredCond;
1528         bool PredAnalyzable =
1529             !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1530 
1531         // Only eliminate if MBB == TBB (Taken Basic Block)
1532         if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1533             PredTBB != PredFBB) {
1534           // The predecessor has a conditional branch to this block which
1535           // consists of only a tail call. Try to fold the tail call into the
1536           // conditional branch.
1537           if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1538             // TODO: It would be nice if analyzeBranch() could provide a pointer
1539             // to the branch instruction so replaceBranchWithTailCall() doesn't
1540             // have to search for it.
1541             TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1542             PredsChanged.push_back(Pred);
1543           }
1544         }
1545         // If the predecessor is falling through to this block, we could reverse
1546         // the branch condition and fold the tail call into that. However, after
1547         // that we might have to re-arrange the CFG to fall through to the other
1548         // block and there is a high risk of regressing code size rather than
1549         // improving it.
1550       }
1551       if (!PredsChanged.empty()) {
1552         NumTailCalls += PredsChanged.size();
1553         for (auto &Pred : PredsChanged)
1554           Pred->removeSuccessor(MBB);
1555 
1556         return true;
1557       }
1558     }
1559   }
1560 
1561   if (!CurUnAnalyzable) {
1562     // If this is a two-way branch, and the FBB branches to this block, reverse
1563     // the condition so the single-basic-block loop is faster.  Instead of:
1564     //    Loop: xxx; jcc Out; jmp Loop
1565     // we want:
1566     //    Loop: xxx; jncc Loop; jmp Out
1567     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1568       SmallVector<MachineOperand, 4> NewCond(CurCond);
1569       if (!TII->reverseBranchCondition(NewCond)) {
1570         DebugLoc Dl = MBB->findBranchDebugLoc();
1571         TII->removeBranch(*MBB);
1572         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, Dl);
1573         MadeChange = true;
1574         ++NumBranchOpts;
1575         goto ReoptimizeBlock;
1576       }
1577     }
1578 
1579     // If this branch is the only thing in its block, see if we can forward
1580     // other blocks across it.
1581     if (CurTBB && CurCond.empty() && !CurFBB &&
1582         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1583         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1584       DebugLoc Dl = MBB->findBranchDebugLoc();
1585       // This block may contain just an unconditional branch.  Because there can
1586       // be 'non-branch terminators' in the block, try removing the branch and
1587       // then seeing if the block is empty.
1588       TII->removeBranch(*MBB);
1589       // If the only things remaining in the block are debug info, remove these
1590       // as well, so this will behave the same as an empty block in non-debug
1591       // mode.
1592       if (IsEmptyBlock(MBB)) {
1593         // Make the block empty, losing the debug info (we could probably
1594         // improve this in some cases.)
1595         MBB->erase(MBB->begin(), MBB->end());
1596       }
1597       // If this block is just an unconditional branch to CurTBB, we can
1598       // usually completely eliminate the block.  The only case we cannot
1599       // completely eliminate the block is when the block before this one
1600       // falls through into MBB and we can't understand the prior block's branch
1601       // condition.
1602       if (MBB->empty()) {
1603         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1604         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1605             !PrevBB.isSuccessor(MBB)) {
1606           // If the prior block falls through into us, turn it into an
1607           // explicit branch to us to make updates simpler.
1608           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1609               PriorTBB != MBB && PriorFBB != MBB) {
1610             if (!PriorTBB) {
1611               assert(PriorCond.empty() && !PriorFBB &&
1612                      "Bad branch analysis");
1613               PriorTBB = MBB;
1614             } else {
1615               assert(!PriorFBB && "Machine CFG out of date!");
1616               PriorFBB = MBB;
1617             }
1618             DebugLoc PrevDl = PrevBB.findBranchDebugLoc();
1619             TII->removeBranch(PrevBB);
1620             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, PrevDl);
1621           }
1622 
1623           // Iterate through all the predecessors, revectoring each in-turn.
1624           size_t PI = 0;
1625           bool DidChange = false;
1626           bool HasBranchToSelf = false;
1627           while(PI != MBB->pred_size()) {
1628             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1629             if (PMBB == MBB) {
1630               // If this block has an uncond branch to itself, leave it.
1631               ++PI;
1632               HasBranchToSelf = true;
1633             } else {
1634               DidChange = true;
1635               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1636               // Add rest successors of MBB to successors of CurTBB. Those
1637               // successors are not directly reachable via MBB, so it should be
1638               // landing-pad.
1639               for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE;
1640                    ++SI)
1641                 if (*SI != CurTBB && !CurTBB->isSuccessor(*SI)) {
1642                   assert((*SI)->isEHPad() && "Bad CFG");
1643                   CurTBB->copySuccessor(MBB, SI);
1644                 }
1645               // If this change resulted in PMBB ending in a conditional
1646               // branch where both conditions go to the same destination,
1647               // change this to an unconditional branch.
1648               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1649               SmallVector<MachineOperand, 4> NewCurCond;
1650               bool NewCurUnAnalyzable = TII->analyzeBranch(
1651                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1652               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1653                 DebugLoc PrevDl = PMBB->findBranchDebugLoc();
1654                 TII->removeBranch(*PMBB);
1655                 NewCurCond.clear();
1656                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond,
1657                                   PrevDl);
1658                 MadeChange = true;
1659                 ++NumBranchOpts;
1660               }
1661             }
1662           }
1663 
1664           // Change any jumptables to go to the new MBB.
1665           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1666             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1667           if (DidChange) {
1668             ++NumBranchOpts;
1669             MadeChange = true;
1670             if (!HasBranchToSelf) return MadeChange;
1671           }
1672         }
1673       }
1674 
1675       // Add the branch back if the block is more than just an uncond branch.
1676       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, Dl);
1677     }
1678   }
1679 
1680   // If the prior block doesn't fall through into this block, and if this
1681   // block doesn't fall through into some other block, see if we can find a
1682   // place to move this block where a fall-through will happen.
1683   if (!PrevBB.canFallThrough()) {
1684     // Now we know that there was no fall-through into this block, check to
1685     // see if it has a fall-through into its successor.
1686     bool CurFallsThru = MBB->canFallThrough();
1687 
1688     if (!MBB->isEHPad()) {
1689       // Check all the predecessors of this block.  If one of them has no fall
1690       // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1691       // block, move this block right after it.
1692       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1693         // Analyze the branch at the end of the pred.
1694         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1695         SmallVector<MachineOperand, 4> PredCond;
1696         if (PredBB != MBB && !PredBB->canFallThrough() &&
1697             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1698             (PredTBB == MBB || PredFBB == MBB) &&
1699             (!CurFallsThru || !CurTBB || !CurFBB) &&
1700             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1701           // If the current block doesn't fall through, just move it.
1702           // If the current block can fall through and does not end with a
1703           // conditional branch, we need to append an unconditional jump to
1704           // the (current) next block.  To avoid a possible compile-time
1705           // infinite loop, move blocks only backward in this case.
1706           // Also, if there are already 2 branches here, we cannot add a third;
1707           // this means we have the case
1708           // Bcc next
1709           // B elsewhere
1710           // next:
1711           if (CurFallsThru) {
1712             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1713             CurCond.clear();
1714             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1715           }
1716           MBB->moveAfter(PredBB);
1717           MadeChange = true;
1718           goto ReoptimizeBlock;
1719         }
1720       }
1721     }
1722 
1723     if (!CurFallsThru) {
1724       // Check analyzable branch-successors to see if we can move this block
1725       // before one.
1726       if (!CurUnAnalyzable) {
1727         for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1728           if (!SuccBB)
1729             continue;
1730           // Analyze the branch at the end of the block before the succ.
1731           MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1732 
1733           // If this block doesn't already fall-through to that successor, and
1734           // if the succ doesn't already have a block that can fall through into
1735           // it, we can arrange for the fallthrough to happen.
1736           if (SuccBB != MBB && &*SuccPrev != MBB &&
1737               !SuccPrev->canFallThrough()) {
1738             MBB->moveBefore(SuccBB);
1739             MadeChange = true;
1740             goto ReoptimizeBlock;
1741           }
1742         }
1743       }
1744 
1745       // Okay, there is no really great place to put this block.  If, however,
1746       // the block before this one would be a fall-through if this block were
1747       // removed, move this block to the end of the function. There is no real
1748       // advantage in "falling through" to an EH block, so we don't want to
1749       // perform this transformation for that case.
1750       //
1751       // Also, Windows EH introduced the possibility of an arbitrary number of
1752       // successors to a given block.  The analyzeBranch call does not consider
1753       // exception handling and so we can get in a state where a block
1754       // containing a call is followed by multiple EH blocks that would be
1755       // rotated infinitely at the end of the function if the transformation
1756       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1757       // that appears not to be happening anymore, we should assume that it is
1758       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1759       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1760       SmallVector<MachineOperand, 4> PrevCond;
1761       if (FallThrough != MF.end() &&
1762           !FallThrough->isEHPad() &&
1763           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1764           PrevBB.isSuccessor(&*FallThrough)) {
1765         MBB->moveAfter(&MF.back());
1766         MadeChange = true;
1767         return MadeChange;
1768       }
1769     }
1770   }
1771 
1772   return MadeChange;
1773 }
1774 
1775 //===----------------------------------------------------------------------===//
1776 //  Hoist Common Code
1777 //===----------------------------------------------------------------------===//
1778 
1779 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1780   bool MadeChange = false;
1781   for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF))
1782     MadeChange |= HoistCommonCodeInSuccs(&MBB);
1783 
1784   return MadeChange;
1785 }
1786 
1787 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1788 /// its 'true' successor.
1789 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1790                                          MachineBasicBlock *TrueBB) {
1791   for (MachineBasicBlock *SuccBB : BB->successors())
1792     if (SuccBB != TrueBB)
1793       return SuccBB;
1794   return nullptr;
1795 }
1796 
1797 template <class Container>
1798 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1799                                 Container &Set) {
1800   if (Reg.isPhysical()) {
1801     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1802       Set.insert(*AI);
1803   } else {
1804     Set.insert(Reg);
1805   }
1806 }
1807 
1808 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1809 /// in successors to. The location is usually just before the terminator,
1810 /// however if the terminator is a conditional branch and its previous
1811 /// instruction is the flag setting instruction, the previous instruction is
1812 /// the preferred location. This function also gathers uses and defs of the
1813 /// instructions from the insertion point to the end of the block. The data is
1814 /// used by HoistCommonCodeInSuccs to ensure safety.
1815 static
1816 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1817                                                   const TargetInstrInfo *TII,
1818                                                   const TargetRegisterInfo *TRI,
1819                                                   SmallSet<Register, 4> &Uses,
1820                                                   SmallSet<Register, 4> &Defs) {
1821   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1822   if (!TII->isUnpredicatedTerminator(*Loc))
1823     return MBB->end();
1824 
1825   for (const MachineOperand &MO : Loc->operands()) {
1826     if (!MO.isReg())
1827       continue;
1828     Register Reg = MO.getReg();
1829     if (!Reg)
1830       continue;
1831     if (MO.isUse()) {
1832       addRegAndItsAliases(Reg, TRI, Uses);
1833     } else {
1834       if (!MO.isDead())
1835         // Don't try to hoist code in the rare case the terminator defines a
1836         // register that is later used.
1837         return MBB->end();
1838 
1839       // If the terminator defines a register, make sure we don't hoist
1840       // the instruction whose def might be clobbered by the terminator.
1841       addRegAndItsAliases(Reg, TRI, Defs);
1842     }
1843   }
1844 
1845   if (Uses.empty())
1846     return Loc;
1847   // If the terminator is the only instruction in the block and Uses is not
1848   // empty (or we would have returned above), we can still safely hoist
1849   // instructions just before the terminator as long as the Defs/Uses are not
1850   // violated (which is checked in HoistCommonCodeInSuccs).
1851   if (Loc == MBB->begin())
1852     return Loc;
1853 
1854   // The terminator is probably a conditional branch, try not to separate the
1855   // branch from condition setting instruction.
1856   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1857 
1858   bool IsDef = false;
1859   for (const MachineOperand &MO : PI->operands()) {
1860     // If PI has a regmask operand, it is probably a call. Separate away.
1861     if (MO.isRegMask())
1862       return Loc;
1863     if (!MO.isReg() || MO.isUse())
1864       continue;
1865     Register Reg = MO.getReg();
1866     if (!Reg)
1867       continue;
1868     if (Uses.count(Reg)) {
1869       IsDef = true;
1870       break;
1871     }
1872   }
1873   if (!IsDef)
1874     // The condition setting instruction is not just before the conditional
1875     // branch.
1876     return Loc;
1877 
1878   // Be conservative, don't insert instruction above something that may have
1879   // side-effects. And since it's potentially bad to separate flag setting
1880   // instruction from the conditional branch, just abort the optimization
1881   // completely.
1882   // Also avoid moving code above predicated instruction since it's hard to
1883   // reason about register liveness with predicated instruction.
1884   bool DontMoveAcrossStore = true;
1885   if (!PI->isSafeToMove(DontMoveAcrossStore) || TII->isPredicated(*PI))
1886     return MBB->end();
1887 
1888   // Find out what registers are live. Note this routine is ignoring other live
1889   // registers which are only used by instructions in successor blocks.
1890   for (const MachineOperand &MO : PI->operands()) {
1891     if (!MO.isReg())
1892       continue;
1893     Register Reg = MO.getReg();
1894     if (!Reg)
1895       continue;
1896     if (MO.isUse()) {
1897       addRegAndItsAliases(Reg, TRI, Uses);
1898     } else {
1899       if (Uses.erase(Reg)) {
1900         if (Reg.isPhysical()) {
1901           for (MCPhysReg SubReg : TRI->subregs(Reg))
1902             Uses.erase(SubReg); // Use sub-registers to be conservative
1903         }
1904       }
1905       addRegAndItsAliases(Reg, TRI, Defs);
1906     }
1907   }
1908 
1909   return PI;
1910 }
1911 
1912 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1913   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1914   SmallVector<MachineOperand, 4> Cond;
1915   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1916     return false;
1917 
1918   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1919   if (!FBB)
1920     // Malformed bcc? True and false blocks are the same?
1921     return false;
1922 
1923   // Restrict the optimization to cases where MBB is the only predecessor,
1924   // it is an obvious win.
1925   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1926     return false;
1927 
1928   // Find a suitable position to hoist the common instructions to. Also figure
1929   // out which registers are used or defined by instructions from the insertion
1930   // point to the end of the block.
1931   SmallSet<Register, 4> Uses, Defs;
1932   MachineBasicBlock::iterator Loc =
1933     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1934   if (Loc == MBB->end())
1935     return false;
1936 
1937   bool HasDups = false;
1938   SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1939   MachineBasicBlock::iterator TIB = TBB->begin();
1940   MachineBasicBlock::iterator FIB = FBB->begin();
1941   MachineBasicBlock::iterator TIE = TBB->end();
1942   MachineBasicBlock::iterator FIE = FBB->end();
1943   while (TIB != TIE && FIB != FIE) {
1944     // Skip dbg_value instructions. These do not count.
1945     TIB = skipDebugInstructionsForward(TIB, TIE, false);
1946     FIB = skipDebugInstructionsForward(FIB, FIE, false);
1947     if (TIB == TIE || FIB == FIE)
1948       break;
1949 
1950     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1951       break;
1952 
1953     if (TII->isPredicated(*TIB))
1954       // Hard to reason about register liveness with predicated instruction.
1955       break;
1956 
1957     bool IsSafe = true;
1958     for (MachineOperand &MO : TIB->operands()) {
1959       // Don't attempt to hoist instructions with register masks.
1960       if (MO.isRegMask()) {
1961         IsSafe = false;
1962         break;
1963       }
1964       if (!MO.isReg())
1965         continue;
1966       Register Reg = MO.getReg();
1967       if (!Reg)
1968         continue;
1969       if (MO.isDef()) {
1970         if (Uses.count(Reg)) {
1971           // Avoid clobbering a register that's used by the instruction at
1972           // the point of insertion.
1973           IsSafe = false;
1974           break;
1975         }
1976 
1977         if (Defs.count(Reg) && !MO.isDead()) {
1978           // Don't hoist the instruction if the def would be clobber by the
1979           // instruction at the point insertion. FIXME: This is overly
1980           // conservative. It should be possible to hoist the instructions
1981           // in BB2 in the following example:
1982           // BB1:
1983           // r1, eflag = op1 r2, r3
1984           // brcc eflag
1985           //
1986           // BB2:
1987           // r1 = op2, ...
1988           //    = op3, killed r1
1989           IsSafe = false;
1990           break;
1991         }
1992       } else if (!ActiveDefsSet.count(Reg)) {
1993         if (Defs.count(Reg)) {
1994           // Use is defined by the instruction at the point of insertion.
1995           IsSafe = false;
1996           break;
1997         }
1998 
1999         if (MO.isKill() && Uses.count(Reg))
2000           // Kills a register that's read by the instruction at the point of
2001           // insertion. Remove the kill marker.
2002           MO.setIsKill(false);
2003       }
2004     }
2005     if (!IsSafe)
2006       break;
2007 
2008     bool DontMoveAcrossStore = true;
2009     if (!TIB->isSafeToMove(DontMoveAcrossStore))
2010       break;
2011 
2012     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2013     for (const MachineOperand &MO : TIB->all_uses()) {
2014       if (!MO.isKill())
2015         continue;
2016       Register Reg = MO.getReg();
2017       if (!Reg)
2018         continue;
2019       if (!AllDefsSet.count(Reg)) {
2020         continue;
2021       }
2022       if (Reg.isPhysical()) {
2023         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2024           ActiveDefsSet.erase(*AI);
2025       } else {
2026         ActiveDefsSet.erase(Reg);
2027       }
2028     }
2029 
2030     // Track local defs so we can update liveins.
2031     for (const MachineOperand &MO : TIB->all_defs()) {
2032       if (MO.isDead())
2033         continue;
2034       Register Reg = MO.getReg();
2035       if (!Reg || Reg.isVirtual())
2036         continue;
2037       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2038       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2039     }
2040 
2041     HasDups = true;
2042     ++TIB;
2043     ++FIB;
2044   }
2045 
2046   if (!HasDups)
2047     return false;
2048 
2049   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2050   FBB->erase(FBB->begin(), FIB);
2051 
2052   if (UpdateLiveIns)
2053     fullyRecomputeLiveIns({TBB, FBB});
2054 
2055   ++NumHoist;
2056   return true;
2057 }
2058