1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/MBFIWrapper.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/MachineSizeOpts.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetOpcodes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/BlockFrequency.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <cassert> 59 #include <cstddef> 60 #include <iterator> 61 #include <numeric> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "branch-folder" 66 67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 68 STATISTIC(NumBranchOpts, "Number of branches optimized"); 69 STATISTIC(NumTailMerge , "Number of block tails merged"); 70 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 71 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 72 73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 // Throttle for huge numbers of predecessors (compile speed problems) 77 static cl::opt<unsigned> 78 TailMergeThreshold("tail-merge-threshold", 79 cl::desc("Max number of predecessors to consider tail merging"), 80 cl::init(150), cl::Hidden); 81 82 // Heuristic for tail merging (and, inversely, tail duplication). 83 static cl::opt<unsigned> 84 TailMergeSize("tail-merge-size", 85 cl::desc("Min number of instructions to consider tail merging"), 86 cl::init(3), cl::Hidden); 87 88 namespace { 89 90 /// BranchFolderPass - Wrap branch folder in a machine function pass. 91 class BranchFolderPass : public MachineFunctionPass { 92 public: 93 static char ID; 94 95 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 96 97 bool runOnMachineFunction(MachineFunction &MF) override; 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 101 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 102 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 103 AU.addRequired<TargetPassConfig>(); 104 MachineFunctionPass::getAnalysisUsage(AU); 105 } 106 107 MachineFunctionProperties getRequiredProperties() const override { 108 return MachineFunctionProperties().set( 109 MachineFunctionProperties::Property::NoPHIs); 110 } 111 }; 112 113 } // end anonymous namespace 114 115 char BranchFolderPass::ID = 0; 116 117 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 118 119 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 120 "Control Flow Optimizer", false, false) 121 122 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 123 if (skipFunction(MF.getFunction())) 124 return false; 125 126 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 127 // TailMerge can create jump into if branches that make CFG irreducible for 128 // HW that requires structurized CFG. 129 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 130 PassConfig->getEnableTailMerge(); 131 MBFIWrapper MBBFreqInfo( 132 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); 133 BranchFolder Folder( 134 EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 135 getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(), 136 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 137 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 138 MF.getSubtarget().getRegisterInfo()); 139 } 140 141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist, 142 MBFIWrapper &FreqInfo, 143 const MachineBranchProbabilityInfo &ProbInfo, 144 ProfileSummaryInfo *PSI, unsigned MinTailLength) 145 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 146 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 147 switch (FlagEnableTailMerge) { 148 case cl::BOU_UNSET: 149 EnableTailMerge = DefaultEnableTailMerge; 150 break; 151 case cl::BOU_TRUE: EnableTailMerge = true; break; 152 case cl::BOU_FALSE: EnableTailMerge = false; break; 153 } 154 } 155 156 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 157 assert(MBB->pred_empty() && "MBB must be dead!"); 158 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 159 160 MachineFunction *MF = MBB->getParent(); 161 // drop all successors. 162 while (!MBB->succ_empty()) 163 MBB->removeSuccessor(MBB->succ_end()-1); 164 165 // Avoid matching if this pointer gets reused. 166 TriedMerging.erase(MBB); 167 168 // Update call info. 169 for (const MachineInstr &MI : *MBB) 170 if (MI.shouldUpdateAdditionalCallInfo()) 171 MF->eraseAdditionalCallInfo(&MI); 172 173 // Remove the block. 174 MF->erase(MBB); 175 EHScopeMembership.erase(MBB); 176 if (MLI) 177 MLI->removeBlock(MBB); 178 } 179 180 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 181 const TargetInstrInfo *tii, 182 const TargetRegisterInfo *tri, 183 MachineLoopInfo *mli, bool AfterPlacement) { 184 if (!tii) return false; 185 186 TriedMerging.clear(); 187 188 MachineRegisterInfo &MRI = MF.getRegInfo(); 189 AfterBlockPlacement = AfterPlacement; 190 TII = tii; 191 TRI = tri; 192 MLI = mli; 193 this->MRI = &MRI; 194 195 if (MinCommonTailLength == 0) { 196 MinCommonTailLength = TailMergeSize.getNumOccurrences() > 0 197 ? TailMergeSize 198 : TII->getTailMergeSize(MF); 199 } 200 201 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 202 if (!UpdateLiveIns) 203 MRI.invalidateLiveness(); 204 205 bool MadeChange = false; 206 207 // Recalculate EH scope membership. 208 EHScopeMembership = getEHScopeMembership(MF); 209 210 bool MadeChangeThisIteration = true; 211 while (MadeChangeThisIteration) { 212 MadeChangeThisIteration = TailMergeBlocks(MF); 213 // No need to clean up if tail merging does not change anything after the 214 // block placement. 215 if (!AfterBlockPlacement || MadeChangeThisIteration) 216 MadeChangeThisIteration |= OptimizeBranches(MF); 217 if (EnableHoistCommonCode) 218 MadeChangeThisIteration |= HoistCommonCode(MF); 219 MadeChange |= MadeChangeThisIteration; 220 } 221 222 // See if any jump tables have become dead as the code generator 223 // did its thing. 224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 225 if (!JTI) 226 return MadeChange; 227 228 // Walk the function to find jump tables that are live. 229 BitVector JTIsLive(JTI->getJumpTables().size()); 230 for (const MachineBasicBlock &BB : MF) { 231 for (const MachineInstr &I : BB) 232 for (const MachineOperand &Op : I.operands()) { 233 if (!Op.isJTI()) continue; 234 235 // Remember that this JT is live. 236 JTIsLive.set(Op.getIndex()); 237 } 238 } 239 240 // Finally, remove dead jump tables. This happens when the 241 // indirect jump was unreachable (and thus deleted). 242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 243 if (!JTIsLive.test(i)) { 244 JTI->RemoveJumpTable(i); 245 MadeChange = true; 246 } 247 248 return MadeChange; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Tail Merging of Blocks 253 //===----------------------------------------------------------------------===// 254 255 /// HashMachineInstr - Compute a hash value for MI and its operands. 256 static unsigned HashMachineInstr(const MachineInstr &MI) { 257 unsigned Hash = MI.getOpcode(); 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 const MachineOperand &Op = MI.getOperand(i); 260 261 // Merge in bits from the operand if easy. We can't use MachineOperand's 262 // hash_code here because it's not deterministic and we sort by hash value 263 // later. 264 unsigned OperandHash = 0; 265 switch (Op.getType()) { 266 case MachineOperand::MO_Register: 267 OperandHash = Op.getReg(); 268 break; 269 case MachineOperand::MO_Immediate: 270 OperandHash = Op.getImm(); 271 break; 272 case MachineOperand::MO_MachineBasicBlock: 273 OperandHash = Op.getMBB()->getNumber(); 274 break; 275 case MachineOperand::MO_FrameIndex: 276 case MachineOperand::MO_ConstantPoolIndex: 277 case MachineOperand::MO_JumpTableIndex: 278 OperandHash = Op.getIndex(); 279 break; 280 case MachineOperand::MO_GlobalAddress: 281 case MachineOperand::MO_ExternalSymbol: 282 // Global address / external symbol are too hard, don't bother, but do 283 // pull in the offset. 284 OperandHash = Op.getOffset(); 285 break; 286 default: 287 break; 288 } 289 290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 291 } 292 return Hash; 293 } 294 295 /// HashEndOfMBB - Hash the last instruction in the MBB. 296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false); 298 if (I == MBB.end()) 299 return 0; 300 301 return HashMachineInstr(*I); 302 } 303 304 /// Whether MI should be counted as an instruction when calculating common tail. 305 static bool countsAsInstruction(const MachineInstr &MI) { 306 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 307 } 308 309 /// Iterate backwards from the given iterator \p I, towards the beginning of the 310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 311 /// pointing to that MI. If no such MI is found, return the end iterator. 312 static MachineBasicBlock::iterator 313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 314 MachineBasicBlock *MBB) { 315 while (I != MBB->begin()) { 316 --I; 317 if (countsAsInstruction(*I)) 318 return I; 319 } 320 return MBB->end(); 321 } 322 323 /// Given two machine basic blocks, return the number of instructions they 324 /// actually have in common together at their end. If a common tail is found (at 325 /// least by one instruction), then iterators for the first shared instruction 326 /// in each block are returned as well. 327 /// 328 /// Non-instructions according to countsAsInstruction are ignored. 329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 330 MachineBasicBlock *MBB2, 331 MachineBasicBlock::iterator &I1, 332 MachineBasicBlock::iterator &I2) { 333 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 334 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 335 336 unsigned TailLen = 0; 337 while (true) { 338 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 339 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 340 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 341 break; 342 if (!MBBI1->isIdenticalTo(*MBBI2) || 343 // FIXME: This check is dubious. It's used to get around a problem where 344 // people incorrectly expect inline asm directives to remain in the same 345 // relative order. This is untenable because normal compiler 346 // optimizations (like this one) may reorder and/or merge these 347 // directives. 348 MBBI1->isInlineAsm()) { 349 break; 350 } 351 if (MBBI1->getFlag(MachineInstr::NoMerge) || 352 MBBI2->getFlag(MachineInstr::NoMerge)) 353 break; 354 ++TailLen; 355 I1 = MBBI1; 356 I2 = MBBI2; 357 } 358 359 return TailLen; 360 } 361 362 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 363 MachineBasicBlock &NewDest) { 364 if (UpdateLiveIns) { 365 // OldInst should always point to an instruction. 366 MachineBasicBlock &OldMBB = *OldInst->getParent(); 367 LiveRegs.clear(); 368 LiveRegs.addLiveOuts(OldMBB); 369 // Move backward to the place where will insert the jump. 370 MachineBasicBlock::iterator I = OldMBB.end(); 371 do { 372 --I; 373 LiveRegs.stepBackward(*I); 374 } while (I != OldInst); 375 376 // Merging the tails may have switched some undef operand to non-undef ones. 377 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 378 // register. 379 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 380 // We computed the liveins with computeLiveIn earlier and should only see 381 // full registers: 382 assert(P.LaneMask == LaneBitmask::getAll() && 383 "Can only handle full register."); 384 MCRegister Reg = P.PhysReg; 385 if (!LiveRegs.available(*MRI, Reg)) 386 continue; 387 DebugLoc DL; 388 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 389 } 390 } 391 392 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 393 ++NumTailMerge; 394 } 395 396 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 397 MachineBasicBlock::iterator BBI1, 398 const BasicBlock *BB) { 399 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 400 return nullptr; 401 402 MachineFunction &MF = *CurMBB.getParent(); 403 404 // Create the fall-through block. 405 MachineFunction::iterator MBBI = CurMBB.getIterator(); 406 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 407 CurMBB.getParent()->insert(++MBBI, NewMBB); 408 409 // Move all the successors of this block to the specified block. 410 NewMBB->transferSuccessors(&CurMBB); 411 412 // Add an edge from CurMBB to NewMBB for the fall-through. 413 CurMBB.addSuccessor(NewMBB); 414 415 // Splice the code over. 416 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 417 418 // NewMBB belongs to the same loop as CurMBB. 419 if (MLI) 420 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 421 ML->addBasicBlockToLoop(NewMBB, *MLI); 422 423 // NewMBB inherits CurMBB's block frequency. 424 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 425 426 if (UpdateLiveIns) 427 computeAndAddLiveIns(LiveRegs, *NewMBB); 428 429 // Add the new block to the EH scope. 430 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 431 if (EHScopeI != EHScopeMembership.end()) { 432 auto n = EHScopeI->second; 433 EHScopeMembership[NewMBB] = n; 434 } 435 436 return NewMBB; 437 } 438 439 /// EstimateRuntime - Make a rough estimate for how long it will take to run 440 /// the specified code. 441 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 442 MachineBasicBlock::iterator E) { 443 unsigned Time = 0; 444 for (; I != E; ++I) { 445 if (!countsAsInstruction(*I)) 446 continue; 447 if (I->isCall()) 448 Time += 10; 449 else if (I->mayLoadOrStore()) 450 Time += 2; 451 else 452 ++Time; 453 } 454 return Time; 455 } 456 457 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 458 // branches temporarily for tail merging). In the case where CurMBB ends 459 // with a conditional branch to the next block, optimize by reversing the 460 // test and conditionally branching to SuccMBB instead. 461 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 462 const TargetInstrInfo *TII, const DebugLoc &BranchDL) { 463 MachineFunction *MF = CurMBB->getParent(); 464 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 465 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 466 SmallVector<MachineOperand, 4> Cond; 467 DebugLoc dl = CurMBB->findBranchDebugLoc(); 468 if (!dl) 469 dl = BranchDL; 470 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 471 MachineBasicBlock *NextBB = &*I; 472 if (TBB == NextBB && !Cond.empty() && !FBB) { 473 if (!TII->reverseBranchCondition(Cond)) { 474 TII->removeBranch(*CurMBB); 475 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 476 return; 477 } 478 } 479 } 480 TII->insertBranch(*CurMBB, SuccBB, nullptr, 481 SmallVector<MachineOperand, 0>(), dl); 482 } 483 484 bool 485 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 486 if (getHash() < o.getHash()) 487 return true; 488 if (getHash() > o.getHash()) 489 return false; 490 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 491 return true; 492 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 493 return false; 494 return false; 495 } 496 497 /// CountTerminators - Count the number of terminators in the given 498 /// block and set I to the position of the first non-terminator, if there 499 /// is one, or MBB->end() otherwise. 500 static unsigned CountTerminators(MachineBasicBlock *MBB, 501 MachineBasicBlock::iterator &I) { 502 I = MBB->end(); 503 unsigned NumTerms = 0; 504 while (true) { 505 if (I == MBB->begin()) { 506 I = MBB->end(); 507 break; 508 } 509 --I; 510 if (!I->isTerminator()) break; 511 ++NumTerms; 512 } 513 return NumTerms; 514 } 515 516 /// A no successor, non-return block probably ends in unreachable and is cold. 517 /// Also consider a block that ends in an indirect branch to be a return block, 518 /// since many targets use plain indirect branches to return. 519 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 520 if (!MBB->succ_empty()) 521 return false; 522 if (MBB->empty()) 523 return true; 524 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 525 } 526 527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 528 /// and decide if it would be profitable to merge those tails. Return the 529 /// length of the common tail and iterators to the first common instruction 530 /// in each block. 531 /// MBB1, MBB2 The blocks to check 532 /// MinCommonTailLength Minimum size of tail block to be merged. 533 /// CommonTailLen Out parameter to record the size of the shared tail between 534 /// MBB1 and MBB2 535 /// I1, I2 Iterator references that will be changed to point to the first 536 /// instruction in the common tail shared by MBB1,MBB2 537 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 538 /// relative to SuccBB 539 /// PredBB The layout predecessor of SuccBB, if any. 540 /// EHScopeMembership map from block to EH scope #. 541 /// AfterPlacement True if we are merging blocks after layout. Stricter 542 /// thresholds apply to prevent undoing tail-duplication. 543 static bool 544 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 545 unsigned MinCommonTailLength, unsigned &CommonTailLen, 546 MachineBasicBlock::iterator &I1, 547 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 548 MachineBasicBlock *PredBB, 549 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 550 bool AfterPlacement, 551 MBFIWrapper &MBBFreqInfo, 552 ProfileSummaryInfo *PSI) { 553 // It is never profitable to tail-merge blocks from two different EH scopes. 554 if (!EHScopeMembership.empty()) { 555 auto EHScope1 = EHScopeMembership.find(MBB1); 556 assert(EHScope1 != EHScopeMembership.end()); 557 auto EHScope2 = EHScopeMembership.find(MBB2); 558 assert(EHScope2 != EHScopeMembership.end()); 559 if (EHScope1->second != EHScope2->second) 560 return false; 561 } 562 563 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 564 if (CommonTailLen == 0) 565 return false; 566 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 567 << " and " << printMBBReference(*MBB2) << " is " 568 << CommonTailLen << '\n'); 569 570 // Move the iterators to the beginning of the MBB if we only got debug 571 // instructions before the tail. This is to avoid splitting a block when we 572 // only got debug instructions before the tail (to be invariant on -g). 573 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1) 574 I1 = MBB1->begin(); 575 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2) 576 I2 = MBB2->begin(); 577 578 bool FullBlockTail1 = I1 == MBB1->begin(); 579 bool FullBlockTail2 = I2 == MBB2->begin(); 580 581 // It's almost always profitable to merge any number of non-terminator 582 // instructions with the block that falls through into the common successor. 583 // This is true only for a single successor. For multiple successors, we are 584 // trading a conditional branch for an unconditional one. 585 // TODO: Re-visit successor size for non-layout tail merging. 586 if ((MBB1 == PredBB || MBB2 == PredBB) && 587 (!AfterPlacement || MBB1->succ_size() == 1)) { 588 MachineBasicBlock::iterator I; 589 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 590 if (CommonTailLen > NumTerms) 591 return true; 592 } 593 594 // If these are identical non-return blocks with no successors, merge them. 595 // Such blocks are typically cold calls to noreturn functions like abort, and 596 // are unlikely to become a fallthrough target after machine block placement. 597 // Tail merging these blocks is unlikely to create additional unconditional 598 // branches, and will reduce the size of this cold code. 599 if (FullBlockTail1 && FullBlockTail2 && 600 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 601 return true; 602 603 // If one of the blocks can be completely merged and happens to be in 604 // a position where the other could fall through into it, merge any number 605 // of instructions, because it can be done without a branch. 606 // TODO: If the blocks are not adjacent, move one of them so that they are? 607 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 608 return true; 609 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 610 return true; 611 612 // If both blocks are identical and end in a branch, merge them unless they 613 // both have a fallthrough predecessor and successor. 614 // We can only do this after block placement because it depends on whether 615 // there are fallthroughs, and we don't know until after layout. 616 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 617 auto BothFallThrough = [](MachineBasicBlock *MBB) { 618 if (!MBB->succ_empty() && !MBB->canFallThrough()) 619 return false; 620 MachineFunction::iterator I(MBB); 621 MachineFunction *MF = MBB->getParent(); 622 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 623 }; 624 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 625 return true; 626 } 627 628 // If both blocks have an unconditional branch temporarily stripped out, 629 // count that as an additional common instruction for the following 630 // heuristics. This heuristic is only accurate for single-succ blocks, so to 631 // make sure that during layout merging and duplicating don't crash, we check 632 // for that when merging during layout. 633 unsigned EffectiveTailLen = CommonTailLen; 634 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 635 (MBB1->succ_size() == 1 || !AfterPlacement) && 636 !MBB1->back().isBarrier() && 637 !MBB2->back().isBarrier()) 638 ++EffectiveTailLen; 639 640 // Check if the common tail is long enough to be worthwhile. 641 if (EffectiveTailLen >= MinCommonTailLength) 642 return true; 643 644 // If we are optimizing for code size, 2 instructions in common is enough if 645 // we don't have to split a block. At worst we will be introducing 1 new 646 // branch instruction, which is likely to be smaller than the 2 647 // instructions that would be deleted in the merge. 648 bool OptForSize = llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 649 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo); 650 return EffectiveTailLen >= 2 && OptForSize && 651 (FullBlockTail1 || FullBlockTail2); 652 } 653 654 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 655 unsigned MinCommonTailLength, 656 MachineBasicBlock *SuccBB, 657 MachineBasicBlock *PredBB) { 658 unsigned maxCommonTailLength = 0U; 659 SameTails.clear(); 660 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 661 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 662 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 663 B = MergePotentials.begin(); 664 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 665 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 666 unsigned CommonTailLen; 667 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 668 MinCommonTailLength, 669 CommonTailLen, TrialBBI1, TrialBBI2, 670 SuccBB, PredBB, 671 EHScopeMembership, 672 AfterBlockPlacement, MBBFreqInfo, PSI)) { 673 if (CommonTailLen > maxCommonTailLength) { 674 SameTails.clear(); 675 maxCommonTailLength = CommonTailLen; 676 HighestMPIter = CurMPIter; 677 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 678 } 679 if (HighestMPIter == CurMPIter && 680 CommonTailLen == maxCommonTailLength) 681 SameTails.push_back(SameTailElt(I, TrialBBI2)); 682 } 683 if (I == B) 684 break; 685 } 686 } 687 return maxCommonTailLength; 688 } 689 690 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 691 MachineBasicBlock *SuccBB, 692 MachineBasicBlock *PredBB, 693 const DebugLoc &BranchDL) { 694 MPIterator CurMPIter, B; 695 for (CurMPIter = std::prev(MergePotentials.end()), 696 B = MergePotentials.begin(); 697 CurMPIter->getHash() == CurHash; --CurMPIter) { 698 // Put the unconditional branch back, if we need one. 699 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 700 if (SuccBB && CurMBB != PredBB) 701 FixTail(CurMBB, SuccBB, TII, BranchDL); 702 if (CurMPIter == B) 703 break; 704 } 705 if (CurMPIter->getHash() != CurHash) 706 CurMPIter++; 707 MergePotentials.erase(CurMPIter, MergePotentials.end()); 708 } 709 710 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 711 MachineBasicBlock *SuccBB, 712 unsigned maxCommonTailLength, 713 unsigned &commonTailIndex) { 714 commonTailIndex = 0; 715 unsigned TimeEstimate = ~0U; 716 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 717 // Use PredBB if possible; that doesn't require a new branch. 718 if (SameTails[i].getBlock() == PredBB) { 719 commonTailIndex = i; 720 break; 721 } 722 // Otherwise, make a (fairly bogus) choice based on estimate of 723 // how long it will take the various blocks to execute. 724 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 725 SameTails[i].getTailStartPos()); 726 if (t <= TimeEstimate) { 727 TimeEstimate = t; 728 commonTailIndex = i; 729 } 730 } 731 732 MachineBasicBlock::iterator BBI = 733 SameTails[commonTailIndex].getTailStartPos(); 734 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 735 736 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 737 << maxCommonTailLength); 738 739 // If the split block unconditionally falls-thru to SuccBB, it will be 740 // merged. In control flow terms it should then take SuccBB's name. e.g. If 741 // SuccBB is an inner loop, the common tail is still part of the inner loop. 742 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 743 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 744 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 745 if (!newMBB) { 746 LLVM_DEBUG(dbgs() << "... failed!"); 747 return false; 748 } 749 750 SameTails[commonTailIndex].setBlock(newMBB); 751 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 752 753 // If we split PredBB, newMBB is the new predecessor. 754 if (PredBB == MBB) 755 PredBB = newMBB; 756 757 return true; 758 } 759 760 static void 761 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 762 MachineBasicBlock &MBBCommon) { 763 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 764 // Note CommonTailLen does not necessarily matches the size of 765 // the common BB nor all its instructions because of debug 766 // instructions differences. 767 unsigned CommonTailLen = 0; 768 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 769 ++CommonTailLen; 770 771 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 772 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 773 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 774 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 775 776 while (CommonTailLen--) { 777 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 778 (void)MBBIE; 779 780 if (!countsAsInstruction(*MBBI)) { 781 ++MBBI; 782 continue; 783 } 784 785 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 786 ++MBBICommon; 787 788 assert(MBBICommon != MBBIECommon && 789 "Reached BB end within common tail length!"); 790 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 791 792 // Merge MMOs from memory operations in the common block. 793 if (MBBICommon->mayLoadOrStore()) 794 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 795 // Drop undef flags if they aren't present in all merged instructions. 796 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 797 MachineOperand &MO = MBBICommon->getOperand(I); 798 if (MO.isReg() && MO.isUndef()) { 799 const MachineOperand &OtherMO = MBBI->getOperand(I); 800 if (!OtherMO.isUndef()) 801 MO.setIsUndef(false); 802 } 803 } 804 805 ++MBBI; 806 ++MBBICommon; 807 } 808 } 809 810 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 811 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 812 813 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 814 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 815 if (i != commonTailIndex) { 816 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 817 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 818 } else { 819 assert(SameTails[i].getTailStartPos() == MBB->begin() && 820 "MBB is not a common tail only block"); 821 } 822 } 823 824 for (auto &MI : *MBB) { 825 if (!countsAsInstruction(MI)) 826 continue; 827 DebugLoc DL = MI.getDebugLoc(); 828 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 829 if (i == commonTailIndex) 830 continue; 831 832 auto &Pos = NextCommonInsts[i]; 833 assert(Pos != SameTails[i].getBlock()->end() && 834 "Reached BB end within common tail"); 835 while (!countsAsInstruction(*Pos)) { 836 ++Pos; 837 assert(Pos != SameTails[i].getBlock()->end() && 838 "Reached BB end within common tail"); 839 } 840 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 841 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 842 NextCommonInsts[i] = ++Pos; 843 } 844 MI.setDebugLoc(DL); 845 } 846 847 if (UpdateLiveIns) { 848 LivePhysRegs NewLiveIns(*TRI); 849 computeLiveIns(NewLiveIns, *MBB); 850 LiveRegs.init(*TRI); 851 852 // The flag merging may lead to some register uses no longer using the 853 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 854 for (MachineBasicBlock *Pred : MBB->predecessors()) { 855 LiveRegs.clear(); 856 LiveRegs.addLiveOuts(*Pred); 857 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 858 for (Register Reg : NewLiveIns) { 859 if (!LiveRegs.available(*MRI, Reg)) 860 continue; 861 862 // Skip the register if we are about to add one of its super registers. 863 // TODO: Common this up with the same logic in addLineIns(). 864 if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) { 865 return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg); 866 })) 867 continue; 868 869 DebugLoc DL; 870 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 871 Reg); 872 } 873 } 874 875 MBB->clearLiveIns(); 876 addLiveIns(*MBB, NewLiveIns); 877 } 878 } 879 880 // See if any of the blocks in MergePotentials (which all have SuccBB as a 881 // successor, or all have no successor if it is null) can be tail-merged. 882 // If there is a successor, any blocks in MergePotentials that are not 883 // tail-merged and are not immediately before Succ must have an unconditional 884 // branch to Succ added (but the predecessor/successor lists need no 885 // adjustment). The lone predecessor of Succ that falls through into Succ, 886 // if any, is given in PredBB. 887 // MinCommonTailLength - Except for the special cases below, tail-merge if 888 // there are at least this many instructions in common. 889 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 890 MachineBasicBlock *PredBB, 891 unsigned MinCommonTailLength) { 892 bool MadeChange = false; 893 894 LLVM_DEBUG({ 895 dbgs() << "\nTryTailMergeBlocks: "; 896 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 897 dbgs() << printMBBReference(*MergePotentials[i].getBlock()) 898 << (i == e - 1 ? "" : ", "); 899 dbgs() << "\n"; 900 if (SuccBB) { 901 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 902 if (PredBB) 903 dbgs() << " which has fall-through from " << printMBBReference(*PredBB) 904 << "\n"; 905 } 906 dbgs() << "Looking for common tails of at least " << MinCommonTailLength 907 << " instruction" << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 908 }); 909 910 // Sort by hash value so that blocks with identical end sequences sort 911 // together. 912 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 913 914 // Walk through equivalence sets looking for actual exact matches. 915 while (MergePotentials.size() > 1) { 916 unsigned CurHash = MergePotentials.back().getHash(); 917 const DebugLoc &BranchDL = MergePotentials.back().getBranchDebugLoc(); 918 919 // Build SameTails, identifying the set of blocks with this hash code 920 // and with the maximum number of instructions in common. 921 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 922 MinCommonTailLength, 923 SuccBB, PredBB); 924 925 // If we didn't find any pair that has at least MinCommonTailLength 926 // instructions in common, remove all blocks with this hash code and retry. 927 if (SameTails.empty()) { 928 RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL); 929 continue; 930 } 931 932 // If one of the blocks is the entire common tail (and is not the entry 933 // block/an EH pad, which we can't jump to), we can treat all blocks with 934 // this same tail at once. Use PredBB if that is one of the possibilities, 935 // as that will not introduce any extra branches. 936 MachineBasicBlock *EntryBB = 937 &MergePotentials.front().getBlock()->getParent()->front(); 938 unsigned commonTailIndex = SameTails.size(); 939 // If there are two blocks, check to see if one can be made to fall through 940 // into the other. 941 if (SameTails.size() == 2 && 942 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 943 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 944 commonTailIndex = 1; 945 else if (SameTails.size() == 2 && 946 SameTails[1].getBlock()->isLayoutSuccessor( 947 SameTails[0].getBlock()) && 948 SameTails[0].tailIsWholeBlock() && 949 !SameTails[0].getBlock()->isEHPad()) 950 commonTailIndex = 0; 951 else { 952 // Otherwise just pick one, favoring the fall-through predecessor if 953 // there is one. 954 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 955 MachineBasicBlock *MBB = SameTails[i].getBlock(); 956 if ((MBB == EntryBB || MBB->isEHPad()) && 957 SameTails[i].tailIsWholeBlock()) 958 continue; 959 if (MBB == PredBB) { 960 commonTailIndex = i; 961 break; 962 } 963 if (SameTails[i].tailIsWholeBlock()) 964 commonTailIndex = i; 965 } 966 } 967 968 if (commonTailIndex == SameTails.size() || 969 (SameTails[commonTailIndex].getBlock() == PredBB && 970 !SameTails[commonTailIndex].tailIsWholeBlock())) { 971 // None of the blocks consist entirely of the common tail. 972 // Split a block so that one does. 973 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 974 maxCommonTailLength, commonTailIndex)) { 975 RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL); 976 continue; 977 } 978 } 979 980 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 981 982 // Recompute common tail MBB's edge weights and block frequency. 983 setCommonTailEdgeWeights(*MBB); 984 985 // Merge debug locations, MMOs and undef flags across identical instructions 986 // for common tail. 987 mergeCommonTails(commonTailIndex); 988 989 // MBB is common tail. Adjust all other BB's to jump to this one. 990 // Traversal must be forwards so erases work. 991 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 992 << " for "); 993 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 994 if (commonTailIndex == i) 995 continue; 996 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 997 << (i == e - 1 ? "" : ", ")); 998 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 999 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1000 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1001 MergePotentials.erase(SameTails[i].getMPIter()); 1002 } 1003 LLVM_DEBUG(dbgs() << "\n"); 1004 // We leave commonTailIndex in the worklist in case there are other blocks 1005 // that match it with a smaller number of instructions. 1006 MadeChange = true; 1007 } 1008 return MadeChange; 1009 } 1010 1011 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1012 bool MadeChange = false; 1013 if (!EnableTailMerge) 1014 return MadeChange; 1015 1016 // First find blocks with no successors. 1017 // Block placement may create new tail merging opportunities for these blocks. 1018 MergePotentials.clear(); 1019 for (MachineBasicBlock &MBB : MF) { 1020 if (MergePotentials.size() == TailMergeThreshold) 1021 break; 1022 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1023 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB, 1024 MBB.findBranchDebugLoc())); 1025 } 1026 1027 // If this is a large problem, avoid visiting the same basic blocks 1028 // multiple times. 1029 if (MergePotentials.size() == TailMergeThreshold) 1030 for (const MergePotentialsElt &Elt : MergePotentials) 1031 TriedMerging.insert(Elt.getBlock()); 1032 1033 // See if we can do any tail merging on those. 1034 if (MergePotentials.size() >= 2) 1035 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1036 1037 // Look at blocks (IBB) with multiple predecessors (PBB). 1038 // We change each predecessor to a canonical form, by 1039 // (1) temporarily removing any unconditional branch from the predecessor 1040 // to IBB, and 1041 // (2) alter conditional branches so they branch to the other block 1042 // not IBB; this may require adding back an unconditional branch to IBB 1043 // later, where there wasn't one coming in. E.g. 1044 // Bcc IBB 1045 // fallthrough to QBB 1046 // here becomes 1047 // Bncc QBB 1048 // with a conceptual B to IBB after that, which never actually exists. 1049 // With those changes, we see whether the predecessors' tails match, 1050 // and merge them if so. We change things out of canonical form and 1051 // back to the way they were later in the process. (OptimizeBranches 1052 // would undo some of this, but we can't use it, because we'd get into 1053 // a compile-time infinite loop repeatedly doing and undoing the same 1054 // transformations.) 1055 1056 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1057 I != E; ++I) { 1058 if (I->pred_size() < 2) continue; 1059 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1060 MachineBasicBlock *IBB = &*I; 1061 MachineBasicBlock *PredBB = &*std::prev(I); 1062 MergePotentials.clear(); 1063 MachineLoop *ML; 1064 1065 // Bail if merging after placement and IBB is the loop header because 1066 // -- If merging predecessors that belong to the same loop as IBB, the 1067 // common tail of merged predecessors may become the loop top if block 1068 // placement is called again and the predecessors may branch to this common 1069 // tail and require more branches. This can be relaxed if 1070 // MachineBlockPlacement::findBestLoopTop is more flexible. 1071 // --If merging predecessors that do not belong to the same loop as IBB, the 1072 // loop info of IBB's loop and the other loops may be affected. Calling the 1073 // block placement again may make big change to the layout and eliminate the 1074 // reason to do tail merging here. 1075 if (AfterBlockPlacement && MLI) { 1076 ML = MLI->getLoopFor(IBB); 1077 if (ML && IBB == ML->getHeader()) 1078 continue; 1079 } 1080 1081 for (MachineBasicBlock *PBB : I->predecessors()) { 1082 if (MergePotentials.size() == TailMergeThreshold) 1083 break; 1084 1085 if (TriedMerging.count(PBB)) 1086 continue; 1087 1088 // Skip blocks that loop to themselves, can't tail merge these. 1089 if (PBB == IBB) 1090 continue; 1091 1092 // Visit each predecessor only once. 1093 if (!UniquePreds.insert(PBB).second) 1094 continue; 1095 1096 // Skip blocks which may jump to a landing pad or jump from an asm blob. 1097 // Can't tail merge these. 1098 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr()) 1099 continue; 1100 1101 // After block placement, only consider predecessors that belong to the 1102 // same loop as IBB. The reason is the same as above when skipping loop 1103 // header. 1104 if (AfterBlockPlacement && MLI) 1105 if (ML != MLI->getLoopFor(PBB)) 1106 continue; 1107 1108 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1109 SmallVector<MachineOperand, 4> Cond; 1110 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1111 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1112 // branch. 1113 SmallVector<MachineOperand, 4> NewCond(Cond); 1114 if (!Cond.empty() && TBB == IBB) { 1115 if (TII->reverseBranchCondition(NewCond)) 1116 continue; 1117 // This is the QBB case described above 1118 if (!FBB) { 1119 auto Next = ++PBB->getIterator(); 1120 if (Next != MF.end()) 1121 FBB = &*Next; 1122 } 1123 } 1124 1125 // Remove the unconditional branch at the end, if any. 1126 DebugLoc dl = PBB->findBranchDebugLoc(); 1127 if (TBB && (Cond.empty() || FBB)) { 1128 TII->removeBranch(*PBB); 1129 if (!Cond.empty()) 1130 // reinsert conditional branch only, for now 1131 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1132 NewCond, dl); 1133 } 1134 1135 MergePotentials.push_back( 1136 MergePotentialsElt(HashEndOfMBB(*PBB), PBB, dl)); 1137 } 1138 } 1139 1140 // If this is a large problem, avoid visiting the same basic blocks multiple 1141 // times. 1142 if (MergePotentials.size() == TailMergeThreshold) 1143 for (MergePotentialsElt &Elt : MergePotentials) 1144 TriedMerging.insert(Elt.getBlock()); 1145 1146 if (MergePotentials.size() >= 2) 1147 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1148 1149 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1150 // result of removing blocks in TryTailMergeBlocks. 1151 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1152 if (MergePotentials.size() == 1 && 1153 MergePotentials.begin()->getBlock() != PredBB) 1154 FixTail(MergePotentials.begin()->getBlock(), IBB, TII, 1155 MergePotentials.begin()->getBranchDebugLoc()); 1156 } 1157 1158 return MadeChange; 1159 } 1160 1161 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1162 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1163 BlockFrequency AccumulatedMBBFreq; 1164 1165 // Aggregate edge frequency of successor edge j: 1166 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1167 // where bb is a basic block that is in SameTails. 1168 for (const auto &Src : SameTails) { 1169 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1170 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1171 AccumulatedMBBFreq += BlockFreq; 1172 1173 // It is not necessary to recompute edge weights if TailBB has less than two 1174 // successors. 1175 if (TailMBB.succ_size() <= 1) 1176 continue; 1177 1178 auto EdgeFreq = EdgeFreqLs.begin(); 1179 1180 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1181 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1182 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1183 } 1184 1185 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1186 1187 if (TailMBB.succ_size() <= 1) 1188 return; 1189 1190 auto SumEdgeFreq = 1191 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1192 .getFrequency(); 1193 auto EdgeFreq = EdgeFreqLs.begin(); 1194 1195 if (SumEdgeFreq > 0) { 1196 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1197 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1198 auto Prob = BranchProbability::getBranchProbability( 1199 EdgeFreq->getFrequency(), SumEdgeFreq); 1200 TailMBB.setSuccProbability(SuccI, Prob); 1201 } 1202 } 1203 } 1204 1205 //===----------------------------------------------------------------------===// 1206 // Branch Optimization 1207 //===----------------------------------------------------------------------===// 1208 1209 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1210 bool MadeChange = false; 1211 1212 // Make sure blocks are numbered in order 1213 MF.RenumberBlocks(); 1214 // Renumbering blocks alters EH scope membership, recalculate it. 1215 EHScopeMembership = getEHScopeMembership(MF); 1216 1217 for (MachineBasicBlock &MBB : 1218 llvm::make_early_inc_range(llvm::drop_begin(MF))) { 1219 MadeChange |= OptimizeBlock(&MBB); 1220 1221 // If it is dead, remove it. 1222 if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) { 1223 RemoveDeadBlock(&MBB); 1224 MadeChange = true; 1225 ++NumDeadBlocks; 1226 } 1227 } 1228 1229 return MadeChange; 1230 } 1231 1232 // Blocks should be considered empty if they contain only debug info; 1233 // else the debug info would affect codegen. 1234 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1235 return MBB->getFirstNonDebugInstr(true) == MBB->end(); 1236 } 1237 1238 // Blocks with only debug info and branches should be considered the same 1239 // as blocks with only branches. 1240 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1241 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1242 assert(I != MBB->end() && "empty block!"); 1243 return I->isBranch(); 1244 } 1245 1246 /// IsBetterFallthrough - Return true if it would be clearly better to 1247 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1248 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1249 /// result in infinite loops. 1250 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1251 MachineBasicBlock *MBB2) { 1252 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1253 1254 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1255 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1256 // optimize branches that branch to either a return block or an assert block 1257 // into a fallthrough to the return. 1258 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1259 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1260 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1261 return false; 1262 1263 // If there is a clear successor ordering we make sure that one block 1264 // will fall through to the next 1265 if (MBB1->isSuccessor(MBB2)) return true; 1266 if (MBB2->isSuccessor(MBB1)) return false; 1267 1268 return MBB2I->isCall() && !MBB1I->isCall(); 1269 } 1270 1271 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1272 MachineBasicBlock &MBB, 1273 MachineBasicBlock &PredMBB) { 1274 auto InsertBefore = PredMBB.getFirstTerminator(); 1275 for (MachineInstr &MI : MBB.instrs()) 1276 if (MI.isDebugInstr()) { 1277 TII->duplicate(PredMBB, InsertBefore, MI); 1278 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1279 << MI); 1280 } 1281 } 1282 1283 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1284 MachineBasicBlock &MBB, 1285 MachineBasicBlock &SuccMBB) { 1286 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1287 for (MachineInstr &MI : MBB.instrs()) 1288 if (MI.isDebugInstr()) { 1289 TII->duplicate(SuccMBB, InsertBefore, MI); 1290 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1291 << MI); 1292 } 1293 } 1294 1295 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1296 // a basic block is removed we would lose the debug information unless we have 1297 // copied the information to a predecessor/successor. 1298 // 1299 // TODO: This function only handles some simple cases. An alternative would be 1300 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1301 // branch folding. 1302 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1303 MachineBasicBlock &MBB) { 1304 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1305 // If this MBB is the only predecessor of a successor it is legal to copy 1306 // DBG_VALUE instructions to the beginning of the successor. 1307 for (MachineBasicBlock *SuccBB : MBB.successors()) 1308 if (SuccBB->pred_size() == 1) 1309 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1310 // If this MBB is the only successor of a predecessor it is legal to copy the 1311 // DBG_VALUE instructions to the end of the predecessor (just before the 1312 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1313 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1314 if (PredBB->succ_size() == 1) 1315 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1316 } 1317 1318 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1319 bool MadeChange = false; 1320 MachineFunction &MF = *MBB->getParent(); 1321 ReoptimizeBlock: 1322 1323 MachineFunction::iterator FallThrough = MBB->getIterator(); 1324 ++FallThrough; 1325 1326 // Make sure MBB and FallThrough belong to the same EH scope. 1327 bool SameEHScope = true; 1328 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1329 auto MBBEHScope = EHScopeMembership.find(MBB); 1330 assert(MBBEHScope != EHScopeMembership.end()); 1331 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1332 assert(FallThroughEHScope != EHScopeMembership.end()); 1333 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1334 } 1335 1336 // Analyze the branch in the current block. As a side-effect, this may cause 1337 // the block to become empty. 1338 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1339 SmallVector<MachineOperand, 4> CurCond; 1340 bool CurUnAnalyzable = 1341 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1342 1343 // If this block is empty, make everyone use its fall-through, not the block 1344 // explicitly. Landing pads should not do this since the landing-pad table 1345 // points to this block. Blocks with their addresses taken shouldn't be 1346 // optimized away. 1347 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1348 SameEHScope) { 1349 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1350 // Dead block? Leave for cleanup later. 1351 if (MBB->pred_empty()) return MadeChange; 1352 1353 if (FallThrough == MF.end()) { 1354 // TODO: Simplify preds to not branch here if possible! 1355 } else if (FallThrough->isEHPad()) { 1356 // Don't rewrite to a landing pad fallthough. That could lead to the case 1357 // where a BB jumps to more than one landing pad. 1358 // TODO: Is it ever worth rewriting predecessors which don't already 1359 // jump to a landing pad, and so can safely jump to the fallthrough? 1360 } else if (MBB->isSuccessor(&*FallThrough)) { 1361 // Rewrite all predecessors of the old block to go to the fallthrough 1362 // instead. 1363 while (!MBB->pred_empty()) { 1364 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1365 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1366 } 1367 // Add rest successors of MBB to successors of FallThrough. Those 1368 // successors are not directly reachable via MBB, so it should be 1369 // landing-pad. 1370 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 1371 if (*SI != &*FallThrough && !FallThrough->isSuccessor(*SI)) { 1372 assert((*SI)->isEHPad() && "Bad CFG"); 1373 FallThrough->copySuccessor(MBB, SI); 1374 } 1375 // If MBB was the target of a jump table, update jump tables to go to the 1376 // fallthrough instead. 1377 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1378 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1379 MadeChange = true; 1380 } 1381 return MadeChange; 1382 } 1383 1384 // Check to see if we can simplify the terminator of the block before this 1385 // one. 1386 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1387 1388 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1389 SmallVector<MachineOperand, 4> PriorCond; 1390 bool PriorUnAnalyzable = 1391 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1392 if (!PriorUnAnalyzable) { 1393 // If the previous branch is conditional and both conditions go to the same 1394 // destination, remove the branch, replacing it with an unconditional one or 1395 // a fall-through. 1396 if (PriorTBB && PriorTBB == PriorFBB) { 1397 DebugLoc Dl = PrevBB.findBranchDebugLoc(); 1398 TII->removeBranch(PrevBB); 1399 PriorCond.clear(); 1400 if (PriorTBB != MBB) 1401 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl); 1402 MadeChange = true; 1403 ++NumBranchOpts; 1404 goto ReoptimizeBlock; 1405 } 1406 1407 // If the previous block unconditionally falls through to this block and 1408 // this block has no other predecessors, move the contents of this block 1409 // into the prior block. This doesn't usually happen when SimplifyCFG 1410 // has been used, but it can happen if tail merging splits a fall-through 1411 // predecessor of a block. 1412 // This has to check PrevBB->succ_size() because EH edges are ignored by 1413 // analyzeBranch. 1414 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1415 PrevBB.succ_size() == 1 && PrevBB.isSuccessor(MBB) && 1416 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1417 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1418 << "From MBB: " << *MBB); 1419 // Remove redundant DBG_VALUEs first. 1420 if (!PrevBB.empty()) { 1421 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1422 --PrevBBIter; 1423 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1424 // Check if DBG_VALUE at the end of PrevBB is identical to the 1425 // DBG_VALUE at the beginning of MBB. 1426 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1427 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1428 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1429 break; 1430 MachineInstr &DuplicateDbg = *MBBIter; 1431 ++MBBIter; -- PrevBBIter; 1432 DuplicateDbg.eraseFromParent(); 1433 } 1434 } 1435 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1436 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1437 assert(PrevBB.succ_empty()); 1438 PrevBB.transferSuccessors(MBB); 1439 MadeChange = true; 1440 return MadeChange; 1441 } 1442 1443 // If the previous branch *only* branches to *this* block (conditional or 1444 // not) remove the branch. 1445 if (PriorTBB == MBB && !PriorFBB) { 1446 TII->removeBranch(PrevBB); 1447 MadeChange = true; 1448 ++NumBranchOpts; 1449 goto ReoptimizeBlock; 1450 } 1451 1452 // If the prior block branches somewhere else on the condition and here if 1453 // the condition is false, remove the uncond second branch. 1454 if (PriorFBB == MBB) { 1455 DebugLoc Dl = PrevBB.findBranchDebugLoc(); 1456 TII->removeBranch(PrevBB); 1457 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl); 1458 MadeChange = true; 1459 ++NumBranchOpts; 1460 goto ReoptimizeBlock; 1461 } 1462 1463 // If the prior block branches here on true and somewhere else on false, and 1464 // if the branch condition is reversible, reverse the branch to create a 1465 // fall-through. 1466 if (PriorTBB == MBB) { 1467 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1468 if (!TII->reverseBranchCondition(NewPriorCond)) { 1469 DebugLoc Dl = PrevBB.findBranchDebugLoc(); 1470 TII->removeBranch(PrevBB); 1471 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, Dl); 1472 MadeChange = true; 1473 ++NumBranchOpts; 1474 goto ReoptimizeBlock; 1475 } 1476 } 1477 1478 // If this block has no successors (e.g. it is a return block or ends with 1479 // a call to a no-return function like abort or __cxa_throw) and if the pred 1480 // falls through into this block, and if it would otherwise fall through 1481 // into the block after this, move this block to the end of the function. 1482 // 1483 // We consider it more likely that execution will stay in the function (e.g. 1484 // due to loops) than it is to exit it. This asserts in loops etc, moving 1485 // the assert condition out of the loop body. 1486 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1487 MachineFunction::iterator(PriorTBB) == FallThrough && 1488 !MBB->canFallThrough()) { 1489 bool DoTransform = true; 1490 1491 // We have to be careful that the succs of PredBB aren't both no-successor 1492 // blocks. If neither have successors and if PredBB is the second from 1493 // last block in the function, we'd just keep swapping the two blocks for 1494 // last. Only do the swap if one is clearly better to fall through than 1495 // the other. 1496 if (FallThrough == --MF.end() && 1497 !IsBetterFallthrough(PriorTBB, MBB)) 1498 DoTransform = false; 1499 1500 if (DoTransform) { 1501 // Reverse the branch so we will fall through on the previous true cond. 1502 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1503 if (!TII->reverseBranchCondition(NewPriorCond)) { 1504 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1505 << "To make fallthrough to: " << *PriorTBB << "\n"); 1506 1507 DebugLoc Dl = PrevBB.findBranchDebugLoc(); 1508 TII->removeBranch(PrevBB); 1509 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, Dl); 1510 1511 // Move this block to the end of the function. 1512 MBB->moveAfter(&MF.back()); 1513 MadeChange = true; 1514 ++NumBranchOpts; 1515 return MadeChange; 1516 } 1517 } 1518 } 1519 } 1520 1521 if (!IsEmptyBlock(MBB)) { 1522 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1523 if (TII->isUnconditionalTailCall(TailCall)) { 1524 SmallVector<MachineBasicBlock *> PredsChanged; 1525 for (auto &Pred : MBB->predecessors()) { 1526 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1527 SmallVector<MachineOperand, 4> PredCond; 1528 bool PredAnalyzable = 1529 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1530 1531 // Only eliminate if MBB == TBB (Taken Basic Block) 1532 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1533 PredTBB != PredFBB) { 1534 // The predecessor has a conditional branch to this block which 1535 // consists of only a tail call. Try to fold the tail call into the 1536 // conditional branch. 1537 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1538 // TODO: It would be nice if analyzeBranch() could provide a pointer 1539 // to the branch instruction so replaceBranchWithTailCall() doesn't 1540 // have to search for it. 1541 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1542 PredsChanged.push_back(Pred); 1543 } 1544 } 1545 // If the predecessor is falling through to this block, we could reverse 1546 // the branch condition and fold the tail call into that. However, after 1547 // that we might have to re-arrange the CFG to fall through to the other 1548 // block and there is a high risk of regressing code size rather than 1549 // improving it. 1550 } 1551 if (!PredsChanged.empty()) { 1552 NumTailCalls += PredsChanged.size(); 1553 for (auto &Pred : PredsChanged) 1554 Pred->removeSuccessor(MBB); 1555 1556 return true; 1557 } 1558 } 1559 } 1560 1561 if (!CurUnAnalyzable) { 1562 // If this is a two-way branch, and the FBB branches to this block, reverse 1563 // the condition so the single-basic-block loop is faster. Instead of: 1564 // Loop: xxx; jcc Out; jmp Loop 1565 // we want: 1566 // Loop: xxx; jncc Loop; jmp Out 1567 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1568 SmallVector<MachineOperand, 4> NewCond(CurCond); 1569 if (!TII->reverseBranchCondition(NewCond)) { 1570 DebugLoc Dl = MBB->findBranchDebugLoc(); 1571 TII->removeBranch(*MBB); 1572 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, Dl); 1573 MadeChange = true; 1574 ++NumBranchOpts; 1575 goto ReoptimizeBlock; 1576 } 1577 } 1578 1579 // If this branch is the only thing in its block, see if we can forward 1580 // other blocks across it. 1581 if (CurTBB && CurCond.empty() && !CurFBB && 1582 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1583 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1584 DebugLoc Dl = MBB->findBranchDebugLoc(); 1585 // This block may contain just an unconditional branch. Because there can 1586 // be 'non-branch terminators' in the block, try removing the branch and 1587 // then seeing if the block is empty. 1588 TII->removeBranch(*MBB); 1589 // If the only things remaining in the block are debug info, remove these 1590 // as well, so this will behave the same as an empty block in non-debug 1591 // mode. 1592 if (IsEmptyBlock(MBB)) { 1593 // Make the block empty, losing the debug info (we could probably 1594 // improve this in some cases.) 1595 MBB->erase(MBB->begin(), MBB->end()); 1596 } 1597 // If this block is just an unconditional branch to CurTBB, we can 1598 // usually completely eliminate the block. The only case we cannot 1599 // completely eliminate the block is when the block before this one 1600 // falls through into MBB and we can't understand the prior block's branch 1601 // condition. 1602 if (MBB->empty()) { 1603 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1604 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1605 !PrevBB.isSuccessor(MBB)) { 1606 // If the prior block falls through into us, turn it into an 1607 // explicit branch to us to make updates simpler. 1608 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1609 PriorTBB != MBB && PriorFBB != MBB) { 1610 if (!PriorTBB) { 1611 assert(PriorCond.empty() && !PriorFBB && 1612 "Bad branch analysis"); 1613 PriorTBB = MBB; 1614 } else { 1615 assert(!PriorFBB && "Machine CFG out of date!"); 1616 PriorFBB = MBB; 1617 } 1618 DebugLoc PrevDl = PrevBB.findBranchDebugLoc(); 1619 TII->removeBranch(PrevBB); 1620 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, PrevDl); 1621 } 1622 1623 // Iterate through all the predecessors, revectoring each in-turn. 1624 size_t PI = 0; 1625 bool DidChange = false; 1626 bool HasBranchToSelf = false; 1627 while(PI != MBB->pred_size()) { 1628 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1629 if (PMBB == MBB) { 1630 // If this block has an uncond branch to itself, leave it. 1631 ++PI; 1632 HasBranchToSelf = true; 1633 } else { 1634 DidChange = true; 1635 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1636 // Add rest successors of MBB to successors of CurTBB. Those 1637 // successors are not directly reachable via MBB, so it should be 1638 // landing-pad. 1639 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; 1640 ++SI) 1641 if (*SI != CurTBB && !CurTBB->isSuccessor(*SI)) { 1642 assert((*SI)->isEHPad() && "Bad CFG"); 1643 CurTBB->copySuccessor(MBB, SI); 1644 } 1645 // If this change resulted in PMBB ending in a conditional 1646 // branch where both conditions go to the same destination, 1647 // change this to an unconditional branch. 1648 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1649 SmallVector<MachineOperand, 4> NewCurCond; 1650 bool NewCurUnAnalyzable = TII->analyzeBranch( 1651 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1652 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1653 DebugLoc PrevDl = PMBB->findBranchDebugLoc(); 1654 TII->removeBranch(*PMBB); 1655 NewCurCond.clear(); 1656 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, 1657 PrevDl); 1658 MadeChange = true; 1659 ++NumBranchOpts; 1660 } 1661 } 1662 } 1663 1664 // Change any jumptables to go to the new MBB. 1665 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1666 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1667 if (DidChange) { 1668 ++NumBranchOpts; 1669 MadeChange = true; 1670 if (!HasBranchToSelf) return MadeChange; 1671 } 1672 } 1673 } 1674 1675 // Add the branch back if the block is more than just an uncond branch. 1676 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, Dl); 1677 } 1678 } 1679 1680 // If the prior block doesn't fall through into this block, and if this 1681 // block doesn't fall through into some other block, see if we can find a 1682 // place to move this block where a fall-through will happen. 1683 if (!PrevBB.canFallThrough()) { 1684 // Now we know that there was no fall-through into this block, check to 1685 // see if it has a fall-through into its successor. 1686 bool CurFallsThru = MBB->canFallThrough(); 1687 1688 if (!MBB->isEHPad()) { 1689 // Check all the predecessors of this block. If one of them has no fall 1690 // throughs, and analyzeBranch thinks it _could_ fallthrough to this 1691 // block, move this block right after it. 1692 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1693 // Analyze the branch at the end of the pred. 1694 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1695 SmallVector<MachineOperand, 4> PredCond; 1696 if (PredBB != MBB && !PredBB->canFallThrough() && 1697 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1698 (PredTBB == MBB || PredFBB == MBB) && 1699 (!CurFallsThru || !CurTBB || !CurFBB) && 1700 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1701 // If the current block doesn't fall through, just move it. 1702 // If the current block can fall through and does not end with a 1703 // conditional branch, we need to append an unconditional jump to 1704 // the (current) next block. To avoid a possible compile-time 1705 // infinite loop, move blocks only backward in this case. 1706 // Also, if there are already 2 branches here, we cannot add a third; 1707 // this means we have the case 1708 // Bcc next 1709 // B elsewhere 1710 // next: 1711 if (CurFallsThru) { 1712 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1713 CurCond.clear(); 1714 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1715 } 1716 MBB->moveAfter(PredBB); 1717 MadeChange = true; 1718 goto ReoptimizeBlock; 1719 } 1720 } 1721 } 1722 1723 if (!CurFallsThru) { 1724 // Check analyzable branch-successors to see if we can move this block 1725 // before one. 1726 if (!CurUnAnalyzable) { 1727 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) { 1728 if (!SuccBB) 1729 continue; 1730 // Analyze the branch at the end of the block before the succ. 1731 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1732 1733 // If this block doesn't already fall-through to that successor, and 1734 // if the succ doesn't already have a block that can fall through into 1735 // it, we can arrange for the fallthrough to happen. 1736 if (SuccBB != MBB && &*SuccPrev != MBB && 1737 !SuccPrev->canFallThrough()) { 1738 MBB->moveBefore(SuccBB); 1739 MadeChange = true; 1740 goto ReoptimizeBlock; 1741 } 1742 } 1743 } 1744 1745 // Okay, there is no really great place to put this block. If, however, 1746 // the block before this one would be a fall-through if this block were 1747 // removed, move this block to the end of the function. There is no real 1748 // advantage in "falling through" to an EH block, so we don't want to 1749 // perform this transformation for that case. 1750 // 1751 // Also, Windows EH introduced the possibility of an arbitrary number of 1752 // successors to a given block. The analyzeBranch call does not consider 1753 // exception handling and so we can get in a state where a block 1754 // containing a call is followed by multiple EH blocks that would be 1755 // rotated infinitely at the end of the function if the transformation 1756 // below were performed for EH "FallThrough" blocks. Therefore, even if 1757 // that appears not to be happening anymore, we should assume that it is 1758 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1759 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1760 SmallVector<MachineOperand, 4> PrevCond; 1761 if (FallThrough != MF.end() && 1762 !FallThrough->isEHPad() && 1763 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1764 PrevBB.isSuccessor(&*FallThrough)) { 1765 MBB->moveAfter(&MF.back()); 1766 MadeChange = true; 1767 return MadeChange; 1768 } 1769 } 1770 } 1771 1772 return MadeChange; 1773 } 1774 1775 //===----------------------------------------------------------------------===// 1776 // Hoist Common Code 1777 //===----------------------------------------------------------------------===// 1778 1779 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1780 bool MadeChange = false; 1781 for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF)) 1782 MadeChange |= HoistCommonCodeInSuccs(&MBB); 1783 1784 return MadeChange; 1785 } 1786 1787 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1788 /// its 'true' successor. 1789 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1790 MachineBasicBlock *TrueBB) { 1791 for (MachineBasicBlock *SuccBB : BB->successors()) 1792 if (SuccBB != TrueBB) 1793 return SuccBB; 1794 return nullptr; 1795 } 1796 1797 template <class Container> 1798 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI, 1799 Container &Set) { 1800 if (Reg.isPhysical()) { 1801 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1802 Set.insert(*AI); 1803 } else { 1804 Set.insert(Reg); 1805 } 1806 } 1807 1808 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1809 /// in successors to. The location is usually just before the terminator, 1810 /// however if the terminator is a conditional branch and its previous 1811 /// instruction is the flag setting instruction, the previous instruction is 1812 /// the preferred location. This function also gathers uses and defs of the 1813 /// instructions from the insertion point to the end of the block. The data is 1814 /// used by HoistCommonCodeInSuccs to ensure safety. 1815 static 1816 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1817 const TargetInstrInfo *TII, 1818 const TargetRegisterInfo *TRI, 1819 SmallSet<Register, 4> &Uses, 1820 SmallSet<Register, 4> &Defs) { 1821 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1822 if (!TII->isUnpredicatedTerminator(*Loc)) 1823 return MBB->end(); 1824 1825 for (const MachineOperand &MO : Loc->operands()) { 1826 if (!MO.isReg()) 1827 continue; 1828 Register Reg = MO.getReg(); 1829 if (!Reg) 1830 continue; 1831 if (MO.isUse()) { 1832 addRegAndItsAliases(Reg, TRI, Uses); 1833 } else { 1834 if (!MO.isDead()) 1835 // Don't try to hoist code in the rare case the terminator defines a 1836 // register that is later used. 1837 return MBB->end(); 1838 1839 // If the terminator defines a register, make sure we don't hoist 1840 // the instruction whose def might be clobbered by the terminator. 1841 addRegAndItsAliases(Reg, TRI, Defs); 1842 } 1843 } 1844 1845 if (Uses.empty()) 1846 return Loc; 1847 // If the terminator is the only instruction in the block and Uses is not 1848 // empty (or we would have returned above), we can still safely hoist 1849 // instructions just before the terminator as long as the Defs/Uses are not 1850 // violated (which is checked in HoistCommonCodeInSuccs). 1851 if (Loc == MBB->begin()) 1852 return Loc; 1853 1854 // The terminator is probably a conditional branch, try not to separate the 1855 // branch from condition setting instruction. 1856 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1857 1858 bool IsDef = false; 1859 for (const MachineOperand &MO : PI->operands()) { 1860 // If PI has a regmask operand, it is probably a call. Separate away. 1861 if (MO.isRegMask()) 1862 return Loc; 1863 if (!MO.isReg() || MO.isUse()) 1864 continue; 1865 Register Reg = MO.getReg(); 1866 if (!Reg) 1867 continue; 1868 if (Uses.count(Reg)) { 1869 IsDef = true; 1870 break; 1871 } 1872 } 1873 if (!IsDef) 1874 // The condition setting instruction is not just before the conditional 1875 // branch. 1876 return Loc; 1877 1878 // Be conservative, don't insert instruction above something that may have 1879 // side-effects. And since it's potentially bad to separate flag setting 1880 // instruction from the conditional branch, just abort the optimization 1881 // completely. 1882 // Also avoid moving code above predicated instruction since it's hard to 1883 // reason about register liveness with predicated instruction. 1884 bool DontMoveAcrossStore = true; 1885 if (!PI->isSafeToMove(DontMoveAcrossStore) || TII->isPredicated(*PI)) 1886 return MBB->end(); 1887 1888 // Find out what registers are live. Note this routine is ignoring other live 1889 // registers which are only used by instructions in successor blocks. 1890 for (const MachineOperand &MO : PI->operands()) { 1891 if (!MO.isReg()) 1892 continue; 1893 Register Reg = MO.getReg(); 1894 if (!Reg) 1895 continue; 1896 if (MO.isUse()) { 1897 addRegAndItsAliases(Reg, TRI, Uses); 1898 } else { 1899 if (Uses.erase(Reg)) { 1900 if (Reg.isPhysical()) { 1901 for (MCPhysReg SubReg : TRI->subregs(Reg)) 1902 Uses.erase(SubReg); // Use sub-registers to be conservative 1903 } 1904 } 1905 addRegAndItsAliases(Reg, TRI, Defs); 1906 } 1907 } 1908 1909 return PI; 1910 } 1911 1912 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1913 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1914 SmallVector<MachineOperand, 4> Cond; 1915 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1916 return false; 1917 1918 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1919 if (!FBB) 1920 // Malformed bcc? True and false blocks are the same? 1921 return false; 1922 1923 // Restrict the optimization to cases where MBB is the only predecessor, 1924 // it is an obvious win. 1925 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1926 return false; 1927 1928 // Find a suitable position to hoist the common instructions to. Also figure 1929 // out which registers are used or defined by instructions from the insertion 1930 // point to the end of the block. 1931 SmallSet<Register, 4> Uses, Defs; 1932 MachineBasicBlock::iterator Loc = 1933 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1934 if (Loc == MBB->end()) 1935 return false; 1936 1937 bool HasDups = false; 1938 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet; 1939 MachineBasicBlock::iterator TIB = TBB->begin(); 1940 MachineBasicBlock::iterator FIB = FBB->begin(); 1941 MachineBasicBlock::iterator TIE = TBB->end(); 1942 MachineBasicBlock::iterator FIE = FBB->end(); 1943 while (TIB != TIE && FIB != FIE) { 1944 // Skip dbg_value instructions. These do not count. 1945 TIB = skipDebugInstructionsForward(TIB, TIE, false); 1946 FIB = skipDebugInstructionsForward(FIB, FIE, false); 1947 if (TIB == TIE || FIB == FIE) 1948 break; 1949 1950 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1951 break; 1952 1953 if (TII->isPredicated(*TIB)) 1954 // Hard to reason about register liveness with predicated instruction. 1955 break; 1956 1957 bool IsSafe = true; 1958 for (MachineOperand &MO : TIB->operands()) { 1959 // Don't attempt to hoist instructions with register masks. 1960 if (MO.isRegMask()) { 1961 IsSafe = false; 1962 break; 1963 } 1964 if (!MO.isReg()) 1965 continue; 1966 Register Reg = MO.getReg(); 1967 if (!Reg) 1968 continue; 1969 if (MO.isDef()) { 1970 if (Uses.count(Reg)) { 1971 // Avoid clobbering a register that's used by the instruction at 1972 // the point of insertion. 1973 IsSafe = false; 1974 break; 1975 } 1976 1977 if (Defs.count(Reg) && !MO.isDead()) { 1978 // Don't hoist the instruction if the def would be clobber by the 1979 // instruction at the point insertion. FIXME: This is overly 1980 // conservative. It should be possible to hoist the instructions 1981 // in BB2 in the following example: 1982 // BB1: 1983 // r1, eflag = op1 r2, r3 1984 // brcc eflag 1985 // 1986 // BB2: 1987 // r1 = op2, ... 1988 // = op3, killed r1 1989 IsSafe = false; 1990 break; 1991 } 1992 } else if (!ActiveDefsSet.count(Reg)) { 1993 if (Defs.count(Reg)) { 1994 // Use is defined by the instruction at the point of insertion. 1995 IsSafe = false; 1996 break; 1997 } 1998 1999 if (MO.isKill() && Uses.count(Reg)) 2000 // Kills a register that's read by the instruction at the point of 2001 // insertion. Remove the kill marker. 2002 MO.setIsKill(false); 2003 } 2004 } 2005 if (!IsSafe) 2006 break; 2007 2008 bool DontMoveAcrossStore = true; 2009 if (!TIB->isSafeToMove(DontMoveAcrossStore)) 2010 break; 2011 2012 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2013 for (const MachineOperand &MO : TIB->all_uses()) { 2014 if (!MO.isKill()) 2015 continue; 2016 Register Reg = MO.getReg(); 2017 if (!Reg) 2018 continue; 2019 if (!AllDefsSet.count(Reg)) { 2020 continue; 2021 } 2022 if (Reg.isPhysical()) { 2023 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2024 ActiveDefsSet.erase(*AI); 2025 } else { 2026 ActiveDefsSet.erase(Reg); 2027 } 2028 } 2029 2030 // Track local defs so we can update liveins. 2031 for (const MachineOperand &MO : TIB->all_defs()) { 2032 if (MO.isDead()) 2033 continue; 2034 Register Reg = MO.getReg(); 2035 if (!Reg || Reg.isVirtual()) 2036 continue; 2037 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2038 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2039 } 2040 2041 HasDups = true; 2042 ++TIB; 2043 ++FIB; 2044 } 2045 2046 if (!HasDups) 2047 return false; 2048 2049 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2050 FBB->erase(FBB->begin(), FIB); 2051 2052 if (UpdateLiveIns) 2053 fullyRecomputeLiveIns({TBB, FBB}); 2054 2055 ++NumHoist; 2056 return true; 2057 } 2058