xref: /onnv-gate/usr/src/cmd/perl/5.8.4/distrib/lib/Benchmark.pm (revision 0:68f95e015346)
1package Benchmark;
2
3use strict;
4
5
6=head1 NAME
7
8Benchmark - benchmark running times of Perl code
9
10=head1 SYNOPSIS
11
12    use Benchmark qw(:all) ;
13
14    timethis ($count, "code");
15
16    # Use Perl code in strings...
17    timethese($count, {
18	'Name1' => '...code1...',
19	'Name2' => '...code2...',
20    });
21
22    # ... or use subroutine references.
23    timethese($count, {
24	'Name1' => sub { ...code1... },
25	'Name2' => sub { ...code2... },
26    });
27
28    # cmpthese can be used both ways as well
29    cmpthese($count, {
30	'Name1' => '...code1...',
31	'Name2' => '...code2...',
32    });
33
34    cmpthese($count, {
35	'Name1' => sub { ...code1... },
36	'Name2' => sub { ...code2... },
37    });
38
39    # ...or in two stages
40    $results = timethese($count,
41        {
42	    'Name1' => sub { ...code1... },
43	    'Name2' => sub { ...code2... },
44        },
45	'none'
46    );
47    cmpthese( $results ) ;
48
49    $t = timeit($count, '...other code...')
50    print "$count loops of other code took:",timestr($t),"\n";
51
52    $t = countit($time, '...other code...')
53    $count = $t->iters ;
54    print "$count loops of other code took:",timestr($t),"\n";
55
56    # enable hires wallclock timing if possible
57    use Benchmark ':hireswallclock';
58
59=head1 DESCRIPTION
60
61The Benchmark module encapsulates a number of routines to help you
62figure out how long it takes to execute some code.
63
64timethis - run a chunk of code several times
65
66timethese - run several chunks of code several times
67
68cmpthese - print results of timethese as a comparison chart
69
70timeit - run a chunk of code and see how long it goes
71
72countit - see how many times a chunk of code runs in a given time
73
74
75=head2 Methods
76
77=over 10
78
79=item new
80
81Returns the current time.   Example:
82
83    use Benchmark;
84    $t0 = new Benchmark;
85    # ... your code here ...
86    $t1 = new Benchmark;
87    $td = timediff($t1, $t0);
88    print "the code took:",timestr($td),"\n";
89
90=item debug
91
92Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
93
94    debug Benchmark 1;
95    $t = timeit(10, ' 5 ** $Global ');
96    debug Benchmark 0;
97
98=item iters
99
100Returns the number of iterations.
101
102=back
103
104=head2 Standard Exports
105
106The following routines will be exported into your namespace
107if you use the Benchmark module:
108
109=over 10
110
111=item timeit(COUNT, CODE)
112
113Arguments: COUNT is the number of times to run the loop, and CODE is
114the code to run.  CODE may be either a code reference or a string to
115be eval'd; either way it will be run in the caller's package.
116
117Returns: a Benchmark object.
118
119=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
120
121Time COUNT iterations of CODE. CODE may be a string to eval or a
122code reference; either way the CODE will run in the caller's package.
123Results will be printed to STDOUT as TITLE followed by the times.
124TITLE defaults to "timethis COUNT" if none is provided. STYLE
125determines the format of the output, as described for timestr() below.
126
127The COUNT can be zero or negative: this means the I<minimum number of
128CPU seconds> to run.  A zero signifies the default of 3 seconds.  For
129example to run at least for 10 seconds:
130
131	timethis(-10, $code)
132
133or to run two pieces of code tests for at least 3 seconds:
134
135	timethese(0, { test1 => '...', test2 => '...'})
136
137CPU seconds is, in UNIX terms, the user time plus the system time of
138the process itself, as opposed to the real (wallclock) time and the
139time spent by the child processes.  Less than 0.1 seconds is not
140accepted (-0.01 as the count, for example, will cause a fatal runtime
141exception).
142
143Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144other operating system factors may complicate the attempt so that a
145little bit more time is spent.  The benchmark output will, however,
146also tell the number of C<$code> runs/second, which should be a more
147interesting number than the actually spent seconds.
148
149Returns a Benchmark object.
150
151=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
152
153The CODEHASHREF is a reference to a hash containing names as keys
154and either a string to eval or a code reference for each value.
155For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156call
157
158	timethis(COUNT, VALUE, KEY, STYLE)
159
160The routines are called in string comparison order of KEY.
161
162The COUNT can be zero or negative, see timethis().
163
164Returns a hash of Benchmark objects, keyed by name.
165
166=item timediff ( T1, T2 )
167
168Returns the difference between two Benchmark times as a Benchmark
169object suitable for passing to timestr().
170
171=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
172
173Returns a string that formats the times in the TIMEDIFF object in
174the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175similar to that returned by timediff().
176
177STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178each of the 5 times available ('wallclock' time, user time, system time,
179user time of children, and system time of children). 'noc' shows all
180except the two children times. 'nop' shows only wallclock and the
181two children times. 'auto' (the default) will act as 'all' unless
182the children times are both zero, in which case it acts as 'noc'.
183'none' prevents output.
184
185FORMAT is the L<printf(3)>-style format specifier (without the
186leading '%') to use to print the times. It defaults to '5.2f'.
187
188=back
189
190=head2 Optional Exports
191
192The following routines will be exported into your namespace
193if you specifically ask that they be imported:
194
195=over 10
196
197=item clearcache ( COUNT )
198
199Clear the cached time for COUNT rounds of the null loop.
200
201=item clearallcache ( )
202
203Clear all cached times.
204
205=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
206
207=item cmpthese ( RESULTSHASHREF, [ STYLE ] )
208
209Optionally calls timethese(), then outputs comparison chart.  This:
210
211    cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
212
213outputs a chart like:
214
215           Rate    b    a
216    b 2831802/s   -- -61%
217    a 7208959/s 155%   --
218
219This chart is sorted from slowest to fastest, and shows the percent speed
220difference between each pair of tests.
221
222c<cmpthese> can also be passed the data structure that timethese() returns:
223
224    $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
225    cmpthese( $results );
226
227in case you want to see both sets of results.
228
229Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
230above chart, including labels. This:
231
232    my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" );
233
234returns a data structure like:
235
236    [
237        [ '',       'Rate',   'b',    'a' ],
238        [ 'b', '2885232/s',  '--', '-59%' ],
239        [ 'a', '7099126/s', '146%',  '--' ],
240    ]
241
242B<NOTE>: This result value differs from previous versions, which returned
243the C<timethese()> result structure.  If you want that, just use the two
244statement C<timethese>...C<cmpthese> idiom shown above.
245
246Incidently, note the variance in the result values between the two examples;
247this is typical of benchmarking.  If this were a real benchmark, you would
248probably want to run a lot more iterations.
249
250=item countit(TIME, CODE)
251
252Arguments: TIME is the minimum length of time to run CODE for, and CODE is
253the code to run.  CODE may be either a code reference or a string to
254be eval'd; either way it will be run in the caller's package.
255
256TIME is I<not> negative.  countit() will run the loop many times to
257calculate the speed of CODE before running it for TIME.  The actual
258time run for will usually be greater than TIME due to system clock
259resolution, so it's best to look at the number of iterations divided
260by the times that you are concerned with, not just the iterations.
261
262Returns: a Benchmark object.
263
264=item disablecache ( )
265
266Disable caching of timings for the null loop. This will force Benchmark
267to recalculate these timings for each new piece of code timed.
268
269=item enablecache ( )
270
271Enable caching of timings for the null loop. The time taken for COUNT
272rounds of the null loop will be calculated only once for each
273different COUNT used.
274
275=item timesum ( T1, T2 )
276
277Returns the sum of two Benchmark times as a Benchmark object suitable
278for passing to timestr().
279
280=back
281
282=head2 :hireswallclock
283
284If the Time::HiRes module has been installed, you can specify the
285special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
286available, the tag will be silently ignored).  This tag will cause the
287wallclock time to be measured in microseconds, instead of integer
288seconds.  Note though that the speed computations are still conducted
289in CPU time, not wallclock time.
290
291=head1 NOTES
292
293The data is stored as a list of values from the time and times
294functions:
295
296      ($real, $user, $system, $children_user, $children_system, $iters)
297
298in seconds for the whole loop (not divided by the number of rounds).
299
300The timing is done using time(3) and times(3).
301
302Code is executed in the caller's package.
303
304The time of the null loop (a loop with the same
305number of rounds but empty loop body) is subtracted
306from the time of the real loop.
307
308The null loop times can be cached, the key being the
309number of rounds. The caching can be controlled using
310calls like these:
311
312    clearcache($key);
313    clearallcache();
314
315    disablecache();
316    enablecache();
317
318Caching is off by default, as it can (usually slightly) decrease
319accuracy and does not usually noticably affect runtimes.
320
321=head1 EXAMPLES
322
323For example,
324
325    use Benchmark qw( cmpthese ) ;
326    $x = 3;
327    cmpthese( -5, {
328        a => sub{$x*$x},
329        b => sub{$x**2},
330    } );
331
332outputs something like this:
333
334   Benchmark: running a, b, each for at least 5 CPU seconds...
335          Rate    b    a
336   b 1559428/s   -- -62%
337   a 4152037/s 166%   --
338
339
340while
341
342    use Benchmark qw( timethese cmpthese ) ;
343    $x = 3;
344    $r = timethese( -5, {
345        a => sub{$x*$x},
346        b => sub{$x**2},
347    } );
348    cmpthese $r;
349
350outputs something like this:
351
352    Benchmark: running a, b, each for at least 5 CPU seconds...
353             a: 10 wallclock secs ( 5.14 usr +  0.13 sys =  5.27 CPU) @ 3835055.60/s (n=20210743)
354             b:  5 wallclock secs ( 5.41 usr +  0.00 sys =  5.41 CPU) @ 1574944.92/s (n=8520452)
355           Rate    b    a
356    b 1574945/s   -- -59%
357    a 3835056/s 144%   --
358
359
360=head1 INHERITANCE
361
362Benchmark inherits from no other class, except of course
363for Exporter.
364
365=head1 CAVEATS
366
367Comparing eval'd strings with code references will give you
368inaccurate results: a code reference will show a slightly slower
369execution time than the equivalent eval'd string.
370
371The real time timing is done using time(2) and
372the granularity is therefore only one second.
373
374Short tests may produce negative figures because perl
375can appear to take longer to execute the empty loop
376than a short test; try:
377
378    timethis(100,'1');
379
380The system time of the null loop might be slightly
381more than the system time of the loop with the actual
382code and therefore the difference might end up being E<lt> 0.
383
384=head1 SEE ALSO
385
386L<Devel::DProf> - a Perl code profiler
387
388=head1 AUTHORS
389
390Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
391
392=head1 MODIFICATION HISTORY
393
394September 8th, 1994; by Tim Bunce.
395
396March 28th, 1997; by Hugo van der Sanden: added support for code
397references and the already documented 'debug' method; revamped
398documentation.
399
400April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
401functionality.
402
403September, 1999; by Barrie Slaymaker: math fixes and accuracy and
404efficiency tweaks.  Added cmpthese().  A result is now returned from
405timethese().  Exposed countit() (was runfor()).
406
407December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
408and return an empty string. If cmpthese is calling timethese, make it pass the
409style in. (so that 'none' will suppress output). Make sub new dump its
410debugging output to STDERR, to be consistent with everything else.
411All bugs found while writing a regression test.
412
413September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
414
415February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
416statistics for children instead of parent when the style is 'nop'.
417
418=cut
419
420# evaluate something in a clean lexical environment
421sub _doeval { no strict;  eval shift }
422
423#
424# put any lexicals at file scope AFTER here
425#
426
427use Carp;
428use Exporter;
429
430our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
431
432@ISA=qw(Exporter);
433@EXPORT=qw(timeit timethis timethese timediff timestr);
434@EXPORT_OK=qw(timesum cmpthese countit
435	      clearcache clearallcache disablecache enablecache);
436%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
437
438$VERSION = 1.06;
439
440# --- ':hireswallclock' special handling
441
442my $hirestime;
443
444sub mytime () { time }
445
446init();
447
448sub BEGIN {
449    if (eval 'require Time::HiRes') {
450	import Time::HiRes qw(time);
451	$hirestime = \&Time::HiRes::time;
452    }
453}
454
455sub import {
456    my $class = shift;
457    if (grep { $_ eq ":hireswallclock" } @_) {
458	@_ = grep { $_ ne ":hireswallclock" } @_;
459	*mytime = $hirestime if defined $hirestime;
460    }
461    Benchmark->export_to_level(1, $class, @_);
462}
463
464our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
465    %_Usage, %Cache, $Do_Cache);
466
467sub init {
468    $Debug = 0;
469    $Min_Count = 4;
470    $Min_CPU   = 0.4;
471    $Default_Format = '5.2f';
472    $Default_Style = 'auto';
473    # The cache can cause a slight loss of sys time accuracy. If a
474    # user does many tests (>10) with *very* large counts (>10000)
475    # or works on a very slow machine the cache may be useful.
476    disablecache();
477    clearallcache();
478}
479
480sub debug { $Debug = ($_[1] != 0); }
481
482sub usage {
483    my $calling_sub = (caller(1))[3];
484    $calling_sub =~ s/^Benchmark:://;
485    return $_Usage{$calling_sub} || '';
486}
487
488# The cache needs two branches: 's' for strings and 'c' for code.  The
489# empty loop is different in these two cases.
490
491$_Usage{clearcache} = <<'USAGE';
492usage: clearcache($count);
493USAGE
494
495sub clearcache    {
496    die usage unless @_ == 1;
497    delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
498}
499
500$_Usage{clearallcache} = <<'USAGE';
501usage: clearallcache();
502USAGE
503
504sub clearallcache {
505    die usage if @_;
506    %Cache = ();
507}
508
509$_Usage{enablecache} = <<'USAGE';
510usage: enablecache();
511USAGE
512
513sub enablecache   {
514    die usage if @_;
515    $Do_Cache = 1;
516}
517
518$_Usage{disablecache} = <<'USAGE';
519usage: disablecache();
520USAGE
521
522sub disablecache  {
523    die usage if @_;
524    $Do_Cache = 0;
525}
526
527
528# --- Functions to process the 'time' data type
529
530sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
531	  print STDERR "new=@t\n" if $Debug;
532	  bless \@t; }
533
534sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps         ; }
535sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]};         $cu+$cs ; }
536sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
537sub real  { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r              ; }
538sub iters { $_[0]->[5] ; }
539
540
541$_Usage{timediff} = <<'USAGE';
542usage: $result_diff = timediff($result1, $result2);
543USAGE
544
545sub timediff {
546    my($a, $b) = @_;
547
548    die usage unless ref $a and ref $b;
549
550    my @r;
551    for (my $i=0; $i < @$a; ++$i) {
552	push(@r, $a->[$i] - $b->[$i]);
553    }
554    bless \@r;
555}
556
557$_Usage{timesum} = <<'USAGE';
558usage: $sum = timesum($result1, $result2);
559USAGE
560
561sub timesum {
562    my($a, $b) = @_;
563
564    die usage unless ref $a and ref $b;
565
566    my @r;
567    for (my $i=0; $i < @$a; ++$i) {
568 	push(@r, $a->[$i] + $b->[$i]);
569    }
570    bless \@r;
571}
572
573
574$_Usage{timestr} = <<'USAGE';
575usage: $formatted_result = timestr($result1);
576USAGE
577
578sub timestr {
579    my($tr, $style, $f) = @_;
580
581    die usage unless ref $tr;
582
583    my @t = @$tr;
584    warn "bad time value (@t)" unless @t==6;
585    my($r, $pu, $ps, $cu, $cs, $n) = @t;
586    my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
587    $f = $Default_Format unless defined $f;
588    # format a time in the required style, other formats may be added here
589    $style ||= $Default_Style;
590    return '' if $style eq 'none';
591    $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
592    my $s = "@t $style"; # default for unknown style
593    my $w = $hirestime ? "%2g" : "%2d";
594    $s=sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
595			    $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
596    $s=sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
597			    $r,$pu,$ps,$pt) if $style eq 'noc';
598    $s=sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
599			    $r,$cu,$cs,$ct) if $style eq 'nop';
600    $s .= sprintf(" @ %$f/s (n=$n)", $n / ( $style eq 'nop' ? $cu + $cs : $pu + $ps ))
601	if $n && ($style eq 'nop' ? $cu+$cs : $pu+$ps);
602    $s;
603}
604
605sub timedebug {
606    my($msg, $t) = @_;
607    print STDERR "$msg",timestr($t),"\n" if $Debug;
608}
609
610# --- Functions implementing low-level support for timing loops
611
612$_Usage{runloop} = <<'USAGE';
613usage: runloop($number, [$string | $coderef])
614USAGE
615
616sub runloop {
617    my($n, $c) = @_;
618
619    $n+=0; # force numeric now, so garbage won't creep into the eval
620    croak "negative loopcount $n" if $n<0;
621    confess usage unless defined $c;
622    my($t0, $t1, $td); # before, after, difference
623
624    # find package of caller so we can execute code there
625    my($curpack) = caller(0);
626    my($i, $pack)= 0;
627    while (($pack) = caller(++$i)) {
628	last if $pack ne $curpack;
629    }
630
631    my ($subcode, $subref);
632    if (ref $c eq 'CODE') {
633	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
634        $subref  = eval $subcode;
635    }
636    else {
637	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
638        $subref  = _doeval($subcode);
639    }
640    croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
641    print STDERR "runloop $n '$subcode'\n" if $Debug;
642
643    # Wait for the user timer to tick.  This makes the error range more like
644    # -0.01, +0.  If we don't wait, then it's more like -0.01, +0.01.  This
645    # may not seem important, but it significantly reduces the chances of
646    # getting a too low initial $n in the initial, 'find the minimum' loop
647    # in &countit.  This, in turn, can reduce the number of calls to
648    # &runloop a lot, and thus reduce additive errors.
649    my $tbase = Benchmark->new(0)->[1];
650    while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ;
651    &$subref;
652    $t1 = Benchmark->new($n);
653    $td = &timediff($t1, $t0);
654    timedebug("runloop:",$td);
655    $td;
656}
657
658$_Usage{timeit} = <<'USAGE';
659usage: $result = timeit($count, 'code' );        or
660       $result = timeit($count, sub { code } );
661USAGE
662
663sub timeit {
664    my($n, $code) = @_;
665    my($wn, $wc, $wd);
666
667    die usage unless defined $code and
668                     (!ref $code or ref $code eq 'CODE');
669
670    printf STDERR "timeit $n $code\n" if $Debug;
671    my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
672    if ($Do_Cache && exists $Cache{$cache_key} ) {
673	$wn = $Cache{$cache_key};
674    } else {
675	$wn = &runloop($n, ref( $code ) ? sub { } : '' );
676	# Can't let our baseline have any iterations, or they get subtracted
677	# out of the result.
678	$wn->[5] = 0;
679	$Cache{$cache_key} = $wn;
680    }
681
682    $wc = &runloop($n, $code);
683
684    $wd = timediff($wc, $wn);
685    timedebug("timeit: ",$wc);
686    timedebug("      - ",$wn);
687    timedebug("      = ",$wd);
688
689    $wd;
690}
691
692
693my $default_for = 3;
694my $min_for     = 0.1;
695
696
697$_Usage{countit} = <<'USAGE';
698usage: $result = countit($time, 'code' );        or
699       $result = countit($time, sub { code } );
700USAGE
701
702sub countit {
703    my ( $tmax, $code ) = @_;
704
705    die usage unless @_;
706
707    if ( not defined $tmax or $tmax == 0 ) {
708	$tmax = $default_for;
709    } elsif ( $tmax < 0 ) {
710	$tmax = -$tmax;
711    }
712
713    die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
714	if $tmax < $min_for;
715
716    my ($n, $tc);
717
718    # First find the minimum $n that gives a significant timing.
719    for ($n = 1; ; $n *= 2 ) {
720	my $td = timeit($n, $code);
721	$tc = $td->[1] + $td->[2];
722	last if $tc > 0.1;
723    }
724
725    my $nmin = $n;
726
727    # Get $n high enough that we can guess the final $n with some accuracy.
728    my $tpra = 0.1 * $tmax; # Target/time practice.
729    while ( $tc < $tpra ) {
730	# The 5% fudge is to keep us from iterating again all
731	# that often (this speeds overall responsiveness when $tmax is big
732	# and we guess a little low).  This does not noticably affect
733	# accuracy since we're not couting these times.
734	$n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
735	my $td = timeit($n, $code);
736	my $new_tc = $td->[1] + $td->[2];
737        # Make sure we are making progress.
738        $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
739    }
740
741    # Now, do the 'for real' timing(s), repeating until we exceed
742    # the max.
743    my $ntot  = 0;
744    my $rtot  = 0;
745    my $utot  = 0.0;
746    my $stot  = 0.0;
747    my $cutot = 0.0;
748    my $cstot = 0.0;
749    my $ttot  = 0.0;
750
751    # The 5% fudge is because $n is often a few % low even for routines
752    # with stable times and avoiding extra timeit()s is nice for
753    # accuracy's sake.
754    $n = int( $n * ( 1.05 * $tmax / $tc ) );
755
756    while () {
757	my $td = timeit($n, $code);
758	$ntot  += $n;
759	$rtot  += $td->[0];
760	$utot  += $td->[1];
761	$stot  += $td->[2];
762	$cutot += $td->[3];
763	$cstot += $td->[4];
764	$ttot = $utot + $stot;
765	last if $ttot >= $tmax;
766
767        $ttot = 0.01 if $ttot < 0.01;
768	my $r = $tmax / $ttot - 1; # Linear approximation.
769	$n = int( $r * $ntot );
770	$n = $nmin if $n < $nmin;
771    }
772
773    return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
774}
775
776# --- Functions implementing high-level time-then-print utilities
777
778sub n_to_for {
779    my $n = shift;
780    return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
781}
782
783$_Usage{timethis} = <<'USAGE';
784usage: $result = timethis($time, 'code' );        or
785       $result = timethis($time, sub { code } );
786USAGE
787
788sub timethis{
789    my($n, $code, $title, $style) = @_;
790    my($t, $forn);
791
792    die usage unless defined $code and
793                     (!ref $code or ref $code eq 'CODE');
794
795    if ( $n > 0 ) {
796	croak "non-integer loopcount $n, stopped" if int($n)<$n;
797	$t = timeit($n, $code);
798	$title = "timethis $n" unless defined $title;
799    } else {
800	my $fort  = n_to_for( $n );
801	$t     = countit( $fort, $code );
802	$title = "timethis for $fort" unless defined $title;
803	$forn  = $t->[-1];
804    }
805    local $| = 1;
806    $style = "" unless defined $style;
807    printf("%10s: ", $title) unless $style eq 'none';
808    print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
809
810    $n = $forn if defined $forn;
811
812    # A conservative warning to spot very silly tests.
813    # Don't assume that your benchmark is ok simply because
814    # you don't get this warning!
815    print "            (warning: too few iterations for a reliable count)\n"
816	if     $n < $Min_Count
817	    || ($t->real < 1 && $n < 1000)
818	    || $t->cpu_a < $Min_CPU;
819    $t;
820}
821
822
823$_Usage{timethese} = <<'USAGE';
824usage: timethese($count, { Name1 => 'code1', ... });        or
825       timethese($count, { Name1 => sub { code1 }, ... });
826USAGE
827
828sub timethese{
829    my($n, $alt, $style) = @_;
830    die usage unless ref $alt eq 'HASH';
831
832    my @names = sort keys %$alt;
833    $style = "" unless defined $style;
834    print "Benchmark: " unless $style eq 'none';
835    if ( $n > 0 ) {
836	croak "non-integer loopcount $n, stopped" if int($n)<$n;
837	print "timing $n iterations of" unless $style eq 'none';
838    } else {
839	print "running" unless $style eq 'none';
840    }
841    print " ", join(', ',@names) unless $style eq 'none';
842    unless ( $n > 0 ) {
843	my $for = n_to_for( $n );
844	print ", each" if $n > 1 && $style ne 'none';
845	print " for at least $for CPU seconds" unless $style eq 'none';
846    }
847    print "...\n" unless $style eq 'none';
848
849    # we could save the results in an array and produce a summary here
850    # sum, min, max, avg etc etc
851    my %results;
852    foreach my $name (@names) {
853        $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
854    }
855
856    return \%results;
857}
858
859
860$_Usage{cmpthese} = <<'USAGE';
861usage: cmpthese($count, { Name1 => 'code1', ... });        or
862       cmpthese($count, { Name1 => sub { code1 }, ... });  or
863       cmpthese($result, $style);
864USAGE
865
866sub cmpthese{
867    my ($results, $style);
868
869    if( ref $_[0] ) {
870        ($results, $style) = @_;
871    }
872    else {
873        my($count, $code) = @_[0,1];
874        $style = $_[2] if defined $_[2];
875
876        die usage unless ref $code eq 'HASH';
877
878        $results = timethese($count, $code, ($style || "none"));
879    }
880
881    $style = "" unless defined $style;
882
883    # Flatten in to an array of arrays with the name as the first field
884    my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
885
886    for (@vals) {
887	# The epsilon fudge here is to prevent div by 0.  Since clock
888	# resolutions are much larger, it's below the noise floor.
889	my $rate = $_->[6] / (( $style eq 'nop' ? $_->[4] + $_->[5]
890						: $_->[2] + $_->[3]) + 0.000000000000001 );
891	$_->[7] = $rate;
892    }
893
894    # Sort by rate
895    @vals = sort { $a->[7] <=> $b->[7] } @vals;
896
897    # If more than half of the rates are greater than one...
898    my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
899
900    my @rows;
901    my @col_widths;
902
903    my @top_row = (
904        '',
905	$display_as_rate ? 'Rate' : 's/iter',
906	map { $_->[0] } @vals
907    );
908
909    push @rows, \@top_row;
910    @col_widths = map { length( $_ ) } @top_row;
911
912    # Build the data rows
913    # We leave the last column in even though it never has any data.  Perhaps
914    # it should go away.  Also, perhaps a style for a single column of
915    # percentages might be nice.
916    for my $row_val ( @vals ) {
917	my @row;
918
919        # Column 0 = test name
920	push @row, $row_val->[0];
921	$col_widths[0] = length( $row_val->[0] )
922	    if length( $row_val->[0] ) > $col_widths[0];
923
924        # Column 1 = performance
925	my $row_rate = $row_val->[7];
926
927	# We assume that we'll never get a 0 rate.
928	my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
929
930	# Only give a few decimal places before switching to sci. notation,
931	# since the results aren't usually that accurate anyway.
932	my $format =
933	   $rate >= 100 ?
934	       "%0.0f" :
935	   $rate >= 10 ?
936	       "%0.1f" :
937	   $rate >= 1 ?
938	       "%0.2f" :
939	   $rate >= 0.1 ?
940	       "%0.3f" :
941	       "%0.2e";
942
943	$format .= "/s"
944	    if $display_as_rate;
945
946	my $formatted_rate = sprintf( $format, $rate );
947	push @row, $formatted_rate;
948	$col_widths[1] = length( $formatted_rate )
949	    if length( $formatted_rate ) > $col_widths[1];
950
951        # Columns 2..N = performance ratios
952	my $skip_rest = 0;
953	for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
954	    my $col_val = $vals[$col_num];
955	    my $out;
956	    if ( $skip_rest ) {
957		$out = '';
958	    }
959	    elsif ( $col_val->[0] eq $row_val->[0] ) {
960		$out = "--";
961		# $skip_rest = 1;
962	    }
963	    else {
964		my $col_rate = $col_val->[7];
965		$out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
966	    }
967	    push @row, $out;
968	    $col_widths[$col_num+2] = length( $out )
969		if length( $out ) > $col_widths[$col_num+2];
970
971	    # A little wierdness to set the first column width properly
972	    $col_widths[$col_num+2] = length( $col_val->[0] )
973		if length( $col_val->[0] ) > $col_widths[$col_num+2];
974	}
975	push @rows, \@row;
976    }
977
978    return \@rows if $style eq "none";
979
980    # Equalize column widths in the chart as much as possible without
981    # exceeding 80 characters.  This does not use or affect cols 0 or 1.
982    my @sorted_width_refs =
983       sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
984    my $max_width = ${$sorted_width_refs[-1]};
985
986    my $total = @col_widths - 1 ;
987    for ( @col_widths ) { $total += $_ }
988
989    STRETCHER:
990    while ( $total < 80 ) {
991	my $min_width = ${$sorted_width_refs[0]};
992	last
993	   if $min_width == $max_width;
994	for ( @sorted_width_refs ) {
995	    last
996		if $$_ > $min_width;
997	    ++$$_;
998	    ++$total;
999	    last STRETCHER
1000		if $total >= 80;
1001	}
1002    }
1003
1004    # Dump the output
1005    my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1006    substr( $format, 1, 0 ) = '-';
1007    for ( @rows ) {
1008	printf $format, @$_;
1009    }
1010
1011    return \@rows ;
1012}
1013
1014
10151;
1016