xref: /llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 34b139594aa20fe712bc2ad68544632b3e4d8512)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::detachDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86       BB->back().eraseFromParent();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors,
184                                      DominatorTree *DT) {
185   if (BB->hasAddressTaken())
186     return false;
187 
188   // Can't merge if there are multiple predecessors, or no predecessors.
189   BasicBlock *PredBB = BB->getUniquePredecessor();
190   if (!PredBB) return false;
191 
192   // Don't break self-loops.
193   if (PredBB == BB) return false;
194 
195   // Don't break unwinding instructions or terminators with other side-effects.
196   Instruction *PTI = PredBB->getTerminator();
197   if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198     return false;
199 
200   // Can't merge if there are multiple distinct successors.
201   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202     return false;
203 
204   // Currently only allow PredBB to have two predecessors, one being BB.
205   // Update BI to branch to BB's only successor instead of BB.
206   BranchInst *PredBB_BI;
207   BasicBlock *NewSucc = nullptr;
208   unsigned FallThruPath;
209   if (PredecessorWithTwoSuccessors) {
210     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211       return false;
212     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213     if (!BB_JmpI || !BB_JmpI->isUnconditional())
214       return false;
215     NewSucc = BB_JmpI->getSuccessor(0);
216     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217   }
218 
219   // Can't merge if there is PHI loop.
220   for (PHINode &PN : BB->phis())
221     if (llvm::is_contained(PN.incoming_values(), &PN))
222       return false;
223 
224   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225                     << PredBB->getName() << "\n");
226 
227   // Begin by getting rid of unneeded PHIs.
228   SmallVector<AssertingVH<Value>, 4> IncomingValues;
229   if (isa<PHINode>(BB->front())) {
230     for (PHINode &PN : BB->phis())
231       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233         IncomingValues.push_back(PN.getIncomingValue(0));
234     FoldSingleEntryPHINodes(BB, MemDep);
235   }
236 
237   if (DT) {
238     assert(!DTU && "cannot use both DT and DTU for updates");
239     DomTreeNode *PredNode = DT->getNode(PredBB);
240     DomTreeNode *BBNode = DT->getNode(BB);
241     if (PredNode) {
242       assert(BBNode && "PredNode unreachable but BBNode reachable?");
243       for (DomTreeNode *C : to_vector(BBNode->children()))
244         C->setIDom(PredNode);
245     }
246   }
247   // DTU update: Collect all the edges that exit BB.
248   // These dominator edges will be redirected from Pred.
249   std::vector<DominatorTree::UpdateType> Updates;
250   if (DTU) {
251     assert(!DT && "cannot use both DT and DTU for updates");
252     // To avoid processing the same predecessor more than once.
253     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255                                                succ_end(PredBB));
256     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257     // Add insert edges first. Experimentally, for the particular case of two
258     // blocks that can be merged, with a single successor and single predecessor
259     // respectively, it is beneficial to have all insert updates first. Deleting
260     // edges first may lead to unreachable blocks, followed by inserting edges
261     // making the blocks reachable again. Such DT updates lead to high compile
262     // times. We add inserts before deletes here to reduce compile time.
263     for (BasicBlock *SuccOfBB : successors(BB))
264       // This successor of BB may already be a PredBB's successor.
265       if (!SuccsOfPredBB.contains(SuccOfBB))
266         if (SeenSuccs.insert(SuccOfBB).second)
267           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268     SeenSuccs.clear();
269     for (BasicBlock *SuccOfBB : successors(BB))
270       if (SeenSuccs.insert(SuccOfBB).second)
271         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272     Updates.push_back({DominatorTree::Delete, PredBB, BB});
273   }
274 
275   Instruction *STI = BB->getTerminator();
276   Instruction *Start = &*BB->begin();
277   // If there's nothing to move, mark the starting instruction as the last
278   // instruction in the block. Terminator instruction is handled separately.
279   if (Start == STI)
280     Start = PTI;
281 
282   // Move all definitions in the successor to the predecessor...
283   PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284 
285   if (MSSAU)
286     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287 
288   // Make all PHI nodes that referred to BB now refer to Pred as their
289   // source...
290   BB->replaceAllUsesWith(PredBB);
291 
292   if (PredecessorWithTwoSuccessors) {
293     // Delete the unconditional branch from BB.
294     BB->back().eraseFromParent();
295 
296     // Update branch in the predecessor.
297     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298   } else {
299     // Delete the unconditional branch from the predecessor.
300     PredBB->back().eraseFromParent();
301 
302     // Move terminator instruction.
303     BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304 
305     // Terminator may be a memory accessing instruction too.
306     if (MSSAU)
307       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310   }
311   // Add unreachable to now empty BB.
312   new UnreachableInst(BB->getContext(), BB);
313 
314   // Inherit predecessors name if it exists.
315   if (!PredBB->hasName())
316     PredBB->takeName(BB);
317 
318   if (LI)
319     LI->removeBlock(BB);
320 
321   if (MemDep)
322     MemDep->invalidateCachedPredecessors();
323 
324   if (DTU)
325     DTU->applyUpdates(Updates);
326 
327   if (DT) {
328     assert(succ_empty(BB) &&
329            "successors should have been transferred to PredBB");
330     DT->eraseNode(BB);
331   }
332 
333   // Finally, erase the old block and update dominator info.
334   DeleteDeadBlock(BB, DTU);
335 
336   return true;
337 }
338 
339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341     LoopInfo *LI) {
342   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343 
344   bool BlocksHaveBeenMerged = false;
345   while (!MergeBlocks.empty()) {
346     BasicBlock *BB = *MergeBlocks.begin();
347     BasicBlock *Dest = BB->getSingleSuccessor();
348     if (Dest && (!L || L->contains(Dest))) {
349       BasicBlock *Fold = Dest->getUniquePredecessor();
350       (void)Fold;
351       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352         assert(Fold == BB &&
353                "Expecting BB to be unique predecessor of the Dest block");
354         MergeBlocks.erase(Dest);
355         BlocksHaveBeenMerged = true;
356       } else
357         MergeBlocks.erase(BB);
358     } else
359       MergeBlocks.erase(BB);
360   }
361   return BlocksHaveBeenMerged;
362 }
363 
364 /// Remove redundant instructions within sequences of consecutive dbg.value
365 /// instructions. This is done using a backward scan to keep the last dbg.value
366 /// describing a specific variable/fragment.
367 ///
368 /// BackwardScan strategy:
369 /// ----------------------
370 /// Given a sequence of consecutive DbgValueInst like this
371 ///
372 ///   dbg.value ..., "x", FragmentX1  (*)
373 ///   dbg.value ..., "y", FragmentY1
374 ///   dbg.value ..., "x", FragmentX2
375 ///   dbg.value ..., "x", FragmentX1  (**)
376 ///
377 /// then the instruction marked with (*) can be removed (it is guaranteed to be
378 /// obsoleted by the instruction marked with (**) as the latter instruction is
379 /// describing the same variable using the same fragment info).
380 ///
381 /// Possible improvements:
382 /// - Check fully overlapping fragments and not only identical fragments.
383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384 ///   part of the sequence of consecutive instructions.
385 static bool
386 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
387   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
388   SmallDenseSet<DebugVariable> VariableSet;
389   for (auto &I : reverse(*BB)) {
390     for (DbgRecord &DR : reverse(I.getDbgRecordRange())) {
391       if (isa<DbgLabelRecord>(DR)) {
392         // Emulate existing behaviour (see comment below for dbg.declares).
393         // FIXME: Don't do this.
394         VariableSet.clear();
395         continue;
396       }
397 
398       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
399       // Skip declare-type records, as the debug intrinsic method only works
400       // on dbg.value intrinsics.
401       if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
402         // The debug intrinsic method treats dbg.declares are "non-debug"
403         // instructions (i.e., a break in a consecutive range of debug
404         // intrinsics). Emulate that to create identical outputs. See
405         // "Possible improvements" above.
406         // FIXME: Delete the line below.
407         VariableSet.clear();
408         continue;
409       }
410 
411       DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
412                         DVR.getDebugLoc()->getInlinedAt());
413       auto R = VariableSet.insert(Key);
414       // If the same variable fragment is described more than once it is enough
415       // to keep the last one (i.e. the first found since we for reverse
416       // iteration).
417       if (R.second)
418         continue;
419 
420       if (DVR.isDbgAssign()) {
421         // Don't delete dbg.assign intrinsics that are linked to instructions.
422         if (!at::getAssignmentInsts(&DVR).empty())
423           continue;
424         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
425       }
426 
427       ToBeRemoved.push_back(&DVR);
428     }
429     // Sequence with consecutive dbg.value instrs ended. Clear the map to
430     // restart identifying redundant instructions if case we find another
431     // dbg.value sequence.
432     VariableSet.clear();
433   }
434 
435   for (auto &DVR : ToBeRemoved)
436     DVR->eraseFromParent();
437 
438   return !ToBeRemoved.empty();
439 }
440 
441 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
442   if (BB->IsNewDbgInfoFormat)
443     return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB);
444 
445   SmallVector<DbgValueInst *, 8> ToBeRemoved;
446   SmallDenseSet<DebugVariable> VariableSet;
447   for (auto &I : reverse(*BB)) {
448     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
449       DebugVariable Key(DVI->getVariable(),
450                         DVI->getExpression(),
451                         DVI->getDebugLoc()->getInlinedAt());
452       auto R = VariableSet.insert(Key);
453       // If the variable fragment hasn't been seen before then we don't want
454       // to remove this dbg intrinsic.
455       if (R.second)
456         continue;
457 
458       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
459         // Don't delete dbg.assign intrinsics that are linked to instructions.
460         if (!at::getAssignmentInsts(DAI).empty())
461           continue;
462         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
463       }
464 
465       // If the same variable fragment is described more than once it is enough
466       // to keep the last one (i.e. the first found since we for reverse
467       // iteration).
468       ToBeRemoved.push_back(DVI);
469       continue;
470     }
471     // Sequence with consecutive dbg.value instrs ended. Clear the map to
472     // restart identifying redundant instructions if case we find another
473     // dbg.value sequence.
474     VariableSet.clear();
475   }
476 
477   for (auto &Instr : ToBeRemoved)
478     Instr->eraseFromParent();
479 
480   return !ToBeRemoved.empty();
481 }
482 
483 /// Remove redundant dbg.value instructions using a forward scan. This can
484 /// remove a dbg.value instruction that is redundant due to indicating that a
485 /// variable has the same value as already being indicated by an earlier
486 /// dbg.value.
487 ///
488 /// ForwardScan strategy:
489 /// ---------------------
490 /// Given two identical dbg.value instructions, separated by a block of
491 /// instructions that isn't describing the same variable, like this
492 ///
493 ///   dbg.value X1, "x", FragmentX1  (**)
494 ///   <block of instructions, none being "dbg.value ..., "x", ...">
495 ///   dbg.value X1, "x", FragmentX1  (*)
496 ///
497 /// then the instruction marked with (*) can be removed. Variable "x" is already
498 /// described as being mapped to the SSA value X1.
499 ///
500 /// Possible improvements:
501 /// - Keep track of non-overlapping fragments.
502 static bool
503 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
504   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
505   SmallDenseMap<DebugVariable,
506                 std::pair<SmallVector<Value *, 4>, DIExpression *>, 4>
507       VariableMap;
508   for (auto &I : *BB) {
509     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
510       if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
511         continue;
512       DebugVariable Key(DVR.getVariable(), std::nullopt,
513                         DVR.getDebugLoc()->getInlinedAt());
514       auto VMI = VariableMap.find(Key);
515       // A dbg.assign with no linked instructions can be treated like a
516       // dbg.value (i.e. can be deleted).
517       bool IsDbgValueKind =
518           (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty());
519 
520       // Update the map if we found a new value/expression describing the
521       // variable, or if the variable wasn't mapped already.
522       SmallVector<Value *, 4> Values(DVR.location_ops());
523       if (VMI == VariableMap.end() || VMI->second.first != Values ||
524           VMI->second.second != DVR.getExpression()) {
525         if (IsDbgValueKind)
526           VariableMap[Key] = {Values, DVR.getExpression()};
527         else
528           VariableMap[Key] = {Values, nullptr};
529         continue;
530       }
531       // Don't delete dbg.assign intrinsics that are linked to instructions.
532       if (!IsDbgValueKind)
533         continue;
534       // Found an identical mapping. Remember the instruction for later removal.
535       ToBeRemoved.push_back(&DVR);
536     }
537   }
538 
539   for (auto *DVR : ToBeRemoved)
540     DVR->eraseFromParent();
541 
542   return !ToBeRemoved.empty();
543 }
544 
545 static bool
546 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
547   assert(BB->isEntryBlock() && "expected entry block");
548   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
549   DenseSet<DebugVariable> SeenDefForAggregate;
550   // Returns the DebugVariable for DVI with no fragment info.
551   auto GetAggregateVariable = [](const DbgVariableRecord &DVR) {
552     return DebugVariable(DVR.getVariable(), std::nullopt,
553                          DVR.getDebugLoc().getInlinedAt());
554   };
555 
556   // Remove undef dbg.assign intrinsics that are encountered before
557   // any non-undef intrinsics from the entry block.
558   for (auto &I : *BB) {
559     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
560       if (!DVR.isDbgValue() && !DVR.isDbgAssign())
561         continue;
562       bool IsDbgValueKind =
563           (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty());
564       DebugVariable Aggregate = GetAggregateVariable(DVR);
565       if (!SeenDefForAggregate.contains(Aggregate)) {
566         bool IsKill = DVR.isKillLocation() && IsDbgValueKind;
567         if (!IsKill) {
568           SeenDefForAggregate.insert(Aggregate);
569         } else if (DVR.isDbgAssign()) {
570           ToBeRemoved.push_back(&DVR);
571         }
572       }
573     }
574   }
575 
576   for (DbgVariableRecord *DVR : ToBeRemoved)
577     DVR->eraseFromParent();
578 
579   return !ToBeRemoved.empty();
580 }
581 
582 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
583   if (BB->IsNewDbgInfoFormat)
584     return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB);
585 
586   SmallVector<DbgValueInst *, 8> ToBeRemoved;
587   SmallDenseMap<DebugVariable,
588                 std::pair<SmallVector<Value *, 4>, DIExpression *>, 4>
589       VariableMap;
590   for (auto &I : *BB) {
591     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
592       DebugVariable Key(DVI->getVariable(), std::nullopt,
593                         DVI->getDebugLoc()->getInlinedAt());
594       auto VMI = VariableMap.find(Key);
595       auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
596       // A dbg.assign with no linked instructions can be treated like a
597       // dbg.value (i.e. can be deleted).
598       bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
599 
600       // Update the map if we found a new value/expression describing the
601       // variable, or if the variable wasn't mapped already.
602       SmallVector<Value *, 4> Values(DVI->getValues());
603       if (VMI == VariableMap.end() || VMI->second.first != Values ||
604           VMI->second.second != DVI->getExpression()) {
605         // Use a sentinel value (nullptr) for the DIExpression when we see a
606         // linked dbg.assign so that the next debug intrinsic will never match
607         // it (i.e. always treat linked dbg.assigns as if they're unique).
608         if (IsDbgValueKind)
609           VariableMap[Key] = {Values, DVI->getExpression()};
610         else
611           VariableMap[Key] = {Values, nullptr};
612         continue;
613       }
614 
615       // Don't delete dbg.assign intrinsics that are linked to instructions.
616       if (!IsDbgValueKind)
617         continue;
618       ToBeRemoved.push_back(DVI);
619     }
620   }
621 
622   for (auto &Instr : ToBeRemoved)
623     Instr->eraseFromParent();
624 
625   return !ToBeRemoved.empty();
626 }
627 
628 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
629 /// forward scan.
630 /// Strategy:
631 /// ---------------------
632 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
633 /// linked to an intrinsic, and don't share an aggregate variable with a debug
634 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
635 /// that come before non-undef debug intrinsics for the variable are
636 /// deleted. Given:
637 ///
638 ///   dbg.assign undef, "x", FragmentX1 (*)
639 ///   <block of instructions, none being "dbg.value ..., "x", ...">
640 ///   dbg.value %V, "x", FragmentX2
641 ///   <block of instructions, none being "dbg.value ..., "x", ...">
642 ///   dbg.assign undef, "x", FragmentX1
643 ///
644 /// then (only) the instruction marked with (*) can be removed.
645 /// Possible improvements:
646 /// - Keep track of non-overlapping fragments.
647 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
648   if (BB->IsNewDbgInfoFormat)
649     return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB);
650 
651   assert(BB->isEntryBlock() && "expected entry block");
652   SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
653   DenseSet<DebugVariable> SeenDefForAggregate;
654   // Returns the DebugVariable for DVI with no fragment info.
655   auto GetAggregateVariable = [](DbgValueInst *DVI) {
656     return DebugVariable(DVI->getVariable(), std::nullopt,
657                          DVI->getDebugLoc()->getInlinedAt());
658   };
659 
660   // Remove undef dbg.assign intrinsics that are encountered before
661   // any non-undef intrinsics from the entry block.
662   for (auto &I : *BB) {
663     DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
664     if (!DVI)
665       continue;
666     auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
667     bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
668     DebugVariable Aggregate = GetAggregateVariable(DVI);
669     if (!SeenDefForAggregate.contains(Aggregate)) {
670       bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
671       if (!IsKill) {
672         SeenDefForAggregate.insert(Aggregate);
673       } else if (DAI) {
674         ToBeRemoved.push_back(DAI);
675       }
676     }
677   }
678 
679   for (DbgAssignIntrinsic *DAI : ToBeRemoved)
680     DAI->eraseFromParent();
681 
682   return !ToBeRemoved.empty();
683 }
684 
685 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
686   bool MadeChanges = false;
687   // By using the "backward scan" strategy before the "forward scan" strategy we
688   // can remove both dbg.value (2) and (3) in a situation like this:
689   //
690   //   (1) dbg.value V1, "x", DIExpression()
691   //       ...
692   //   (2) dbg.value V2, "x", DIExpression()
693   //   (3) dbg.value V1, "x", DIExpression()
694   //
695   // The backward scan will remove (2), it is made obsolete by (3). After
696   // getting (2) out of the way, the foward scan will remove (3) since "x"
697   // already is described as having the value V1 at (1).
698   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
699   if (BB->isEntryBlock() &&
700       isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
701     MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
702   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
703 
704   if (MadeChanges)
705     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
706                       << BB->getName() << "\n");
707   return MadeChanges;
708 }
709 
710 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
711   Instruction &I = *BI;
712   // Replaces all of the uses of the instruction with uses of the value
713   I.replaceAllUsesWith(V);
714 
715   // Make sure to propagate a name if there is one already.
716   if (I.hasName() && !V->hasName())
717     V->takeName(&I);
718 
719   // Delete the unnecessary instruction now...
720   BI = BI->eraseFromParent();
721 }
722 
723 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
724                                Instruction *I) {
725   assert(I->getParent() == nullptr &&
726          "ReplaceInstWithInst: Instruction already inserted into basic block!");
727 
728   // Copy debug location to newly added instruction, if it wasn't already set
729   // by the caller.
730   if (!I->getDebugLoc())
731     I->setDebugLoc(BI->getDebugLoc());
732 
733   // Insert the new instruction into the basic block...
734   BasicBlock::iterator New = I->insertInto(BB, BI);
735 
736   // Replace all uses of the old instruction, and delete it.
737   ReplaceInstWithValue(BI, I);
738 
739   // Move BI back to point to the newly inserted instruction
740   BI = New;
741 }
742 
743 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
744   // Remember visited blocks to avoid infinite loop
745   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
746   unsigned Depth = 0;
747   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
748          VisitedBlocks.insert(BB).second) {
749     if (isa<UnreachableInst>(BB->getTerminator()) ||
750         BB->getTerminatingDeoptimizeCall())
751       return true;
752     BB = BB->getUniqueSuccessor();
753   }
754   return false;
755 }
756 
757 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
758   BasicBlock::iterator BI(From);
759   ReplaceInstWithInst(From->getParent(), BI, To);
760 }
761 
762 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
763                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
764                             const Twine &BBName) {
765   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
766 
767   Instruction *LatchTerm = BB->getTerminator();
768 
769   CriticalEdgeSplittingOptions Options =
770       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
771 
772   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
773     // If it is a critical edge, and the succesor is an exception block, handle
774     // the split edge logic in this specific function
775     if (Succ->isEHPad())
776       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
777 
778     // If this is a critical edge, let SplitKnownCriticalEdge do it.
779     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
780   }
781 
782   // If the edge isn't critical, then BB has a single successor or Succ has a
783   // single pred.  Split the block.
784   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
785     // If the successor only has a single pred, split the top of the successor
786     // block.
787     assert(SP == BB && "CFG broken");
788     (void)SP;
789     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
790                       /*Before=*/true);
791   }
792 
793   // Otherwise, if BB has a single successor, split it at the bottom of the
794   // block.
795   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
796          "Should have a single succ!");
797   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
798 }
799 
800 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
801   if (auto *II = dyn_cast<InvokeInst>(TI))
802     II->setUnwindDest(Succ);
803   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
804     CS->setUnwindDest(Succ);
805   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
806     CR->setUnwindDest(Succ);
807   else
808     llvm_unreachable("unexpected terminator instruction");
809 }
810 
811 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
812                           BasicBlock *NewPred, PHINode *Until) {
813   int BBIdx = 0;
814   for (PHINode &PN : DestBB->phis()) {
815     // We manually update the LandingPadReplacement PHINode and it is the last
816     // PHI Node. So, if we find it, we are done.
817     if (Until == &PN)
818       break;
819 
820     // Reuse the previous value of BBIdx if it lines up.  In cases where we
821     // have multiple phi nodes with *lots* of predecessors, this is a speed
822     // win because we don't have to scan the PHI looking for TIBB.  This
823     // happens because the BB list of PHI nodes are usually in the same
824     // order.
825     if (PN.getIncomingBlock(BBIdx) != OldPred)
826       BBIdx = PN.getBasicBlockIndex(OldPred);
827 
828     assert(BBIdx != -1 && "Invalid PHI Index!");
829     PN.setIncomingBlock(BBIdx, NewPred);
830   }
831 }
832 
833 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
834                                    LandingPadInst *OriginalPad,
835                                    PHINode *LandingPadReplacement,
836                                    const CriticalEdgeSplittingOptions &Options,
837                                    const Twine &BBName) {
838 
839   auto PadInst = Succ->getFirstNonPHIIt();
840   if (!LandingPadReplacement && !PadInst->isEHPad())
841     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
842 
843   auto *LI = Options.LI;
844   SmallVector<BasicBlock *, 4> LoopPreds;
845   // Check if extra modifications will be required to preserve loop-simplify
846   // form after splitting. If it would require splitting blocks with IndirectBr
847   // terminators, bail out if preserving loop-simplify form is requested.
848   if (Options.PreserveLoopSimplify && LI) {
849     if (Loop *BBLoop = LI->getLoopFor(BB)) {
850 
851       // The only way that we can break LoopSimplify form by splitting a
852       // critical edge is when there exists some edge from BBLoop to Succ *and*
853       // the only edge into Succ from outside of BBLoop is that of NewBB after
854       // the split. If the first isn't true, then LoopSimplify still holds,
855       // NewBB is the new exit block and it has no non-loop predecessors. If the
856       // second isn't true, then Succ was not in LoopSimplify form prior to
857       // the split as it had a non-loop predecessor. In both of these cases,
858       // the predecessor must be directly in BBLoop, not in a subloop, or again
859       // LoopSimplify doesn't hold.
860       for (BasicBlock *P : predecessors(Succ)) {
861         if (P == BB)
862           continue; // The new block is known.
863         if (LI->getLoopFor(P) != BBLoop) {
864           // Loop is not in LoopSimplify form, no need to re simplify after
865           // splitting edge.
866           LoopPreds.clear();
867           break;
868         }
869         LoopPreds.push_back(P);
870       }
871       // Loop-simplify form can be preserved, if we can split all in-loop
872       // predecessors.
873       if (any_of(LoopPreds, [](BasicBlock *Pred) {
874             return isa<IndirectBrInst>(Pred->getTerminator());
875           })) {
876         return nullptr;
877       }
878     }
879   }
880 
881   auto *NewBB =
882       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
883   setUnwindEdgeTo(BB->getTerminator(), NewBB);
884   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
885 
886   if (LandingPadReplacement) {
887     auto *NewLP = OriginalPad->clone();
888     auto *Terminator = BranchInst::Create(Succ, NewBB);
889     NewLP->insertBefore(Terminator->getIterator());
890     LandingPadReplacement->addIncoming(NewLP, NewBB);
891   } else {
892     Value *ParentPad = nullptr;
893     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
894       ParentPad = FuncletPad->getParentPad();
895     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
896       ParentPad = CatchSwitch->getParentPad();
897     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
898       ParentPad = CleanupPad->getParentPad();
899     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
900       ParentPad = LandingPad->getParent();
901     else
902       llvm_unreachable("handling for other EHPads not implemented yet");
903 
904     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
905     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
906   }
907 
908   auto *DT = Options.DT;
909   auto *MSSAU = Options.MSSAU;
910   if (!DT && !LI)
911     return NewBB;
912 
913   if (DT) {
914     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
915     SmallVector<DominatorTree::UpdateType, 3> Updates;
916 
917     Updates.push_back({DominatorTree::Insert, BB, NewBB});
918     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
919     Updates.push_back({DominatorTree::Delete, BB, Succ});
920 
921     DTU.applyUpdates(Updates);
922     DTU.flush();
923 
924     if (MSSAU) {
925       MSSAU->applyUpdates(Updates, *DT);
926       if (VerifyMemorySSA)
927         MSSAU->getMemorySSA()->verifyMemorySSA();
928     }
929   }
930 
931   if (LI) {
932     if (Loop *BBLoop = LI->getLoopFor(BB)) {
933       // If one or the other blocks were not in a loop, the new block is not
934       // either, and thus LI doesn't need to be updated.
935       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
936         if (BBLoop == SuccLoop) {
937           // Both in the same loop, the NewBB joins loop.
938           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
939         } else if (BBLoop->contains(SuccLoop)) {
940           // Edge from an outer loop to an inner loop.  Add to the outer loop.
941           BBLoop->addBasicBlockToLoop(NewBB, *LI);
942         } else if (SuccLoop->contains(BBLoop)) {
943           // Edge from an inner loop to an outer loop.  Add to the outer loop.
944           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
945         } else {
946           // Edge from two loops with no containment relation.  Because these
947           // are natural loops, we know that the destination block must be the
948           // header of its loop (adding a branch into a loop elsewhere would
949           // create an irreducible loop).
950           assert(SuccLoop->getHeader() == Succ &&
951                  "Should not create irreducible loops!");
952           if (Loop *P = SuccLoop->getParentLoop())
953             P->addBasicBlockToLoop(NewBB, *LI);
954         }
955       }
956 
957       // If BB is in a loop and Succ is outside of that loop, we may need to
958       // update LoopSimplify form and LCSSA form.
959       if (!BBLoop->contains(Succ)) {
960         assert(!BBLoop->contains(NewBB) &&
961                "Split point for loop exit is contained in loop!");
962 
963         // Update LCSSA form in the newly created exit block.
964         if (Options.PreserveLCSSA) {
965           createPHIsForSplitLoopExit(BB, NewBB, Succ);
966         }
967 
968         if (!LoopPreds.empty()) {
969           BasicBlock *NewExitBB = SplitBlockPredecessors(
970               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
971           if (Options.PreserveLCSSA)
972             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
973         }
974       }
975     }
976   }
977 
978   return NewBB;
979 }
980 
981 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
982                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
983   // SplitBB shouldn't have anything non-trivial in it yet.
984   assert((&*SplitBB->getFirstNonPHIIt() == SplitBB->getTerminator() ||
985           SplitBB->isLandingPad()) &&
986          "SplitBB has non-PHI nodes!");
987 
988   // For each PHI in the destination block.
989   for (PHINode &PN : DestBB->phis()) {
990     int Idx = PN.getBasicBlockIndex(SplitBB);
991     assert(Idx >= 0 && "Invalid Block Index");
992     Value *V = PN.getIncomingValue(Idx);
993 
994     // If the input is a PHI which already satisfies LCSSA, don't create
995     // a new one.
996     if (const PHINode *VP = dyn_cast<PHINode>(V))
997       if (VP->getParent() == SplitBB)
998         continue;
999 
1000     // Otherwise a new PHI is needed. Create one and populate it.
1001     PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
1002     BasicBlock::iterator InsertPos =
1003         SplitBB->isLandingPad() ? SplitBB->begin()
1004                                 : SplitBB->getTerminator()->getIterator();
1005     NewPN->insertBefore(InsertPos);
1006     for (BasicBlock *BB : Preds)
1007       NewPN->addIncoming(V, BB);
1008 
1009     // Update the original PHI.
1010     PN.setIncomingValue(Idx, NewPN);
1011   }
1012 }
1013 
1014 unsigned
1015 llvm::SplitAllCriticalEdges(Function &F,
1016                             const CriticalEdgeSplittingOptions &Options) {
1017   unsigned NumBroken = 0;
1018   for (BasicBlock &BB : F) {
1019     Instruction *TI = BB.getTerminator();
1020     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
1021       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1022         if (SplitCriticalEdge(TI, i, Options))
1023           ++NumBroken;
1024   }
1025   return NumBroken;
1026 }
1027 
1028 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1029                                   DomTreeUpdater *DTU, DominatorTree *DT,
1030                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
1031                                   const Twine &BBName, bool Before) {
1032   if (Before) {
1033     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1034     return splitBlockBefore(Old, SplitPt,
1035                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1036                             BBName);
1037   }
1038   BasicBlock::iterator SplitIt = SplitPt;
1039   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1040     ++SplitIt;
1041     assert(SplitIt != SplitPt->getParent()->end());
1042   }
1043   std::string Name = BBName.str();
1044   BasicBlock *New = Old->splitBasicBlock(
1045       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1046 
1047   // The new block lives in whichever loop the old one did. This preserves
1048   // LCSSA as well, because we force the split point to be after any PHI nodes.
1049   if (LI)
1050     if (Loop *L = LI->getLoopFor(Old))
1051       L->addBasicBlockToLoop(New, *LI);
1052 
1053   if (DTU) {
1054     SmallVector<DominatorTree::UpdateType, 8> Updates;
1055     // Old dominates New. New node dominates all other nodes dominated by Old.
1056     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1057     Updates.push_back({DominatorTree::Insert, Old, New});
1058     Updates.reserve(Updates.size() + 2 * succ_size(New));
1059     for (BasicBlock *SuccessorOfOld : successors(New))
1060       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1061         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1062         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1063       }
1064 
1065     DTU->applyUpdates(Updates);
1066   } else if (DT)
1067     // Old dominates New. New node dominates all other nodes dominated by Old.
1068     if (DomTreeNode *OldNode = DT->getNode(Old)) {
1069       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1070 
1071       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1072       for (DomTreeNode *I : Children)
1073         DT->changeImmediateDominator(I, NewNode);
1074     }
1075 
1076   // Move MemoryAccesses still tracked in Old, but part of New now.
1077   // Update accesses in successor blocks accordingly.
1078   if (MSSAU)
1079     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1080 
1081   return New;
1082 }
1083 
1084 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1085                              DominatorTree *DT, LoopInfo *LI,
1086                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1087                              bool Before) {
1088   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1089                         Before);
1090 }
1091 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1092                              DomTreeUpdater *DTU, LoopInfo *LI,
1093                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1094                              bool Before) {
1095   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1096                         Before);
1097 }
1098 
1099 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1100                                    DomTreeUpdater *DTU, LoopInfo *LI,
1101                                    MemorySSAUpdater *MSSAU,
1102                                    const Twine &BBName) {
1103 
1104   BasicBlock::iterator SplitIt = SplitPt;
1105   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1106     ++SplitIt;
1107   std::string Name = BBName.str();
1108   BasicBlock *New = Old->splitBasicBlock(
1109       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1110       /* Before=*/true);
1111 
1112   // The new block lives in whichever loop the old one did. This preserves
1113   // LCSSA as well, because we force the split point to be after any PHI nodes.
1114   if (LI)
1115     if (Loop *L = LI->getLoopFor(Old))
1116       L->addBasicBlockToLoop(New, *LI);
1117 
1118   if (DTU) {
1119     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1120     // New dominates Old. The predecessor nodes of the Old node dominate
1121     // New node.
1122     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1123     DTUpdates.push_back({DominatorTree::Insert, New, Old});
1124     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1125     for (BasicBlock *PredecessorOfOld : predecessors(New))
1126       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1127         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1128         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1129       }
1130 
1131     DTU->applyUpdates(DTUpdates);
1132 
1133     // Move MemoryAccesses still tracked in Old, but part of New now.
1134     // Update accesses in successor blocks accordingly.
1135     if (MSSAU) {
1136       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1137       if (VerifyMemorySSA)
1138         MSSAU->getMemorySSA()->verifyMemorySSA();
1139     }
1140   }
1141   return New;
1142 }
1143 
1144 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1145 /// Invalidates DFS Numbering when DTU or DT is provided.
1146 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1147                                       ArrayRef<BasicBlock *> Preds,
1148                                       DomTreeUpdater *DTU, DominatorTree *DT,
1149                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
1150                                       bool PreserveLCSSA, bool &HasLoopExit) {
1151   // Update dominator tree if available.
1152   if (DTU) {
1153     // Recalculation of DomTree is needed when updating a forward DomTree and
1154     // the Entry BB is replaced.
1155     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1156       // The entry block was removed and there is no external interface for
1157       // the dominator tree to be notified of this change. In this corner-case
1158       // we recalculate the entire tree.
1159       DTU->recalculate(*NewBB->getParent());
1160     } else {
1161       // Split block expects NewBB to have a non-empty set of predecessors.
1162       SmallVector<DominatorTree::UpdateType, 8> Updates;
1163       SmallPtrSet<BasicBlock *, 8> UniquePreds;
1164       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1165       Updates.reserve(Updates.size() + 2 * Preds.size());
1166       for (auto *Pred : Preds)
1167         if (UniquePreds.insert(Pred).second) {
1168           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1169           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1170         }
1171       DTU->applyUpdates(Updates);
1172     }
1173   } else if (DT) {
1174     if (OldBB == DT->getRootNode()->getBlock()) {
1175       assert(NewBB->isEntryBlock());
1176       DT->setNewRoot(NewBB);
1177     } else {
1178       // Split block expects NewBB to have a non-empty set of predecessors.
1179       DT->splitBlock(NewBB);
1180     }
1181   }
1182 
1183   // Update MemoryPhis after split if MemorySSA is available
1184   if (MSSAU)
1185     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1186 
1187   // The rest of the logic is only relevant for updating the loop structures.
1188   if (!LI)
1189     return;
1190 
1191   if (DTU && DTU->hasDomTree())
1192     DT = &DTU->getDomTree();
1193   assert(DT && "DT should be available to update LoopInfo!");
1194   Loop *L = LI->getLoopFor(OldBB);
1195 
1196   // If we need to preserve loop analyses, collect some information about how
1197   // this split will affect loops.
1198   bool IsLoopEntry = !!L;
1199   bool SplitMakesNewLoopHeader = false;
1200   for (BasicBlock *Pred : Preds) {
1201     // Preds that are not reachable from entry should not be used to identify if
1202     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1203     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1204     // as true and make the NewBB the header of some loop. This breaks LI.
1205     if (!DT->isReachableFromEntry(Pred))
1206       continue;
1207     // If we need to preserve LCSSA, determine if any of the preds is a loop
1208     // exit.
1209     if (PreserveLCSSA)
1210       if (Loop *PL = LI->getLoopFor(Pred))
1211         if (!PL->contains(OldBB))
1212           HasLoopExit = true;
1213 
1214     // If we need to preserve LoopInfo, note whether any of the preds crosses
1215     // an interesting loop boundary.
1216     if (!L)
1217       continue;
1218     if (L->contains(Pred))
1219       IsLoopEntry = false;
1220     else
1221       SplitMakesNewLoopHeader = true;
1222   }
1223 
1224   // Unless we have a loop for OldBB, nothing else to do here.
1225   if (!L)
1226     return;
1227 
1228   if (IsLoopEntry) {
1229     // Add the new block to the nearest enclosing loop (and not an adjacent
1230     // loop). To find this, examine each of the predecessors and determine which
1231     // loops enclose them, and select the most-nested loop which contains the
1232     // loop containing the block being split.
1233     Loop *InnermostPredLoop = nullptr;
1234     for (BasicBlock *Pred : Preds) {
1235       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1236         // Seek a loop which actually contains the block being split (to avoid
1237         // adjacent loops).
1238         while (PredLoop && !PredLoop->contains(OldBB))
1239           PredLoop = PredLoop->getParentLoop();
1240 
1241         // Select the most-nested of these loops which contains the block.
1242         if (PredLoop && PredLoop->contains(OldBB) &&
1243             (!InnermostPredLoop ||
1244              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1245           InnermostPredLoop = PredLoop;
1246       }
1247     }
1248 
1249     if (InnermostPredLoop)
1250       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1251   } else {
1252     L->addBasicBlockToLoop(NewBB, *LI);
1253     if (SplitMakesNewLoopHeader)
1254       L->moveToHeader(NewBB);
1255   }
1256 }
1257 
1258 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1259 /// This also updates AliasAnalysis, if available.
1260 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1261                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1262                            bool HasLoopExit) {
1263   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1264   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1265   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1266     PHINode *PN = cast<PHINode>(I++);
1267 
1268     // Check to see if all of the values coming in are the same.  If so, we
1269     // don't need to create a new PHI node, unless it's needed for LCSSA.
1270     Value *InVal = nullptr;
1271     if (!HasLoopExit) {
1272       InVal = PN->getIncomingValueForBlock(Preds[0]);
1273       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1274         if (!PredSet.count(PN->getIncomingBlock(i)))
1275           continue;
1276         if (!InVal)
1277           InVal = PN->getIncomingValue(i);
1278         else if (InVal != PN->getIncomingValue(i)) {
1279           InVal = nullptr;
1280           break;
1281         }
1282       }
1283     }
1284 
1285     if (InVal) {
1286       // If all incoming values for the new PHI would be the same, just don't
1287       // make a new PHI.  Instead, just remove the incoming values from the old
1288       // PHI.
1289       PN->removeIncomingValueIf(
1290           [&](unsigned Idx) {
1291             return PredSet.contains(PN->getIncomingBlock(Idx));
1292           },
1293           /* DeletePHIIfEmpty */ false);
1294 
1295       // Add an incoming value to the PHI node in the loop for the preheader
1296       // edge.
1297       PN->addIncoming(InVal, NewBB);
1298       continue;
1299     }
1300 
1301     // If the values coming into the block are not the same, we need a new
1302     // PHI.
1303     // Create the new PHI node, insert it into NewBB at the end of the block
1304     PHINode *NewPHI =
1305         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator());
1306 
1307     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1308     // the cost of removal if we end up removing a large number of values, and
1309     // second off, this ensures that the indices for the incoming values aren't
1310     // invalidated when we remove one.
1311     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1312       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1313       if (PredSet.count(IncomingBB)) {
1314         Value *V = PN->removeIncomingValue(i, false);
1315         NewPHI->addIncoming(V, IncomingBB);
1316       }
1317     }
1318 
1319     PN->addIncoming(NewPHI, NewBB);
1320   }
1321 }
1322 
1323 static void SplitLandingPadPredecessorsImpl(
1324     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1325     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1326     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1327     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1328 
1329 static BasicBlock *
1330 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1331                            const char *Suffix, DomTreeUpdater *DTU,
1332                            DominatorTree *DT, LoopInfo *LI,
1333                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1334   // Do not attempt to split that which cannot be split.
1335   if (!BB->canSplitPredecessors())
1336     return nullptr;
1337 
1338   // For the landingpads we need to act a bit differently.
1339   // Delegate this work to the SplitLandingPadPredecessors.
1340   if (BB->isLandingPad()) {
1341     SmallVector<BasicBlock*, 2> NewBBs;
1342     std::string NewName = std::string(Suffix) + ".split-lp";
1343 
1344     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1345                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1346     return NewBBs[0];
1347   }
1348 
1349   // Create new basic block, insert right before the original block.
1350   BasicBlock *NewBB = BasicBlock::Create(
1351       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1352 
1353   // The new block unconditionally branches to the old block.
1354   BranchInst *BI = BranchInst::Create(BB, NewBB);
1355 
1356   Loop *L = nullptr;
1357   BasicBlock *OldLatch = nullptr;
1358   // Splitting the predecessors of a loop header creates a preheader block.
1359   if (LI && LI->isLoopHeader(BB)) {
1360     L = LI->getLoopFor(BB);
1361     // Using the loop start line number prevents debuggers stepping into the
1362     // loop body for this instruction.
1363     BI->setDebugLoc(L->getStartLoc());
1364 
1365     // If BB is the header of the Loop, it is possible that the loop is
1366     // modified, such that the current latch does not remain the latch of the
1367     // loop. If that is the case, the loop metadata from the current latch needs
1368     // to be applied to the new latch.
1369     OldLatch = L->getLoopLatch();
1370   } else
1371     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1372 
1373   // Move the edges from Preds to point to NewBB instead of BB.
1374   for (BasicBlock *Pred : Preds) {
1375     // This is slightly more strict than necessary; the minimum requirement
1376     // is that there be no more than one indirectbr branching to BB. And
1377     // all BlockAddress uses would need to be updated.
1378     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1379            "Cannot split an edge from an IndirectBrInst");
1380     Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1381   }
1382 
1383   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1384   // node becomes an incoming value for BB's phi node.  However, if the Preds
1385   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1386   // account for the newly created predecessor.
1387   if (Preds.empty()) {
1388     // Insert dummy values as the incoming value.
1389     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1390       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1391   }
1392 
1393   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1394   bool HasLoopExit = false;
1395   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1396                             HasLoopExit);
1397 
1398   if (!Preds.empty()) {
1399     // Update the PHI nodes in BB with the values coming from NewBB.
1400     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1401   }
1402 
1403   if (OldLatch) {
1404     BasicBlock *NewLatch = L->getLoopLatch();
1405     if (NewLatch != OldLatch) {
1406       MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop);
1407       NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD);
1408       // It's still possible that OldLatch is the latch of another inner loop,
1409       // in which case we do not remove the metadata.
1410       Loop *IL = LI->getLoopFor(OldLatch);
1411       if (IL && IL->getLoopLatch() != OldLatch)
1412         OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr);
1413     }
1414   }
1415 
1416   return NewBB;
1417 }
1418 
1419 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1420                                          ArrayRef<BasicBlock *> Preds,
1421                                          const char *Suffix, DominatorTree *DT,
1422                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1423                                          bool PreserveLCSSA) {
1424   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1425                                     MSSAU, PreserveLCSSA);
1426 }
1427 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1428                                          ArrayRef<BasicBlock *> Preds,
1429                                          const char *Suffix,
1430                                          DomTreeUpdater *DTU, LoopInfo *LI,
1431                                          MemorySSAUpdater *MSSAU,
1432                                          bool PreserveLCSSA) {
1433   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1434                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1435 }
1436 
1437 static void SplitLandingPadPredecessorsImpl(
1438     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1439     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1440     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1441     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1442   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1443 
1444   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1445   // it right before the original block.
1446   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1447                                           OrigBB->getName() + Suffix1,
1448                                           OrigBB->getParent(), OrigBB);
1449   NewBBs.push_back(NewBB1);
1450 
1451   // The new block unconditionally branches to the old block.
1452   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1453   BI1->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc());
1454 
1455   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1456   for (BasicBlock *Pred : Preds) {
1457     // This is slightly more strict than necessary; the minimum requirement
1458     // is that there be no more than one indirectbr branching to BB. And
1459     // all BlockAddress uses would need to be updated.
1460     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1461            "Cannot split an edge from an IndirectBrInst");
1462     Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1463   }
1464 
1465   bool HasLoopExit = false;
1466   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1467                             PreserveLCSSA, HasLoopExit);
1468 
1469   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1470   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1471 
1472   // Move the remaining edges from OrigBB to point to NewBB2.
1473   SmallVector<BasicBlock*, 8> NewBB2Preds;
1474   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1475        i != e; ) {
1476     BasicBlock *Pred = *i++;
1477     if (Pred == NewBB1) continue;
1478     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1479            "Cannot split an edge from an IndirectBrInst");
1480     NewBB2Preds.push_back(Pred);
1481     e = pred_end(OrigBB);
1482   }
1483 
1484   BasicBlock *NewBB2 = nullptr;
1485   if (!NewBB2Preds.empty()) {
1486     // Create another basic block for the rest of OrigBB's predecessors.
1487     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1488                                 OrigBB->getName() + Suffix2,
1489                                 OrigBB->getParent(), OrigBB);
1490     NewBBs.push_back(NewBB2);
1491 
1492     // The new block unconditionally branches to the old block.
1493     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1494     BI2->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc());
1495 
1496     // Move the remaining edges from OrigBB to point to NewBB2.
1497     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1498       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1499 
1500     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1501     HasLoopExit = false;
1502     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1503                               PreserveLCSSA, HasLoopExit);
1504 
1505     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1506     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1507   }
1508 
1509   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1510   Instruction *Clone1 = LPad->clone();
1511   Clone1->setName(Twine("lpad") + Suffix1);
1512   Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1513 
1514   if (NewBB2) {
1515     Instruction *Clone2 = LPad->clone();
1516     Clone2->setName(Twine("lpad") + Suffix2);
1517     Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1518 
1519     // Create a PHI node for the two cloned landingpad instructions only
1520     // if the original landingpad instruction has some uses.
1521     if (!LPad->use_empty()) {
1522       assert(!LPad->getType()->isTokenTy() &&
1523              "Split cannot be applied if LPad is token type. Otherwise an "
1524              "invalid PHINode of token type would be created.");
1525       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator());
1526       PN->addIncoming(Clone1, NewBB1);
1527       PN->addIncoming(Clone2, NewBB2);
1528       LPad->replaceAllUsesWith(PN);
1529     }
1530     LPad->eraseFromParent();
1531   } else {
1532     // There is no second clone. Just replace the landing pad with the first
1533     // clone.
1534     LPad->replaceAllUsesWith(Clone1);
1535     LPad->eraseFromParent();
1536   }
1537 }
1538 
1539 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1540                                        ArrayRef<BasicBlock *> Preds,
1541                                        const char *Suffix1, const char *Suffix2,
1542                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1543                                        DomTreeUpdater *DTU, LoopInfo *LI,
1544                                        MemorySSAUpdater *MSSAU,
1545                                        bool PreserveLCSSA) {
1546   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1547                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1548                                          PreserveLCSSA);
1549 }
1550 
1551 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1552                                              BasicBlock *Pred,
1553                                              DomTreeUpdater *DTU) {
1554   Instruction *UncondBranch = Pred->getTerminator();
1555   // Clone the return and add it to the end of the predecessor.
1556   Instruction *NewRet = RI->clone();
1557   NewRet->insertInto(Pred, Pred->end());
1558 
1559   // If the return instruction returns a value, and if the value was a
1560   // PHI node in "BB", propagate the right value into the return.
1561   for (Use &Op : NewRet->operands()) {
1562     Value *V = Op;
1563     Instruction *NewBC = nullptr;
1564     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1565       // Return value might be bitcasted. Clone and insert it before the
1566       // return instruction.
1567       V = BCI->getOperand(0);
1568       NewBC = BCI->clone();
1569       NewBC->insertInto(Pred, NewRet->getIterator());
1570       Op = NewBC;
1571     }
1572 
1573     Instruction *NewEV = nullptr;
1574     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1575       V = EVI->getOperand(0);
1576       NewEV = EVI->clone();
1577       if (NewBC) {
1578         NewBC->setOperand(0, NewEV);
1579         NewEV->insertInto(Pred, NewBC->getIterator());
1580       } else {
1581         NewEV->insertInto(Pred, NewRet->getIterator());
1582         Op = NewEV;
1583       }
1584     }
1585 
1586     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1587       if (PN->getParent() == BB) {
1588         if (NewEV) {
1589           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1590         } else if (NewBC)
1591           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1592         else
1593           Op = PN->getIncomingValueForBlock(Pred);
1594       }
1595     }
1596   }
1597 
1598   // Update any PHI nodes in the returning block to realize that we no
1599   // longer branch to them.
1600   BB->removePredecessor(Pred);
1601   UncondBranch->eraseFromParent();
1602 
1603   if (DTU)
1604     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1605 
1606   return cast<ReturnInst>(NewRet);
1607 }
1608 
1609 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1610                                              BasicBlock::iterator SplitBefore,
1611                                              bool Unreachable,
1612                                              MDNode *BranchWeights,
1613                                              DomTreeUpdater *DTU, LoopInfo *LI,
1614                                              BasicBlock *ThenBlock) {
1615   SplitBlockAndInsertIfThenElse(
1616       Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1617       /* UnreachableThen */ Unreachable,
1618       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1619   return ThenBlock->getTerminator();
1620 }
1621 
1622 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1623                                              BasicBlock::iterator SplitBefore,
1624                                              bool Unreachable,
1625                                              MDNode *BranchWeights,
1626                                              DomTreeUpdater *DTU, LoopInfo *LI,
1627                                              BasicBlock *ElseBlock) {
1628   SplitBlockAndInsertIfThenElse(
1629       Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1630       /* UnreachableThen */ false,
1631       /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1632   return ElseBlock->getTerminator();
1633 }
1634 
1635 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
1636                                          Instruction **ThenTerm,
1637                                          Instruction **ElseTerm,
1638                                          MDNode *BranchWeights,
1639                                          DomTreeUpdater *DTU, LoopInfo *LI) {
1640   BasicBlock *ThenBlock = nullptr;
1641   BasicBlock *ElseBlock = nullptr;
1642   SplitBlockAndInsertIfThenElse(
1643       Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1644       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1645 
1646   *ThenTerm = ThenBlock->getTerminator();
1647   *ElseTerm = ElseBlock->getTerminator();
1648 }
1649 
1650 void llvm::SplitBlockAndInsertIfThenElse(
1651     Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1652     BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1653     MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1654   assert((ThenBlock || ElseBlock) &&
1655          "At least one branch block must be created");
1656   assert((!UnreachableThen || !UnreachableElse) &&
1657          "Split block tail must be reachable");
1658 
1659   SmallVector<DominatorTree::UpdateType, 8> Updates;
1660   SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1661   BasicBlock *Head = SplitBefore->getParent();
1662   if (DTU) {
1663     UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1664     Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1665   }
1666 
1667   LLVMContext &C = Head->getContext();
1668   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1669   BasicBlock *TrueBlock = Tail;
1670   BasicBlock *FalseBlock = Tail;
1671   bool ThenToTailEdge = false;
1672   bool ElseToTailEdge = false;
1673 
1674   // Encapsulate the logic around creation/insertion/etc of a new block.
1675   auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1676                          bool &ToTailEdge) {
1677     if (PBB == nullptr)
1678       return; // Do not create/insert a block.
1679 
1680     if (*PBB)
1681       BB = *PBB; // Caller supplied block, use it.
1682     else {
1683       // Create a new block.
1684       BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1685       if (Unreachable)
1686         (void)new UnreachableInst(C, BB);
1687       else {
1688         (void)BranchInst::Create(Tail, BB);
1689         ToTailEdge = true;
1690       }
1691       BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1692       // Pass the new block back to the caller.
1693       *PBB = BB;
1694     }
1695   };
1696 
1697   handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1698   handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1699 
1700   Instruction *HeadOldTerm = Head->getTerminator();
1701   BranchInst *HeadNewTerm =
1702       BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1703   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1704   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1705 
1706   if (DTU) {
1707     Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1708     Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1709     if (ThenToTailEdge)
1710       Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1711     if (ElseToTailEdge)
1712       Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1713     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1714       Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1715     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1716       Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1717     DTU->applyUpdates(Updates);
1718   }
1719 
1720   if (LI) {
1721     if (Loop *L = LI->getLoopFor(Head); L) {
1722       if (ThenToTailEdge)
1723         L->addBasicBlockToLoop(TrueBlock, *LI);
1724       if (ElseToTailEdge)
1725         L->addBasicBlockToLoop(FalseBlock, *LI);
1726       L->addBasicBlockToLoop(Tail, *LI);
1727     }
1728   }
1729 }
1730 
1731 std::pair<Instruction *, Value *>
1732 llvm::SplitBlockAndInsertSimpleForLoop(Value *End,
1733                                        BasicBlock::iterator SplitBefore) {
1734   BasicBlock *LoopPred = SplitBefore->getParent();
1735   BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1736   BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1737 
1738   auto *Ty = End->getType();
1739   auto &DL = SplitBefore->getDataLayout();
1740   const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1741 
1742   IRBuilder<> Builder(LoopBody->getTerminator());
1743   auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1744   auto *IVNext =
1745     Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1746                       /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1747   auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1748                                        IV->getName() + ".check");
1749   Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1750   LoopBody->getTerminator()->eraseFromParent();
1751 
1752   // Populate the IV PHI.
1753   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1754   IV->addIncoming(IVNext, LoopBody);
1755 
1756   return std::make_pair(&*LoopBody->getFirstNonPHIIt(), IV);
1757 }
1758 
1759 void llvm::SplitBlockAndInsertForEachLane(
1760     ElementCount EC, Type *IndexTy, BasicBlock::iterator InsertBefore,
1761     std::function<void(IRBuilderBase &, Value *)> Func) {
1762 
1763   IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore);
1764 
1765   if (EC.isScalable()) {
1766     Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1767 
1768     auto [BodyIP, Index] =
1769       SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1770 
1771     IRB.SetInsertPoint(BodyIP);
1772     Func(IRB, Index);
1773     return;
1774   }
1775 
1776   unsigned Num = EC.getFixedValue();
1777   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1778     IRB.SetInsertPoint(InsertBefore);
1779     Func(IRB, ConstantInt::get(IndexTy, Idx));
1780   }
1781 }
1782 
1783 void llvm::SplitBlockAndInsertForEachLane(
1784     Value *EVL, BasicBlock::iterator InsertBefore,
1785     std::function<void(IRBuilderBase &, Value *)> Func) {
1786 
1787   IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore);
1788   Type *Ty = EVL->getType();
1789 
1790   if (!isa<ConstantInt>(EVL)) {
1791     auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1792     IRB.SetInsertPoint(BodyIP);
1793     Func(IRB, Index);
1794     return;
1795   }
1796 
1797   unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1798   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1799     IRB.SetInsertPoint(InsertBefore);
1800     Func(IRB, ConstantInt::get(Ty, Idx));
1801   }
1802 }
1803 
1804 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1805                                  BasicBlock *&IfFalse) {
1806   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1807   BasicBlock *Pred1 = nullptr;
1808   BasicBlock *Pred2 = nullptr;
1809 
1810   if (SomePHI) {
1811     if (SomePHI->getNumIncomingValues() != 2)
1812       return nullptr;
1813     Pred1 = SomePHI->getIncomingBlock(0);
1814     Pred2 = SomePHI->getIncomingBlock(1);
1815   } else {
1816     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1817     if (PI == PE) // No predecessor
1818       return nullptr;
1819     Pred1 = *PI++;
1820     if (PI == PE) // Only one predecessor
1821       return nullptr;
1822     Pred2 = *PI++;
1823     if (PI != PE) // More than two predecessors
1824       return nullptr;
1825   }
1826 
1827   // We can only handle branches.  Other control flow will be lowered to
1828   // branches if possible anyway.
1829   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1830   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1831   if (!Pred1Br || !Pred2Br)
1832     return nullptr;
1833 
1834   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1835   // either are.
1836   if (Pred2Br->isConditional()) {
1837     // If both branches are conditional, we don't have an "if statement".  In
1838     // reality, we could transform this case, but since the condition will be
1839     // required anyway, we stand no chance of eliminating it, so the xform is
1840     // probably not profitable.
1841     if (Pred1Br->isConditional())
1842       return nullptr;
1843 
1844     std::swap(Pred1, Pred2);
1845     std::swap(Pred1Br, Pred2Br);
1846   }
1847 
1848   if (Pred1Br->isConditional()) {
1849     // The only thing we have to watch out for here is to make sure that Pred2
1850     // doesn't have incoming edges from other blocks.  If it does, the condition
1851     // doesn't dominate BB.
1852     if (!Pred2->getSinglePredecessor())
1853       return nullptr;
1854 
1855     // If we found a conditional branch predecessor, make sure that it branches
1856     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1857     if (Pred1Br->getSuccessor(0) == BB &&
1858         Pred1Br->getSuccessor(1) == Pred2) {
1859       IfTrue = Pred1;
1860       IfFalse = Pred2;
1861     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1862                Pred1Br->getSuccessor(1) == BB) {
1863       IfTrue = Pred2;
1864       IfFalse = Pred1;
1865     } else {
1866       // We know that one arm of the conditional goes to BB, so the other must
1867       // go somewhere unrelated, and this must not be an "if statement".
1868       return nullptr;
1869     }
1870 
1871     return Pred1Br;
1872   }
1873 
1874   // Ok, if we got here, both predecessors end with an unconditional branch to
1875   // BB.  Don't panic!  If both blocks only have a single (identical)
1876   // predecessor, and THAT is a conditional branch, then we're all ok!
1877   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1878   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1879     return nullptr;
1880 
1881   // Otherwise, if this is a conditional branch, then we can use it!
1882   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1883   if (!BI) return nullptr;
1884 
1885   assert(BI->isConditional() && "Two successors but not conditional?");
1886   if (BI->getSuccessor(0) == Pred1) {
1887     IfTrue = Pred1;
1888     IfFalse = Pred2;
1889   } else {
1890     IfTrue = Pred2;
1891     IfFalse = Pred1;
1892   }
1893   return BI;
1894 }
1895 
1896 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
1897   Value *NewCond = PBI->getCondition();
1898   // If this is a "cmp" instruction, only used for branching (and nowhere
1899   // else), then we can simply invert the predicate.
1900   if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1901     CmpInst *CI = cast<CmpInst>(NewCond);
1902     CI->setPredicate(CI->getInversePredicate());
1903   } else
1904     NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
1905 
1906   PBI->setCondition(NewCond);
1907   PBI->swapSuccessors();
1908 }
1909 
1910 bool llvm::hasOnlySimpleTerminator(const Function &F) {
1911   for (auto &BB : F) {
1912     auto *Term = BB.getTerminator();
1913     if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
1914           isa<BranchInst>(Term)))
1915       return false;
1916   }
1917   return true;
1918 }
1919 
1920 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
1921                                          const BasicBlock &Dest) {
1922   assert(Src.getParent() == Dest.getParent());
1923   if (!Src.getParent()->isPresplitCoroutine())
1924     return false;
1925   if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
1926     if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
1927       return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
1928              SW->getDefaultDest() == &Dest;
1929   return false;
1930 }
1931