1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCObjectFileInfo.h" 24 #include "llvm/MC/MCSectionELF.h" 25 #include "llvm/MC/MCStreamer.h" 26 #include "llvm/Support/LineIterator.h" 27 #include "llvm/Support/MemoryBuffer.h" 28 #include "llvm/Target/TargetLoweringObjectFile.h" 29 #include <optional> 30 31 using namespace llvm; 32 33 static const char *BTFKindStr[] = { 34 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 35 #include "llvm/DebugInfo/BTF/BTF.def" 36 }; 37 38 static const DIType *tryRemoveAtomicType(const DIType *Ty) { 39 if (!Ty) 40 return Ty; 41 auto DerivedTy = dyn_cast<DIDerivedType>(Ty); 42 if (DerivedTy && DerivedTy->getTag() == dwarf::DW_TAG_atomic_type) 43 return DerivedTy->getBaseType(); 44 return Ty; 45 } 46 47 /// Emit a BTF common type. 48 void BTFTypeBase::emitType(MCStreamer &OS) { 49 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 50 ")"); 51 OS.emitInt32(BTFType.NameOff); 52 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 53 OS.emitInt32(BTFType.Info); 54 OS.emitInt32(BTFType.Size); 55 } 56 57 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 58 bool NeedsFixup) 59 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 60 switch (Tag) { 61 case dwarf::DW_TAG_pointer_type: 62 Kind = BTF::BTF_KIND_PTR; 63 break; 64 case dwarf::DW_TAG_const_type: 65 Kind = BTF::BTF_KIND_CONST; 66 break; 67 case dwarf::DW_TAG_volatile_type: 68 Kind = BTF::BTF_KIND_VOLATILE; 69 break; 70 case dwarf::DW_TAG_typedef: 71 Kind = BTF::BTF_KIND_TYPEDEF; 72 break; 73 case dwarf::DW_TAG_restrict_type: 74 Kind = BTF::BTF_KIND_RESTRICT; 75 break; 76 default: 77 llvm_unreachable("Unknown DIDerivedType Tag"); 78 } 79 BTFType.Info = Kind << 24; 80 } 81 82 /// Used by DW_TAG_pointer_type only. 83 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 84 StringRef Name) 85 : DTy(nullptr), NeedsFixup(false), Name(Name) { 86 Kind = BTF::BTF_KIND_PTR; 87 BTFType.Info = Kind << 24; 88 BTFType.Type = NextTypeId; 89 } 90 91 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 92 if (IsCompleted) 93 return; 94 IsCompleted = true; 95 96 BTFType.NameOff = BDebug.addString(Name); 97 98 if (NeedsFixup || !DTy) 99 return; 100 101 // The base type for PTR/CONST/VOLATILE could be void. 102 const DIType *ResolvedType = tryRemoveAtomicType(DTy->getBaseType()); 103 if (!ResolvedType) { 104 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 105 Kind == BTF::BTF_KIND_VOLATILE) && 106 "Invalid null basetype"); 107 BTFType.Type = 0; 108 } else { 109 BTFType.Type = BDebug.getTypeId(ResolvedType); 110 } 111 } 112 113 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 114 115 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 116 BTFType.Type = PointeeType; 117 } 118 119 /// Represent a struct/union forward declaration. 120 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 121 Kind = BTF::BTF_KIND_FWD; 122 BTFType.Info = IsUnion << 31 | Kind << 24; 123 BTFType.Type = 0; 124 } 125 126 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 127 if (IsCompleted) 128 return; 129 IsCompleted = true; 130 131 BTFType.NameOff = BDebug.addString(Name); 132 } 133 134 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 135 136 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 137 uint32_t OffsetInBits, StringRef TypeName) 138 : Name(TypeName) { 139 // Translate IR int encoding to BTF int encoding. 140 uint8_t BTFEncoding; 141 switch (Encoding) { 142 case dwarf::DW_ATE_boolean: 143 BTFEncoding = BTF::INT_BOOL; 144 break; 145 case dwarf::DW_ATE_signed: 146 case dwarf::DW_ATE_signed_char: 147 BTFEncoding = BTF::INT_SIGNED; 148 break; 149 case dwarf::DW_ATE_unsigned: 150 case dwarf::DW_ATE_unsigned_char: 151 BTFEncoding = 0; 152 break; 153 default: 154 llvm_unreachable("Unknown BTFTypeInt Encoding"); 155 } 156 157 Kind = BTF::BTF_KIND_INT; 158 BTFType.Info = Kind << 24; 159 BTFType.Size = roundupToBytes(SizeInBits); 160 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 161 } 162 163 void BTFTypeInt::completeType(BTFDebug &BDebug) { 164 if (IsCompleted) 165 return; 166 IsCompleted = true; 167 168 BTFType.NameOff = BDebug.addString(Name); 169 } 170 171 void BTFTypeInt::emitType(MCStreamer &OS) { 172 BTFTypeBase::emitType(OS); 173 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 174 OS.emitInt32(IntVal); 175 } 176 177 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, 178 bool IsSigned) : ETy(ETy) { 179 Kind = BTF::BTF_KIND_ENUM; 180 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 181 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 182 } 183 184 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 185 if (IsCompleted) 186 return; 187 IsCompleted = true; 188 189 BTFType.NameOff = BDebug.addString(ETy->getName()); 190 191 DINodeArray Elements = ETy->getElements(); 192 for (const auto Element : Elements) { 193 const auto *Enum = cast<DIEnumerator>(Element); 194 195 struct BTF::BTFEnum BTFEnum; 196 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 197 // BTF enum value is 32bit, enforce it. 198 uint32_t Value; 199 if (Enum->isUnsigned()) 200 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 201 else 202 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 203 BTFEnum.Val = Value; 204 EnumValues.push_back(BTFEnum); 205 } 206 } 207 208 void BTFTypeEnum::emitType(MCStreamer &OS) { 209 BTFTypeBase::emitType(OS); 210 for (const auto &Enum : EnumValues) { 211 OS.emitInt32(Enum.NameOff); 212 OS.emitInt32(Enum.Val); 213 } 214 } 215 216 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, 217 bool IsSigned) : ETy(ETy) { 218 Kind = BTF::BTF_KIND_ENUM64; 219 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 220 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 221 } 222 223 void BTFTypeEnum64::completeType(BTFDebug &BDebug) { 224 if (IsCompleted) 225 return; 226 IsCompleted = true; 227 228 BTFType.NameOff = BDebug.addString(ETy->getName()); 229 230 DINodeArray Elements = ETy->getElements(); 231 for (const auto Element : Elements) { 232 const auto *Enum = cast<DIEnumerator>(Element); 233 234 struct BTF::BTFEnum64 BTFEnum; 235 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 236 uint64_t Value; 237 if (Enum->isUnsigned()) 238 Value = static_cast<uint64_t>(Enum->getValue().getZExtValue()); 239 else 240 Value = static_cast<uint64_t>(Enum->getValue().getSExtValue()); 241 BTFEnum.Val_Lo32 = Value; 242 BTFEnum.Val_Hi32 = Value >> 32; 243 EnumValues.push_back(BTFEnum); 244 } 245 } 246 247 void BTFTypeEnum64::emitType(MCStreamer &OS) { 248 BTFTypeBase::emitType(OS); 249 for (const auto &Enum : EnumValues) { 250 OS.emitInt32(Enum.NameOff); 251 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32)); 252 OS.emitInt32(Enum.Val_Lo32); 253 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32)); 254 OS.emitInt32(Enum.Val_Hi32); 255 } 256 } 257 258 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 259 Kind = BTF::BTF_KIND_ARRAY; 260 BTFType.NameOff = 0; 261 BTFType.Info = Kind << 24; 262 BTFType.Size = 0; 263 264 ArrayInfo.ElemType = ElemTypeId; 265 ArrayInfo.Nelems = NumElems; 266 } 267 268 /// Represent a BTF array. 269 void BTFTypeArray::completeType(BTFDebug &BDebug) { 270 if (IsCompleted) 271 return; 272 IsCompleted = true; 273 274 // The IR does not really have a type for the index. 275 // A special type for array index should have been 276 // created during initial type traversal. Just 277 // retrieve that type id. 278 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 279 } 280 281 void BTFTypeArray::emitType(MCStreamer &OS) { 282 BTFTypeBase::emitType(OS); 283 OS.emitInt32(ArrayInfo.ElemType); 284 OS.emitInt32(ArrayInfo.IndexType); 285 OS.emitInt32(ArrayInfo.Nelems); 286 } 287 288 /// Represent either a struct or a union. 289 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 290 bool HasBitField, uint32_t Vlen) 291 : STy(STy), HasBitField(HasBitField) { 292 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 293 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 294 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 295 } 296 297 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 298 if (IsCompleted) 299 return; 300 IsCompleted = true; 301 302 BTFType.NameOff = BDebug.addString(STy->getName()); 303 304 // Add struct/union members. 305 const DINodeArray Elements = STy->getElements(); 306 for (const auto *Element : Elements) { 307 struct BTF::BTFMember BTFMember; 308 const auto *DDTy = cast<DIDerivedType>(Element); 309 310 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 311 if (HasBitField) { 312 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 313 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 314 } else { 315 BTFMember.Offset = DDTy->getOffsetInBits(); 316 } 317 const auto *BaseTy = tryRemoveAtomicType(DDTy->getBaseType()); 318 BTFMember.Type = BDebug.getTypeId(BaseTy); 319 Members.push_back(BTFMember); 320 } 321 } 322 323 void BTFTypeStruct::emitType(MCStreamer &OS) { 324 BTFTypeBase::emitType(OS); 325 for (const auto &Member : Members) { 326 OS.emitInt32(Member.NameOff); 327 OS.emitInt32(Member.Type); 328 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 329 OS.emitInt32(Member.Offset); 330 } 331 } 332 333 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 334 335 /// The Func kind represents both subprogram and pointee of function 336 /// pointers. If the FuncName is empty, it represents a pointee of function 337 /// pointer. Otherwise, it represents a subprogram. The func arg names 338 /// are empty for pointee of function pointer case, and are valid names 339 /// for subprogram. 340 BTFTypeFuncProto::BTFTypeFuncProto( 341 const DISubroutineType *STy, uint32_t VLen, 342 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 343 : STy(STy), FuncArgNames(FuncArgNames) { 344 Kind = BTF::BTF_KIND_FUNC_PROTO; 345 BTFType.Info = (Kind << 24) | VLen; 346 } 347 348 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 349 if (IsCompleted) 350 return; 351 IsCompleted = true; 352 353 DITypeRefArray Elements = STy->getTypeArray(); 354 auto RetType = tryRemoveAtomicType(Elements[0]); 355 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 356 BTFType.NameOff = 0; 357 358 // For null parameter which is typically the last one 359 // to represent the vararg, encode the NameOff/Type to be 0. 360 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 361 struct BTF::BTFParam Param; 362 auto Element = tryRemoveAtomicType(Elements[I]); 363 if (Element) { 364 Param.NameOff = BDebug.addString(FuncArgNames[I]); 365 Param.Type = BDebug.getTypeId(Element); 366 } else { 367 Param.NameOff = 0; 368 Param.Type = 0; 369 } 370 Parameters.push_back(Param); 371 } 372 } 373 374 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 375 BTFTypeBase::emitType(OS); 376 for (const auto &Param : Parameters) { 377 OS.emitInt32(Param.NameOff); 378 OS.emitInt32(Param.Type); 379 } 380 } 381 382 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 383 uint32_t Scope) 384 : Name(FuncName) { 385 Kind = BTF::BTF_KIND_FUNC; 386 BTFType.Info = (Kind << 24) | Scope; 387 BTFType.Type = ProtoTypeId; 388 } 389 390 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 391 if (IsCompleted) 392 return; 393 IsCompleted = true; 394 395 BTFType.NameOff = BDebug.addString(Name); 396 } 397 398 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 399 400 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 401 : Name(VarName) { 402 Kind = BTF::BTF_KIND_VAR; 403 BTFType.Info = Kind << 24; 404 BTFType.Type = TypeId; 405 Info = VarInfo; 406 } 407 408 void BTFKindVar::completeType(BTFDebug &BDebug) { 409 BTFType.NameOff = BDebug.addString(Name); 410 } 411 412 void BTFKindVar::emitType(MCStreamer &OS) { 413 BTFTypeBase::emitType(OS); 414 OS.emitInt32(Info); 415 } 416 417 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 418 : Asm(AsmPrt), Name(SecName) { 419 Kind = BTF::BTF_KIND_DATASEC; 420 BTFType.Info = Kind << 24; 421 BTFType.Size = 0; 422 } 423 424 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 425 BTFType.NameOff = BDebug.addString(Name); 426 BTFType.Info |= Vars.size(); 427 } 428 429 void BTFKindDataSec::emitType(MCStreamer &OS) { 430 BTFTypeBase::emitType(OS); 431 432 for (const auto &V : Vars) { 433 OS.emitInt32(std::get<0>(V)); 434 Asm->emitLabelReference(std::get<1>(V), 4); 435 OS.emitInt32(std::get<2>(V)); 436 } 437 } 438 439 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 440 : Name(TypeName) { 441 Kind = BTF::BTF_KIND_FLOAT; 442 BTFType.Info = Kind << 24; 443 BTFType.Size = roundupToBytes(SizeInBits); 444 } 445 446 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 447 if (IsCompleted) 448 return; 449 IsCompleted = true; 450 451 BTFType.NameOff = BDebug.addString(Name); 452 } 453 454 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 455 StringRef Tag) 456 : Tag(Tag) { 457 Kind = BTF::BTF_KIND_DECL_TAG; 458 BTFType.Info = Kind << 24; 459 BTFType.Type = BaseTypeId; 460 Info = ComponentIdx; 461 } 462 463 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 464 if (IsCompleted) 465 return; 466 IsCompleted = true; 467 468 BTFType.NameOff = BDebug.addString(Tag); 469 } 470 471 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 472 BTFTypeBase::emitType(OS); 473 OS.emitInt32(Info); 474 } 475 476 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 477 : DTy(nullptr), Tag(Tag) { 478 Kind = BTF::BTF_KIND_TYPE_TAG; 479 BTFType.Info = Kind << 24; 480 BTFType.Type = NextTypeId; 481 } 482 483 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 484 : DTy(DTy), Tag(Tag) { 485 Kind = BTF::BTF_KIND_TYPE_TAG; 486 BTFType.Info = Kind << 24; 487 } 488 489 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 490 if (IsCompleted) 491 return; 492 IsCompleted = true; 493 BTFType.NameOff = BDebug.addString(Tag); 494 if (DTy) { 495 const DIType *ResolvedType = tryRemoveAtomicType(DTy->getBaseType()); 496 if (!ResolvedType) 497 BTFType.Type = 0; 498 else 499 BTFType.Type = BDebug.getTypeId(ResolvedType); 500 } 501 } 502 503 uint32_t BTFStringTable::addString(StringRef S) { 504 // Check whether the string already exists. 505 for (auto &OffsetM : OffsetToIdMap) { 506 if (Table[OffsetM.second] == S) 507 return OffsetM.first; 508 } 509 // Not find, add to the string table. 510 uint32_t Offset = Size; 511 OffsetToIdMap[Offset] = Table.size(); 512 Table.push_back(std::string(S)); 513 Size += S.size() + 1; 514 return Offset; 515 } 516 517 BTFDebug::BTFDebug(AsmPrinter *AP) 518 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 519 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 520 MapDefNotCollected(true) { 521 addString("\0"); 522 } 523 524 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 525 const DIType *Ty) { 526 TypeEntry->setId(TypeEntries.size() + 1); 527 uint32_t Id = TypeEntry->getId(); 528 DIToIdMap[Ty] = Id; 529 TypeEntries.push_back(std::move(TypeEntry)); 530 return Id; 531 } 532 533 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 534 TypeEntry->setId(TypeEntries.size() + 1); 535 uint32_t Id = TypeEntry->getId(); 536 TypeEntries.push_back(std::move(TypeEntry)); 537 return Id; 538 } 539 540 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 541 // Only int and binary floating point types are supported in BTF. 542 uint32_t Encoding = BTy->getEncoding(); 543 std::unique_ptr<BTFTypeBase> TypeEntry; 544 switch (Encoding) { 545 case dwarf::DW_ATE_boolean: 546 case dwarf::DW_ATE_signed: 547 case dwarf::DW_ATE_signed_char: 548 case dwarf::DW_ATE_unsigned: 549 case dwarf::DW_ATE_unsigned_char: 550 // Create a BTF type instance for this DIBasicType and put it into 551 // DIToIdMap for cross-type reference check. 552 TypeEntry = std::make_unique<BTFTypeInt>( 553 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 554 break; 555 case dwarf::DW_ATE_float: 556 TypeEntry = 557 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 558 break; 559 default: 560 return; 561 } 562 563 TypeId = addType(std::move(TypeEntry), BTy); 564 } 565 566 /// Handle subprogram or subroutine types. 567 void BTFDebug::visitSubroutineType( 568 const DISubroutineType *STy, bool ForSubprog, 569 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 570 uint32_t &TypeId) { 571 DITypeRefArray Elements = STy->getTypeArray(); 572 uint32_t VLen = Elements.size() - 1; 573 if (VLen > BTF::MAX_VLEN) 574 return; 575 576 // Subprogram has a valid non-zero-length name, and the pointee of 577 // a function pointer has an empty name. The subprogram type will 578 // not be added to DIToIdMap as it should not be referenced by 579 // any other types. 580 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 581 if (ForSubprog) 582 TypeId = addType(std::move(TypeEntry)); // For subprogram 583 else 584 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 585 586 // Visit return type and func arg types. 587 for (const auto Element : Elements) { 588 visitTypeEntry(Element); 589 } 590 } 591 592 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 593 uint32_t BaseTypeId, 594 int ComponentIdx) { 595 if (!Annotations) 596 return; 597 598 for (const Metadata *Annotation : Annotations->operands()) { 599 const MDNode *MD = cast<MDNode>(Annotation); 600 const MDString *Name = cast<MDString>(MD->getOperand(0)); 601 if (Name->getString() != "btf_decl_tag") 602 continue; 603 604 const MDString *Value = cast<MDString>(MD->getOperand(1)); 605 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 606 Value->getString()); 607 addType(std::move(TypeEntry)); 608 } 609 } 610 611 uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP, 612 uint32_t ProtoTypeId, uint8_t Scope) { 613 auto FuncTypeEntry = 614 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 615 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 616 617 // Process argument annotations. 618 for (const DINode *DN : SP->getRetainedNodes()) { 619 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 620 uint32_t Arg = DV->getArg(); 621 if (Arg) 622 processDeclAnnotations(DV->getAnnotations(), FuncId, Arg - 1); 623 } 624 } 625 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 626 627 return FuncId; 628 } 629 630 /// Generate btf_type_tag chains. 631 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { 632 SmallVector<const MDString *, 4> MDStrs; 633 DINodeArray Annots = DTy->getAnnotations(); 634 if (Annots) { 635 // For type with "int __tag1 __tag2 *p", the MDStrs will have 636 // content: [__tag1, __tag2]. 637 for (const Metadata *Annotations : Annots->operands()) { 638 const MDNode *MD = cast<MDNode>(Annotations); 639 const MDString *Name = cast<MDString>(MD->getOperand(0)); 640 if (Name->getString() != "btf_type_tag") 641 continue; 642 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 643 } 644 } 645 646 if (MDStrs.size() == 0) 647 return -1; 648 649 // With MDStrs [__tag1, __tag2], the output type chain looks like 650 // PTR -> __tag2 -> __tag1 -> BaseType 651 // In the below, we construct BTF types with the order of __tag1, __tag2 652 // and PTR. 653 unsigned TmpTypeId; 654 std::unique_ptr<BTFTypeTypeTag> TypeEntry; 655 if (BaseTypeId >= 0) 656 TypeEntry = 657 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString()); 658 else 659 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 660 TmpTypeId = addType(std::move(TypeEntry)); 661 662 for (unsigned I = 1; I < MDStrs.size(); I++) { 663 const MDString *Value = MDStrs[I]; 664 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 665 TmpTypeId = addType(std::move(TypeEntry)); 666 } 667 return TmpTypeId; 668 } 669 670 /// Handle structure/union types. 671 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 672 uint32_t &TypeId) { 673 const DINodeArray Elements = CTy->getElements(); 674 uint32_t VLen = Elements.size(); 675 if (VLen > BTF::MAX_VLEN) 676 return; 677 678 // Check whether we have any bitfield members or not 679 bool HasBitField = false; 680 for (const auto *Element : Elements) { 681 auto E = cast<DIDerivedType>(Element); 682 if (E->isBitField()) { 683 HasBitField = true; 684 break; 685 } 686 } 687 688 auto TypeEntry = 689 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 690 StructTypes.push_back(TypeEntry.get()); 691 TypeId = addType(std::move(TypeEntry), CTy); 692 693 // Check struct/union annotations 694 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 695 696 // Visit all struct members. 697 int FieldNo = 0; 698 for (const auto *Element : Elements) { 699 const auto Elem = cast<DIDerivedType>(Element); 700 visitTypeEntry(Elem); 701 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 702 FieldNo++; 703 } 704 } 705 706 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 707 // Visit array element type. 708 uint32_t ElemTypeId; 709 const DIType *ElemType = CTy->getBaseType(); 710 visitTypeEntry(ElemType, ElemTypeId, false, false); 711 712 // Visit array dimensions. 713 DINodeArray Elements = CTy->getElements(); 714 for (int I = Elements.size() - 1; I >= 0; --I) { 715 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 716 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 717 const DISubrange *SR = cast<DISubrange>(Element); 718 auto *CI = dyn_cast<ConstantInt *>(SR->getCount()); 719 int64_t Count = CI->getSExtValue(); 720 721 // For struct s { int b; char c[]; }, the c[] will be represented 722 // as an array with Count = -1. 723 auto TypeEntry = 724 std::make_unique<BTFTypeArray>(ElemTypeId, 725 Count >= 0 ? Count : 0); 726 if (I == 0) 727 ElemTypeId = addType(std::move(TypeEntry), CTy); 728 else 729 ElemTypeId = addType(std::move(TypeEntry)); 730 } 731 } 732 733 // The array TypeId is the type id of the outermost dimension. 734 TypeId = ElemTypeId; 735 736 // The IR does not have a type for array index while BTF wants one. 737 // So create an array index type if there is none. 738 if (!ArrayIndexTypeId) { 739 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 740 0, "__ARRAY_SIZE_TYPE__"); 741 ArrayIndexTypeId = addType(std::move(TypeEntry)); 742 } 743 } 744 745 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 746 DINodeArray Elements = CTy->getElements(); 747 uint32_t VLen = Elements.size(); 748 if (VLen > BTF::MAX_VLEN) 749 return; 750 751 bool IsSigned = false; 752 unsigned NumBits = 32; 753 // No BaseType implies forward declaration in which case a 754 // BTFTypeEnum with Vlen = 0 is emitted. 755 if (CTy->getBaseType() != nullptr) { 756 const auto *BTy = cast<DIBasicType>(CTy->getBaseType()); 757 IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || 758 BTy->getEncoding() == dwarf::DW_ATE_signed_char; 759 NumBits = BTy->getSizeInBits(); 760 } 761 762 if (NumBits <= 32) { 763 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned); 764 TypeId = addType(std::move(TypeEntry), CTy); 765 } else { 766 assert(NumBits == 64); 767 auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned); 768 TypeId = addType(std::move(TypeEntry), CTy); 769 } 770 // No need to visit base type as BTF does not encode it. 771 } 772 773 /// Handle structure/union forward declarations. 774 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 775 uint32_t &TypeId) { 776 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 777 TypeId = addType(std::move(TypeEntry), CTy); 778 } 779 780 /// Handle structure, union, array and enumeration types. 781 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 782 uint32_t &TypeId) { 783 auto Tag = CTy->getTag(); 784 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 785 // Handle forward declaration differently as it does not have members. 786 if (CTy->isForwardDecl()) 787 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 788 else 789 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 790 } else if (Tag == dwarf::DW_TAG_array_type) 791 visitArrayType(CTy, TypeId); 792 else if (Tag == dwarf::DW_TAG_enumeration_type) 793 visitEnumType(CTy, TypeId); 794 } 795 796 bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) { 797 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 798 auto CTag = CTy->getTag(); 799 if ((CTag == dwarf::DW_TAG_structure_type || 800 CTag == dwarf::DW_TAG_union_type) && 801 !CTy->getName().empty() && !CTy->isForwardDecl()) 802 return true; 803 } 804 return false; 805 } 806 807 /// Handle pointer, typedef, const, volatile, restrict and member types. 808 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 809 bool CheckPointer, bool SeenPointer) { 810 unsigned Tag = DTy->getTag(); 811 812 if (Tag == dwarf::DW_TAG_atomic_type) 813 return visitTypeEntry(DTy->getBaseType(), TypeId, CheckPointer, 814 SeenPointer); 815 816 /// Try to avoid chasing pointees, esp. structure pointees which may 817 /// unnecessary bring in a lot of types. 818 if (CheckPointer && !SeenPointer) { 819 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 820 } 821 822 if (CheckPointer && SeenPointer) { 823 const DIType *Base = DTy->getBaseType(); 824 if (Base) { 825 if (IsForwardDeclCandidate(Base)) { 826 /// Find a candidate, generate a fixup. Later on the struct/union 827 /// pointee type will be replaced with either a real type or 828 /// a forward declaration. 829 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 830 auto &Fixup = FixupDerivedTypes[cast<DICompositeType>(Base)]; 831 Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); 832 TypeId = addType(std::move(TypeEntry), DTy); 833 return; 834 } 835 } 836 } 837 838 if (Tag == dwarf::DW_TAG_pointer_type) { 839 int TmpTypeId = genBTFTypeTags(DTy, -1); 840 if (TmpTypeId >= 0) { 841 auto TypeDEntry = 842 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 843 TypeId = addType(std::move(TypeDEntry), DTy); 844 } else { 845 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 846 TypeId = addType(std::move(TypeEntry), DTy); 847 } 848 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 849 Tag == dwarf::DW_TAG_volatile_type || 850 Tag == dwarf::DW_TAG_restrict_type) { 851 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 852 TypeId = addType(std::move(TypeEntry), DTy); 853 if (Tag == dwarf::DW_TAG_typedef) 854 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 855 } else if (Tag != dwarf::DW_TAG_member) { 856 return; 857 } 858 859 // Visit base type of pointer, typedef, const, volatile, restrict or 860 // struct/union member. 861 uint32_t TempTypeId = 0; 862 if (Tag == dwarf::DW_TAG_member) 863 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 864 else 865 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 866 } 867 868 /// Visit a type entry. CheckPointer is true if the type has 869 /// one of its predecessors as one struct/union member. SeenPointer 870 /// is true if CheckPointer is true and one of its predecessors 871 /// is a pointer. The goal of CheckPointer and SeenPointer is to 872 /// do pruning for struct/union types so some of these types 873 /// will not be emitted in BTF and rather forward declarations 874 /// will be generated. 875 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 876 bool CheckPointer, bool SeenPointer) { 877 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 878 TypeId = DIToIdMap[Ty]; 879 880 // To handle the case like the following: 881 // struct t; 882 // typedef struct t _t; 883 // struct s1 { _t *c; }; 884 // int test1(struct s1 *arg) { ... } 885 // 886 // struct t { int a; int b; }; 887 // struct s2 { _t c; } 888 // int test2(struct s2 *arg) { ... } 889 // 890 // During traversing test1() argument, "_t" is recorded 891 // in DIToIdMap and a forward declaration fixup is created 892 // for "struct t" to avoid pointee type traversal. 893 // 894 // During traversing test2() argument, even if we see "_t" is 895 // already defined, we should keep moving to eventually 896 // bring in types for "struct t". Otherwise, the "struct s2" 897 // definition won't be correct. 898 // 899 // In the above, we have following debuginfo: 900 // {ptr, struct_member} -> typedef -> struct 901 // and BTF type for 'typedef' is generated while 'struct' may 902 // be in FixUp. But let us generalize the above to handle 903 // {different types} -> [various derived types]+ -> another type. 904 // For example, 905 // {func_param, struct_member} -> const -> ptr -> volatile -> struct 906 // We will traverse const/ptr/volatile which already have corresponding 907 // BTF types and generate type for 'struct' which might be in Fixup 908 // state. 909 if (Ty && (!CheckPointer || !SeenPointer)) { 910 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 911 while (DTy) { 912 const DIType *BaseTy = DTy->getBaseType(); 913 if (!BaseTy) 914 break; 915 916 if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) { 917 DTy = dyn_cast<DIDerivedType>(BaseTy); 918 } else { 919 if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type) { 920 SeenPointer = true; 921 if (IsForwardDeclCandidate(BaseTy)) 922 break; 923 } 924 uint32_t TmpTypeId; 925 visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer); 926 break; 927 } 928 } 929 } 930 } 931 932 return; 933 } 934 935 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 936 visitBasicType(BTy, TypeId); 937 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 938 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 939 TypeId); 940 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 941 visitCompositeType(CTy, TypeId); 942 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 943 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 944 else 945 llvm_unreachable("Unknown DIType"); 946 } 947 948 void BTFDebug::visitTypeEntry(const DIType *Ty) { 949 uint32_t TypeId; 950 visitTypeEntry(Ty, TypeId, false, false); 951 } 952 953 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 954 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 955 TypeId = DIToIdMap[Ty]; 956 return; 957 } 958 959 // MapDef type may be a struct type or a non-pointer derived type 960 const DIType *OrigTy = Ty; 961 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 962 auto Tag = DTy->getTag(); 963 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 964 Tag != dwarf::DW_TAG_volatile_type && 965 Tag != dwarf::DW_TAG_restrict_type) 966 break; 967 Ty = DTy->getBaseType(); 968 } 969 970 const auto *CTy = dyn_cast<DICompositeType>(Ty); 971 if (!CTy) 972 return; 973 974 auto Tag = CTy->getTag(); 975 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 976 return; 977 978 // Visit all struct members to ensure pointee type is visited 979 const DINodeArray Elements = CTy->getElements(); 980 for (const auto *Element : Elements) { 981 const auto *MemberType = cast<DIDerivedType>(Element); 982 visitTypeEntry(MemberType->getBaseType()); 983 } 984 985 // Visit this type, struct or a const/typedef/volatile/restrict type 986 visitTypeEntry(OrigTy, TypeId, false, false); 987 } 988 989 /// Read file contents from the actual file or from the source 990 std::string BTFDebug::populateFileContent(const DIFile *File) { 991 std::string FileName; 992 993 if (!File->getFilename().starts_with("/") && File->getDirectory().size()) 994 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 995 else 996 FileName = std::string(File->getFilename()); 997 998 // No need to populate the contends if it has been populated! 999 if (FileContent.contains(FileName)) 1000 return FileName; 1001 1002 std::vector<std::string> Content; 1003 std::string Line; 1004 Content.push_back(Line); // Line 0 for empty string 1005 1006 std::unique_ptr<MemoryBuffer> Buf; 1007 auto Source = File->getSource(); 1008 if (Source) 1009 Buf = MemoryBuffer::getMemBufferCopy(*Source); 1010 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 1011 MemoryBuffer::getFile(FileName)) 1012 Buf = std::move(*BufOrErr); 1013 if (Buf) 1014 for (line_iterator I(*Buf, false), E; I != E; ++I) 1015 Content.push_back(std::string(*I)); 1016 1017 FileContent[FileName] = Content; 1018 return FileName; 1019 } 1020 1021 void BTFDebug::constructLineInfo(MCSymbol *Label, const DIFile *File, 1022 uint32_t Line, uint32_t Column) { 1023 std::string FileName = populateFileContent(File); 1024 BTFLineInfo LineInfo; 1025 1026 LineInfo.Label = Label; 1027 LineInfo.FileNameOff = addString(FileName); 1028 // If file content is not available, let LineOff = 0. 1029 if (Line < FileContent[FileName].size()) 1030 LineInfo.LineOff = addString(FileContent[FileName][Line]); 1031 else 1032 LineInfo.LineOff = 0; 1033 LineInfo.LineNum = Line; 1034 LineInfo.ColumnNum = Column; 1035 LineInfoTable[SecNameOff].push_back(LineInfo); 1036 } 1037 1038 void BTFDebug::emitCommonHeader() { 1039 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 1040 OS.emitIntValue(BTF::MAGIC, 2); 1041 OS.emitInt8(BTF::VERSION); 1042 OS.emitInt8(0); 1043 } 1044 1045 void BTFDebug::emitBTFSection() { 1046 // Do not emit section if no types and only "" string. 1047 if (!TypeEntries.size() && StringTable.getSize() == 1) 1048 return; 1049 1050 MCContext &Ctx = OS.getContext(); 1051 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 1052 Sec->setAlignment(Align(4)); 1053 OS.switchSection(Sec); 1054 1055 // Emit header. 1056 emitCommonHeader(); 1057 OS.emitInt32(BTF::HeaderSize); 1058 1059 uint32_t TypeLen = 0, StrLen; 1060 for (const auto &TypeEntry : TypeEntries) 1061 TypeLen += TypeEntry->getSize(); 1062 StrLen = StringTable.getSize(); 1063 1064 OS.emitInt32(0); 1065 OS.emitInt32(TypeLen); 1066 OS.emitInt32(TypeLen); 1067 OS.emitInt32(StrLen); 1068 1069 // Emit type table. 1070 for (const auto &TypeEntry : TypeEntries) 1071 TypeEntry->emitType(OS); 1072 1073 // Emit string table. 1074 uint32_t StringOffset = 0; 1075 for (const auto &S : StringTable.getTable()) { 1076 OS.AddComment("string offset=" + std::to_string(StringOffset)); 1077 OS.emitBytes(S); 1078 OS.emitBytes(StringRef("\0", 1)); 1079 StringOffset += S.size() + 1; 1080 } 1081 } 1082 1083 void BTFDebug::emitBTFExtSection() { 1084 // Do not emit section if empty FuncInfoTable and LineInfoTable 1085 // and FieldRelocTable. 1086 if (!FuncInfoTable.size() && !LineInfoTable.size() && 1087 !FieldRelocTable.size()) 1088 return; 1089 1090 MCContext &Ctx = OS.getContext(); 1091 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 1092 Sec->setAlignment(Align(4)); 1093 OS.switchSection(Sec); 1094 1095 // Emit header. 1096 emitCommonHeader(); 1097 OS.emitInt32(BTF::ExtHeaderSize); 1098 1099 // Account for FuncInfo/LineInfo record size as well. 1100 uint32_t FuncLen = 4, LineLen = 4; 1101 // Do not account for optional FieldReloc. 1102 uint32_t FieldRelocLen = 0; 1103 for (const auto &FuncSec : FuncInfoTable) { 1104 FuncLen += BTF::SecFuncInfoSize; 1105 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 1106 } 1107 for (const auto &LineSec : LineInfoTable) { 1108 LineLen += BTF::SecLineInfoSize; 1109 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 1110 } 1111 for (const auto &FieldRelocSec : FieldRelocTable) { 1112 FieldRelocLen += BTF::SecFieldRelocSize; 1113 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 1114 } 1115 1116 if (FieldRelocLen) 1117 FieldRelocLen += 4; 1118 1119 OS.emitInt32(0); 1120 OS.emitInt32(FuncLen); 1121 OS.emitInt32(FuncLen); 1122 OS.emitInt32(LineLen); 1123 OS.emitInt32(FuncLen + LineLen); 1124 OS.emitInt32(FieldRelocLen); 1125 1126 // Emit func_info table. 1127 OS.AddComment("FuncInfo"); 1128 OS.emitInt32(BTF::BPFFuncInfoSize); 1129 for (const auto &FuncSec : FuncInfoTable) { 1130 OS.AddComment("FuncInfo section string offset=" + 1131 std::to_string(FuncSec.first)); 1132 OS.emitInt32(FuncSec.first); 1133 OS.emitInt32(FuncSec.second.size()); 1134 for (const auto &FuncInfo : FuncSec.second) { 1135 Asm->emitLabelReference(FuncInfo.Label, 4); 1136 OS.emitInt32(FuncInfo.TypeId); 1137 } 1138 } 1139 1140 // Emit line_info table. 1141 OS.AddComment("LineInfo"); 1142 OS.emitInt32(BTF::BPFLineInfoSize); 1143 for (const auto &LineSec : LineInfoTable) { 1144 OS.AddComment("LineInfo section string offset=" + 1145 std::to_string(LineSec.first)); 1146 OS.emitInt32(LineSec.first); 1147 OS.emitInt32(LineSec.second.size()); 1148 for (const auto &LineInfo : LineSec.second) { 1149 Asm->emitLabelReference(LineInfo.Label, 4); 1150 OS.emitInt32(LineInfo.FileNameOff); 1151 OS.emitInt32(LineInfo.LineOff); 1152 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1153 std::to_string(LineInfo.ColumnNum)); 1154 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1155 } 1156 } 1157 1158 // Emit field reloc table. 1159 if (FieldRelocLen) { 1160 OS.AddComment("FieldReloc"); 1161 OS.emitInt32(BTF::BPFFieldRelocSize); 1162 for (const auto &FieldRelocSec : FieldRelocTable) { 1163 OS.AddComment("Field reloc section string offset=" + 1164 std::to_string(FieldRelocSec.first)); 1165 OS.emitInt32(FieldRelocSec.first); 1166 OS.emitInt32(FieldRelocSec.second.size()); 1167 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1168 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1169 OS.emitInt32(FieldRelocInfo.TypeID); 1170 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1171 OS.emitInt32(FieldRelocInfo.RelocKind); 1172 } 1173 } 1174 } 1175 } 1176 1177 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1178 auto *SP = MF->getFunction().getSubprogram(); 1179 auto *Unit = SP->getUnit(); 1180 1181 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1182 SkipInstruction = true; 1183 return; 1184 } 1185 SkipInstruction = false; 1186 1187 // Collect MapDef types. Map definition needs to collect 1188 // pointee types. Do it first. Otherwise, for the following 1189 // case: 1190 // struct m { ...}; 1191 // struct t { 1192 // struct m *key; 1193 // }; 1194 // foo(struct t *arg); 1195 // 1196 // struct mapdef { 1197 // ... 1198 // struct m *key; 1199 // ... 1200 // } __attribute__((section(".maps"))) hash_map; 1201 // 1202 // If subroutine foo is traversed first, a type chain 1203 // "ptr->struct m(fwd)" will be created and later on 1204 // when traversing mapdef, since "ptr->struct m" exists, 1205 // the traversal of "struct m" will be omitted. 1206 if (MapDefNotCollected) { 1207 processGlobals(true); 1208 MapDefNotCollected = false; 1209 } 1210 1211 // Collect all types locally referenced in this function. 1212 // Use RetainedNodes so we can collect all argument names 1213 // even if the argument is not used. 1214 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1215 for (const DINode *DN : SP->getRetainedNodes()) { 1216 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1217 // Collect function arguments for subprogram func type. 1218 uint32_t Arg = DV->getArg(); 1219 if (Arg) { 1220 visitTypeEntry(DV->getType()); 1221 FuncArgNames[Arg] = DV->getName(); 1222 } 1223 } 1224 } 1225 1226 // Construct subprogram func proto type. 1227 uint32_t ProtoTypeId; 1228 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1229 1230 // Construct subprogram func type 1231 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1232 uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope); 1233 1234 for (const auto &TypeEntry : TypeEntries) 1235 TypeEntry->completeType(*this); 1236 1237 // Construct funcinfo and the first lineinfo for the function. 1238 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1239 BTFFuncInfo FuncInfo; 1240 FuncInfo.Label = FuncLabel; 1241 FuncInfo.TypeId = FuncTypeId; 1242 if (FuncLabel->isInSection()) { 1243 MCSection &Section = FuncLabel->getSection(); 1244 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1245 assert(SectionELF && "Null section for Function Label"); 1246 SecNameOff = addString(SectionELF->getName()); 1247 } else { 1248 SecNameOff = addString(".text"); 1249 } 1250 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1251 } 1252 1253 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1254 SkipInstruction = false; 1255 LineInfoGenerated = false; 1256 SecNameOff = 0; 1257 } 1258 1259 /// On-demand populate types as requested from abstract member 1260 /// accessing or preserve debuginfo type. 1261 unsigned BTFDebug::populateType(const DIType *Ty) { 1262 unsigned Id; 1263 visitTypeEntry(Ty, Id, false, false); 1264 for (const auto &TypeEntry : TypeEntries) 1265 TypeEntry->completeType(*this); 1266 return Id; 1267 } 1268 1269 /// Generate a struct member field relocation. 1270 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1271 const GlobalVariable *GVar, bool IsAma) { 1272 BTFFieldReloc FieldReloc; 1273 FieldReloc.Label = ORSym; 1274 FieldReloc.TypeID = RootId; 1275 1276 StringRef AccessPattern = GVar->getName(); 1277 size_t FirstDollar = AccessPattern.find_first_of('$'); 1278 if (IsAma) { 1279 size_t FirstColon = AccessPattern.find_first_of(':'); 1280 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1281 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1282 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1283 SecondColon - FirstColon); 1284 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1285 FirstDollar - SecondColon); 1286 1287 FieldReloc.OffsetNameOff = addString(IndexPattern); 1288 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1289 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1290 FieldReloc.RelocKind); 1291 } else { 1292 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1293 FieldReloc.OffsetNameOff = addString("0"); 1294 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1295 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1296 } 1297 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1298 } 1299 1300 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1301 // check whether this is a candidate or not 1302 if (MO.isGlobal()) { 1303 const GlobalValue *GVal = MO.getGlobal(); 1304 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1305 if (!GVar) { 1306 // Not a global variable. Maybe an extern function reference. 1307 processFuncPrototypes(dyn_cast<Function>(GVal)); 1308 return; 1309 } 1310 1311 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1312 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1313 return; 1314 1315 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1316 OS.emitLabel(ORSym); 1317 1318 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1319 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1320 generatePatchImmReloc(ORSym, RootId, GVar, 1321 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1322 } 1323 } 1324 1325 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1326 DebugHandlerBase::beginInstruction(MI); 1327 1328 if (SkipInstruction || MI->isMetaInstruction() || 1329 MI->getFlag(MachineInstr::FrameSetup)) 1330 return; 1331 1332 if (MI->isInlineAsm()) { 1333 // Count the number of register definitions to find the asm string. 1334 unsigned NumDefs = 0; 1335 while (true) { 1336 const MachineOperand &MO = MI->getOperand(NumDefs); 1337 if (MO.isReg() && MO.isDef()) { 1338 ++NumDefs; 1339 continue; 1340 } 1341 // Skip this inline asm instruction if the asmstr is empty. 1342 const char *AsmStr = MO.getSymbolName(); 1343 if (AsmStr[0] == 0) 1344 return; 1345 break; 1346 } 1347 } 1348 1349 if (MI->getOpcode() == BPF::LD_imm64) { 1350 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1351 // add this insn into the .BTF.ext FieldReloc subsection. 1352 // Relocation looks like: 1353 // . SecName: 1354 // . InstOffset 1355 // . TypeID 1356 // . OffSetNameOff 1357 // . RelocType 1358 // Later, the insn is replaced with "r2 = <offset>" 1359 // where "<offset>" equals to the offset based on current 1360 // type definitions. 1361 // 1362 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1363 // The LD_imm64 result will be replaced with a btf type id. 1364 processGlobalValue(MI->getOperand(1)); 1365 } else if (MI->getOpcode() == BPF::CORE_LD64 || 1366 MI->getOpcode() == BPF::CORE_LD32 || 1367 MI->getOpcode() == BPF::CORE_ST || 1368 MI->getOpcode() == BPF::CORE_SHIFT) { 1369 // relocation insn is a load, store or shift insn. 1370 processGlobalValue(MI->getOperand(3)); 1371 } else if (MI->getOpcode() == BPF::JAL) { 1372 // check extern function references 1373 const MachineOperand &MO = MI->getOperand(0); 1374 if (MO.isGlobal()) { 1375 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1376 } 1377 } 1378 1379 if (!CurMI) // no debug info 1380 return; 1381 1382 // Skip this instruction if no DebugLoc, the DebugLoc 1383 // is the same as the previous instruction or Line is 0. 1384 const DebugLoc &DL = MI->getDebugLoc(); 1385 if (!DL || PrevInstLoc == DL || DL.getLine() == 0) { 1386 // This instruction will be skipped, no LineInfo has 1387 // been generated, construct one based on function signature. 1388 if (LineInfoGenerated == false) { 1389 auto *S = MI->getMF()->getFunction().getSubprogram(); 1390 if (!S) 1391 return; 1392 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1393 constructLineInfo(FuncLabel, S->getFile(), S->getLine(), 0); 1394 LineInfoGenerated = true; 1395 } 1396 1397 return; 1398 } 1399 1400 // Create a temporary label to remember the insn for lineinfo. 1401 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1402 OS.emitLabel(LineSym); 1403 1404 // Construct the lineinfo. 1405 constructLineInfo(LineSym, DL->getFile(), DL.getLine(), DL.getCol()); 1406 1407 LineInfoGenerated = true; 1408 PrevInstLoc = DL; 1409 } 1410 1411 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1412 // Collect all types referenced by globals. 1413 const Module *M = MMI->getModule(); 1414 for (const GlobalVariable &Global : M->globals()) { 1415 // Decide the section name. 1416 StringRef SecName; 1417 std::optional<SectionKind> GVKind; 1418 1419 if (!Global.isDeclarationForLinker()) 1420 GVKind = TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1421 1422 if (Global.isDeclarationForLinker()) 1423 SecName = Global.hasSection() ? Global.getSection() : ""; 1424 else if (GVKind->isCommon()) 1425 SecName = ".bss"; 1426 else { 1427 TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering(); 1428 MCSection *Sec = TLOF->SectionForGlobal(&Global, Asm->TM); 1429 SecName = Sec->getName(); 1430 } 1431 1432 if (ProcessingMapDef != SecName.starts_with(".maps")) 1433 continue; 1434 1435 // Create a .rodata datasec if the global variable is an initialized 1436 // constant with private linkage and if it won't be in .rodata.str<#> 1437 // and .rodata.cst<#> sections. 1438 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1439 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1440 // skip .rodata.str<#> and .rodata.cst<#> sections 1441 if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) { 1442 DataSecEntries[std::string(SecName)] = 1443 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1444 } 1445 } 1446 1447 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1448 Global.getDebugInfo(GVs); 1449 1450 // No type information, mostly internal, skip it. 1451 if (GVs.size() == 0) 1452 continue; 1453 1454 uint32_t GVTypeId = 0; 1455 DIGlobalVariable *DIGlobal = nullptr; 1456 for (auto *GVE : GVs) { 1457 DIGlobal = GVE->getVariable(); 1458 if (SecName.starts_with(".maps")) 1459 visitMapDefType(DIGlobal->getType(), GVTypeId); 1460 else { 1461 const DIType *Ty = tryRemoveAtomicType(DIGlobal->getType()); 1462 visitTypeEntry(Ty, GVTypeId, false, false); 1463 } 1464 break; 1465 } 1466 1467 // Only support the following globals: 1468 // . static variables 1469 // . non-static weak or non-weak global variables 1470 // . weak or non-weak extern global variables 1471 // Whether DataSec is readonly or not can be found from corresponding ELF 1472 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1473 // can be found from the corresponding ELF symbol table. 1474 auto Linkage = Global.getLinkage(); 1475 if (Linkage != GlobalValue::InternalLinkage && 1476 Linkage != GlobalValue::ExternalLinkage && 1477 Linkage != GlobalValue::WeakAnyLinkage && 1478 Linkage != GlobalValue::WeakODRLinkage && 1479 Linkage != GlobalValue::ExternalWeakLinkage) 1480 continue; 1481 1482 uint32_t GVarInfo; 1483 if (Linkage == GlobalValue::InternalLinkage) { 1484 GVarInfo = BTF::VAR_STATIC; 1485 } else if (Global.hasInitializer()) { 1486 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1487 } else { 1488 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1489 } 1490 1491 auto VarEntry = 1492 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1493 uint32_t VarId = addType(std::move(VarEntry)); 1494 1495 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1496 1497 // An empty SecName means an extern variable without section attribute. 1498 if (SecName.empty()) 1499 continue; 1500 1501 // Find or create a DataSec 1502 auto [It, Inserted] = DataSecEntries.try_emplace(std::string(SecName)); 1503 if (Inserted) 1504 It->second = std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1505 1506 // Calculate symbol size 1507 const DataLayout &DL = Global.getDataLayout(); 1508 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1509 1510 It->second->addDataSecEntry(VarId, Asm->getSymbol(&Global), Size); 1511 1512 if (Global.hasInitializer()) 1513 processGlobalInitializer(Global.getInitializer()); 1514 } 1515 } 1516 1517 /// Process global variable initializer in pursuit for function 1518 /// pointers. Add discovered (extern) functions to BTF. Some (extern) 1519 /// functions might have been missed otherwise. Every symbol needs BTF 1520 /// info when linking with bpftool. Primary use case: "static" 1521 /// initialization of BPF maps. 1522 /// 1523 /// struct { 1524 /// __uint(type, BPF_MAP_TYPE_PROG_ARRAY); 1525 /// ... 1526 /// } prog_map SEC(".maps") = { .values = { extern_func } }; 1527 /// 1528 void BTFDebug::processGlobalInitializer(const Constant *C) { 1529 if (auto *Fn = dyn_cast<Function>(C)) 1530 processFuncPrototypes(Fn); 1531 if (auto *CA = dyn_cast<ConstantAggregate>(C)) { 1532 for (unsigned I = 0, N = CA->getNumOperands(); I < N; ++I) 1533 processGlobalInitializer(CA->getOperand(I)); 1534 } 1535 } 1536 1537 /// Emit proper patchable instructions. 1538 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1539 if (MI->getOpcode() == BPF::LD_imm64) { 1540 const MachineOperand &MO = MI->getOperand(1); 1541 if (MO.isGlobal()) { 1542 const GlobalValue *GVal = MO.getGlobal(); 1543 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1544 if (GVar) { 1545 // Emit "mov ri, <imm>" 1546 int64_t Imm; 1547 uint32_t Reloc; 1548 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1549 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1550 Imm = PatchImms[GVar].first; 1551 Reloc = PatchImms[GVar].second; 1552 } else { 1553 return false; 1554 } 1555 1556 if (Reloc == BTF::ENUM_VALUE_EXISTENCE || Reloc == BTF::ENUM_VALUE || 1557 Reloc == BTF::BTF_TYPE_ID_LOCAL || Reloc == BTF::BTF_TYPE_ID_REMOTE) 1558 OutMI.setOpcode(BPF::LD_imm64); 1559 else 1560 OutMI.setOpcode(BPF::MOV_ri); 1561 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1562 OutMI.addOperand(MCOperand::createImm(Imm)); 1563 return true; 1564 } 1565 } 1566 } else if (MI->getOpcode() == BPF::CORE_LD64 || 1567 MI->getOpcode() == BPF::CORE_LD32 || 1568 MI->getOpcode() == BPF::CORE_ST || 1569 MI->getOpcode() == BPF::CORE_SHIFT) { 1570 const MachineOperand &MO = MI->getOperand(3); 1571 if (MO.isGlobal()) { 1572 const GlobalValue *GVal = MO.getGlobal(); 1573 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1574 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1575 uint32_t Imm = PatchImms[GVar].first; 1576 OutMI.setOpcode(MI->getOperand(1).getImm()); 1577 if (MI->getOperand(0).isImm()) 1578 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1579 else 1580 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1581 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1582 OutMI.addOperand(MCOperand::createImm(Imm)); 1583 return true; 1584 } 1585 } 1586 } 1587 return false; 1588 } 1589 1590 void BTFDebug::processFuncPrototypes(const Function *F) { 1591 if (!F) 1592 return; 1593 1594 const DISubprogram *SP = F->getSubprogram(); 1595 if (!SP || SP->isDefinition()) 1596 return; 1597 1598 // Do not emit again if already emitted. 1599 if (!ProtoFunctions.insert(F).second) 1600 return; 1601 1602 uint32_t ProtoTypeId; 1603 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1604 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1605 uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, BTF::FUNC_EXTERN); 1606 1607 if (F->hasSection()) { 1608 StringRef SecName = F->getSection(); 1609 1610 auto [It, Inserted] = DataSecEntries.try_emplace(std::string(SecName)); 1611 if (Inserted) 1612 It->second = std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1613 1614 // We really don't know func size, set it to 0. 1615 It->second->addDataSecEntry(FuncId, Asm->getSymbol(F), 0); 1616 } 1617 } 1618 1619 void BTFDebug::endModule() { 1620 // Collect MapDef globals if not collected yet. 1621 if (MapDefNotCollected) { 1622 processGlobals(true); 1623 MapDefNotCollected = false; 1624 } 1625 1626 // Collect global types/variables except MapDef globals. 1627 processGlobals(false); 1628 1629 for (auto &DataSec : DataSecEntries) 1630 addType(std::move(DataSec.second)); 1631 1632 // Fixups 1633 for (auto &Fixup : FixupDerivedTypes) { 1634 const DICompositeType *CTy = Fixup.first; 1635 StringRef TypeName = CTy->getName(); 1636 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; 1637 1638 // Search through struct types 1639 uint32_t StructTypeId = 0; 1640 for (const auto &StructType : StructTypes) { 1641 if (StructType->getName() == TypeName) { 1642 StructTypeId = StructType->getId(); 1643 break; 1644 } 1645 } 1646 1647 if (StructTypeId == 0) { 1648 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1649 StructTypeId = addType(std::move(FwdTypeEntry)); 1650 } 1651 1652 for (auto &TypeInfo : Fixup.second) { 1653 const DIDerivedType *DTy = TypeInfo.first; 1654 BTFTypeDerived *BDType = TypeInfo.second; 1655 1656 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); 1657 if (TmpTypeId >= 0) 1658 BDType->setPointeeType(TmpTypeId); 1659 else 1660 BDType->setPointeeType(StructTypeId); 1661 } 1662 } 1663 1664 // Complete BTF type cross refereences. 1665 for (const auto &TypeEntry : TypeEntries) 1666 TypeEntry->completeType(*this); 1667 1668 // Emit BTF sections. 1669 emitBTFSection(); 1670 emitBTFExtSection(); 1671 } 1672