1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments. In
10 // practice, this means looking for internal functions that have pointer
11 // arguments. If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value. This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded. Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently. This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88
89 using namespace llvm;
90
91 #define DEBUG_TYPE "argpromotion"
92
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function. At this point, we know that it's
103 /// safe to do so.
104 static Function *
doPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,Optional<function_ref<void (CallBase & OldCS,CallBase & NewCS)>> ReplaceCallSite)105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106 SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108 ReplaceCallSite) {
109 // Start by computing a new prototype for the function, which is the same as
110 // the old function, but has modified arguments.
111 FunctionType *FTy = F->getFunctionType();
112 std::vector<Type *> Params;
113
114 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115
116 // ScalarizedElements - If we are promoting a pointer that has elements
117 // accessed out of it, keep track of which elements are accessed so that we
118 // can add one argument for each.
119 //
120 // Arguments that are directly loaded will have a zero element value here, to
121 // handle cases where there are both a direct load and GEP accesses.
122 std::map<Argument *, ScalarizeTable> ScalarizedElements;
123
124 // OriginalLoads - Keep track of a representative load instruction from the
125 // original function so that we can tell the alias analysis implementation
126 // what the new GEP/Load instructions we are inserting look like.
127 // We need to keep the original loads for each argument and the elements
128 // of the argument that are accessed.
129 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130
131 // Attribute - Keep track of the parameter attributes for the arguments
132 // that we are *not* promoting. For the ones that we do promote, the parameter
133 // attributes are lost
134 SmallVector<AttributeSet, 8> ArgAttrVec;
135 AttributeList PAL = F->getAttributes();
136
137 // First, determine the new argument list
138 unsigned ArgNo = 0;
139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140 ++I, ++ArgNo) {
141 if (ByValArgsToTransform.count(&*I)) {
142 // Simple byval argument? Just add all the struct element types.
143 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144 StructType *STy = cast<StructType>(AgTy);
145 llvm::append_range(Params, STy->elements());
146 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147 AttributeSet());
148 ++NumByValArgsPromoted;
149 } else if (!ArgsToPromote.count(&*I)) {
150 // Unchanged argument
151 Params.push_back(I->getType());
152 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153 } else if (I->use_empty()) {
154 // Dead argument (which are always marked as promotable)
155 ++NumArgumentsDead;
156 } else {
157 // Okay, this is being promoted. This means that the only uses are loads
158 // or GEPs which are only used by loads
159
160 // In this table, we will track which indices are loaded from the argument
161 // (where direct loads are tracked as no indices).
162 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163 for (User *U : make_early_inc_range(I->users())) {
164 Instruction *UI = cast<Instruction>(U);
165 Type *SrcTy;
166 if (LoadInst *L = dyn_cast<LoadInst>(UI))
167 SrcTy = L->getType();
168 else
169 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170 // Skip dead GEPs and remove them.
171 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172 UI->eraseFromParent();
173 continue;
174 }
175
176 IndicesVector Indices;
177 Indices.reserve(UI->getNumOperands() - 1);
178 // Since loads will only have a single operand, and GEPs only a single
179 // non-index operand, this will record direct loads without any indices,
180 // and gep+loads with the GEP indices.
181 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
182 II != IE; ++II)
183 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
184 // GEPs with a single 0 index can be merged with direct loads
185 if (Indices.size() == 1 && Indices.front() == 0)
186 Indices.clear();
187 ArgIndices.insert(std::make_pair(SrcTy, Indices));
188 LoadInst *OrigLoad;
189 if (LoadInst *L = dyn_cast<LoadInst>(UI))
190 OrigLoad = L;
191 else
192 // Take any load, we will use it only to update Alias Analysis
193 OrigLoad = cast<LoadInst>(UI->user_back());
194 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195 }
196
197 // Add a parameter to the function for each element passed in.
198 for (const auto &ArgIndex : ArgIndices) {
199 // not allowed to dereference ->begin() if size() is 0
200 Params.push_back(GetElementPtrInst::getIndexedType(
201 cast<PointerType>(I->getType())->getElementType(),
202 ArgIndex.second));
203 ArgAttrVec.push_back(AttributeSet());
204 assert(Params.back());
205 }
206
207 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
208 ++NumArgumentsPromoted;
209 else
210 ++NumAggregatesPromoted;
211 }
212 }
213
214 Type *RetTy = FTy->getReturnType();
215
216 // Construct the new function type using the new arguments.
217 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218
219 // Create the new function body and insert it into the module.
220 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
221 F->getName());
222 NF->copyAttributesFrom(F);
223 NF->copyMetadata(F, 0);
224
225 // The new function will have the !dbg metadata copied from the original
226 // function. The original function may not be deleted, and dbg metadata need
227 // to be unique so we need to drop it.
228 F->setSubprogram(nullptr);
229
230 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
231 << "From: " << *F);
232
233 // Recompute the parameter attributes list based on the new arguments for
234 // the function.
235 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
236 PAL.getRetAttributes(), ArgAttrVec));
237 ArgAttrVec.clear();
238
239 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
240 NF->takeName(F);
241
242 // Loop over all of the callers of the function, transforming the call sites
243 // to pass in the loaded pointers.
244 //
245 SmallVector<Value *, 16> Args;
246 const DataLayout &DL = F->getParent()->getDataLayout();
247 while (!F->use_empty()) {
248 CallBase &CB = cast<CallBase>(*F->user_back());
249 assert(CB.getCalledFunction() == F);
250 const AttributeList &CallPAL = CB.getAttributes();
251 IRBuilder<NoFolder> IRB(&CB);
252
253 // Loop over the operands, inserting GEP and loads in the caller as
254 // appropriate.
255 auto AI = CB.arg_begin();
256 ArgNo = 0;
257 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
258 ++I, ++AI, ++ArgNo)
259 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
260 Args.push_back(*AI); // Unmodified argument
261 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
262 } else if (ByValArgsToTransform.count(&*I)) {
263 // Emit a GEP and load for each element of the struct.
264 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
265 StructType *STy = cast<StructType>(AgTy);
266 Value *Idxs[2] = {
267 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
268 const StructLayout *SL = DL.getStructLayout(STy);
269 Align StructAlign = *I->getParamAlign();
270 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
271 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
272 auto *Idx =
273 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
274 // TODO: Tell AA about the new values?
275 Align Alignment =
276 commonAlignment(StructAlign, SL->getElementOffset(i));
277 Args.push_back(IRB.CreateAlignedLoad(
278 STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
279 ArgAttrVec.push_back(AttributeSet());
280 }
281 } else if (!I->use_empty()) {
282 // Non-dead argument: insert GEPs and loads as appropriate.
283 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
284 // Store the Value* version of the indices in here, but declare it now
285 // for reuse.
286 std::vector<Value *> Ops;
287 for (const auto &ArgIndex : ArgIndices) {
288 Value *V = *AI;
289 LoadInst *OrigLoad =
290 OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
291 if (!ArgIndex.second.empty()) {
292 Ops.reserve(ArgIndex.second.size());
293 Type *ElTy = V->getType();
294 for (auto II : ArgIndex.second) {
295 // Use i32 to index structs, and i64 for others (pointers/arrays).
296 // This satisfies GEP constraints.
297 Type *IdxTy =
298 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
299 : Type::getInt64Ty(F->getContext()));
300 Ops.push_back(ConstantInt::get(IdxTy, II));
301 // Keep track of the type we're currently indexing.
302 if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
303 ElTy = ElPTy->getElementType();
304 else
305 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
306 }
307 // And create a GEP to extract those indices.
308 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
309 Ops.clear();
310 }
311 // Since we're replacing a load make sure we take the alignment
312 // of the previous load.
313 LoadInst *newLoad =
314 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
315 newLoad->setAlignment(OrigLoad->getAlign());
316 // Transfer the AA info too.
317 AAMDNodes AAInfo;
318 OrigLoad->getAAMetadata(AAInfo);
319 newLoad->setAAMetadata(AAInfo);
320
321 Args.push_back(newLoad);
322 ArgAttrVec.push_back(AttributeSet());
323 }
324 }
325
326 // Push any varargs arguments on the list.
327 for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
328 Args.push_back(*AI);
329 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
330 }
331
332 SmallVector<OperandBundleDef, 1> OpBundles;
333 CB.getOperandBundlesAsDefs(OpBundles);
334
335 CallBase *NewCS = nullptr;
336 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
337 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
338 Args, OpBundles, "", &CB);
339 } else {
340 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
341 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
342 NewCS = NewCall;
343 }
344 NewCS->setCallingConv(CB.getCallingConv());
345 NewCS->setAttributes(
346 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
347 CallPAL.getRetAttributes(), ArgAttrVec));
348 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
349 Args.clear();
350 ArgAttrVec.clear();
351
352 // Update the callgraph to know that the callsite has been transformed.
353 if (ReplaceCallSite)
354 (*ReplaceCallSite)(CB, *NewCS);
355
356 if (!CB.use_empty()) {
357 CB.replaceAllUsesWith(NewCS);
358 NewCS->takeName(&CB);
359 }
360
361 // Finally, remove the old call from the program, reducing the use-count of
362 // F.
363 CB.eraseFromParent();
364 }
365
366 // Since we have now created the new function, splice the body of the old
367 // function right into the new function, leaving the old rotting hulk of the
368 // function empty.
369 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
370
371 // Loop over the argument list, transferring uses of the old arguments over to
372 // the new arguments, also transferring over the names as well.
373 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
374 I2 = NF->arg_begin();
375 I != E; ++I) {
376 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
377 // If this is an unmodified argument, move the name and users over to the
378 // new version.
379 I->replaceAllUsesWith(&*I2);
380 I2->takeName(&*I);
381 ++I2;
382 continue;
383 }
384
385 if (ByValArgsToTransform.count(&*I)) {
386 // In the callee, we create an alloca, and store each of the new incoming
387 // arguments into the alloca.
388 Instruction *InsertPt = &NF->begin()->front();
389
390 // Just add all the struct element types.
391 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
392 Align StructAlign = *I->getParamAlign();
393 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
394 StructAlign, "", InsertPt);
395 StructType *STy = cast<StructType>(AgTy);
396 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
397 nullptr};
398 const StructLayout *SL = DL.getStructLayout(STy);
399
400 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
401 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
402 Value *Idx = GetElementPtrInst::Create(
403 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
404 InsertPt);
405 I2->setName(I->getName() + "." + Twine(i));
406 Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
407 new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
408 }
409
410 // Anything that used the arg should now use the alloca.
411 I->replaceAllUsesWith(TheAlloca);
412 TheAlloca->takeName(&*I);
413 continue;
414 }
415
416 // There potentially are metadata uses for things like llvm.dbg.value.
417 // Replace them with undef, after handling the other regular uses.
418 auto RauwUndefMetadata = make_scope_exit(
419 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
420
421 if (I->use_empty())
422 continue;
423
424 // Otherwise, if we promoted this argument, then all users are load
425 // instructions (or GEPs with only load users), and all loads should be
426 // using the new argument that we added.
427 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428
429 while (!I->use_empty()) {
430 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
431 assert(ArgIndices.begin()->second.empty() &&
432 "Load element should sort to front!");
433 I2->setName(I->getName() + ".val");
434 LI->replaceAllUsesWith(&*I2);
435 LI->eraseFromParent();
436 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
437 << "' in function '" << F->getName() << "'\n");
438 } else {
439 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
440 assert(!GEP->use_empty() &&
441 "GEPs without uses should be cleaned up already");
442 IndicesVector Operands;
443 Operands.reserve(GEP->getNumIndices());
444 for (const Use &Idx : GEP->indices())
445 Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
446
447 // GEPs with a single 0 index can be merged with direct loads
448 if (Operands.size() == 1 && Operands.front() == 0)
449 Operands.clear();
450
451 Function::arg_iterator TheArg = I2;
452 for (ScalarizeTable::iterator It = ArgIndices.begin();
453 It->second != Operands; ++It, ++TheArg) {
454 assert(It != ArgIndices.end() && "GEP not handled??");
455 }
456
457 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
458 make_range(Operands.begin(), Operands.end())));
459
460 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
461 << "' of function '" << NF->getName() << "'\n");
462
463 // All of the uses must be load instructions. Replace them all with
464 // the argument specified by ArgNo.
465 while (!GEP->use_empty()) {
466 LoadInst *L = cast<LoadInst>(GEP->user_back());
467 L->replaceAllUsesWith(&*TheArg);
468 L->eraseFromParent();
469 }
470 GEP->eraseFromParent();
471 }
472 }
473 // Increment I2 past all of the arguments added for this promoted pointer.
474 std::advance(I2, ArgIndices.size());
475 }
476
477 return NF;
478 }
479
480 /// Return true if we can prove that all callees pass in a valid pointer for the
481 /// specified function argument.
allCallersPassValidPointerForArgument(Argument * Arg,Type * Ty)482 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
483 Function *Callee = Arg->getParent();
484 const DataLayout &DL = Callee->getParent()->getDataLayout();
485
486 unsigned ArgNo = Arg->getArgNo();
487
488 // Look at all call sites of the function. At this point we know we only have
489 // direct callees.
490 for (User *U : Callee->users()) {
491 CallBase &CB = cast<CallBase>(*U);
492
493 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
494 return false;
495 }
496 return true;
497 }
498
499 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
500 /// that is greater than or equal to the size of prefix, and each of the
501 /// elements in Prefix is the same as the corresponding elements in Longer.
502 ///
503 /// This means it also returns true when Prefix and Longer are equal!
isPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)504 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
505 if (Prefix.size() > Longer.size())
506 return false;
507 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
508 }
509
510 /// Checks if Indices, or a prefix of Indices, is in Set.
prefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)511 static bool prefixIn(const IndicesVector &Indices,
512 std::set<IndicesVector> &Set) {
513 std::set<IndicesVector>::iterator Low;
514 Low = Set.upper_bound(Indices);
515 if (Low != Set.begin())
516 Low--;
517 // Low is now the last element smaller than or equal to Indices. This means
518 // it points to a prefix of Indices (possibly Indices itself), if such
519 // prefix exists.
520 //
521 // This load is safe if any prefix of its operands is safe to load.
522 return Low != Set.end() && isPrefix(*Low, Indices);
523 }
524
525 /// Mark the given indices (ToMark) as safe in the given set of indices
526 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
527 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
528 /// already. Furthermore, any indices that Indices is itself a prefix of, are
529 /// removed from Safe (since they are implicitely safe because of Indices now).
markIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)530 static void markIndicesSafe(const IndicesVector &ToMark,
531 std::set<IndicesVector> &Safe) {
532 std::set<IndicesVector>::iterator Low;
533 Low = Safe.upper_bound(ToMark);
534 // Guard against the case where Safe is empty
535 if (Low != Safe.begin())
536 Low--;
537 // Low is now the last element smaller than or equal to Indices. This
538 // means it points to a prefix of Indices (possibly Indices itself), if
539 // such prefix exists.
540 if (Low != Safe.end()) {
541 if (isPrefix(*Low, ToMark))
542 // If there is already a prefix of these indices (or exactly these
543 // indices) marked a safe, don't bother adding these indices
544 return;
545
546 // Increment Low, so we can use it as a "insert before" hint
547 ++Low;
548 }
549 // Insert
550 Low = Safe.insert(Low, ToMark);
551 ++Low;
552 // If there we're a prefix of longer index list(s), remove those
553 std::set<IndicesVector>::iterator End = Safe.end();
554 while (Low != End && isPrefix(ToMark, *Low)) {
555 std::set<IndicesVector>::iterator Remove = Low;
556 ++Low;
557 Safe.erase(Remove);
558 }
559 }
560
561 /// isSafeToPromoteArgument - As you might guess from the name of this method,
562 /// it checks to see if it is both safe and useful to promote the argument.
563 /// This method limits promotion of aggregates to only promote up to three
564 /// elements of the aggregate in order to avoid exploding the number of
565 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,Type * ByValTy,AAResults & AAR,unsigned MaxElements)566 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
567 unsigned MaxElements) {
568 using GEPIndicesSet = std::set<IndicesVector>;
569
570 // Quick exit for unused arguments
571 if (Arg->use_empty())
572 return true;
573
574 // We can only promote this argument if all of the uses are loads, or are GEP
575 // instructions (with constant indices) that are subsequently loaded.
576 //
577 // Promoting the argument causes it to be loaded in the caller
578 // unconditionally. This is only safe if we can prove that either the load
579 // would have happened in the callee anyway (ie, there is a load in the entry
580 // block) or the pointer passed in at every call site is guaranteed to be
581 // valid.
582 // In the former case, invalid loads can happen, but would have happened
583 // anyway, in the latter case, invalid loads won't happen. This prevents us
584 // from introducing an invalid load that wouldn't have happened in the
585 // original code.
586 //
587 // This set will contain all sets of indices that are loaded in the entry
588 // block, and thus are safe to unconditionally load in the caller.
589 GEPIndicesSet SafeToUnconditionallyLoad;
590
591 // This set contains all the sets of indices that we are planning to promote.
592 // This makes it possible to limit the number of arguments added.
593 GEPIndicesSet ToPromote;
594
595 // If the pointer is always valid, any load with first index 0 is valid.
596
597 if (ByValTy)
598 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
599
600 // Whenever a new underlying type for the operand is found, make sure it's
601 // consistent with the GEPs and loads we've already seen and, if necessary,
602 // use it to see if all incoming pointers are valid (which implies the 0-index
603 // is safe).
604 Type *BaseTy = ByValTy;
605 auto UpdateBaseTy = [&](Type *NewBaseTy) {
606 if (BaseTy)
607 return BaseTy == NewBaseTy;
608
609 BaseTy = NewBaseTy;
610 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
611 assert(SafeToUnconditionallyLoad.empty());
612 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
613 }
614
615 return true;
616 };
617
618 // First, iterate the entry block and mark loads of (geps of) arguments as
619 // safe.
620 BasicBlock &EntryBlock = Arg->getParent()->front();
621 // Declare this here so we can reuse it
622 IndicesVector Indices;
623 for (Instruction &I : EntryBlock)
624 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
625 Value *V = LI->getPointerOperand();
626 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
627 V = GEP->getPointerOperand();
628 if (V == Arg) {
629 // This load actually loads (part of) Arg? Check the indices then.
630 Indices.reserve(GEP->getNumIndices());
631 for (Use &Idx : GEP->indices())
632 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
633 Indices.push_back(CI->getSExtValue());
634 else
635 // We found a non-constant GEP index for this argument? Bail out
636 // right away, can't promote this argument at all.
637 return false;
638
639 if (!UpdateBaseTy(GEP->getSourceElementType()))
640 return false;
641
642 // Indices checked out, mark them as safe
643 markIndicesSafe(Indices, SafeToUnconditionallyLoad);
644 Indices.clear();
645 }
646 } else if (V == Arg) {
647 // Direct loads are equivalent to a GEP with a single 0 index.
648 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
649
650 if (BaseTy && LI->getType() != BaseTy)
651 return false;
652
653 BaseTy = LI->getType();
654 }
655 }
656
657 // Now, iterate all uses of the argument to see if there are any uses that are
658 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
659 SmallVector<LoadInst *, 16> Loads;
660 IndicesVector Operands;
661 for (Use &U : Arg->uses()) {
662 User *UR = U.getUser();
663 Operands.clear();
664 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
665 // Don't hack volatile/atomic loads
666 if (!LI->isSimple())
667 return false;
668 Loads.push_back(LI);
669 // Direct loads are equivalent to a GEP with a zero index and then a load.
670 Operands.push_back(0);
671
672 if (!UpdateBaseTy(LI->getType()))
673 return false;
674 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
675 if (GEP->use_empty()) {
676 // Dead GEP's cause trouble later. Just remove them if we run into
677 // them.
678 continue;
679 }
680
681 if (!UpdateBaseTy(GEP->getSourceElementType()))
682 return false;
683
684 // Ensure that all of the indices are constants.
685 for (Use &Idx : GEP->indices())
686 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
687 Operands.push_back(C->getSExtValue());
688 else
689 return false; // Not a constant operand GEP!
690
691 // Ensure that the only users of the GEP are load instructions.
692 for (User *GEPU : GEP->users())
693 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
694 // Don't hack volatile/atomic loads
695 if (!LI->isSimple())
696 return false;
697 Loads.push_back(LI);
698 } else {
699 // Other uses than load?
700 return false;
701 }
702 } else {
703 return false; // Not a load or a GEP.
704 }
705
706 // Now, see if it is safe to promote this load / loads of this GEP. Loading
707 // is safe if Operands, or a prefix of Operands, is marked as safe.
708 if (!prefixIn(Operands, SafeToUnconditionallyLoad))
709 return false;
710
711 // See if we are already promoting a load with these indices. If not, check
712 // to make sure that we aren't promoting too many elements. If so, nothing
713 // to do.
714 if (ToPromote.find(Operands) == ToPromote.end()) {
715 if (MaxElements > 0 && ToPromote.size() == MaxElements) {
716 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
717 << Arg->getName()
718 << "' because it would require adding more "
719 << "than " << MaxElements
720 << " arguments to the function.\n");
721 // We limit aggregate promotion to only promoting up to a fixed number
722 // of elements of the aggregate.
723 return false;
724 }
725 ToPromote.insert(std::move(Operands));
726 }
727 }
728
729 if (Loads.empty())
730 return true; // No users, this is a dead argument.
731
732 // Okay, now we know that the argument is only used by load instructions and
733 // it is safe to unconditionally perform all of them. Use alias analysis to
734 // check to see if the pointer is guaranteed to not be modified from entry of
735 // the function to each of the load instructions.
736
737 // Because there could be several/many load instructions, remember which
738 // blocks we know to be transparent to the load.
739 df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
740
741 for (LoadInst *Load : Loads) {
742 // Check to see if the load is invalidated from the start of the block to
743 // the load itself.
744 BasicBlock *BB = Load->getParent();
745
746 MemoryLocation Loc = MemoryLocation::get(Load);
747 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
748 return false; // Pointer is invalidated!
749
750 // Now check every path from the entry block to the load for transparency.
751 // To do this, we perform a depth first search on the inverse CFG from the
752 // loading block.
753 for (BasicBlock *P : predecessors(BB)) {
754 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
755 if (AAR.canBasicBlockModify(*TranspBB, Loc))
756 return false;
757 }
758 }
759
760 // If the path from the entry of the function to each load is free of
761 // instructions that potentially invalidate the load, we can make the
762 // transformation!
763 return true;
764 }
765
isDenselyPacked(Type * type,const DataLayout & DL)766 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
767 // There is no size information, so be conservative.
768 if (!type->isSized())
769 return false;
770
771 // If the alloc size is not equal to the storage size, then there are padding
772 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
773 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
774 return false;
775
776 // FIXME: This isn't the right way to check for padding in vectors with
777 // non-byte-size elements.
778 if (VectorType *seqTy = dyn_cast<VectorType>(type))
779 return isDenselyPacked(seqTy->getElementType(), DL);
780
781 // For array types, check for padding within members.
782 if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
783 return isDenselyPacked(seqTy->getElementType(), DL);
784
785 if (!isa<StructType>(type))
786 return true;
787
788 // Check for padding within and between elements of a struct.
789 StructType *StructTy = cast<StructType>(type);
790 const StructLayout *Layout = DL.getStructLayout(StructTy);
791 uint64_t StartPos = 0;
792 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
793 Type *ElTy = StructTy->getElementType(i);
794 if (!isDenselyPacked(ElTy, DL))
795 return false;
796 if (StartPos != Layout->getElementOffsetInBits(i))
797 return false;
798 StartPos += DL.getTypeAllocSizeInBits(ElTy);
799 }
800
801 return true;
802 }
803
804 /// Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)805 static bool canPaddingBeAccessed(Argument *arg) {
806 assert(arg->hasByValAttr());
807
808 // Track all the pointers to the argument to make sure they are not captured.
809 SmallPtrSet<Value *, 16> PtrValues;
810 PtrValues.insert(arg);
811
812 // Track all of the stores.
813 SmallVector<StoreInst *, 16> Stores;
814
815 // Scan through the uses recursively to make sure the pointer is always used
816 // sanely.
817 SmallVector<Value *, 16> WorkList(arg->users());
818 while (!WorkList.empty()) {
819 Value *V = WorkList.pop_back_val();
820 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
821 if (PtrValues.insert(V).second)
822 llvm::append_range(WorkList, V->users());
823 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
824 Stores.push_back(Store);
825 } else if (!isa<LoadInst>(V)) {
826 return true;
827 }
828 }
829
830 // Check to make sure the pointers aren't captured
831 for (StoreInst *Store : Stores)
832 if (PtrValues.count(Store->getValueOperand()))
833 return true;
834
835 return false;
836 }
837
areFunctionArgsABICompatible(const Function & F,const TargetTransformInfo & TTI,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform)838 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
839 const Function &F, const TargetTransformInfo &TTI,
840 SmallPtrSetImpl<Argument *> &ArgsToPromote,
841 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
842 for (const Use &U : F.uses()) {
843 CallBase *CB = dyn_cast<CallBase>(U.getUser());
844 if (!CB)
845 return false;
846 const Function *Caller = CB->getCaller();
847 const Function *Callee = CB->getCalledFunction();
848 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
849 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
850 return false;
851 }
852 return true;
853 }
854
855 /// PromoteArguments - This method checks the specified function to see if there
856 /// are any promotable arguments and if it is safe to promote the function (for
857 /// example, all callers are direct). If safe to promote some arguments, it
858 /// calls the DoPromotion method.
859 static Function *
promoteArguments(Function * F,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements,Optional<function_ref<void (CallBase & OldCS,CallBase & NewCS)>> ReplaceCallSite,const TargetTransformInfo & TTI)860 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
861 unsigned MaxElements,
862 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
863 ReplaceCallSite,
864 const TargetTransformInfo &TTI) {
865 // Don't perform argument promotion for naked functions; otherwise we can end
866 // up removing parameters that are seemingly 'not used' as they are referred
867 // to in the assembly.
868 if(F->hasFnAttribute(Attribute::Naked))
869 return nullptr;
870
871 // Make sure that it is local to this module.
872 if (!F->hasLocalLinkage())
873 return nullptr;
874
875 // Don't promote arguments for variadic functions. Adding, removing, or
876 // changing non-pack parameters can change the classification of pack
877 // parameters. Frontends encode that classification at the call site in the
878 // IR, while in the callee the classification is determined dynamically based
879 // on the number of registers consumed so far.
880 if (F->isVarArg())
881 return nullptr;
882
883 // Don't transform functions that receive inallocas, as the transformation may
884 // not be safe depending on calling convention.
885 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
886 return nullptr;
887
888 // First check: see if there are any pointer arguments! If not, quick exit.
889 SmallVector<Argument *, 16> PointerArgs;
890 for (Argument &I : F->args())
891 if (I.getType()->isPointerTy())
892 PointerArgs.push_back(&I);
893 if (PointerArgs.empty())
894 return nullptr;
895
896 // Second check: make sure that all callers are direct callers. We can't
897 // transform functions that have indirect callers. Also see if the function
898 // is self-recursive and check that target features are compatible.
899 bool isSelfRecursive = false;
900 for (Use &U : F->uses()) {
901 CallBase *CB = dyn_cast<CallBase>(U.getUser());
902 // Must be a direct call.
903 if (CB == nullptr || !CB->isCallee(&U))
904 return nullptr;
905
906 // Can't change signature of musttail callee
907 if (CB->isMustTailCall())
908 return nullptr;
909
910 if (CB->getParent()->getParent() == F)
911 isSelfRecursive = true;
912 }
913
914 // Can't change signature of musttail caller
915 // FIXME: Support promoting whole chain of musttail functions
916 for (BasicBlock &BB : *F)
917 if (BB.getTerminatingMustTailCall())
918 return nullptr;
919
920 const DataLayout &DL = F->getParent()->getDataLayout();
921
922 AAResults &AAR = AARGetter(*F);
923
924 // Check to see which arguments are promotable. If an argument is promotable,
925 // add it to ArgsToPromote.
926 SmallPtrSet<Argument *, 8> ArgsToPromote;
927 SmallPtrSet<Argument *, 8> ByValArgsToTransform;
928 for (Argument *PtrArg : PointerArgs) {
929 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
930
931 // Replace sret attribute with noalias. This reduces register pressure by
932 // avoiding a register copy.
933 if (PtrArg->hasStructRetAttr()) {
934 unsigned ArgNo = PtrArg->getArgNo();
935 F->removeParamAttr(ArgNo, Attribute::StructRet);
936 F->addParamAttr(ArgNo, Attribute::NoAlias);
937 for (Use &U : F->uses()) {
938 CallBase &CB = cast<CallBase>(*U.getUser());
939 CB.removeParamAttr(ArgNo, Attribute::StructRet);
940 CB.addParamAttr(ArgNo, Attribute::NoAlias);
941 }
942 }
943
944 // If this is a byval argument, and if the aggregate type is small, just
945 // pass the elements, which is always safe, if the passed value is densely
946 // packed or if we can prove the padding bytes are never accessed.
947 //
948 // Only handle arguments with specified alignment; if it's unspecified, the
949 // actual alignment of the argument is target-specific.
950 bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
951 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
952 !canPaddingBeAccessed(PtrArg));
953 if (isSafeToPromote) {
954 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
955 if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
956 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
957 << PtrArg->getName()
958 << "' because it would require adding more"
959 << " than " << MaxElements
960 << " arguments to the function.\n");
961 continue;
962 }
963
964 // If all the elements are single-value types, we can promote it.
965 bool AllSimple = true;
966 for (const auto *EltTy : STy->elements()) {
967 if (!EltTy->isSingleValueType()) {
968 AllSimple = false;
969 break;
970 }
971 }
972
973 // Safe to transform, don't even bother trying to "promote" it.
974 // Passing the elements as a scalar will allow sroa to hack on
975 // the new alloca we introduce.
976 if (AllSimple) {
977 ByValArgsToTransform.insert(PtrArg);
978 continue;
979 }
980 }
981 }
982
983 // If the argument is a recursive type and we're in a recursive
984 // function, we could end up infinitely peeling the function argument.
985 if (isSelfRecursive) {
986 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
987 bool RecursiveType =
988 llvm::is_contained(STy->elements(), PtrArg->getType());
989 if (RecursiveType)
990 continue;
991 }
992 }
993
994 // Otherwise, see if we can promote the pointer to its value.
995 Type *ByValTy =
996 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
997 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
998 ArgsToPromote.insert(PtrArg);
999 }
1000
1001 // No promotable pointer arguments.
1002 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1003 return nullptr;
1004
1005 if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1006 *F, TTI, ArgsToPromote, ByValArgsToTransform))
1007 return nullptr;
1008
1009 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1010 }
1011
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)1012 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1013 CGSCCAnalysisManager &AM,
1014 LazyCallGraph &CG,
1015 CGSCCUpdateResult &UR) {
1016 bool Changed = false, LocalChange;
1017
1018 // Iterate until we stop promoting from this SCC.
1019 do {
1020 LocalChange = false;
1021
1022 for (LazyCallGraph::Node &N : C) {
1023 Function &OldF = N.getFunction();
1024
1025 FunctionAnalysisManager &FAM =
1026 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1027 // FIXME: This lambda must only be used with this function. We should
1028 // skip the lambda and just get the AA results directly.
1029 auto AARGetter = [&](Function &F) -> AAResults & {
1030 assert(&F == &OldF && "Called with an unexpected function!");
1031 return FAM.getResult<AAManager>(F);
1032 };
1033
1034 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1035 Function *NewF =
1036 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1037 if (!NewF)
1038 continue;
1039 LocalChange = true;
1040
1041 // Directly substitute the functions in the call graph. Note that this
1042 // requires the old function to be completely dead and completely
1043 // replaced by the new function. It does no call graph updates, it merely
1044 // swaps out the particular function mapped to a particular node in the
1045 // graph.
1046 C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1047 FAM.clear(OldF, OldF.getName());
1048 OldF.eraseFromParent();
1049 }
1050
1051 Changed |= LocalChange;
1052 } while (LocalChange);
1053
1054 if (!Changed)
1055 return PreservedAnalyses::all();
1056
1057 return PreservedAnalyses::none();
1058 }
1059
1060 namespace {
1061
1062 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1063 struct ArgPromotion : public CallGraphSCCPass {
1064 // Pass identification, replacement for typeid
1065 static char ID;
1066
ArgPromotion__anoncccfe23a0411::ArgPromotion1067 explicit ArgPromotion(unsigned MaxElements = 3)
1068 : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1069 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1070 }
1071
getAnalysisUsage__anoncccfe23a0411::ArgPromotion1072 void getAnalysisUsage(AnalysisUsage &AU) const override {
1073 AU.addRequired<AssumptionCacheTracker>();
1074 AU.addRequired<TargetLibraryInfoWrapperPass>();
1075 AU.addRequired<TargetTransformInfoWrapperPass>();
1076 getAAResultsAnalysisUsage(AU);
1077 CallGraphSCCPass::getAnalysisUsage(AU);
1078 }
1079
1080 bool runOnSCC(CallGraphSCC &SCC) override;
1081
1082 private:
1083 using llvm::Pass::doInitialization;
1084
1085 bool doInitialization(CallGraph &CG) override;
1086
1087 /// The maximum number of elements to expand, or 0 for unlimited.
1088 unsigned MaxElements;
1089 };
1090
1091 } // end anonymous namespace
1092
1093 char ArgPromotion::ID = 0;
1094
1095 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1096 "Promote 'by reference' arguments to scalars", false,
1097 false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1099 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1101 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1103 "Promote 'by reference' arguments to scalars", false, false)
1104
1105 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1106 return new ArgPromotion(MaxElements);
1107 }
1108
runOnSCC(CallGraphSCC & SCC)1109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1110 if (skipSCC(SCC))
1111 return false;
1112
1113 // Get the callgraph information that we need to update to reflect our
1114 // changes.
1115 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1116
1117 LegacyAARGetter AARGetter(*this);
1118
1119 bool Changed = false, LocalChange;
1120
1121 // Iterate until we stop promoting from this SCC.
1122 do {
1123 LocalChange = false;
1124 // Attempt to promote arguments from all functions in this SCC.
1125 for (CallGraphNode *OldNode : SCC) {
1126 Function *OldF = OldNode->getFunction();
1127 if (!OldF)
1128 continue;
1129
1130 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1131 Function *Caller = OldCS.getParent()->getParent();
1132 CallGraphNode *NewCalleeNode =
1133 CG.getOrInsertFunction(NewCS.getCalledFunction());
1134 CallGraphNode *CallerNode = CG[Caller];
1135 CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1136 cast<CallBase>(NewCS), NewCalleeNode);
1137 };
1138
1139 const TargetTransformInfo &TTI =
1140 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1141 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1142 {ReplaceCallSite}, TTI)) {
1143 LocalChange = true;
1144
1145 // Update the call graph for the newly promoted function.
1146 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1147 NewNode->stealCalledFunctionsFrom(OldNode);
1148 if (OldNode->getNumReferences() == 0)
1149 delete CG.removeFunctionFromModule(OldNode);
1150 else
1151 OldF->setLinkage(Function::ExternalLinkage);
1152
1153 // And updat ethe SCC we're iterating as well.
1154 SCC.ReplaceNode(OldNode, NewNode);
1155 }
1156 }
1157 // Remember that we changed something.
1158 Changed |= LocalChange;
1159 } while (LocalChange);
1160
1161 return Changed;
1162 }
1163
doInitialization(CallGraph & CG)1164 bool ArgPromotion::doInitialization(CallGraph &CG) {
1165 return CallGraphSCCPass::doInitialization(CG);
1166 }
1167