xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
doPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,Optional<function_ref<void (CallBase & OldCS,CallBase & NewCS)>> ReplaceCallSite)105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       llvm::append_range(Params, STy->elements());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156     } else {
157       // Okay, this is being promoted. This means that the only uses are loads
158       // or GEPs which are only used by loads
159 
160       // In this table, we will track which indices are loaded from the argument
161       // (where direct loads are tracked as no indices).
162       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163       for (User *U : make_early_inc_range(I->users())) {
164         Instruction *UI = cast<Instruction>(U);
165         Type *SrcTy;
166         if (LoadInst *L = dyn_cast<LoadInst>(UI))
167           SrcTy = L->getType();
168         else
169           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170         // Skip dead GEPs and remove them.
171         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172           UI->eraseFromParent();
173           continue;
174         }
175 
176         IndicesVector Indices;
177         Indices.reserve(UI->getNumOperands() - 1);
178         // Since loads will only have a single operand, and GEPs only a single
179         // non-index operand, this will record direct loads without any indices,
180         // and gep+loads with the GEP indices.
181         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
182              II != IE; ++II)
183           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
184         // GEPs with a single 0 index can be merged with direct loads
185         if (Indices.size() == 1 && Indices.front() == 0)
186           Indices.clear();
187         ArgIndices.insert(std::make_pair(SrcTy, Indices));
188         LoadInst *OrigLoad;
189         if (LoadInst *L = dyn_cast<LoadInst>(UI))
190           OrigLoad = L;
191         else
192           // Take any load, we will use it only to update Alias Analysis
193           OrigLoad = cast<LoadInst>(UI->user_back());
194         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195       }
196 
197       // Add a parameter to the function for each element passed in.
198       for (const auto &ArgIndex : ArgIndices) {
199         // not allowed to dereference ->begin() if size() is 0
200         Params.push_back(GetElementPtrInst::getIndexedType(
201             cast<PointerType>(I->getType())->getElementType(),
202             ArgIndex.second));
203         ArgAttrVec.push_back(AttributeSet());
204         assert(Params.back());
205       }
206 
207       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
208         ++NumArgumentsPromoted;
209       else
210         ++NumAggregatesPromoted;
211     }
212   }
213 
214   Type *RetTy = FTy->getReturnType();
215 
216   // Construct the new function type using the new arguments.
217   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218 
219   // Create the new function body and insert it into the module.
220   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
221                                   F->getName());
222   NF->copyAttributesFrom(F);
223   NF->copyMetadata(F, 0);
224 
225   // The new function will have the !dbg metadata copied from the original
226   // function. The original function may not be deleted, and dbg metadata need
227   // to be unique so we need to drop it.
228   F->setSubprogram(nullptr);
229 
230   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
231                     << "From: " << *F);
232 
233   // Recompute the parameter attributes list based on the new arguments for
234   // the function.
235   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
236                                        PAL.getRetAttributes(), ArgAttrVec));
237   ArgAttrVec.clear();
238 
239   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
240   NF->takeName(F);
241 
242   // Loop over all of the callers of the function, transforming the call sites
243   // to pass in the loaded pointers.
244   //
245   SmallVector<Value *, 16> Args;
246   const DataLayout &DL = F->getParent()->getDataLayout();
247   while (!F->use_empty()) {
248     CallBase &CB = cast<CallBase>(*F->user_back());
249     assert(CB.getCalledFunction() == F);
250     const AttributeList &CallPAL = CB.getAttributes();
251     IRBuilder<NoFolder> IRB(&CB);
252 
253     // Loop over the operands, inserting GEP and loads in the caller as
254     // appropriate.
255     auto AI = CB.arg_begin();
256     ArgNo = 0;
257     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
258          ++I, ++AI, ++ArgNo)
259       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
260         Args.push_back(*AI); // Unmodified argument
261         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
262       } else if (ByValArgsToTransform.count(&*I)) {
263         // Emit a GEP and load for each element of the struct.
264         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
265         StructType *STy = cast<StructType>(AgTy);
266         Value *Idxs[2] = {
267             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
268         const StructLayout *SL = DL.getStructLayout(STy);
269         Align StructAlign = *I->getParamAlign();
270         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
271           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
272           auto *Idx =
273               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
274           // TODO: Tell AA about the new values?
275           Align Alignment =
276               commonAlignment(StructAlign, SL->getElementOffset(i));
277           Args.push_back(IRB.CreateAlignedLoad(
278               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
279           ArgAttrVec.push_back(AttributeSet());
280         }
281       } else if (!I->use_empty()) {
282         // Non-dead argument: insert GEPs and loads as appropriate.
283         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
284         // Store the Value* version of the indices in here, but declare it now
285         // for reuse.
286         std::vector<Value *> Ops;
287         for (const auto &ArgIndex : ArgIndices) {
288           Value *V = *AI;
289           LoadInst *OrigLoad =
290               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
291           if (!ArgIndex.second.empty()) {
292             Ops.reserve(ArgIndex.second.size());
293             Type *ElTy = V->getType();
294             for (auto II : ArgIndex.second) {
295               // Use i32 to index structs, and i64 for others (pointers/arrays).
296               // This satisfies GEP constraints.
297               Type *IdxTy =
298                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
299                                       : Type::getInt64Ty(F->getContext()));
300               Ops.push_back(ConstantInt::get(IdxTy, II));
301               // Keep track of the type we're currently indexing.
302               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
303                 ElTy = ElPTy->getElementType();
304               else
305                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
306             }
307             // And create a GEP to extract those indices.
308             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
309             Ops.clear();
310           }
311           // Since we're replacing a load make sure we take the alignment
312           // of the previous load.
313           LoadInst *newLoad =
314               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
315           newLoad->setAlignment(OrigLoad->getAlign());
316           // Transfer the AA info too.
317           AAMDNodes AAInfo;
318           OrigLoad->getAAMetadata(AAInfo);
319           newLoad->setAAMetadata(AAInfo);
320 
321           Args.push_back(newLoad);
322           ArgAttrVec.push_back(AttributeSet());
323         }
324       }
325 
326     // Push any varargs arguments on the list.
327     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
328       Args.push_back(*AI);
329       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
330     }
331 
332     SmallVector<OperandBundleDef, 1> OpBundles;
333     CB.getOperandBundlesAsDefs(OpBundles);
334 
335     CallBase *NewCS = nullptr;
336     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
337       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
338                                  Args, OpBundles, "", &CB);
339     } else {
340       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
341       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
342       NewCS = NewCall;
343     }
344     NewCS->setCallingConv(CB.getCallingConv());
345     NewCS->setAttributes(
346         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
347                            CallPAL.getRetAttributes(), ArgAttrVec));
348     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
349     Args.clear();
350     ArgAttrVec.clear();
351 
352     // Update the callgraph to know that the callsite has been transformed.
353     if (ReplaceCallSite)
354       (*ReplaceCallSite)(CB, *NewCS);
355 
356     if (!CB.use_empty()) {
357       CB.replaceAllUsesWith(NewCS);
358       NewCS->takeName(&CB);
359     }
360 
361     // Finally, remove the old call from the program, reducing the use-count of
362     // F.
363     CB.eraseFromParent();
364   }
365 
366   // Since we have now created the new function, splice the body of the old
367   // function right into the new function, leaving the old rotting hulk of the
368   // function empty.
369   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
370 
371   // Loop over the argument list, transferring uses of the old arguments over to
372   // the new arguments, also transferring over the names as well.
373   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
374                               I2 = NF->arg_begin();
375        I != E; ++I) {
376     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
377       // If this is an unmodified argument, move the name and users over to the
378       // new version.
379       I->replaceAllUsesWith(&*I2);
380       I2->takeName(&*I);
381       ++I2;
382       continue;
383     }
384 
385     if (ByValArgsToTransform.count(&*I)) {
386       // In the callee, we create an alloca, and store each of the new incoming
387       // arguments into the alloca.
388       Instruction *InsertPt = &NF->begin()->front();
389 
390       // Just add all the struct element types.
391       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
392       Align StructAlign = *I->getParamAlign();
393       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
394                                         StructAlign, "", InsertPt);
395       StructType *STy = cast<StructType>(AgTy);
396       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
397                         nullptr};
398       const StructLayout *SL = DL.getStructLayout(STy);
399 
400       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
401         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
402         Value *Idx = GetElementPtrInst::Create(
403             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
404             InsertPt);
405         I2->setName(I->getName() + "." + Twine(i));
406         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
407         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
408       }
409 
410       // Anything that used the arg should now use the alloca.
411       I->replaceAllUsesWith(TheAlloca);
412       TheAlloca->takeName(&*I);
413       continue;
414     }
415 
416     // There potentially are metadata uses for things like llvm.dbg.value.
417     // Replace them with undef, after handling the other regular uses.
418     auto RauwUndefMetadata = make_scope_exit(
419         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
420 
421     if (I->use_empty())
422       continue;
423 
424     // Otherwise, if we promoted this argument, then all users are load
425     // instructions (or GEPs with only load users), and all loads should be
426     // using the new argument that we added.
427     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428 
429     while (!I->use_empty()) {
430       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
431         assert(ArgIndices.begin()->second.empty() &&
432                "Load element should sort to front!");
433         I2->setName(I->getName() + ".val");
434         LI->replaceAllUsesWith(&*I2);
435         LI->eraseFromParent();
436         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
437                           << "' in function '" << F->getName() << "'\n");
438       } else {
439         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
440         assert(!GEP->use_empty() &&
441                "GEPs without uses should be cleaned up already");
442         IndicesVector Operands;
443         Operands.reserve(GEP->getNumIndices());
444         for (const Use &Idx : GEP->indices())
445           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
446 
447         // GEPs with a single 0 index can be merged with direct loads
448         if (Operands.size() == 1 && Operands.front() == 0)
449           Operands.clear();
450 
451         Function::arg_iterator TheArg = I2;
452         for (ScalarizeTable::iterator It = ArgIndices.begin();
453              It->second != Operands; ++It, ++TheArg) {
454           assert(It != ArgIndices.end() && "GEP not handled??");
455         }
456 
457         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
458                                 make_range(Operands.begin(), Operands.end())));
459 
460         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
461                           << "' of function '" << NF->getName() << "'\n");
462 
463         // All of the uses must be load instructions.  Replace them all with
464         // the argument specified by ArgNo.
465         while (!GEP->use_empty()) {
466           LoadInst *L = cast<LoadInst>(GEP->user_back());
467           L->replaceAllUsesWith(&*TheArg);
468           L->eraseFromParent();
469         }
470         GEP->eraseFromParent();
471       }
472     }
473     // Increment I2 past all of the arguments added for this promoted pointer.
474     std::advance(I2, ArgIndices.size());
475   }
476 
477   return NF;
478 }
479 
480 /// Return true if we can prove that all callees pass in a valid pointer for the
481 /// specified function argument.
allCallersPassValidPointerForArgument(Argument * Arg,Type * Ty)482 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
483   Function *Callee = Arg->getParent();
484   const DataLayout &DL = Callee->getParent()->getDataLayout();
485 
486   unsigned ArgNo = Arg->getArgNo();
487 
488   // Look at all call sites of the function.  At this point we know we only have
489   // direct callees.
490   for (User *U : Callee->users()) {
491     CallBase &CB = cast<CallBase>(*U);
492 
493     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
494       return false;
495   }
496   return true;
497 }
498 
499 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
500 /// that is greater than or equal to the size of prefix, and each of the
501 /// elements in Prefix is the same as the corresponding elements in Longer.
502 ///
503 /// This means it also returns true when Prefix and Longer are equal!
isPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)504 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
505   if (Prefix.size() > Longer.size())
506     return false;
507   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
508 }
509 
510 /// Checks if Indices, or a prefix of Indices, is in Set.
prefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)511 static bool prefixIn(const IndicesVector &Indices,
512                      std::set<IndicesVector> &Set) {
513   std::set<IndicesVector>::iterator Low;
514   Low = Set.upper_bound(Indices);
515   if (Low != Set.begin())
516     Low--;
517   // Low is now the last element smaller than or equal to Indices. This means
518   // it points to a prefix of Indices (possibly Indices itself), if such
519   // prefix exists.
520   //
521   // This load is safe if any prefix of its operands is safe to load.
522   return Low != Set.end() && isPrefix(*Low, Indices);
523 }
524 
525 /// Mark the given indices (ToMark) as safe in the given set of indices
526 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
527 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
528 /// already. Furthermore, any indices that Indices is itself a prefix of, are
529 /// removed from Safe (since they are implicitely safe because of Indices now).
markIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)530 static void markIndicesSafe(const IndicesVector &ToMark,
531                             std::set<IndicesVector> &Safe) {
532   std::set<IndicesVector>::iterator Low;
533   Low = Safe.upper_bound(ToMark);
534   // Guard against the case where Safe is empty
535   if (Low != Safe.begin())
536     Low--;
537   // Low is now the last element smaller than or equal to Indices. This
538   // means it points to a prefix of Indices (possibly Indices itself), if
539   // such prefix exists.
540   if (Low != Safe.end()) {
541     if (isPrefix(*Low, ToMark))
542       // If there is already a prefix of these indices (or exactly these
543       // indices) marked a safe, don't bother adding these indices
544       return;
545 
546     // Increment Low, so we can use it as a "insert before" hint
547     ++Low;
548   }
549   // Insert
550   Low = Safe.insert(Low, ToMark);
551   ++Low;
552   // If there we're a prefix of longer index list(s), remove those
553   std::set<IndicesVector>::iterator End = Safe.end();
554   while (Low != End && isPrefix(ToMark, *Low)) {
555     std::set<IndicesVector>::iterator Remove = Low;
556     ++Low;
557     Safe.erase(Remove);
558   }
559 }
560 
561 /// isSafeToPromoteArgument - As you might guess from the name of this method,
562 /// it checks to see if it is both safe and useful to promote the argument.
563 /// This method limits promotion of aggregates to only promote up to three
564 /// elements of the aggregate in order to avoid exploding the number of
565 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,Type * ByValTy,AAResults & AAR,unsigned MaxElements)566 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
567                                     unsigned MaxElements) {
568   using GEPIndicesSet = std::set<IndicesVector>;
569 
570   // Quick exit for unused arguments
571   if (Arg->use_empty())
572     return true;
573 
574   // We can only promote this argument if all of the uses are loads, or are GEP
575   // instructions (with constant indices) that are subsequently loaded.
576   //
577   // Promoting the argument causes it to be loaded in the caller
578   // unconditionally. This is only safe if we can prove that either the load
579   // would have happened in the callee anyway (ie, there is a load in the entry
580   // block) or the pointer passed in at every call site is guaranteed to be
581   // valid.
582   // In the former case, invalid loads can happen, but would have happened
583   // anyway, in the latter case, invalid loads won't happen. This prevents us
584   // from introducing an invalid load that wouldn't have happened in the
585   // original code.
586   //
587   // This set will contain all sets of indices that are loaded in the entry
588   // block, and thus are safe to unconditionally load in the caller.
589   GEPIndicesSet SafeToUnconditionallyLoad;
590 
591   // This set contains all the sets of indices that we are planning to promote.
592   // This makes it possible to limit the number of arguments added.
593   GEPIndicesSet ToPromote;
594 
595   // If the pointer is always valid, any load with first index 0 is valid.
596 
597   if (ByValTy)
598     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
599 
600   // Whenever a new underlying type for the operand is found, make sure it's
601   // consistent with the GEPs and loads we've already seen and, if necessary,
602   // use it to see if all incoming pointers are valid (which implies the 0-index
603   // is safe).
604   Type *BaseTy = ByValTy;
605   auto UpdateBaseTy = [&](Type *NewBaseTy) {
606     if (BaseTy)
607       return BaseTy == NewBaseTy;
608 
609     BaseTy = NewBaseTy;
610     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
611       assert(SafeToUnconditionallyLoad.empty());
612       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
613     }
614 
615     return true;
616   };
617 
618   // First, iterate the entry block and mark loads of (geps of) arguments as
619   // safe.
620   BasicBlock &EntryBlock = Arg->getParent()->front();
621   // Declare this here so we can reuse it
622   IndicesVector Indices;
623   for (Instruction &I : EntryBlock)
624     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
625       Value *V = LI->getPointerOperand();
626       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
627         V = GEP->getPointerOperand();
628         if (V == Arg) {
629           // This load actually loads (part of) Arg? Check the indices then.
630           Indices.reserve(GEP->getNumIndices());
631           for (Use &Idx : GEP->indices())
632             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
633               Indices.push_back(CI->getSExtValue());
634             else
635               // We found a non-constant GEP index for this argument? Bail out
636               // right away, can't promote this argument at all.
637               return false;
638 
639           if (!UpdateBaseTy(GEP->getSourceElementType()))
640             return false;
641 
642           // Indices checked out, mark them as safe
643           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
644           Indices.clear();
645         }
646       } else if (V == Arg) {
647         // Direct loads are equivalent to a GEP with a single 0 index.
648         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
649 
650         if (BaseTy && LI->getType() != BaseTy)
651           return false;
652 
653         BaseTy = LI->getType();
654       }
655     }
656 
657   // Now, iterate all uses of the argument to see if there are any uses that are
658   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
659   SmallVector<LoadInst *, 16> Loads;
660   IndicesVector Operands;
661   for (Use &U : Arg->uses()) {
662     User *UR = U.getUser();
663     Operands.clear();
664     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
665       // Don't hack volatile/atomic loads
666       if (!LI->isSimple())
667         return false;
668       Loads.push_back(LI);
669       // Direct loads are equivalent to a GEP with a zero index and then a load.
670       Operands.push_back(0);
671 
672       if (!UpdateBaseTy(LI->getType()))
673         return false;
674     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
675       if (GEP->use_empty()) {
676         // Dead GEP's cause trouble later.  Just remove them if we run into
677         // them.
678         continue;
679       }
680 
681       if (!UpdateBaseTy(GEP->getSourceElementType()))
682         return false;
683 
684       // Ensure that all of the indices are constants.
685       for (Use &Idx : GEP->indices())
686         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
687           Operands.push_back(C->getSExtValue());
688         else
689           return false; // Not a constant operand GEP!
690 
691       // Ensure that the only users of the GEP are load instructions.
692       for (User *GEPU : GEP->users())
693         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
694           // Don't hack volatile/atomic loads
695           if (!LI->isSimple())
696             return false;
697           Loads.push_back(LI);
698         } else {
699           // Other uses than load?
700           return false;
701         }
702     } else {
703       return false; // Not a load or a GEP.
704     }
705 
706     // Now, see if it is safe to promote this load / loads of this GEP. Loading
707     // is safe if Operands, or a prefix of Operands, is marked as safe.
708     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
709       return false;
710 
711     // See if we are already promoting a load with these indices. If not, check
712     // to make sure that we aren't promoting too many elements.  If so, nothing
713     // to do.
714     if (ToPromote.find(Operands) == ToPromote.end()) {
715       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
716         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
717                           << Arg->getName()
718                           << "' because it would require adding more "
719                           << "than " << MaxElements
720                           << " arguments to the function.\n");
721         // We limit aggregate promotion to only promoting up to a fixed number
722         // of elements of the aggregate.
723         return false;
724       }
725       ToPromote.insert(std::move(Operands));
726     }
727   }
728 
729   if (Loads.empty())
730     return true; // No users, this is a dead argument.
731 
732   // Okay, now we know that the argument is only used by load instructions and
733   // it is safe to unconditionally perform all of them. Use alias analysis to
734   // check to see if the pointer is guaranteed to not be modified from entry of
735   // the function to each of the load instructions.
736 
737   // Because there could be several/many load instructions, remember which
738   // blocks we know to be transparent to the load.
739   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
740 
741   for (LoadInst *Load : Loads) {
742     // Check to see if the load is invalidated from the start of the block to
743     // the load itself.
744     BasicBlock *BB = Load->getParent();
745 
746     MemoryLocation Loc = MemoryLocation::get(Load);
747     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
748       return false; // Pointer is invalidated!
749 
750     // Now check every path from the entry block to the load for transparency.
751     // To do this, we perform a depth first search on the inverse CFG from the
752     // loading block.
753     for (BasicBlock *P : predecessors(BB)) {
754       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
755         if (AAR.canBasicBlockModify(*TranspBB, Loc))
756           return false;
757     }
758   }
759 
760   // If the path from the entry of the function to each load is free of
761   // instructions that potentially invalidate the load, we can make the
762   // transformation!
763   return true;
764 }
765 
isDenselyPacked(Type * type,const DataLayout & DL)766 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
767   // There is no size information, so be conservative.
768   if (!type->isSized())
769     return false;
770 
771   // If the alloc size is not equal to the storage size, then there are padding
772   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
773   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
774     return false;
775 
776   // FIXME: This isn't the right way to check for padding in vectors with
777   // non-byte-size elements.
778   if (VectorType *seqTy = dyn_cast<VectorType>(type))
779     return isDenselyPacked(seqTy->getElementType(), DL);
780 
781   // For array types, check for padding within members.
782   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
783     return isDenselyPacked(seqTy->getElementType(), DL);
784 
785   if (!isa<StructType>(type))
786     return true;
787 
788   // Check for padding within and between elements of a struct.
789   StructType *StructTy = cast<StructType>(type);
790   const StructLayout *Layout = DL.getStructLayout(StructTy);
791   uint64_t StartPos = 0;
792   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
793     Type *ElTy = StructTy->getElementType(i);
794     if (!isDenselyPacked(ElTy, DL))
795       return false;
796     if (StartPos != Layout->getElementOffsetInBits(i))
797       return false;
798     StartPos += DL.getTypeAllocSizeInBits(ElTy);
799   }
800 
801   return true;
802 }
803 
804 /// Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)805 static bool canPaddingBeAccessed(Argument *arg) {
806   assert(arg->hasByValAttr());
807 
808   // Track all the pointers to the argument to make sure they are not captured.
809   SmallPtrSet<Value *, 16> PtrValues;
810   PtrValues.insert(arg);
811 
812   // Track all of the stores.
813   SmallVector<StoreInst *, 16> Stores;
814 
815   // Scan through the uses recursively to make sure the pointer is always used
816   // sanely.
817   SmallVector<Value *, 16> WorkList(arg->users());
818   while (!WorkList.empty()) {
819     Value *V = WorkList.pop_back_val();
820     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
821       if (PtrValues.insert(V).second)
822         llvm::append_range(WorkList, V->users());
823     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
824       Stores.push_back(Store);
825     } else if (!isa<LoadInst>(V)) {
826       return true;
827     }
828   }
829 
830   // Check to make sure the pointers aren't captured
831   for (StoreInst *Store : Stores)
832     if (PtrValues.count(Store->getValueOperand()))
833       return true;
834 
835   return false;
836 }
837 
areFunctionArgsABICompatible(const Function & F,const TargetTransformInfo & TTI,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform)838 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
839     const Function &F, const TargetTransformInfo &TTI,
840     SmallPtrSetImpl<Argument *> &ArgsToPromote,
841     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
842   for (const Use &U : F.uses()) {
843     CallBase *CB = dyn_cast<CallBase>(U.getUser());
844     if (!CB)
845       return false;
846     const Function *Caller = CB->getCaller();
847     const Function *Callee = CB->getCalledFunction();
848     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
849         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
850       return false;
851   }
852   return true;
853 }
854 
855 /// PromoteArguments - This method checks the specified function to see if there
856 /// are any promotable arguments and if it is safe to promote the function (for
857 /// example, all callers are direct).  If safe to promote some arguments, it
858 /// calls the DoPromotion method.
859 static Function *
promoteArguments(Function * F,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements,Optional<function_ref<void (CallBase & OldCS,CallBase & NewCS)>> ReplaceCallSite,const TargetTransformInfo & TTI)860 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
861                  unsigned MaxElements,
862                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
863                      ReplaceCallSite,
864                  const TargetTransformInfo &TTI) {
865   // Don't perform argument promotion for naked functions; otherwise we can end
866   // up removing parameters that are seemingly 'not used' as they are referred
867   // to in the assembly.
868   if(F->hasFnAttribute(Attribute::Naked))
869     return nullptr;
870 
871   // Make sure that it is local to this module.
872   if (!F->hasLocalLinkage())
873     return nullptr;
874 
875   // Don't promote arguments for variadic functions. Adding, removing, or
876   // changing non-pack parameters can change the classification of pack
877   // parameters. Frontends encode that classification at the call site in the
878   // IR, while in the callee the classification is determined dynamically based
879   // on the number of registers consumed so far.
880   if (F->isVarArg())
881     return nullptr;
882 
883   // Don't transform functions that receive inallocas, as the transformation may
884   // not be safe depending on calling convention.
885   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
886     return nullptr;
887 
888   // First check: see if there are any pointer arguments!  If not, quick exit.
889   SmallVector<Argument *, 16> PointerArgs;
890   for (Argument &I : F->args())
891     if (I.getType()->isPointerTy())
892       PointerArgs.push_back(&I);
893   if (PointerArgs.empty())
894     return nullptr;
895 
896   // Second check: make sure that all callers are direct callers.  We can't
897   // transform functions that have indirect callers.  Also see if the function
898   // is self-recursive and check that target features are compatible.
899   bool isSelfRecursive = false;
900   for (Use &U : F->uses()) {
901     CallBase *CB = dyn_cast<CallBase>(U.getUser());
902     // Must be a direct call.
903     if (CB == nullptr || !CB->isCallee(&U))
904       return nullptr;
905 
906     // Can't change signature of musttail callee
907     if (CB->isMustTailCall())
908       return nullptr;
909 
910     if (CB->getParent()->getParent() == F)
911       isSelfRecursive = true;
912   }
913 
914   // Can't change signature of musttail caller
915   // FIXME: Support promoting whole chain of musttail functions
916   for (BasicBlock &BB : *F)
917     if (BB.getTerminatingMustTailCall())
918       return nullptr;
919 
920   const DataLayout &DL = F->getParent()->getDataLayout();
921 
922   AAResults &AAR = AARGetter(*F);
923 
924   // Check to see which arguments are promotable.  If an argument is promotable,
925   // add it to ArgsToPromote.
926   SmallPtrSet<Argument *, 8> ArgsToPromote;
927   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
928   for (Argument *PtrArg : PointerArgs) {
929     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
930 
931     // Replace sret attribute with noalias. This reduces register pressure by
932     // avoiding a register copy.
933     if (PtrArg->hasStructRetAttr()) {
934       unsigned ArgNo = PtrArg->getArgNo();
935       F->removeParamAttr(ArgNo, Attribute::StructRet);
936       F->addParamAttr(ArgNo, Attribute::NoAlias);
937       for (Use &U : F->uses()) {
938         CallBase &CB = cast<CallBase>(*U.getUser());
939         CB.removeParamAttr(ArgNo, Attribute::StructRet);
940         CB.addParamAttr(ArgNo, Attribute::NoAlias);
941       }
942     }
943 
944     // If this is a byval argument, and if the aggregate type is small, just
945     // pass the elements, which is always safe, if the passed value is densely
946     // packed or if we can prove the padding bytes are never accessed.
947     //
948     // Only handle arguments with specified alignment; if it's unspecified, the
949     // actual alignment of the argument is target-specific.
950     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
951                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
952                             !canPaddingBeAccessed(PtrArg));
953     if (isSafeToPromote) {
954       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
955         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
956           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
957                             << PtrArg->getName()
958                             << "' because it would require adding more"
959                             << " than " << MaxElements
960                             << " arguments to the function.\n");
961           continue;
962         }
963 
964         // If all the elements are single-value types, we can promote it.
965         bool AllSimple = true;
966         for (const auto *EltTy : STy->elements()) {
967           if (!EltTy->isSingleValueType()) {
968             AllSimple = false;
969             break;
970           }
971         }
972 
973         // Safe to transform, don't even bother trying to "promote" it.
974         // Passing the elements as a scalar will allow sroa to hack on
975         // the new alloca we introduce.
976         if (AllSimple) {
977           ByValArgsToTransform.insert(PtrArg);
978           continue;
979         }
980       }
981     }
982 
983     // If the argument is a recursive type and we're in a recursive
984     // function, we could end up infinitely peeling the function argument.
985     if (isSelfRecursive) {
986       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
987         bool RecursiveType =
988             llvm::is_contained(STy->elements(), PtrArg->getType());
989         if (RecursiveType)
990           continue;
991       }
992     }
993 
994     // Otherwise, see if we can promote the pointer to its value.
995     Type *ByValTy =
996         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
997     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
998       ArgsToPromote.insert(PtrArg);
999   }
1000 
1001   // No promotable pointer arguments.
1002   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1003     return nullptr;
1004 
1005   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1006           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1007     return nullptr;
1008 
1009   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1010 }
1011 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)1012 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1013                                              CGSCCAnalysisManager &AM,
1014                                              LazyCallGraph &CG,
1015                                              CGSCCUpdateResult &UR) {
1016   bool Changed = false, LocalChange;
1017 
1018   // Iterate until we stop promoting from this SCC.
1019   do {
1020     LocalChange = false;
1021 
1022     for (LazyCallGraph::Node &N : C) {
1023       Function &OldF = N.getFunction();
1024 
1025       FunctionAnalysisManager &FAM =
1026           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1027       // FIXME: This lambda must only be used with this function. We should
1028       // skip the lambda and just get the AA results directly.
1029       auto AARGetter = [&](Function &F) -> AAResults & {
1030         assert(&F == &OldF && "Called with an unexpected function!");
1031         return FAM.getResult<AAManager>(F);
1032       };
1033 
1034       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1035       Function *NewF =
1036           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1037       if (!NewF)
1038         continue;
1039       LocalChange = true;
1040 
1041       // Directly substitute the functions in the call graph. Note that this
1042       // requires the old function to be completely dead and completely
1043       // replaced by the new function. It does no call graph updates, it merely
1044       // swaps out the particular function mapped to a particular node in the
1045       // graph.
1046       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1047       FAM.clear(OldF, OldF.getName());
1048       OldF.eraseFromParent();
1049     }
1050 
1051     Changed |= LocalChange;
1052   } while (LocalChange);
1053 
1054   if (!Changed)
1055     return PreservedAnalyses::all();
1056 
1057   return PreservedAnalyses::none();
1058 }
1059 
1060 namespace {
1061 
1062 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1063 struct ArgPromotion : public CallGraphSCCPass {
1064   // Pass identification, replacement for typeid
1065   static char ID;
1066 
ArgPromotion__anoncccfe23a0411::ArgPromotion1067   explicit ArgPromotion(unsigned MaxElements = 3)
1068       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1069     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1070   }
1071 
getAnalysisUsage__anoncccfe23a0411::ArgPromotion1072   void getAnalysisUsage(AnalysisUsage &AU) const override {
1073     AU.addRequired<AssumptionCacheTracker>();
1074     AU.addRequired<TargetLibraryInfoWrapperPass>();
1075     AU.addRequired<TargetTransformInfoWrapperPass>();
1076     getAAResultsAnalysisUsage(AU);
1077     CallGraphSCCPass::getAnalysisUsage(AU);
1078   }
1079 
1080   bool runOnSCC(CallGraphSCC &SCC) override;
1081 
1082 private:
1083   using llvm::Pass::doInitialization;
1084 
1085   bool doInitialization(CallGraph &CG) override;
1086 
1087   /// The maximum number of elements to expand, or 0 for unlimited.
1088   unsigned MaxElements;
1089 };
1090 
1091 } // end anonymous namespace
1092 
1093 char ArgPromotion::ID = 0;
1094 
1095 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1096                       "Promote 'by reference' arguments to scalars", false,
1097                       false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1099 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1101 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1103                     "Promote 'by reference' arguments to scalars", false, false)
1104 
1105 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1106   return new ArgPromotion(MaxElements);
1107 }
1108 
runOnSCC(CallGraphSCC & SCC)1109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1110   if (skipSCC(SCC))
1111     return false;
1112 
1113   // Get the callgraph information that we need to update to reflect our
1114   // changes.
1115   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1116 
1117   LegacyAARGetter AARGetter(*this);
1118 
1119   bool Changed = false, LocalChange;
1120 
1121   // Iterate until we stop promoting from this SCC.
1122   do {
1123     LocalChange = false;
1124     // Attempt to promote arguments from all functions in this SCC.
1125     for (CallGraphNode *OldNode : SCC) {
1126       Function *OldF = OldNode->getFunction();
1127       if (!OldF)
1128         continue;
1129 
1130       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1131         Function *Caller = OldCS.getParent()->getParent();
1132         CallGraphNode *NewCalleeNode =
1133             CG.getOrInsertFunction(NewCS.getCalledFunction());
1134         CallGraphNode *CallerNode = CG[Caller];
1135         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1136                                     cast<CallBase>(NewCS), NewCalleeNode);
1137       };
1138 
1139       const TargetTransformInfo &TTI =
1140           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1141       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1142                                             {ReplaceCallSite}, TTI)) {
1143         LocalChange = true;
1144 
1145         // Update the call graph for the newly promoted function.
1146         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1147         NewNode->stealCalledFunctionsFrom(OldNode);
1148         if (OldNode->getNumReferences() == 0)
1149           delete CG.removeFunctionFromModule(OldNode);
1150         else
1151           OldF->setLinkage(Function::ExternalLinkage);
1152 
1153         // And updat ethe SCC we're iterating as well.
1154         SCC.ReplaceNode(OldNode, NewNode);
1155       }
1156     }
1157     // Remember that we changed something.
1158     Changed |= LocalChange;
1159   } while (LocalChange);
1160 
1161   return Changed;
1162 }
1163 
doInitialization(CallGraph & CG)1164 bool ArgPromotion::doInitialization(CallGraph &CG) {
1165   return CallGraphSCCPass::doInitialization(CG);
1166 }
1167