1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "MVETailPredUtils.h"
22 #include "Thumb2InstrInfo.h"
23 #include "Utils/ARMBaseInfo.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/LivePhysRegs.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <utility>
57 #include <vector>
58
59 using namespace llvm;
60
61 #define DEBUG_TYPE "arm-cp-islands"
62
63 #define ARM_CP_ISLANDS_OPT_NAME \
64 "ARM constant island placement and branch shortening pass"
65 STATISTIC(NumCPEs, "Number of constpool entries");
66 STATISTIC(NumSplit, "Number of uncond branches inserted");
67 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
68 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
69 STATISTIC(NumTBs, "Number of table branches generated");
70 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
71 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
72 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
73 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
74 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
75 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
76
77 static cl::opt<bool>
78 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
79 cl::desc("Adjust basic block layout to better use TB[BH]"));
80
81 static cl::opt<unsigned>
82 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
83 cl::desc("The max number of iteration for converge"));
84
85 static cl::opt<bool> SynthesizeThumb1TBB(
86 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
87 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
88 "equivalent to the TBB/TBH instructions"));
89
90 namespace {
91
92 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
93 /// requires constant pool entries to be scattered among the instructions
94 /// inside a function. To do this, it completely ignores the normal LLVM
95 /// constant pool; instead, it places constants wherever it feels like with
96 /// special instructions.
97 ///
98 /// The terminology used in this pass includes:
99 /// Islands - Clumps of constants placed in the function.
100 /// Water - Potential places where an island could be formed.
101 /// CPE - A constant pool entry that has been placed somewhere, which
102 /// tracks a list of users.
103 class ARMConstantIslands : public MachineFunctionPass {
104 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
105
106 /// WaterList - A sorted list of basic blocks where islands could be placed
107 /// (i.e. blocks that don't fall through to the following block, due
108 /// to a return, unreachable, or unconditional branch).
109 std::vector<MachineBasicBlock*> WaterList;
110
111 /// NewWaterList - The subset of WaterList that was created since the
112 /// previous iteration by inserting unconditional branches.
113 SmallSet<MachineBasicBlock*, 4> NewWaterList;
114
115 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
116
117 /// CPUser - One user of a constant pool, keeping the machine instruction
118 /// pointer, the constant pool being referenced, and the max displacement
119 /// allowed from the instruction to the CP. The HighWaterMark records the
120 /// highest basic block where a new CPEntry can be placed. To ensure this
121 /// pass terminates, the CP entries are initially placed at the end of the
122 /// function and then move monotonically to lower addresses. The
123 /// exception to this rule is when the current CP entry for a particular
124 /// CPUser is out of range, but there is another CP entry for the same
125 /// constant value in range. We want to use the existing in-range CP
126 /// entry, but if it later moves out of range, the search for new water
127 /// should resume where it left off. The HighWaterMark is used to record
128 /// that point.
129 struct CPUser {
130 MachineInstr *MI;
131 MachineInstr *CPEMI;
132 MachineBasicBlock *HighWaterMark;
133 unsigned MaxDisp;
134 bool NegOk;
135 bool IsSoImm;
136 bool KnownAlignment = false;
137
CPUser__anonce701f480111::ARMConstantIslands::CPUser138 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
139 bool neg, bool soimm)
140 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
141 HighWaterMark = CPEMI->getParent();
142 }
143
144 /// getMaxDisp - Returns the maximum displacement supported by MI.
145 /// Correct for unknown alignment.
146 /// Conservatively subtract 2 bytes to handle weird alignment effects.
getMaxDisp__anonce701f480111::ARMConstantIslands::CPUser147 unsigned getMaxDisp() const {
148 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
149 }
150 };
151
152 /// CPUsers - Keep track of all of the machine instructions that use various
153 /// constant pools and their max displacement.
154 std::vector<CPUser> CPUsers;
155
156 /// CPEntry - One per constant pool entry, keeping the machine instruction
157 /// pointer, the constpool index, and the number of CPUser's which
158 /// reference this entry.
159 struct CPEntry {
160 MachineInstr *CPEMI;
161 unsigned CPI;
162 unsigned RefCount;
163
CPEntry__anonce701f480111::ARMConstantIslands::CPEntry164 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
165 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
166 };
167
168 /// CPEntries - Keep track of all of the constant pool entry machine
169 /// instructions. For each original constpool index (i.e. those that existed
170 /// upon entry to this pass), it keeps a vector of entries. Original
171 /// elements are cloned as we go along; the clones are put in the vector of
172 /// the original element, but have distinct CPIs.
173 ///
174 /// The first half of CPEntries contains generic constants, the second half
175 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
176 /// which vector it will be in here.
177 std::vector<std::vector<CPEntry>> CPEntries;
178
179 /// Maps a JT index to the offset in CPEntries containing copies of that
180 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
181 DenseMap<int, int> JumpTableEntryIndices;
182
183 /// Maps a JT index to the LEA that actually uses the index to calculate its
184 /// base address.
185 DenseMap<int, int> JumpTableUserIndices;
186
187 // Maps a MachineBasicBlock to the number of jump tables entries.
188 DenseMap<const MachineBasicBlock *, int> BlockJumpTableRefCount;
189
190 /// ImmBranch - One per immediate branch, keeping the machine instruction
191 /// pointer, conditional or unconditional, the max displacement,
192 /// and (if isCond is true) the corresponding unconditional branch
193 /// opcode.
194 struct ImmBranch {
195 MachineInstr *MI;
196 unsigned MaxDisp : 31;
197 bool isCond : 1;
198 unsigned UncondBr;
199
ImmBranch__anonce701f480111::ARMConstantIslands::ImmBranch200 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
201 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
202 };
203
204 /// ImmBranches - Keep track of all the immediate branch instructions.
205 std::vector<ImmBranch> ImmBranches;
206
207 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
208 SmallVector<MachineInstr*, 4> PushPopMIs;
209
210 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
211 SmallVector<MachineInstr*, 4> T2JumpTables;
212
213 MachineFunction *MF;
214 MachineConstantPool *MCP;
215 const ARMBaseInstrInfo *TII;
216 const ARMSubtarget *STI;
217 ARMFunctionInfo *AFI;
218 MachineDominatorTree *DT = nullptr;
219 bool isThumb;
220 bool isThumb1;
221 bool isThumb2;
222 bool isPositionIndependentOrROPI;
223
224 public:
225 static char ID;
226
ARMConstantIslands()227 ARMConstantIslands() : MachineFunctionPass(ID) {}
228
229 bool runOnMachineFunction(MachineFunction &MF) override;
230
getAnalysisUsage(AnalysisUsage & AU) const231 void getAnalysisUsage(AnalysisUsage &AU) const override {
232 AU.addRequired<MachineDominatorTree>();
233 MachineFunctionPass::getAnalysisUsage(AU);
234 }
235
getRequiredProperties() const236 MachineFunctionProperties getRequiredProperties() const override {
237 return MachineFunctionProperties().set(
238 MachineFunctionProperties::Property::NoVRegs);
239 }
240
getPassName() const241 StringRef getPassName() const override {
242 return ARM_CP_ISLANDS_OPT_NAME;
243 }
244
245 private:
246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
248 bool BBHasFallthrough(MachineBasicBlock *MBB);
249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
250 Align getCPEAlign(const MachineInstr *CPEMI);
251 void scanFunctionJumpTables();
252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
256 unsigned getCombinedIndex(const MachineInstr *CPEMI);
257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
258 bool findAvailableWater(CPUser&U, unsigned UserOffset,
259 water_iterator &WaterIter, bool CloserWater);
260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
261 MachineBasicBlock *&NewMBB);
262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
263 void removeDeadCPEMI(MachineInstr *CPEMI);
264 bool removeUnusedCPEntries();
265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
266 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
267 bool DoDump = false);
268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
269 CPUser &U, unsigned &Growth);
270 bool fixupImmediateBr(ImmBranch &Br);
271 bool fixupConditionalBr(ImmBranch &Br);
272 bool fixupUnconditionalBr(ImmBranch &Br);
273 bool optimizeThumb2Instructions();
274 bool optimizeThumb2Branches();
275 bool reorderThumb2JumpTables();
276 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
277 unsigned &DeadSize, bool &CanDeleteLEA,
278 bool &BaseRegKill);
279 bool optimizeThumb2JumpTables();
280 void fixupBTI(unsigned JTI, MachineBasicBlock &OldBB,
281 MachineBasicBlock &NewBB);
282 MachineBasicBlock *adjustJTTargetBlockForward(unsigned JTI,
283 MachineBasicBlock *BB,
284 MachineBasicBlock *JTBB);
285
286 unsigned getUserOffset(CPUser&) const;
287 void dumpBBs();
288 void verify();
289
290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
291 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)292 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
293 const CPUser &U) {
294 return isOffsetInRange(UserOffset, TrialOffset,
295 U.getMaxDisp(), U.NegOk, U.IsSoImm);
296 }
297 };
298
299 } // end anonymous namespace
300
301 char ARMConstantIslands::ID = 0;
302
303 /// verify - check BBOffsets, BBSizes, alignment of islands
verify()304 void ARMConstantIslands::verify() {
305 #ifndef NDEBUG
306 BBInfoVector &BBInfo = BBUtils->getBBInfo();
307 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS,
308 const MachineBasicBlock &RHS) {
309 return BBInfo[LHS.getNumber()].postOffset() <
310 BBInfo[RHS.getNumber()].postOffset();
311 }));
312 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
313 for (CPUser &U : CPUsers) {
314 unsigned UserOffset = getUserOffset(U);
315 // Verify offset using the real max displacement without the safety
316 // adjustment.
317 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
318 /* DoDump = */ true)) {
319 LLVM_DEBUG(dbgs() << "OK\n");
320 continue;
321 }
322 LLVM_DEBUG(dbgs() << "Out of range.\n");
323 dumpBBs();
324 LLVM_DEBUG(MF->dump());
325 llvm_unreachable("Constant pool entry out of range!");
326 }
327 #endif
328 }
329
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331 /// print block size and offset information - debugging
dumpBBs()332 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
333 LLVM_DEBUG({
334 BBInfoVector &BBInfo = BBUtils->getBBInfo();
335 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
336 const BasicBlockInfo &BBI = BBInfo[J];
337 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
338 << " kb=" << unsigned(BBI.KnownBits)
339 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
340 << format(" size=%#x\n", BBInfo[J].Size);
341 }
342 });
343 }
344 #endif
345
346 // Align blocks where the previous block does not fall through. This may add
347 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
348 // measure of how much to align, and only runs at CodeGenOpt::Aggressive.
AlignBlocks(MachineFunction * MF,const ARMSubtarget * STI)349 static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) {
350 if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive ||
351 MF->getFunction().hasOptSize())
352 return false;
353
354 auto *TLI = STI->getTargetLowering();
355 const Align Alignment = TLI->getPrefLoopAlignment();
356 if (Alignment < 4)
357 return false;
358
359 bool Changed = false;
360 bool PrevCanFallthough = true;
361 for (auto &MBB : *MF) {
362 if (!PrevCanFallthough) {
363 Changed = true;
364 MBB.setAlignment(Alignment);
365 }
366
367 PrevCanFallthough = MBB.canFallThrough();
368
369 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional
370 // branch later in the pipeline.
371 if (STI->hasLOB()) {
372 for (const auto &MI : reverse(MBB.terminators())) {
373 if (MI.getOpcode() == ARM::t2B &&
374 MI.getOperand(0).getMBB() == MBB.getNextNode())
375 continue;
376 if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd ||
377 MI.getOpcode() == ARM::t2LoopEndDec) {
378 PrevCanFallthough = true;
379 break;
380 }
381 // Any other terminator - nothing to do
382 break;
383 }
384 }
385 }
386
387 return Changed;
388 }
389
runOnMachineFunction(MachineFunction & mf)390 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
391 MF = &mf;
392 MCP = mf.getConstantPool();
393 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
394
395 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
396 << MCP->getConstants().size() << " CP entries, aligned to "
397 << MCP->getConstantPoolAlign().value() << " bytes *****\n");
398
399 STI = &MF->getSubtarget<ARMSubtarget>();
400 TII = STI->getInstrInfo();
401 isPositionIndependentOrROPI =
402 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
403 AFI = MF->getInfo<ARMFunctionInfo>();
404 DT = &getAnalysis<MachineDominatorTree>();
405
406 isThumb = AFI->isThumbFunction();
407 isThumb1 = AFI->isThumb1OnlyFunction();
408 isThumb2 = AFI->isThumb2Function();
409
410 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
411 // TBB generation code in this constant island pass has not been adapted to
412 // deal with speculation barriers.
413 if (STI->hardenSlsRetBr())
414 GenerateTBB = false;
415
416 // Renumber all of the machine basic blocks in the function, guaranteeing that
417 // the numbers agree with the position of the block in the function.
418 MF->RenumberBlocks();
419
420 // Try to reorder and otherwise adjust the block layout to make good use
421 // of the TB[BH] instructions.
422 bool MadeChange = false;
423 if (GenerateTBB && AdjustJumpTableBlocks) {
424 scanFunctionJumpTables();
425 MadeChange |= reorderThumb2JumpTables();
426 // Data is out of date, so clear it. It'll be re-computed later.
427 T2JumpTables.clear();
428 // Blocks may have shifted around. Keep the numbering up to date.
429 MF->RenumberBlocks();
430 }
431
432 // Align any non-fallthrough blocks
433 MadeChange |= AlignBlocks(MF, STI);
434
435 // Perform the initial placement of the constant pool entries. To start with,
436 // we put them all at the end of the function.
437 std::vector<MachineInstr*> CPEMIs;
438 if (!MCP->isEmpty())
439 doInitialConstPlacement(CPEMIs);
440
441 if (MF->getJumpTableInfo())
442 doInitialJumpTablePlacement(CPEMIs);
443
444 /// The next UID to take is the first unused one.
445 AFI->initPICLabelUId(CPEMIs.size());
446
447 // Do the initial scan of the function, building up information about the
448 // sizes of each block, the location of all the water, and finding all of the
449 // constant pool users.
450 initializeFunctionInfo(CPEMIs);
451 CPEMIs.clear();
452 LLVM_DEBUG(dumpBBs());
453
454 // Functions with jump tables need an alignment of 4 because they use the ADR
455 // instruction, which aligns the PC to 4 bytes before adding an offset.
456 if (!T2JumpTables.empty())
457 MF->ensureAlignment(Align(4));
458
459 /// Remove dead constant pool entries.
460 MadeChange |= removeUnusedCPEntries();
461
462 // Iteratively place constant pool entries and fix up branches until there
463 // is no change.
464 unsigned NoCPIters = 0, NoBRIters = 0;
465 while (true) {
466 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
467 bool CPChange = false;
468 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
469 // For most inputs, it converges in no more than 5 iterations.
470 // If it doesn't end in 10, the input may have huge BB or many CPEs.
471 // In this case, we will try different heuristics.
472 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
473 if (CPChange && ++NoCPIters > CPMaxIteration)
474 report_fatal_error("Constant Island pass failed to converge!");
475 LLVM_DEBUG(dumpBBs());
476
477 // Clear NewWaterList now. If we split a block for branches, it should
478 // appear as "new water" for the next iteration of constant pool placement.
479 NewWaterList.clear();
480
481 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
482 bool BRChange = false;
483 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
484 BRChange |= fixupImmediateBr(ImmBranches[i]);
485 if (BRChange && ++NoBRIters > 30)
486 report_fatal_error("Branch Fix Up pass failed to converge!");
487 LLVM_DEBUG(dumpBBs());
488
489 if (!CPChange && !BRChange)
490 break;
491 MadeChange = true;
492 }
493
494 // Shrink 32-bit Thumb2 load and store instructions.
495 if (isThumb2 && !STI->prefers32BitThumb())
496 MadeChange |= optimizeThumb2Instructions();
497
498 // Shrink 32-bit branch instructions.
499 if (isThumb && STI->hasV8MBaselineOps())
500 MadeChange |= optimizeThumb2Branches();
501
502 // Optimize jump tables using TBB / TBH.
503 if (GenerateTBB && !STI->genExecuteOnly())
504 MadeChange |= optimizeThumb2JumpTables();
505
506 // After a while, this might be made debug-only, but it is not expensive.
507 verify();
508
509 // Save the mapping between original and cloned constpool entries.
510 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
511 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
512 const CPEntry & CPE = CPEntries[i][j];
513 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
514 AFI->recordCPEClone(i, CPE.CPI);
515 }
516 }
517
518 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
519
520 BBUtils->clear();
521 WaterList.clear();
522 CPUsers.clear();
523 CPEntries.clear();
524 JumpTableEntryIndices.clear();
525 JumpTableUserIndices.clear();
526 BlockJumpTableRefCount.clear();
527 ImmBranches.clear();
528 PushPopMIs.clear();
529 T2JumpTables.clear();
530
531 return MadeChange;
532 }
533
534 /// Perform the initial placement of the regular constant pool entries.
535 /// To start with, we put them all at the end of the function.
536 void
doInitialConstPlacement(std::vector<MachineInstr * > & CPEMIs)537 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
538 // Create the basic block to hold the CPE's.
539 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
540 MF->push_back(BB);
541
542 // MachineConstantPool measures alignment in bytes.
543 const Align MaxAlign = MCP->getConstantPoolAlign();
544 const unsigned MaxLogAlign = Log2(MaxAlign);
545
546 // Mark the basic block as required by the const-pool.
547 BB->setAlignment(MaxAlign);
548
549 // The function needs to be as aligned as the basic blocks. The linker may
550 // move functions around based on their alignment.
551 // Special case: halfword literals still need word alignment on the function.
552 Align FuncAlign = MaxAlign;
553 if (MaxAlign == 2)
554 FuncAlign = Align(4);
555 MF->ensureAlignment(FuncAlign);
556
557 // Order the entries in BB by descending alignment. That ensures correct
558 // alignment of all entries as long as BB is sufficiently aligned. Keep
559 // track of the insertion point for each alignment. We are going to bucket
560 // sort the entries as they are created.
561 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
562 BB->end());
563
564 // Add all of the constants from the constant pool to the end block, use an
565 // identity mapping of CPI's to CPE's.
566 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
567
568 const DataLayout &TD = MF->getDataLayout();
569 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
570 unsigned Size = CPs[i].getSizeInBytes(TD);
571 Align Alignment = CPs[i].getAlign();
572 // Verify that all constant pool entries are a multiple of their alignment.
573 // If not, we would have to pad them out so that instructions stay aligned.
574 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
575
576 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
577 unsigned LogAlign = Log2(Alignment);
578 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
579 MachineInstr *CPEMI =
580 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
581 .addImm(i).addConstantPoolIndex(i).addImm(Size);
582 CPEMIs.push_back(CPEMI);
583
584 // Ensure that future entries with higher alignment get inserted before
585 // CPEMI. This is bucket sort with iterators.
586 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
587 if (InsPoint[a] == InsAt)
588 InsPoint[a] = CPEMI;
589
590 // Add a new CPEntry, but no corresponding CPUser yet.
591 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
592 ++NumCPEs;
593 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
594 << Size << ", align = " << Alignment.value() << '\n');
595 }
596 LLVM_DEBUG(BB->dump());
597 }
598
599 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
600 /// instructions can be made more efficient if the jump table immediately
601 /// follows the instruction, it's best to place them immediately next to their
602 /// jumps to begin with. In almost all cases they'll never be moved from that
603 /// position.
doInitialJumpTablePlacement(std::vector<MachineInstr * > & CPEMIs)604 void ARMConstantIslands::doInitialJumpTablePlacement(
605 std::vector<MachineInstr *> &CPEMIs) {
606 unsigned i = CPEntries.size();
607 auto MJTI = MF->getJumpTableInfo();
608 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
609
610 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
611 for (MachineBasicBlock &MBB : *MF) {
612 auto MI = MBB.getLastNonDebugInstr();
613 // Look past potential SpeculationBarriers at end of BB.
614 while (MI != MBB.end() &&
615 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) ||
616 MI->isDebugInstr()))
617 --MI;
618
619 if (MI == MBB.end())
620 continue;
621
622 unsigned JTOpcode;
623 switch (MI->getOpcode()) {
624 default:
625 continue;
626 case ARM::BR_JTadd:
627 case ARM::BR_JTr:
628 case ARM::tBR_JTr:
629 case ARM::BR_JTm_i12:
630 case ARM::BR_JTm_rs:
631 JTOpcode = ARM::JUMPTABLE_ADDRS;
632 break;
633 case ARM::t2BR_JT:
634 JTOpcode = ARM::JUMPTABLE_INSTS;
635 break;
636 case ARM::tTBB_JT:
637 case ARM::t2TBB_JT:
638 JTOpcode = ARM::JUMPTABLE_TBB;
639 break;
640 case ARM::tTBH_JT:
641 case ARM::t2TBH_JT:
642 JTOpcode = ARM::JUMPTABLE_TBH;
643 break;
644 }
645
646 unsigned NumOps = MI->getDesc().getNumOperands();
647 MachineOperand JTOp =
648 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
649 unsigned JTI = JTOp.getIndex();
650 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
651 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
652 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
653 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
654 DebugLoc(), TII->get(JTOpcode))
655 .addImm(i++)
656 .addJumpTableIndex(JTI)
657 .addImm(Size);
658 CPEMIs.push_back(CPEMI);
659 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
660 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
661 if (!LastCorrectlyNumberedBB)
662 LastCorrectlyNumberedBB = &MBB;
663 }
664
665 // If we did anything then we need to renumber the subsequent blocks.
666 if (LastCorrectlyNumberedBB)
667 MF->RenumberBlocks(LastCorrectlyNumberedBB);
668 }
669
670 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
671 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)672 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
673 // Get the next machine basic block in the function.
674 MachineFunction::iterator MBBI = MBB->getIterator();
675 // Can't fall off end of function.
676 if (std::next(MBBI) == MBB->getParent()->end())
677 return false;
678
679 MachineBasicBlock *NextBB = &*std::next(MBBI);
680 if (!MBB->isSuccessor(NextBB))
681 return false;
682
683 // Try to analyze the end of the block. A potential fallthrough may already
684 // have an unconditional branch for whatever reason.
685 MachineBasicBlock *TBB, *FBB;
686 SmallVector<MachineOperand, 4> Cond;
687 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
688 return TooDifficult || FBB == nullptr;
689 }
690
691 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
692 /// look up the corresponding CPEntry.
693 ARMConstantIslands::CPEntry *
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)694 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
695 const MachineInstr *CPEMI) {
696 std::vector<CPEntry> &CPEs = CPEntries[CPI];
697 // Number of entries per constpool index should be small, just do a
698 // linear search.
699 for (CPEntry &CPE : CPEs)
700 if (CPE.CPEMI == CPEMI)
701 return &CPE;
702 return nullptr;
703 }
704
705 /// getCPEAlign - Returns the required alignment of the constant pool entry
706 /// represented by CPEMI.
getCPEAlign(const MachineInstr * CPEMI)707 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
708 switch (CPEMI->getOpcode()) {
709 case ARM::CONSTPOOL_ENTRY:
710 break;
711 case ARM::JUMPTABLE_TBB:
712 return isThumb1 ? Align(4) : Align(1);
713 case ARM::JUMPTABLE_TBH:
714 return isThumb1 ? Align(4) : Align(2);
715 case ARM::JUMPTABLE_INSTS:
716 return Align(2);
717 case ARM::JUMPTABLE_ADDRS:
718 return Align(4);
719 default:
720 llvm_unreachable("unknown constpool entry kind");
721 }
722
723 unsigned CPI = getCombinedIndex(CPEMI);
724 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
725 return MCP->getConstants()[CPI].getAlign();
726 }
727
728 // Exception landing pads, blocks that has their adress taken, and function
729 // entry blocks will always be (potential) indirect jump targets, regardless of
730 // whether they are referenced by or not by jump tables.
isAlwaysIndirectTarget(const MachineBasicBlock & MBB)731 static bool isAlwaysIndirectTarget(const MachineBasicBlock &MBB) {
732 return MBB.isEHPad() || MBB.hasAddressTaken() ||
733 &MBB == &MBB.getParent()->front();
734 }
735
736 /// scanFunctionJumpTables - Do a scan of the function, building up
737 /// information about the sizes of each block and the locations of all
738 /// the jump tables.
scanFunctionJumpTables()739 void ARMConstantIslands::scanFunctionJumpTables() {
740 for (MachineBasicBlock &MBB : *MF) {
741 for (MachineInstr &I : MBB)
742 if (I.isBranch() &&
743 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
744 T2JumpTables.push_back(&I);
745 }
746
747 if (!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement())
748 return;
749
750 if (const MachineJumpTableInfo *JTI = MF->getJumpTableInfo())
751 for (const MachineJumpTableEntry &JTE : JTI->getJumpTables())
752 for (const MachineBasicBlock *MBB : JTE.MBBs) {
753 if (isAlwaysIndirectTarget(*MBB))
754 // Set the reference count essentially to infinity, it will never
755 // reach zero and the BTI Instruction will never be removed.
756 BlockJumpTableRefCount[MBB] = std::numeric_limits<int>::max();
757 else
758 ++BlockJumpTableRefCount[MBB];
759 }
760 }
761
762 /// initializeFunctionInfo - Do the initial scan of the function, building up
763 /// information about the sizes of each block, the location of all the water,
764 /// and finding all of the constant pool users.
765 void ARMConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)766 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
767
768 BBUtils->computeAllBlockSizes();
769 BBInfoVector &BBInfo = BBUtils->getBBInfo();
770 // The known bits of the entry block offset are determined by the function
771 // alignment.
772 BBInfo.front().KnownBits = Log2(MF->getAlignment());
773
774 // Compute block offsets and known bits.
775 BBUtils->adjustBBOffsetsAfter(&MF->front());
776
777 // Now go back through the instructions and build up our data structures.
778 for (MachineBasicBlock &MBB : *MF) {
779 // If this block doesn't fall through into the next MBB, then this is
780 // 'water' that a constant pool island could be placed.
781 if (!BBHasFallthrough(&MBB))
782 WaterList.push_back(&MBB);
783
784 for (MachineInstr &I : MBB) {
785 if (I.isDebugInstr())
786 continue;
787
788 unsigned Opc = I.getOpcode();
789 if (I.isBranch()) {
790 bool isCond = false;
791 unsigned Bits = 0;
792 unsigned Scale = 1;
793 int UOpc = Opc;
794 switch (Opc) {
795 default:
796 continue; // Ignore other JT branches
797 case ARM::t2BR_JT:
798 case ARM::tBR_JTr:
799 T2JumpTables.push_back(&I);
800 continue; // Does not get an entry in ImmBranches
801 case ARM::Bcc:
802 isCond = true;
803 UOpc = ARM::B;
804 [[fallthrough]];
805 case ARM::B:
806 Bits = 24;
807 Scale = 4;
808 break;
809 case ARM::tBcc:
810 isCond = true;
811 UOpc = ARM::tB;
812 Bits = 8;
813 Scale = 2;
814 break;
815 case ARM::tB:
816 Bits = 11;
817 Scale = 2;
818 break;
819 case ARM::t2Bcc:
820 isCond = true;
821 UOpc = ARM::t2B;
822 Bits = 20;
823 Scale = 2;
824 break;
825 case ARM::t2B:
826 Bits = 24;
827 Scale = 2;
828 break;
829 }
830
831 // Record this immediate branch.
832 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
833 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
834 }
835
836 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
837 PushPopMIs.push_back(&I);
838
839 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
840 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
841 Opc == ARM::JUMPTABLE_TBH)
842 continue;
843
844 // Scan the instructions for constant pool operands.
845 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
846 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
847 // We found one. The addressing mode tells us the max displacement
848 // from the PC that this instruction permits.
849
850 // Basic size info comes from the TSFlags field.
851 unsigned Bits = 0;
852 unsigned Scale = 1;
853 bool NegOk = false;
854 bool IsSoImm = false;
855
856 switch (Opc) {
857 default:
858 llvm_unreachable("Unknown addressing mode for CP reference!");
859
860 // Taking the address of a CP entry.
861 case ARM::LEApcrel:
862 case ARM::LEApcrelJT: {
863 // This takes a SoImm, which is 8 bit immediate rotated. We'll
864 // pretend the maximum offset is 255 * 4. Since each instruction
865 // 4 byte wide, this is always correct. We'll check for other
866 // displacements that fits in a SoImm as well.
867 Bits = 8;
868 NegOk = true;
869 IsSoImm = true;
870 unsigned CPI = I.getOperand(op).getIndex();
871 assert(CPI < CPEMIs.size());
872 MachineInstr *CPEMI = CPEMIs[CPI];
873 const Align CPEAlign = getCPEAlign(CPEMI);
874 const unsigned LogCPEAlign = Log2(CPEAlign);
875 if (LogCPEAlign >= 2)
876 Scale = 4;
877 else
878 // For constants with less than 4-byte alignment,
879 // we'll pretend the maximum offset is 255 * 1.
880 Scale = 1;
881 }
882 break;
883 case ARM::t2LEApcrel:
884 case ARM::t2LEApcrelJT:
885 Bits = 12;
886 NegOk = true;
887 break;
888 case ARM::tLEApcrel:
889 case ARM::tLEApcrelJT:
890 Bits = 8;
891 Scale = 4;
892 break;
893
894 case ARM::LDRBi12:
895 case ARM::LDRi12:
896 case ARM::LDRcp:
897 case ARM::t2LDRpci:
898 case ARM::t2LDRHpci:
899 case ARM::t2LDRSHpci:
900 case ARM::t2LDRBpci:
901 case ARM::t2LDRSBpci:
902 Bits = 12; // +-offset_12
903 NegOk = true;
904 break;
905
906 case ARM::tLDRpci:
907 Bits = 8;
908 Scale = 4; // +(offset_8*4)
909 break;
910
911 case ARM::VLDRD:
912 case ARM::VLDRS:
913 Bits = 8;
914 Scale = 4; // +-(offset_8*4)
915 NegOk = true;
916 break;
917 case ARM::VLDRH:
918 Bits = 8;
919 Scale = 2; // +-(offset_8*2)
920 NegOk = true;
921 break;
922 }
923
924 // Remember that this is a user of a CP entry.
925 unsigned CPI = I.getOperand(op).getIndex();
926 if (I.getOperand(op).isJTI()) {
927 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
928 CPI = JumpTableEntryIndices[CPI];
929 }
930
931 MachineInstr *CPEMI = CPEMIs[CPI];
932 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
933 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
934
935 // Increment corresponding CPEntry reference count.
936 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
937 assert(CPE && "Cannot find a corresponding CPEntry!");
938 CPE->RefCount++;
939
940 // Instructions can only use one CP entry, don't bother scanning the
941 // rest of the operands.
942 break;
943 }
944 }
945 }
946 }
947
948 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
949 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)950 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
951 const MachineBasicBlock *RHS) {
952 return LHS->getNumber() < RHS->getNumber();
953 }
954
955 /// updateForInsertedWaterBlock - When a block is newly inserted into the
956 /// machine function, it upsets all of the block numbers. Renumber the blocks
957 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)958 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
959 // Renumber the MBB's to keep them consecutive.
960 NewBB->getParent()->RenumberBlocks(NewBB);
961
962 // Insert an entry into BBInfo to align it properly with the (newly
963 // renumbered) block numbers.
964 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
965
966 // Next, update WaterList. Specifically, we need to add NewMBB as having
967 // available water after it.
968 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
969 WaterList.insert(IP, NewBB);
970 }
971
972 /// Split the basic block containing MI into two blocks, which are joined by
973 /// an unconditional branch. Update data structures and renumber blocks to
974 /// account for this change and returns the newly created block.
splitBlockBeforeInstr(MachineInstr * MI)975 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
976 MachineBasicBlock *OrigBB = MI->getParent();
977
978 // Collect liveness information at MI.
979 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
980 LRs.addLiveOuts(*OrigBB);
981 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
982 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
983 LRs.stepBackward(LiveMI);
984
985 // Create a new MBB for the code after the OrigBB.
986 MachineBasicBlock *NewBB =
987 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
988 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
989 MF->insert(MBBI, NewBB);
990
991 // Splice the instructions starting with MI over to NewBB.
992 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
993
994 // Add an unconditional branch from OrigBB to NewBB.
995 // Note the new unconditional branch is not being recorded.
996 // There doesn't seem to be meaningful DebugInfo available; this doesn't
997 // correspond to anything in the source.
998 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
999 if (!isThumb)
1000 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
1001 else
1002 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
1003 .addMBB(NewBB)
1004 .add(predOps(ARMCC::AL));
1005 ++NumSplit;
1006
1007 // Update the CFG. All succs of OrigBB are now succs of NewBB.
1008 NewBB->transferSuccessors(OrigBB);
1009
1010 // OrigBB branches to NewBB.
1011 OrigBB->addSuccessor(NewBB);
1012
1013 // Update live-in information in the new block.
1014 MachineRegisterInfo &MRI = MF->getRegInfo();
1015 for (MCPhysReg L : LRs)
1016 if (!MRI.isReserved(L))
1017 NewBB->addLiveIn(L);
1018
1019 // Update internal data structures to account for the newly inserted MBB.
1020 // This is almost the same as updateForInsertedWaterBlock, except that
1021 // the Water goes after OrigBB, not NewBB.
1022 MF->RenumberBlocks(NewBB);
1023
1024 // Insert an entry into BBInfo to align it properly with the (newly
1025 // renumbered) block numbers.
1026 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
1027
1028 // Next, update WaterList. Specifically, we need to add OrigMBB as having
1029 // available water after it (but not if it's already there, which happens
1030 // when splitting before a conditional branch that is followed by an
1031 // unconditional branch - in that case we want to insert NewBB).
1032 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
1033 MachineBasicBlock* WaterBB = *IP;
1034 if (WaterBB == OrigBB)
1035 WaterList.insert(std::next(IP), NewBB);
1036 else
1037 WaterList.insert(IP, OrigBB);
1038 NewWaterList.insert(OrigBB);
1039
1040 // Figure out how large the OrigBB is. As the first half of the original
1041 // block, it cannot contain a tablejump. The size includes
1042 // the new jump we added. (It should be possible to do this without
1043 // recounting everything, but it's very confusing, and this is rarely
1044 // executed.)
1045 BBUtils->computeBlockSize(OrigBB);
1046
1047 // Figure out how large the NewMBB is. As the second half of the original
1048 // block, it may contain a tablejump.
1049 BBUtils->computeBlockSize(NewBB);
1050
1051 // All BBOffsets following these blocks must be modified.
1052 BBUtils->adjustBBOffsetsAfter(OrigBB);
1053
1054 return NewBB;
1055 }
1056
1057 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1058 /// displacement computation. Update U.KnownAlignment to match its current
1059 /// basic block location.
getUserOffset(CPUser & U) const1060 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1061 unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
1062
1063 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
1064 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1065 unsigned KnownBits = BBI.internalKnownBits();
1066
1067 // The value read from PC is offset from the actual instruction address.
1068 UserOffset += (isThumb ? 4 : 8);
1069
1070 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1071 // Make sure U.getMaxDisp() returns a constrained range.
1072 U.KnownAlignment = (KnownBits >= 2);
1073
1074 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1075 // purposes of the displacement computation; compensate for that here.
1076 // For unknown alignments, getMaxDisp() constrains the range instead.
1077 if (isThumb && U.KnownAlignment)
1078 UserOffset &= ~3u;
1079
1080 return UserOffset;
1081 }
1082
1083 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1084 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1085 /// constant pool entry).
1086 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1087 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1088 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK,bool IsSoImm)1089 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1090 unsigned TrialOffset, unsigned MaxDisp,
1091 bool NegativeOK, bool IsSoImm) {
1092 if (UserOffset <= TrialOffset) {
1093 // User before the Trial.
1094 if (TrialOffset - UserOffset <= MaxDisp)
1095 return true;
1096 // FIXME: Make use full range of soimm values.
1097 } else if (NegativeOK) {
1098 if (UserOffset - TrialOffset <= MaxDisp)
1099 return true;
1100 // FIXME: Make use full range of soimm values.
1101 }
1102 return false;
1103 }
1104
1105 /// isWaterInRange - Returns true if a CPE placed after the specified
1106 /// Water (a basic block) will be in range for the specific MI.
1107 ///
1108 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)1109 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1110 MachineBasicBlock* Water, CPUser &U,
1111 unsigned &Growth) {
1112 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1113 const Align CPEAlign = getCPEAlign(U.CPEMI);
1114 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1115 unsigned NextBlockOffset;
1116 Align NextBlockAlignment;
1117 MachineFunction::const_iterator NextBlock = Water->getIterator();
1118 if (++NextBlock == MF->end()) {
1119 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1120 } else {
1121 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1122 NextBlockAlignment = NextBlock->getAlignment();
1123 }
1124 unsigned Size = U.CPEMI->getOperand(2).getImm();
1125 unsigned CPEEnd = CPEOffset + Size;
1126
1127 // The CPE may be able to hide in the alignment padding before the next
1128 // block. It may also cause more padding to be required if it is more aligned
1129 // that the next block.
1130 if (CPEEnd > NextBlockOffset) {
1131 Growth = CPEEnd - NextBlockOffset;
1132 // Compute the padding that would go at the end of the CPE to align the next
1133 // block.
1134 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1135
1136 // If the CPE is to be inserted before the instruction, that will raise
1137 // the offset of the instruction. Also account for unknown alignment padding
1138 // in blocks between CPE and the user.
1139 if (CPEOffset < UserOffset)
1140 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1141 } else
1142 // CPE fits in existing padding.
1143 Growth = 0;
1144
1145 return isOffsetInRange(UserOffset, CPEOffset, U);
1146 }
1147
1148 /// isCPEntryInRange - Returns true if the distance between specific MI and
1149 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)1150 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1151 MachineInstr *CPEMI, unsigned MaxDisp,
1152 bool NegOk, bool DoDump) {
1153 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1154
1155 if (DoDump) {
1156 LLVM_DEBUG({
1157 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1158 unsigned Block = MI->getParent()->getNumber();
1159 const BasicBlockInfo &BBI = BBInfo[Block];
1160 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1161 << " max delta=" << MaxDisp
1162 << format(" insn address=%#x", UserOffset) << " in "
1163 << printMBBReference(*MI->getParent()) << ": "
1164 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1165 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1166 int(CPEOffset - UserOffset));
1167 });
1168 }
1169
1170 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1171 }
1172
1173 #ifndef NDEBUG
1174 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1175 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1176 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1177 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1178 return false;
1179
1180 MachineBasicBlock *Succ = *MBB->succ_begin();
1181 MachineBasicBlock *Pred = *MBB->pred_begin();
1182 MachineInstr *PredMI = &Pred->back();
1183 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1184 || PredMI->getOpcode() == ARM::t2B)
1185 return PredMI->getOperand(0).getMBB() == Succ;
1186 return false;
1187 }
1188 #endif // NDEBUG
1189
1190 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1191 /// and instruction CPEMI, and decrement its refcount. If the refcount
1192 /// becomes 0 remove the entry and instruction. Returns true if we removed
1193 /// the entry, false if we didn't.
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1194 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1195 MachineInstr *CPEMI) {
1196 // Find the old entry. Eliminate it if it is no longer used.
1197 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1198 assert(CPE && "Unexpected!");
1199 if (--CPE->RefCount == 0) {
1200 removeDeadCPEMI(CPEMI);
1201 CPE->CPEMI = nullptr;
1202 --NumCPEs;
1203 return true;
1204 }
1205 return false;
1206 }
1207
getCombinedIndex(const MachineInstr * CPEMI)1208 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1209 if (CPEMI->getOperand(1).isCPI())
1210 return CPEMI->getOperand(1).getIndex();
1211
1212 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1213 }
1214
1215 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1216 /// if not, see if an in-range clone of the CPE is in range, and if so,
1217 /// change the data structures so the user references the clone. Returns:
1218 /// 0 = no existing entry found
1219 /// 1 = entry found, and there were no code insertions or deletions
1220 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1221 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1222 MachineInstr *UserMI = U.MI;
1223 MachineInstr *CPEMI = U.CPEMI;
1224
1225 // Check to see if the CPE is already in-range.
1226 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1227 true)) {
1228 LLVM_DEBUG(dbgs() << "In range\n");
1229 return 1;
1230 }
1231
1232 // No. Look for previously created clones of the CPE that are in range.
1233 unsigned CPI = getCombinedIndex(CPEMI);
1234 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1235 for (CPEntry &CPE : CPEs) {
1236 // We already tried this one
1237 if (CPE.CPEMI == CPEMI)
1238 continue;
1239 // Removing CPEs can leave empty entries, skip
1240 if (CPE.CPEMI == nullptr)
1241 continue;
1242 if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getMaxDisp(),
1243 U.NegOk)) {
1244 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI
1245 << "\n");
1246 // Point the CPUser node to the replacement
1247 U.CPEMI = CPE.CPEMI;
1248 // Change the CPI in the instruction operand to refer to the clone.
1249 for (MachineOperand &MO : UserMI->operands())
1250 if (MO.isCPI()) {
1251 MO.setIndex(CPE.CPI);
1252 break;
1253 }
1254 // Adjust the refcount of the clone...
1255 CPE.RefCount++;
1256 // ...and the original. If we didn't remove the old entry, none of the
1257 // addresses changed, so we don't need another pass.
1258 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1259 }
1260 }
1261 return 0;
1262 }
1263
1264 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1265 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1266 static inline unsigned getUnconditionalBrDisp(int Opc) {
1267 switch (Opc) {
1268 case ARM::tB:
1269 return ((1<<10)-1)*2;
1270 case ARM::t2B:
1271 return ((1<<23)-1)*2;
1272 default:
1273 break;
1274 }
1275
1276 return ((1<<23)-1)*4;
1277 }
1278
1279 /// findAvailableWater - Look for an existing entry in the WaterList in which
1280 /// we can place the CPE referenced from U so it's within range of U's MI.
1281 /// Returns true if found, false if not. If it returns true, WaterIter
1282 /// is set to the WaterList entry. For Thumb, prefer water that will not
1283 /// introduce padding to water that will. To ensure that this pass
1284 /// terminates, the CPE location for a particular CPUser is only allowed to
1285 /// move to a lower address, so search backward from the end of the list and
1286 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter,bool CloserWater)1287 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1288 water_iterator &WaterIter,
1289 bool CloserWater) {
1290 if (WaterList.empty())
1291 return false;
1292
1293 unsigned BestGrowth = ~0u;
1294 // The nearest water without splitting the UserBB is right after it.
1295 // If the distance is still large (we have a big BB), then we need to split it
1296 // if we don't converge after certain iterations. This helps the following
1297 // situation to converge:
1298 // BB0:
1299 // Big BB
1300 // BB1:
1301 // Constant Pool
1302 // When a CP access is out of range, BB0 may be used as water. However,
1303 // inserting islands between BB0 and BB1 makes other accesses out of range.
1304 MachineBasicBlock *UserBB = U.MI->getParent();
1305 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1306 const Align CPEAlign = getCPEAlign(U.CPEMI);
1307 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1308 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1309 return false;
1310 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1311 --IP) {
1312 MachineBasicBlock* WaterBB = *IP;
1313 // Check if water is in range and is either at a lower address than the
1314 // current "high water mark" or a new water block that was created since
1315 // the previous iteration by inserting an unconditional branch. In the
1316 // latter case, we want to allow resetting the high water mark back to
1317 // this new water since we haven't seen it before. Inserting branches
1318 // should be relatively uncommon and when it does happen, we want to be
1319 // sure to take advantage of it for all the CPEs near that block, so that
1320 // we don't insert more branches than necessary.
1321 // When CloserWater is true, we try to find the lowest address after (or
1322 // equal to) user MI's BB no matter of padding growth.
1323 unsigned Growth;
1324 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1325 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1326 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1327 Growth < BestGrowth) {
1328 // This is the least amount of required padding seen so far.
1329 BestGrowth = Growth;
1330 WaterIter = IP;
1331 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1332 << " Growth=" << Growth << '\n');
1333
1334 if (CloserWater && WaterBB == U.MI->getParent())
1335 return true;
1336 // Keep looking unless it is perfect and we're not looking for the lowest
1337 // possible address.
1338 if (!CloserWater && BestGrowth == 0)
1339 return true;
1340 }
1341 if (IP == B)
1342 break;
1343 }
1344 return BestGrowth != ~0u;
1345 }
1346
1347 /// createNewWater - No existing WaterList entry will work for
1348 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1349 /// block is used if in range, and the conditional branch munged so control
1350 /// flow is correct. Otherwise the block is split to create a hole with an
1351 /// unconditional branch around it. In either case NewMBB is set to a
1352 /// block following which the new island can be inserted (the WaterList
1353 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1354 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1355 unsigned UserOffset,
1356 MachineBasicBlock *&NewMBB) {
1357 CPUser &U = CPUsers[CPUserIndex];
1358 MachineInstr *UserMI = U.MI;
1359 MachineInstr *CPEMI = U.CPEMI;
1360 const Align CPEAlign = getCPEAlign(CPEMI);
1361 MachineBasicBlock *UserMBB = UserMI->getParent();
1362 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1363 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1364
1365 // If the block does not end in an unconditional branch already, and if the
1366 // end of the block is within range, make new water there. (The addition
1367 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1368 // Thumb2, 2 on Thumb1.
1369 if (BBHasFallthrough(UserMBB)) {
1370 // Size of branch to insert.
1371 unsigned Delta = isThumb1 ? 2 : 4;
1372 // Compute the offset where the CPE will begin.
1373 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1374
1375 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1376 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1377 << format(", expected CPE offset %#x\n", CPEOffset));
1378 NewMBB = &*++UserMBB->getIterator();
1379 // Add an unconditional branch from UserMBB to fallthrough block. Record
1380 // it for branch lengthening; this new branch will not get out of range,
1381 // but if the preceding conditional branch is out of range, the targets
1382 // will be exchanged, and the altered branch may be out of range, so the
1383 // machinery has to know about it.
1384 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1385 if (!isThumb)
1386 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1387 else
1388 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1389 .addMBB(NewMBB)
1390 .add(predOps(ARMCC::AL));
1391 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1392 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1393 MaxDisp, false, UncondBr));
1394 BBUtils->computeBlockSize(UserMBB);
1395 BBUtils->adjustBBOffsetsAfter(UserMBB);
1396 return;
1397 }
1398 }
1399
1400 // What a big block. Find a place within the block to split it. This is a
1401 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1402 // entries are 4 bytes: if instruction I references island CPE, and
1403 // instruction I+1 references CPE', it will not work well to put CPE as far
1404 // forward as possible, since then CPE' cannot immediately follow it (that
1405 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1406 // need to create a new island. So, we make a first guess, then walk through
1407 // the instructions between the one currently being looked at and the
1408 // possible insertion point, and make sure any other instructions that
1409 // reference CPEs will be able to use the same island area; if not, we back
1410 // up the insertion point.
1411
1412 // Try to split the block so it's fully aligned. Compute the latest split
1413 // point where we can add a 4-byte branch instruction, and then align to
1414 // Align which is the largest possible alignment in the function.
1415 const Align Align = MF->getAlignment();
1416 assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1417 unsigned KnownBits = UserBBI.internalKnownBits();
1418 unsigned UPad = UnknownPadding(Align, KnownBits);
1419 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1420 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1421 BaseInsertOffset));
1422
1423 // The 4 in the following is for the unconditional branch we'll be inserting
1424 // (allows for long branch on Thumb1). Alignment of the island is handled
1425 // inside isOffsetInRange.
1426 BaseInsertOffset -= 4;
1427
1428 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1429 << " la=" << Log2(Align) << " kb=" << KnownBits
1430 << " up=" << UPad << '\n');
1431
1432 // This could point off the end of the block if we've already got constant
1433 // pool entries following this block; only the last one is in the water list.
1434 // Back past any possible branches (allow for a conditional and a maximally
1435 // long unconditional).
1436 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1437 // Ensure BaseInsertOffset is larger than the offset of the instruction
1438 // following UserMI so that the loop which searches for the split point
1439 // iterates at least once.
1440 BaseInsertOffset =
1441 std::max(UserBBI.postOffset() - UPad - 8,
1442 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1443 // If the CP is referenced(ie, UserOffset) is in first four instructions
1444 // after IT, this recalculated BaseInsertOffset could be in the middle of
1445 // an IT block. If it is, change the BaseInsertOffset to just after the
1446 // IT block. This still make the CP Entry is in range becuase of the
1447 // following reasons.
1448 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1449 // U.getMaxDisp() - UPad).
1450 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1451 // bytes).
1452 // 3. All the relevant instructions support much larger Maximum
1453 // displacement.
1454 MachineBasicBlock::iterator I = UserMI;
1455 ++I;
1456 Register PredReg;
1457 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1458 I->getOpcode() != ARM::t2IT &&
1459 getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1460 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1461 BaseInsertOffset =
1462 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1463 assert(I != UserMBB->end() && "Fell off end of block");
1464 }
1465 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1466 }
1467 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1468 CPEMI->getOperand(2).getImm();
1469 MachineBasicBlock::iterator MI = UserMI;
1470 ++MI;
1471 unsigned CPUIndex = CPUserIndex+1;
1472 unsigned NumCPUsers = CPUsers.size();
1473 MachineInstr *LastIT = nullptr;
1474 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1475 Offset < BaseInsertOffset;
1476 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1477 assert(MI != UserMBB->end() && "Fell off end of block");
1478 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1479 CPUser &U = CPUsers[CPUIndex];
1480 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1481 // Shift intertion point by one unit of alignment so it is within reach.
1482 BaseInsertOffset -= Align.value();
1483 EndInsertOffset -= Align.value();
1484 }
1485 // This is overly conservative, as we don't account for CPEMIs being
1486 // reused within the block, but it doesn't matter much. Also assume CPEs
1487 // are added in order with alignment padding. We may eventually be able
1488 // to pack the aligned CPEs better.
1489 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1490 CPUIndex++;
1491 }
1492
1493 // Remember the last IT instruction.
1494 if (MI->getOpcode() == ARM::t2IT)
1495 LastIT = &*MI;
1496 }
1497
1498 --MI;
1499
1500 // Avoid splitting an IT block.
1501 if (LastIT) {
1502 Register PredReg;
1503 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1504 if (CC != ARMCC::AL)
1505 MI = LastIT;
1506 }
1507
1508 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1509 // On Windows, this instruction pair is covered by one single
1510 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1511 // constant island is injected inbetween them, the relocation will clobber
1512 // the instruction and fail to update the MOVT instruction.
1513 // (These instructions are bundled up until right before the ConstantIslands
1514 // pass.)
1515 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1516 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1517 ARMII::MO_HI16) {
1518 --MI;
1519 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1520 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1521 ARMII::MO_LO16);
1522 }
1523
1524 // We really must not split an IT block.
1525 #ifndef NDEBUG
1526 Register PredReg;
1527 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1528 #endif
1529 NewMBB = splitBlockBeforeInstr(&*MI);
1530 }
1531
1532 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1533 /// is out-of-range. If so, pick up the constant pool value and move it some
1534 /// place in-range. Return true if we changed any addresses (thus must run
1535 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex,bool CloserWater)1536 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1537 bool CloserWater) {
1538 CPUser &U = CPUsers[CPUserIndex];
1539 MachineInstr *UserMI = U.MI;
1540 MachineInstr *CPEMI = U.CPEMI;
1541 unsigned CPI = getCombinedIndex(CPEMI);
1542 unsigned Size = CPEMI->getOperand(2).getImm();
1543 // Compute this only once, it's expensive.
1544 unsigned UserOffset = getUserOffset(U);
1545
1546 // See if the current entry is within range, or there is a clone of it
1547 // in range.
1548 int result = findInRangeCPEntry(U, UserOffset);
1549 if (result==1) return false;
1550 else if (result==2) return true;
1551
1552 // No existing clone of this CPE is within range.
1553 // We will be generating a new clone. Get a UID for it.
1554 unsigned ID = AFI->createPICLabelUId();
1555
1556 // Look for water where we can place this CPE.
1557 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1558 MachineBasicBlock *NewMBB;
1559 water_iterator IP;
1560 if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1561 LLVM_DEBUG(dbgs() << "Found water in range\n");
1562 MachineBasicBlock *WaterBB = *IP;
1563
1564 // If the original WaterList entry was "new water" on this iteration,
1565 // propagate that to the new island. This is just keeping NewWaterList
1566 // updated to match the WaterList, which will be updated below.
1567 if (NewWaterList.erase(WaterBB))
1568 NewWaterList.insert(NewIsland);
1569
1570 // The new CPE goes before the following block (NewMBB).
1571 NewMBB = &*++WaterBB->getIterator();
1572 } else {
1573 // No water found.
1574 LLVM_DEBUG(dbgs() << "No water found\n");
1575 createNewWater(CPUserIndex, UserOffset, NewMBB);
1576
1577 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1578 // called while handling branches so that the water will be seen on the
1579 // next iteration for constant pools, but in this context, we don't want
1580 // it. Check for this so it will be removed from the WaterList.
1581 // Also remove any entry from NewWaterList.
1582 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1583 IP = find(WaterList, WaterBB);
1584 if (IP != WaterList.end())
1585 NewWaterList.erase(WaterBB);
1586
1587 // We are adding new water. Update NewWaterList.
1588 NewWaterList.insert(NewIsland);
1589 }
1590 // Always align the new block because CP entries can be smaller than 4
1591 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1592 // be an already aligned constant pool block.
1593 const Align Alignment = isThumb ? Align(2) : Align(4);
1594 if (NewMBB->getAlignment() < Alignment)
1595 NewMBB->setAlignment(Alignment);
1596
1597 // Remove the original WaterList entry; we want subsequent insertions in
1598 // this vicinity to go after the one we're about to insert. This
1599 // considerably reduces the number of times we have to move the same CPE
1600 // more than once and is also important to ensure the algorithm terminates.
1601 if (IP != WaterList.end())
1602 WaterList.erase(IP);
1603
1604 // Okay, we know we can put an island before NewMBB now, do it!
1605 MF->insert(NewMBB->getIterator(), NewIsland);
1606
1607 // Update internal data structures to account for the newly inserted MBB.
1608 updateForInsertedWaterBlock(NewIsland);
1609
1610 // Now that we have an island to add the CPE to, clone the original CPE and
1611 // add it to the island.
1612 U.HighWaterMark = NewIsland;
1613 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1614 .addImm(ID)
1615 .add(CPEMI->getOperand(1))
1616 .addImm(Size);
1617 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1618 ++NumCPEs;
1619
1620 // Decrement the old entry, and remove it if refcount becomes 0.
1621 decrementCPEReferenceCount(CPI, CPEMI);
1622
1623 // Mark the basic block as aligned as required by the const-pool entry.
1624 NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1625
1626 // Increase the size of the island block to account for the new entry.
1627 BBUtils->adjustBBSize(NewIsland, Size);
1628 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1629
1630 // Finally, change the CPI in the instruction operand to be ID.
1631 for (MachineOperand &MO : UserMI->operands())
1632 if (MO.isCPI()) {
1633 MO.setIndex(ID);
1634 break;
1635 }
1636
1637 LLVM_DEBUG(
1638 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1639 << format(" offset=%#x\n",
1640 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1641
1642 return true;
1643 }
1644
1645 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1646 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1647 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1648 MachineBasicBlock *CPEBB = CPEMI->getParent();
1649 unsigned Size = CPEMI->getOperand(2).getImm();
1650 CPEMI->eraseFromParent();
1651 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1652 BBUtils->adjustBBSize(CPEBB, -Size);
1653 // All succeeding offsets have the current size value added in, fix this.
1654 if (CPEBB->empty()) {
1655 BBInfo[CPEBB->getNumber()].Size = 0;
1656
1657 // This block no longer needs to be aligned.
1658 CPEBB->setAlignment(Align(1));
1659 } else {
1660 // Entries are sorted by descending alignment, so realign from the front.
1661 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1662 }
1663
1664 BBUtils->adjustBBOffsetsAfter(CPEBB);
1665 // An island has only one predecessor BB and one successor BB. Check if
1666 // this BB's predecessor jumps directly to this BB's successor. This
1667 // shouldn't happen currently.
1668 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1669 // FIXME: remove the empty blocks after all the work is done?
1670 }
1671
1672 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1673 /// are zero.
removeUnusedCPEntries()1674 bool ARMConstantIslands::removeUnusedCPEntries() {
1675 unsigned MadeChange = false;
1676 for (std::vector<CPEntry> &CPEs : CPEntries) {
1677 for (CPEntry &CPE : CPEs) {
1678 if (CPE.RefCount == 0 && CPE.CPEMI) {
1679 removeDeadCPEMI(CPE.CPEMI);
1680 CPE.CPEMI = nullptr;
1681 MadeChange = true;
1682 }
1683 }
1684 }
1685 return MadeChange;
1686 }
1687
1688
1689 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1690 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1691 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1692 MachineInstr *MI = Br.MI;
1693 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1694
1695 // Check to see if the DestBB is already in-range.
1696 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1697 return false;
1698
1699 if (!Br.isCond)
1700 return fixupUnconditionalBr(Br);
1701 return fixupConditionalBr(Br);
1702 }
1703
1704 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1705 /// too far away to fit in its displacement field. If the LR register has been
1706 /// spilled in the epilogue, then we can use BL to implement a far jump.
1707 /// Otherwise, add an intermediate branch instruction to a branch.
1708 bool
fixupUnconditionalBr(ImmBranch & Br)1709 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1710 MachineInstr *MI = Br.MI;
1711 MachineBasicBlock *MBB = MI->getParent();
1712 if (!isThumb1)
1713 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1714
1715 if (!AFI->isLRSpilled())
1716 report_fatal_error("underestimated function size");
1717
1718 // Use BL to implement far jump.
1719 Br.MaxDisp = (1 << 21) * 2;
1720 MI->setDesc(TII->get(ARM::tBfar));
1721 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1722 BBInfo[MBB->getNumber()].Size += 2;
1723 BBUtils->adjustBBOffsetsAfter(MBB);
1724 ++NumUBrFixed;
1725
1726 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1727
1728 return true;
1729 }
1730
1731 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1732 /// far away to fit in its displacement field. It is converted to an inverse
1733 /// conditional branch + an unconditional branch to the destination.
1734 bool
fixupConditionalBr(ImmBranch & Br)1735 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1736 MachineInstr *MI = Br.MI;
1737 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1738
1739 // Add an unconditional branch to the destination and invert the branch
1740 // condition to jump over it:
1741 // blt L1
1742 // =>
1743 // bge L2
1744 // b L1
1745 // L2:
1746 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1747 CC = ARMCC::getOppositeCondition(CC);
1748 Register CCReg = MI->getOperand(2).getReg();
1749
1750 // If the branch is at the end of its MBB and that has a fall-through block,
1751 // direct the updated conditional branch to the fall-through block. Otherwise,
1752 // split the MBB before the next instruction.
1753 MachineBasicBlock *MBB = MI->getParent();
1754 MachineInstr *BMI = &MBB->back();
1755 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1756
1757 ++NumCBrFixed;
1758 if (BMI != MI) {
1759 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1760 BMI->getOpcode() == Br.UncondBr) {
1761 // Last MI in the BB is an unconditional branch. Can we simply invert the
1762 // condition and swap destinations:
1763 // beq L1
1764 // b L2
1765 // =>
1766 // bne L2
1767 // b L1
1768 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1769 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1770 LLVM_DEBUG(
1771 dbgs() << " Invert Bcc condition and swap its destination with "
1772 << *BMI);
1773 BMI->getOperand(0).setMBB(DestBB);
1774 MI->getOperand(0).setMBB(NewDest);
1775 MI->getOperand(1).setImm(CC);
1776 return true;
1777 }
1778 }
1779 }
1780
1781 if (NeedSplit) {
1782 splitBlockBeforeInstr(MI);
1783 // No need for the branch to the next block. We're adding an unconditional
1784 // branch to the destination.
1785 int delta = TII->getInstSizeInBytes(MBB->back());
1786 BBUtils->adjustBBSize(MBB, -delta);
1787 MBB->back().eraseFromParent();
1788
1789 // The conditional successor will be swapped between the BBs after this, so
1790 // update CFG.
1791 MBB->addSuccessor(DestBB);
1792 std::next(MBB->getIterator())->removeSuccessor(DestBB);
1793
1794 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1795 }
1796 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1797
1798 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1799 << " also invert condition and change dest. to "
1800 << printMBBReference(*NextBB) << "\n");
1801
1802 // Insert a new conditional branch and a new unconditional branch.
1803 // Also update the ImmBranch as well as adding a new entry for the new branch.
1804 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1805 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1806 Br.MI = &MBB->back();
1807 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1808 if (isThumb)
1809 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1810 .addMBB(DestBB)
1811 .add(predOps(ARMCC::AL));
1812 else
1813 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1814 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1815 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1816 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1817
1818 // Remove the old conditional branch. It may or may not still be in MBB.
1819 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1820 MI->eraseFromParent();
1821 BBUtils->adjustBBOffsetsAfter(MBB);
1822 return true;
1823 }
1824
optimizeThumb2Instructions()1825 bool ARMConstantIslands::optimizeThumb2Instructions() {
1826 bool MadeChange = false;
1827
1828 // Shrink ADR and LDR from constantpool.
1829 for (CPUser &U : CPUsers) {
1830 unsigned Opcode = U.MI->getOpcode();
1831 unsigned NewOpc = 0;
1832 unsigned Scale = 1;
1833 unsigned Bits = 0;
1834 switch (Opcode) {
1835 default: break;
1836 case ARM::t2LEApcrel:
1837 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1838 NewOpc = ARM::tLEApcrel;
1839 Bits = 8;
1840 Scale = 4;
1841 }
1842 break;
1843 case ARM::t2LDRpci:
1844 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1845 NewOpc = ARM::tLDRpci;
1846 Bits = 8;
1847 Scale = 4;
1848 }
1849 break;
1850 }
1851
1852 if (!NewOpc)
1853 continue;
1854
1855 unsigned UserOffset = getUserOffset(U);
1856 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1857
1858 // Be conservative with inline asm.
1859 if (!U.KnownAlignment)
1860 MaxOffs -= 2;
1861
1862 // FIXME: Check if offset is multiple of scale if scale is not 4.
1863 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1864 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1865 U.MI->setDesc(TII->get(NewOpc));
1866 MachineBasicBlock *MBB = U.MI->getParent();
1867 BBUtils->adjustBBSize(MBB, -2);
1868 BBUtils->adjustBBOffsetsAfter(MBB);
1869 ++NumT2CPShrunk;
1870 MadeChange = true;
1871 }
1872 }
1873
1874 return MadeChange;
1875 }
1876
1877
optimizeThumb2Branches()1878 bool ARMConstantIslands::optimizeThumb2Branches() {
1879
1880 auto TryShrinkBranch = [this](ImmBranch &Br) {
1881 unsigned Opcode = Br.MI->getOpcode();
1882 unsigned NewOpc = 0;
1883 unsigned Scale = 1;
1884 unsigned Bits = 0;
1885 switch (Opcode) {
1886 default: break;
1887 case ARM::t2B:
1888 NewOpc = ARM::tB;
1889 Bits = 11;
1890 Scale = 2;
1891 break;
1892 case ARM::t2Bcc:
1893 NewOpc = ARM::tBcc;
1894 Bits = 8;
1895 Scale = 2;
1896 break;
1897 }
1898 if (NewOpc) {
1899 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1900 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1901 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1902 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1903 Br.MI->setDesc(TII->get(NewOpc));
1904 MachineBasicBlock *MBB = Br.MI->getParent();
1905 BBUtils->adjustBBSize(MBB, -2);
1906 BBUtils->adjustBBOffsetsAfter(MBB);
1907 ++NumT2BrShrunk;
1908 return true;
1909 }
1910 }
1911 return false;
1912 };
1913
1914 struct ImmCompare {
1915 MachineInstr* MI = nullptr;
1916 unsigned NewOpc = 0;
1917 };
1918
1919 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1920 MachineBasicBlock *DestBB) {
1921 ImmCmp.MI = nullptr;
1922 ImmCmp.NewOpc = 0;
1923
1924 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1925 // so this transformation is not safe.
1926 if (!Br.MI->killsRegister(ARM::CPSR))
1927 return false;
1928
1929 Register PredReg;
1930 unsigned NewOpc = 0;
1931 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1932 if (Pred == ARMCC::EQ)
1933 NewOpc = ARM::tCBZ;
1934 else if (Pred == ARMCC::NE)
1935 NewOpc = ARM::tCBNZ;
1936 else
1937 return false;
1938
1939 // Check if the distance is within 126. Subtract starting offset by 2
1940 // because the cmp will be eliminated.
1941 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1942 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1943 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1944 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1945 return false;
1946
1947 // Search backwards to find a tCMPi8
1948 auto *TRI = STI->getRegisterInfo();
1949 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1950 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1951 return false;
1952
1953 ImmCmp.MI = CmpMI;
1954 ImmCmp.NewOpc = NewOpc;
1955 return true;
1956 };
1957
1958 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1959 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1960 STI->hasMinSize())
1961 return false;
1962
1963 MachineBasicBlock *MBB = Br.MI->getParent();
1964 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1965 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1966 !BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1967 return false;
1968
1969 if (!DT->dominates(DestBB, MBB))
1970 return false;
1971
1972 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1973 // target of Br. So now we need to reverse the condition.
1974 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1975
1976 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1977 TII->get(ARM::t2LE));
1978 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1979 MIB.add(Br.MI->getOperand(0));
1980 Br.MI->eraseFromParent();
1981 Br.MI = MIB;
1982 ++NumLEInserted;
1983 return true;
1984 };
1985
1986 bool MadeChange = false;
1987
1988 // The order in which branches appear in ImmBranches is approximately their
1989 // order within the function body. By visiting later branches first, we reduce
1990 // the distance between earlier forward branches and their targets, making it
1991 // more likely that the cbn?z optimization, which can only apply to forward
1992 // branches, will succeed.
1993 for (ImmBranch &Br : reverse(ImmBranches)) {
1994 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1995 MachineBasicBlock *MBB = Br.MI->getParent();
1996 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
1997 MBB->getFallThrough() :
1998 MBB->back().getOperand(0).getMBB();
1999
2000 ImmCompare Cmp;
2001 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
2002 DestBB = ExitBB;
2003 MadeChange = true;
2004 } else {
2005 FindCmpForCBZ(Br, Cmp, DestBB);
2006 MadeChange |= TryShrinkBranch(Br);
2007 }
2008
2009 unsigned Opcode = Br.MI->getOpcode();
2010 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
2011 continue;
2012
2013 Register Reg = Cmp.MI->getOperand(0).getReg();
2014
2015 // Check for Kill flags on Reg. If they are present remove them and set kill
2016 // on the new CBZ.
2017 auto *TRI = STI->getRegisterInfo();
2018 MachineBasicBlock::iterator KillMI = Br.MI;
2019 bool RegKilled = false;
2020 do {
2021 --KillMI;
2022 if (KillMI->killsRegister(Reg, TRI)) {
2023 KillMI->clearRegisterKills(Reg, TRI);
2024 RegKilled = true;
2025 break;
2026 }
2027 } while (KillMI != Cmp.MI);
2028
2029 // Create the new CBZ/CBNZ
2030 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
2031 MachineInstr *NewBR =
2032 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
2033 .addReg(Reg, getKillRegState(RegKilled) |
2034 getRegState(Cmp.MI->getOperand(0)))
2035 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
2036
2037 Cmp.MI->eraseFromParent();
2038
2039 if (Br.MI->getOpcode() == ARM::tBcc) {
2040 Br.MI->eraseFromParent();
2041 Br.MI = NewBR;
2042 BBUtils->adjustBBSize(MBB, -2);
2043 } else if (MBB->back().getOpcode() != ARM::t2LE) {
2044 // An LE has been generated, but it's not the terminator - that is an
2045 // unconditional branch. However, the logic has now been reversed with the
2046 // CBN?Z being the conditional branch and the LE being the unconditional
2047 // branch. So this means we can remove the redundant unconditional branch
2048 // at the end of the block.
2049 MachineInstr *LastMI = &MBB->back();
2050 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
2051 LastMI->eraseFromParent();
2052 }
2053 BBUtils->adjustBBOffsetsAfter(MBB);
2054 ++NumCBZ;
2055 MadeChange = true;
2056 }
2057
2058 return MadeChange;
2059 }
2060
isSimpleIndexCalc(MachineInstr & I,unsigned EntryReg,unsigned BaseReg)2061 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2062 unsigned BaseReg) {
2063 if (I.getOpcode() != ARM::t2ADDrs)
2064 return false;
2065
2066 if (I.getOperand(0).getReg() != EntryReg)
2067 return false;
2068
2069 if (I.getOperand(1).getReg() != BaseReg)
2070 return false;
2071
2072 // FIXME: what about CC and IdxReg?
2073 return true;
2074 }
2075
2076 /// While trying to form a TBB/TBH instruction, we may (if the table
2077 /// doesn't immediately follow the BR_JT) need access to the start of the
2078 /// jump-table. We know one instruction that produces such a register; this
2079 /// function works out whether that definition can be preserved to the BR_JT,
2080 /// possibly by removing an intervening addition (which is usually needed to
2081 /// calculate the actual entry to jump to).
preserveBaseRegister(MachineInstr * JumpMI,MachineInstr * LEAMI,unsigned & DeadSize,bool & CanDeleteLEA,bool & BaseRegKill)2082 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2083 MachineInstr *LEAMI,
2084 unsigned &DeadSize,
2085 bool &CanDeleteLEA,
2086 bool &BaseRegKill) {
2087 if (JumpMI->getParent() != LEAMI->getParent())
2088 return false;
2089
2090 // Now we hope that we have at least these instructions in the basic block:
2091 // BaseReg = t2LEA ...
2092 // [...]
2093 // EntryReg = t2ADDrs BaseReg, ...
2094 // [...]
2095 // t2BR_JT EntryReg
2096 //
2097 // We have to be very conservative about what we recognise here though. The
2098 // main perturbing factors to watch out for are:
2099 // + Spills at any point in the chain: not direct problems but we would
2100 // expect a blocking Def of the spilled register so in practice what we
2101 // can do is limited.
2102 // + EntryReg == BaseReg: this is the one situation we should allow a Def
2103 // of BaseReg, but only if the t2ADDrs can be removed.
2104 // + Some instruction other than t2ADDrs computing the entry. Not seen in
2105 // the wild, but we should be careful.
2106 Register EntryReg = JumpMI->getOperand(0).getReg();
2107 Register BaseReg = LEAMI->getOperand(0).getReg();
2108
2109 CanDeleteLEA = true;
2110 BaseRegKill = false;
2111 MachineInstr *RemovableAdd = nullptr;
2112 MachineBasicBlock::iterator I(LEAMI);
2113 for (++I; &*I != JumpMI; ++I) {
2114 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2115 RemovableAdd = &*I;
2116 break;
2117 }
2118
2119 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2120 const MachineOperand &MO = I->getOperand(K);
2121 if (!MO.isReg() || !MO.getReg())
2122 continue;
2123 if (MO.isDef() && MO.getReg() == BaseReg)
2124 return false;
2125 if (MO.isUse() && MO.getReg() == BaseReg) {
2126 BaseRegKill = BaseRegKill || MO.isKill();
2127 CanDeleteLEA = false;
2128 }
2129 }
2130 }
2131
2132 if (!RemovableAdd)
2133 return true;
2134
2135 // Check the add really is removable, and that nothing else in the block
2136 // clobbers BaseReg.
2137 for (++I; &*I != JumpMI; ++I) {
2138 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2139 const MachineOperand &MO = I->getOperand(K);
2140 if (!MO.isReg() || !MO.getReg())
2141 continue;
2142 if (MO.isDef() && MO.getReg() == BaseReg)
2143 return false;
2144 if (MO.isUse() && MO.getReg() == EntryReg)
2145 RemovableAdd = nullptr;
2146 }
2147 }
2148
2149 if (RemovableAdd) {
2150 RemovableAdd->eraseFromParent();
2151 DeadSize += isThumb2 ? 4 : 2;
2152 } else if (BaseReg == EntryReg) {
2153 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2154 // preserve it.
2155 return false;
2156 }
2157
2158 // We reached the end of the block without seeing another definition of
2159 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2160 // used in the TBB/TBH if necessary.
2161 return true;
2162 }
2163
2164 /// Returns whether CPEMI is the first instruction in the block
2165 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2166 /// we can switch the first register to PC and usually remove the address
2167 /// calculation that preceded it.
jumpTableFollowsTB(MachineInstr * JTMI,MachineInstr * CPEMI)2168 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2169 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2170 MachineFunction *MF = MBB->getParent();
2171 ++MBB;
2172
2173 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI;
2174 }
2175
RemoveDeadAddBetweenLEAAndJT(MachineInstr * LEAMI,MachineInstr * JumpMI,unsigned & DeadSize)2176 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2177 MachineInstr *JumpMI,
2178 unsigned &DeadSize) {
2179 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2180 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2181 // and is not clobbered / used.
2182 MachineInstr *RemovableAdd = nullptr;
2183 Register EntryReg = JumpMI->getOperand(0).getReg();
2184
2185 // Find the last ADD to set EntryReg
2186 MachineBasicBlock::iterator I(LEAMI);
2187 for (++I; &*I != JumpMI; ++I) {
2188 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2189 RemovableAdd = &*I;
2190 }
2191
2192 if (!RemovableAdd)
2193 return;
2194
2195 // Ensure EntryReg is not clobbered or used.
2196 MachineBasicBlock::iterator J(RemovableAdd);
2197 for (++J; &*J != JumpMI; ++J) {
2198 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2199 const MachineOperand &MO = J->getOperand(K);
2200 if (!MO.isReg() || !MO.getReg())
2201 continue;
2202 if (MO.isDef() && MO.getReg() == EntryReg)
2203 return;
2204 if (MO.isUse() && MO.getReg() == EntryReg)
2205 return;
2206 }
2207 }
2208
2209 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2210 RemovableAdd->eraseFromParent();
2211 DeadSize += 4;
2212 }
2213
2214 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2215 /// jumptables when it's possible.
optimizeThumb2JumpTables()2216 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2217 bool MadeChange = false;
2218
2219 // FIXME: After the tables are shrunk, can we get rid some of the
2220 // constantpool tables?
2221 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2222 if (!MJTI) return false;
2223
2224 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2225 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2226 MachineInstr *MI = T2JumpTables[i];
2227 const MCInstrDesc &MCID = MI->getDesc();
2228 unsigned NumOps = MCID.getNumOperands();
2229 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2230 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2231 unsigned JTI = JTOP.getIndex();
2232 assert(JTI < JT.size());
2233
2234 bool ByteOk = true;
2235 bool HalfWordOk = true;
2236 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2237 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2238 BBInfoVector &BBInfo = BBUtils->getBBInfo();
2239 for (MachineBasicBlock *MBB : JTBBs) {
2240 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2241 // Negative offset is not ok. FIXME: We should change BB layout to make
2242 // sure all the branches are forward.
2243 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2244 ByteOk = false;
2245 unsigned TBHLimit = ((1<<16)-1)*2;
2246 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2247 HalfWordOk = false;
2248 if (!ByteOk && !HalfWordOk)
2249 break;
2250 }
2251
2252 if (!ByteOk && !HalfWordOk)
2253 continue;
2254
2255 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2256 MachineBasicBlock *MBB = MI->getParent();
2257 if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2258 continue;
2259
2260 unsigned DeadSize = 0;
2261 bool CanDeleteLEA = false;
2262 bool BaseRegKill = false;
2263
2264 unsigned IdxReg = ~0U;
2265 bool IdxRegKill = true;
2266 if (isThumb2) {
2267 IdxReg = MI->getOperand(1).getReg();
2268 IdxRegKill = MI->getOperand(1).isKill();
2269
2270 bool PreservedBaseReg =
2271 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2272 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2273 continue;
2274 } else {
2275 // We're in thumb-1 mode, so we must have something like:
2276 // %idx = tLSLri %idx, 2
2277 // %base = tLEApcrelJT
2278 // %t = tLDRr %base, %idx
2279 Register BaseReg = User.MI->getOperand(0).getReg();
2280
2281 if (User.MI->getIterator() == User.MI->getParent()->begin())
2282 continue;
2283 MachineInstr *Shift = User.MI->getPrevNode();
2284 if (Shift->getOpcode() != ARM::tLSLri ||
2285 Shift->getOperand(3).getImm() != 2 ||
2286 !Shift->getOperand(2).isKill())
2287 continue;
2288 IdxReg = Shift->getOperand(2).getReg();
2289 Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2290
2291 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2292 // the range is checked later, but the LEA might still clobber it and not
2293 // actually get removed.
2294 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2295 continue;
2296
2297 MachineInstr *Load = User.MI->getNextNode();
2298 if (Load->getOpcode() != ARM::tLDRr)
2299 continue;
2300 if (Load->getOperand(1).getReg() != BaseReg ||
2301 Load->getOperand(2).getReg() != ShiftedIdxReg ||
2302 !Load->getOperand(2).isKill())
2303 continue;
2304
2305 // If we're in PIC mode, there should be another ADD following.
2306 auto *TRI = STI->getRegisterInfo();
2307
2308 // %base cannot be redefined after the load as it will appear before
2309 // TBB/TBH like:
2310 // %base =
2311 // %base =
2312 // tBB %base, %idx
2313 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2314 continue;
2315
2316 if (isPositionIndependentOrROPI) {
2317 MachineInstr *Add = Load->getNextNode();
2318 if (Add->getOpcode() != ARM::tADDrr ||
2319 Add->getOperand(2).getReg() != BaseReg ||
2320 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2321 !Add->getOperand(3).isKill())
2322 continue;
2323 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2324 continue;
2325 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2326 // IdxReg gets redefined in the middle of the sequence.
2327 continue;
2328 Add->eraseFromParent();
2329 DeadSize += 2;
2330 } else {
2331 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2332 continue;
2333 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2334 // IdxReg gets redefined in the middle of the sequence.
2335 continue;
2336 }
2337
2338 // Now safe to delete the load and lsl. The LEA will be removed later.
2339 CanDeleteLEA = true;
2340 Shift->eraseFromParent();
2341 Load->eraseFromParent();
2342 DeadSize += 4;
2343 }
2344
2345 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2346 MachineInstr *CPEMI = User.CPEMI;
2347 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2348 if (!isThumb2)
2349 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2350
2351 MachineBasicBlock::iterator MI_JT = MI;
2352 MachineInstr *NewJTMI =
2353 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2354 .addReg(User.MI->getOperand(0).getReg(),
2355 getKillRegState(BaseRegKill))
2356 .addReg(IdxReg, getKillRegState(IdxRegKill))
2357 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2358 .addImm(CPEMI->getOperand(0).getImm());
2359 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2360
2361 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2362 CPEMI->setDesc(TII->get(JTOpc));
2363
2364 if (jumpTableFollowsTB(MI, User.CPEMI)) {
2365 NewJTMI->getOperand(0).setReg(ARM::PC);
2366 NewJTMI->getOperand(0).setIsKill(false);
2367
2368 if (CanDeleteLEA) {
2369 if (isThumb2)
2370 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2371
2372 User.MI->eraseFromParent();
2373 DeadSize += isThumb2 ? 4 : 2;
2374
2375 // The LEA was eliminated, the TBB instruction becomes the only new user
2376 // of the jump table.
2377 User.MI = NewJTMI;
2378 User.MaxDisp = 4;
2379 User.NegOk = false;
2380 User.IsSoImm = false;
2381 User.KnownAlignment = false;
2382 } else {
2383 // The LEA couldn't be eliminated, so we must add another CPUser to
2384 // record the TBB or TBH use.
2385 int CPEntryIdx = JumpTableEntryIndices[JTI];
2386 auto &CPEs = CPEntries[CPEntryIdx];
2387 auto Entry =
2388 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2389 ++Entry->RefCount;
2390 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2391 }
2392 }
2393
2394 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2395 unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2396 MI->eraseFromParent();
2397
2398 int Delta = OrigSize - NewSize + DeadSize;
2399 BBInfo[MBB->getNumber()].Size -= Delta;
2400 BBUtils->adjustBBOffsetsAfter(MBB);
2401
2402 ++NumTBs;
2403 MadeChange = true;
2404 }
2405
2406 return MadeChange;
2407 }
2408
2409 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2410 /// jump tables always branch forwards, since that's what tbb and tbh need.
reorderThumb2JumpTables()2411 bool ARMConstantIslands::reorderThumb2JumpTables() {
2412 bool MadeChange = false;
2413
2414 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2415 if (!MJTI) return false;
2416
2417 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2418 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2419 MachineInstr *MI = T2JumpTables[i];
2420 const MCInstrDesc &MCID = MI->getDesc();
2421 unsigned NumOps = MCID.getNumOperands();
2422 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2423 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2424 unsigned JTI = JTOP.getIndex();
2425 assert(JTI < JT.size());
2426
2427 // We prefer if target blocks for the jump table come after the jump
2428 // instruction so we can use TB[BH]. Loop through the target blocks
2429 // and try to adjust them such that that's true.
2430 int JTNumber = MI->getParent()->getNumber();
2431 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2432 for (MachineBasicBlock *MBB : JTBBs) {
2433 int DTNumber = MBB->getNumber();
2434
2435 if (DTNumber < JTNumber) {
2436 // The destination precedes the switch. Try to move the block forward
2437 // so we have a positive offset.
2438 MachineBasicBlock *NewBB =
2439 adjustJTTargetBlockForward(JTI, MBB, MI->getParent());
2440 if (NewBB)
2441 MJTI->ReplaceMBBInJumpTable(JTI, MBB, NewBB);
2442 MadeChange = true;
2443 }
2444 }
2445 }
2446
2447 return MadeChange;
2448 }
2449
fixupBTI(unsigned JTI,MachineBasicBlock & OldBB,MachineBasicBlock & NewBB)2450 void ARMConstantIslands::fixupBTI(unsigned JTI, MachineBasicBlock &OldBB,
2451 MachineBasicBlock &NewBB) {
2452 assert(isThumb2 && "BTI in Thumb1?");
2453
2454 // Insert a BTI instruction into NewBB
2455 BuildMI(NewBB, NewBB.begin(), DebugLoc(), TII->get(ARM::t2BTI));
2456
2457 // Update jump table reference counts.
2458 const MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
2459 const MachineJumpTableEntry &JTE = MJTI.getJumpTables()[JTI];
2460 for (const MachineBasicBlock *MBB : JTE.MBBs) {
2461 if (MBB != &OldBB)
2462 continue;
2463 --BlockJumpTableRefCount[MBB];
2464 ++BlockJumpTableRefCount[&NewBB];
2465 }
2466
2467 // If the old basic block reference count dropped to zero, remove
2468 // the BTI instruction at its beginning.
2469 if (BlockJumpTableRefCount[&OldBB] > 0)
2470 return;
2471
2472 // Skip meta instructions
2473 auto BTIPos = llvm::find_if_not(OldBB.instrs(), [](const MachineInstr &MI) {
2474 return MI.isMetaInstruction();
2475 });
2476 assert(BTIPos->getOpcode() == ARM::t2BTI &&
2477 "BasicBlock is mentioned in a jump table but does start with BTI");
2478 if (BTIPos->getOpcode() == ARM::t2BTI)
2479 BTIPos->eraseFromParent();
2480 }
2481
adjustJTTargetBlockForward(unsigned JTI,MachineBasicBlock * BB,MachineBasicBlock * JTBB)2482 MachineBasicBlock *ARMConstantIslands::adjustJTTargetBlockForward(
2483 unsigned JTI, MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2484 // If the destination block is terminated by an unconditional branch,
2485 // try to move it; otherwise, create a new block following the jump
2486 // table that branches back to the actual target. This is a very simple
2487 // heuristic. FIXME: We can definitely improve it.
2488 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2489 SmallVector<MachineOperand, 4> Cond;
2490 SmallVector<MachineOperand, 4> CondPrior;
2491 MachineFunction::iterator BBi = BB->getIterator();
2492 MachineFunction::iterator OldPrior = std::prev(BBi);
2493 MachineFunction::iterator OldNext = std::next(BBi);
2494
2495 // If the block terminator isn't analyzable, don't try to move the block
2496 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2497
2498 // If the block ends in an unconditional branch, move it. The prior block
2499 // has to have an analyzable terminator for us to move this one. Be paranoid
2500 // and make sure we're not trying to move the entry block of the function.
2501 if (!B && Cond.empty() && BB != &MF->front() &&
2502 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2503 BB->moveAfter(JTBB);
2504 OldPrior->updateTerminator(BB);
2505 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr);
2506 // Update numbering to account for the block being moved.
2507 MF->RenumberBlocks();
2508 ++NumJTMoved;
2509 return nullptr;
2510 }
2511
2512 // Create a new MBB for the code after the jump BB.
2513 MachineBasicBlock *NewBB =
2514 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2515 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2516 MF->insert(MBBI, NewBB);
2517
2518 // Copy live-in information to new block.
2519 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2520 NewBB->addLiveIn(RegMaskPair);
2521
2522 // Add an unconditional branch from NewBB to BB.
2523 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2524 // correspond directly to anything in the source.
2525 if (isThumb2)
2526 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2527 .addMBB(BB)
2528 .add(predOps(ARMCC::AL));
2529 else
2530 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2531 .addMBB(BB)
2532 .add(predOps(ARMCC::AL));
2533
2534 // Update internal data structures to account for the newly inserted MBB.
2535 MF->RenumberBlocks(NewBB);
2536
2537 // Update the CFG.
2538 NewBB->addSuccessor(BB);
2539 JTBB->replaceSuccessor(BB, NewBB);
2540
2541 if (MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement())
2542 fixupBTI(JTI, *BB, *NewBB);
2543
2544 ++NumJTInserted;
2545 return NewBB;
2546 }
2547
2548 /// createARMConstantIslandPass - returns an instance of the constpool
2549 /// island pass.
createARMConstantIslandPass()2550 FunctionPass *llvm::createARMConstantIslandPass() {
2551 return new ARMConstantIslands();
2552 }
2553
2554 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2555 false, false)
2556