1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMInstPrinter.h" 21 #include "MCTargetDesc/ARMMCExpr.h" 22 #include "TargetInfo/ARMTargetInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Mangler.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCAssembler.h" 34 #include "llvm/MC/MCContext.h" 35 #include "llvm/MC/MCELFStreamer.h" 36 #include "llvm/MC/MCInst.h" 37 #include "llvm/MC/MCInstBuilder.h" 38 #include "llvm/MC/MCObjectStreamer.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/MC/TargetRegistry.h" 42 #include "llvm/Support/ARMBuildAttributes.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 using namespace llvm; 48 49 #define DEBUG_TYPE "asm-printer" 50 51 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 52 std::unique_ptr<MCStreamer> Streamer) 53 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 54 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 55 56 void ARMAsmPrinter::emitFunctionBodyEnd() { 57 // Make sure to terminate any constant pools that were at the end 58 // of the function. 59 if (!InConstantPool) 60 return; 61 InConstantPool = false; 62 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 63 } 64 65 void ARMAsmPrinter::emitFunctionEntryLabel() { 66 if (AFI->isThumbFunction()) { 67 OutStreamer->emitAssemblerFlag(MCAF_Code16); 68 OutStreamer->emitThumbFunc(CurrentFnSym); 69 } else { 70 OutStreamer->emitAssemblerFlag(MCAF_Code32); 71 } 72 73 // Emit symbol for CMSE non-secure entry point 74 if (AFI->isCmseNSEntryFunction()) { 75 MCSymbol *S = 76 OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); 77 emitLinkage(&MF->getFunction(), S); 78 OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); 79 OutStreamer->emitLabel(S); 80 } 81 AsmPrinter::emitFunctionEntryLabel(); 82 } 83 84 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 85 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 86 assert(Size && "C++ constructor pointer had zero size!"); 87 88 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 89 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 90 91 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 92 ARMII::MO_NO_FLAG), 93 (Subtarget->isTargetELF() 94 ? MCSymbolRefExpr::VK_ARM_TARGET1 95 : MCSymbolRefExpr::VK_None), 96 OutContext); 97 98 OutStreamer->emitValue(E, Size); 99 } 100 101 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 102 if (PromotedGlobals.count(GV)) 103 // The global was promoted into a constant pool. It should not be emitted. 104 return; 105 AsmPrinter::emitGlobalVariable(GV); 106 } 107 108 /// runOnMachineFunction - This uses the emitInstruction() 109 /// method to print assembly for each instruction. 110 /// 111 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 112 AFI = MF.getInfo<ARMFunctionInfo>(); 113 MCP = MF.getConstantPool(); 114 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 115 116 SetupMachineFunction(MF); 117 const Function &F = MF.getFunction(); 118 const TargetMachine& TM = MF.getTarget(); 119 120 // Collect all globals that had their storage promoted to a constant pool. 121 // Functions are emitted before variables, so this accumulates promoted 122 // globals from all functions in PromotedGlobals. 123 for (const auto *GV : AFI->getGlobalsPromotedToConstantPool()) 124 PromotedGlobals.insert(GV); 125 126 // Calculate this function's optimization goal. 127 unsigned OptimizationGoal; 128 if (F.hasOptNone()) 129 // For best debugging illusion, speed and small size sacrificed 130 OptimizationGoal = 6; 131 else if (F.hasMinSize()) 132 // Aggressively for small size, speed and debug illusion sacrificed 133 OptimizationGoal = 4; 134 else if (F.hasOptSize()) 135 // For small size, but speed and debugging illusion preserved 136 OptimizationGoal = 3; 137 else if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) 138 // Aggressively for speed, small size and debug illusion sacrificed 139 OptimizationGoal = 2; 140 else if (TM.getOptLevel() > CodeGenOptLevel::None) 141 // For speed, but small size and good debug illusion preserved 142 OptimizationGoal = 1; 143 else // TM.getOptLevel() == CodeGenOptLevel::None 144 // For good debugging, but speed and small size preserved 145 OptimizationGoal = 5; 146 147 // Combine a new optimization goal with existing ones. 148 if (OptimizationGoals == -1) // uninitialized goals 149 OptimizationGoals = OptimizationGoal; 150 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 151 OptimizationGoals = 0; 152 153 if (Subtarget->isTargetCOFF()) { 154 bool Local = F.hasLocalLinkage(); 155 COFF::SymbolStorageClass Scl = 156 Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL; 157 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 158 159 OutStreamer->beginCOFFSymbolDef(CurrentFnSym); 160 OutStreamer->emitCOFFSymbolStorageClass(Scl); 161 OutStreamer->emitCOFFSymbolType(Type); 162 OutStreamer->endCOFFSymbolDef(); 163 } 164 165 // Emit the rest of the function body. 166 emitFunctionBody(); 167 168 // Emit the XRay table for this function. 169 emitXRayTable(); 170 171 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 172 // These are created per function, rather than per TU, since it's 173 // relatively easy to exceed the thumb branch range within a TU. 174 if (! ThumbIndirectPads.empty()) { 175 OutStreamer->emitAssemblerFlag(MCAF_Code16); 176 emitAlignment(Align(2)); 177 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 178 OutStreamer->emitLabel(TIP.second); 179 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 180 .addReg(TIP.first) 181 // Add predicate operands. 182 .addImm(ARMCC::AL) 183 .addReg(0)); 184 } 185 ThumbIndirectPads.clear(); 186 } 187 188 // We didn't modify anything. 189 return false; 190 } 191 192 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 193 raw_ostream &O) { 194 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 195 unsigned TF = MO.getTargetFlags(); 196 if (TF & ARMII::MO_LO16) 197 O << ":lower16:"; 198 else if (TF & ARMII::MO_HI16) 199 O << ":upper16:"; 200 else if (TF & ARMII::MO_LO_0_7) 201 O << ":lower0_7:"; 202 else if (TF & ARMII::MO_LO_8_15) 203 O << ":lower8_15:"; 204 else if (TF & ARMII::MO_HI_0_7) 205 O << ":upper0_7:"; 206 else if (TF & ARMII::MO_HI_8_15) 207 O << ":upper8_15:"; 208 209 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 210 printOffset(MO.getOffset(), O); 211 } 212 213 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 214 raw_ostream &O) { 215 const MachineOperand &MO = MI->getOperand(OpNum); 216 217 switch (MO.getType()) { 218 default: llvm_unreachable("<unknown operand type>"); 219 case MachineOperand::MO_Register: { 220 Register Reg = MO.getReg(); 221 assert(Reg.isPhysical()); 222 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 223 if(ARM::GPRPairRegClass.contains(Reg)) { 224 const MachineFunction &MF = *MI->getParent()->getParent(); 225 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 226 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 227 } 228 O << ARMInstPrinter::getRegisterName(Reg); 229 break; 230 } 231 case MachineOperand::MO_Immediate: { 232 O << '#'; 233 unsigned TF = MO.getTargetFlags(); 234 if (TF == ARMII::MO_LO16) 235 O << ":lower16:"; 236 else if (TF == ARMII::MO_HI16) 237 O << ":upper16:"; 238 else if (TF == ARMII::MO_LO_0_7) 239 O << ":lower0_7:"; 240 else if (TF == ARMII::MO_LO_8_15) 241 O << ":lower8_15:"; 242 else if (TF == ARMII::MO_HI_0_7) 243 O << ":upper0_7:"; 244 else if (TF == ARMII::MO_HI_8_15) 245 O << ":upper8_15:"; 246 O << MO.getImm(); 247 break; 248 } 249 case MachineOperand::MO_MachineBasicBlock: 250 MO.getMBB()->getSymbol()->print(O, MAI); 251 return; 252 case MachineOperand::MO_GlobalAddress: { 253 PrintSymbolOperand(MO, O); 254 break; 255 } 256 case MachineOperand::MO_ConstantPoolIndex: 257 if (Subtarget->genExecuteOnly()) 258 llvm_unreachable("execute-only should not generate constant pools"); 259 GetCPISymbol(MO.getIndex())->print(O, MAI); 260 break; 261 } 262 } 263 264 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 265 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 266 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 267 const DataLayout &DL = getDataLayout(); 268 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 269 "CPI" + Twine(getFunctionNumber()) + "_" + 270 Twine(CPID)); 271 } 272 273 //===--------------------------------------------------------------------===// 274 275 MCSymbol *ARMAsmPrinter:: 276 GetARMJTIPICJumpTableLabel(unsigned uid) const { 277 const DataLayout &DL = getDataLayout(); 278 SmallString<60> Name; 279 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 280 << getFunctionNumber() << '_' << uid; 281 return OutContext.getOrCreateSymbol(Name); 282 } 283 284 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 285 const char *ExtraCode, raw_ostream &O) { 286 // Does this asm operand have a single letter operand modifier? 287 if (ExtraCode && ExtraCode[0]) { 288 if (ExtraCode[1] != 0) return true; // Unknown modifier. 289 290 switch (ExtraCode[0]) { 291 default: 292 // See if this is a generic print operand 293 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 294 case 'P': // Print a VFP double precision register. 295 case 'q': // Print a NEON quad precision register. 296 printOperand(MI, OpNum, O); 297 return false; 298 case 'y': // Print a VFP single precision register as indexed double. 299 if (MI->getOperand(OpNum).isReg()) { 300 MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg(); 301 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 302 // Find the 'd' register that has this 's' register as a sub-register, 303 // and determine the lane number. 304 for (MCPhysReg SR : TRI->superregs(Reg)) { 305 if (!ARM::DPRRegClass.contains(SR)) 306 continue; 307 bool Lane0 = TRI->getSubReg(SR, ARM::ssub_0) == Reg; 308 O << ARMInstPrinter::getRegisterName(SR) << (Lane0 ? "[0]" : "[1]"); 309 return false; 310 } 311 } 312 return true; 313 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 314 if (!MI->getOperand(OpNum).isImm()) 315 return true; 316 O << ~(MI->getOperand(OpNum).getImm()); 317 return false; 318 case 'L': // The low 16 bits of an immediate constant. 319 if (!MI->getOperand(OpNum).isImm()) 320 return true; 321 O << (MI->getOperand(OpNum).getImm() & 0xffff); 322 return false; 323 case 'M': { // A register range suitable for LDM/STM. 324 if (!MI->getOperand(OpNum).isReg()) 325 return true; 326 const MachineOperand &MO = MI->getOperand(OpNum); 327 Register RegBegin = MO.getReg(); 328 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 329 // already got the operands in registers that are operands to the 330 // inline asm statement. 331 O << "{"; 332 if (ARM::GPRPairRegClass.contains(RegBegin)) { 333 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 334 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 335 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 336 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 337 } 338 O << ARMInstPrinter::getRegisterName(RegBegin); 339 340 // FIXME: The register allocator not only may not have given us the 341 // registers in sequence, but may not be in ascending registers. This 342 // will require changes in the register allocator that'll need to be 343 // propagated down here if the operands change. 344 unsigned RegOps = OpNum + 1; 345 while (MI->getOperand(RegOps).isReg()) { 346 O << ", " 347 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 348 RegOps++; 349 } 350 351 O << "}"; 352 353 return false; 354 } 355 case 'R': // The most significant register of a pair. 356 case 'Q': { // The least significant register of a pair. 357 if (OpNum == 0) 358 return true; 359 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 360 if (!FlagsOP.isImm()) 361 return true; 362 InlineAsm::Flag F(FlagsOP.getImm()); 363 364 // This operand may not be the one that actually provides the register. If 365 // it's tied to a previous one then we should refer instead to that one 366 // for registers and their classes. 367 unsigned TiedIdx; 368 if (F.isUseOperandTiedToDef(TiedIdx)) { 369 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 370 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 371 const InlineAsm::Flag F(OpFlags); 372 OpNum += F.getNumOperandRegisters() + 1; 373 } 374 F = InlineAsm::Flag(MI->getOperand(OpNum).getImm()); 375 376 // Later code expects OpNum to be pointing at the register rather than 377 // the flags. 378 OpNum += 1; 379 } 380 381 const unsigned NumVals = F.getNumOperandRegisters(); 382 unsigned RC; 383 bool FirstHalf; 384 const ARMBaseTargetMachine &ATM = 385 static_cast<const ARMBaseTargetMachine &>(TM); 386 387 // 'Q' should correspond to the low order register and 'R' to the high 388 // order register. Whether this corresponds to the upper or lower half 389 // depends on the endianess mode. 390 if (ExtraCode[0] == 'Q') 391 FirstHalf = ATM.isLittleEndian(); 392 else 393 // ExtraCode[0] == 'R'. 394 FirstHalf = !ATM.isLittleEndian(); 395 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 396 if (F.hasRegClassConstraint(RC) && 397 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 398 if (NumVals != 1) 399 return true; 400 const MachineOperand &MO = MI->getOperand(OpNum); 401 if (!MO.isReg()) 402 return true; 403 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 404 Register Reg = 405 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 406 O << ARMInstPrinter::getRegisterName(Reg); 407 return false; 408 } 409 if (NumVals != 2) 410 return true; 411 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 412 if (RegOp >= MI->getNumOperands()) 413 return true; 414 const MachineOperand &MO = MI->getOperand(RegOp); 415 if (!MO.isReg()) 416 return true; 417 Register Reg = MO.getReg(); 418 O << ARMInstPrinter::getRegisterName(Reg); 419 return false; 420 } 421 422 case 'e': // The low doubleword register of a NEON quad register. 423 case 'f': { // The high doubleword register of a NEON quad register. 424 if (!MI->getOperand(OpNum).isReg()) 425 return true; 426 Register Reg = MI->getOperand(OpNum).getReg(); 427 if (!ARM::QPRRegClass.contains(Reg)) 428 return true; 429 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 430 Register SubReg = 431 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 432 O << ARMInstPrinter::getRegisterName(SubReg); 433 return false; 434 } 435 436 // This modifier is not yet supported. 437 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 438 return true; 439 case 'H': { // The highest-numbered register of a pair. 440 const MachineOperand &MO = MI->getOperand(OpNum); 441 if (!MO.isReg()) 442 return true; 443 const MachineFunction &MF = *MI->getParent()->getParent(); 444 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 445 Register Reg = MO.getReg(); 446 if(!ARM::GPRPairRegClass.contains(Reg)) 447 return false; 448 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 449 O << ARMInstPrinter::getRegisterName(Reg); 450 return false; 451 } 452 } 453 } 454 455 printOperand(MI, OpNum, O); 456 return false; 457 } 458 459 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 460 unsigned OpNum, const char *ExtraCode, 461 raw_ostream &O) { 462 // Does this asm operand have a single letter operand modifier? 463 if (ExtraCode && ExtraCode[0]) { 464 if (ExtraCode[1] != 0) return true; // Unknown modifier. 465 466 switch (ExtraCode[0]) { 467 case 'A': // A memory operand for a VLD1/VST1 instruction. 468 default: return true; // Unknown modifier. 469 case 'm': // The base register of a memory operand. 470 if (!MI->getOperand(OpNum).isReg()) 471 return true; 472 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 473 return false; 474 } 475 } 476 477 const MachineOperand &MO = MI->getOperand(OpNum); 478 assert(MO.isReg() && "unexpected inline asm memory operand"); 479 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 480 return false; 481 } 482 483 static bool isThumb(const MCSubtargetInfo& STI) { 484 return STI.hasFeature(ARM::ModeThumb); 485 } 486 487 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 488 const MCSubtargetInfo *EndInfo) const { 489 // If either end mode is unknown (EndInfo == NULL) or different than 490 // the start mode, then restore the start mode. 491 const bool WasThumb = isThumb(StartInfo); 492 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 493 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 494 } 495 } 496 497 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 498 const Triple &TT = TM.getTargetTriple(); 499 // Use unified assembler syntax. 500 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 501 502 // Emit ARM Build Attributes 503 if (TT.isOSBinFormatELF()) 504 emitAttributes(); 505 506 // Use the triple's architecture and subarchitecture to determine 507 // if we're thumb for the purposes of the top level code16 assembler 508 // flag. 509 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 510 OutStreamer->emitAssemblerFlag(MCAF_Code16); 511 } 512 513 static void 514 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 515 MachineModuleInfoImpl::StubValueTy &MCSym) { 516 // L_foo$stub: 517 OutStreamer.emitLabel(StubLabel); 518 // .indirect_symbol _foo 519 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 520 521 if (MCSym.getInt()) 522 // External to current translation unit. 523 OutStreamer.emitIntValue(0, 4/*size*/); 524 else 525 // Internal to current translation unit. 526 // 527 // When we place the LSDA into the TEXT section, the type info 528 // pointers need to be indirect and pc-rel. We accomplish this by 529 // using NLPs; however, sometimes the types are local to the file. 530 // We need to fill in the value for the NLP in those cases. 531 OutStreamer.emitValue( 532 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 533 4 /*size*/); 534 } 535 536 537 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 538 const Triple &TT = TM.getTargetTriple(); 539 if (TT.isOSBinFormatMachO()) { 540 // All darwin targets use mach-o. 541 const TargetLoweringObjectFileMachO &TLOFMacho = 542 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 543 MachineModuleInfoMachO &MMIMacho = 544 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 545 546 // Output non-lazy-pointers for external and common global variables. 547 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 548 549 if (!Stubs.empty()) { 550 // Switch with ".non_lazy_symbol_pointer" directive. 551 OutStreamer->switchSection(TLOFMacho.getNonLazySymbolPointerSection()); 552 emitAlignment(Align(4)); 553 554 for (auto &Stub : Stubs) 555 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 556 557 Stubs.clear(); 558 OutStreamer->addBlankLine(); 559 } 560 561 Stubs = MMIMacho.GetThreadLocalGVStubList(); 562 if (!Stubs.empty()) { 563 // Switch with ".non_lazy_symbol_pointer" directive. 564 OutStreamer->switchSection(TLOFMacho.getThreadLocalPointerSection()); 565 emitAlignment(Align(4)); 566 567 for (auto &Stub : Stubs) 568 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 569 570 Stubs.clear(); 571 OutStreamer->addBlankLine(); 572 } 573 574 // Funny Darwin hack: This flag tells the linker that no global symbols 575 // contain code that falls through to other global symbols (e.g. the obvious 576 // implementation of multiple entry points). If this doesn't occur, the 577 // linker can safely perform dead code stripping. Since LLVM never 578 // generates code that does this, it is always safe to set. 579 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 580 } 581 582 // The last attribute to be emitted is ABI_optimization_goals 583 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 584 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 585 586 if (OptimizationGoals > 0 && 587 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 588 Subtarget->isTargetMuslAEABI())) 589 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 590 OptimizationGoals = -1; 591 592 ATS.finishAttributeSection(); 593 } 594 595 //===----------------------------------------------------------------------===// 596 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 597 // FIXME: 598 // The following seem like one-off assembler flags, but they actually need 599 // to appear in the .ARM.attributes section in ELF. 600 // Instead of subclassing the MCELFStreamer, we do the work here. 601 602 // Returns true if all functions have the same function attribute value. 603 // It also returns true when the module has no functions. 604 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 605 StringRef Value) { 606 return !any_of(M, [&](const Function &F) { 607 return F.getFnAttribute(Attr).getValueAsString() != Value; 608 }); 609 } 610 // Returns true if all functions have the same denormal mode. 611 // It also returns true when the module has no functions. 612 static bool checkDenormalAttributeConsistency(const Module &M, 613 StringRef Attr, 614 DenormalMode Value) { 615 return !any_of(M, [&](const Function &F) { 616 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 617 return parseDenormalFPAttribute(AttrVal) != Value; 618 }); 619 } 620 621 void ARMAsmPrinter::emitAttributes() { 622 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 623 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 624 625 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 626 627 ATS.switchVendor("aeabi"); 628 629 // Compute ARM ELF Attributes based on the default subtarget that 630 // we'd have constructed. The existing ARM behavior isn't LTO clean 631 // anyhow. 632 // FIXME: For ifunc related functions we could iterate over and look 633 // for a feature string that doesn't match the default one. 634 const Triple &TT = TM.getTargetTriple(); 635 StringRef CPU = TM.getTargetCPU(); 636 StringRef FS = TM.getTargetFeatureString(); 637 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 638 if (!FS.empty()) { 639 if (!ArchFS.empty()) 640 ArchFS = (Twine(ArchFS) + "," + FS).str(); 641 else 642 ArchFS = std::string(FS); 643 } 644 const ARMBaseTargetMachine &ATM = 645 static_cast<const ARMBaseTargetMachine &>(TM); 646 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 647 ATM.isLittleEndian()); 648 649 // Emit build attributes for the available hardware. 650 ATS.emitTargetAttributes(STI); 651 652 // RW data addressing. 653 if (isPositionIndependent()) { 654 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 655 ARMBuildAttrs::AddressRWPCRel); 656 } else if (STI.isRWPI()) { 657 // RWPI specific attributes. 658 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 659 ARMBuildAttrs::AddressRWSBRel); 660 } 661 662 // RO data addressing. 663 if (isPositionIndependent() || STI.isROPI()) { 664 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 665 ARMBuildAttrs::AddressROPCRel); 666 } 667 668 // GOT use. 669 if (isPositionIndependent()) { 670 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 671 ARMBuildAttrs::AddressGOT); 672 } else { 673 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 674 ARMBuildAttrs::AddressDirect); 675 } 676 677 // Set FP Denormals. 678 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 679 DenormalMode::getPreserveSign())) 680 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 681 ARMBuildAttrs::PreserveFPSign); 682 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 683 "denormal-fp-math", 684 DenormalMode::getPositiveZero())) 685 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 686 ARMBuildAttrs::PositiveZero); 687 else if (!TM.Options.UnsafeFPMath) 688 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 689 ARMBuildAttrs::IEEEDenormals); 690 else { 691 if (!STI.hasVFP2Base()) { 692 // When the target doesn't have an FPU (by design or 693 // intention), the assumptions made on the software support 694 // mirror that of the equivalent hardware support *if it 695 // existed*. For v7 and better we indicate that denormals are 696 // flushed preserving sign, and for V6 we indicate that 697 // denormals are flushed to positive zero. 698 if (STI.hasV7Ops()) 699 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 700 ARMBuildAttrs::PreserveFPSign); 701 } else if (STI.hasVFP3Base()) { 702 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 703 // the sign bit of the zero matches the sign bit of the input or 704 // result that is being flushed to zero. 705 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 706 ARMBuildAttrs::PreserveFPSign); 707 } 708 // For VFPv2 implementations it is implementation defined as 709 // to whether denormals are flushed to positive zero or to 710 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 711 // LLVM has chosen to flush this to positive zero (most likely for 712 // GCC compatibility), so that's the chosen value here (the 713 // absence of its emission implies zero). 714 } 715 716 // Set FP exceptions and rounding 717 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 718 "no-trapping-math", "true") || 719 TM.Options.NoTrappingFPMath) 720 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 721 ARMBuildAttrs::Not_Allowed); 722 else if (!TM.Options.UnsafeFPMath) { 723 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 724 725 // If the user has permitted this code to choose the IEEE 754 726 // rounding at run-time, emit the rounding attribute. 727 if (TM.Options.HonorSignDependentRoundingFPMathOption) 728 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 729 } 730 731 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 732 // equivalent of GCC's -ffinite-math-only flag. 733 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 734 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 735 ARMBuildAttrs::Allowed); 736 else 737 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 738 ARMBuildAttrs::AllowIEEE754); 739 740 // FIXME: add more flags to ARMBuildAttributes.h 741 // 8-bytes alignment stuff. 742 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 743 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 744 745 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 746 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 747 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 748 749 // FIXME: To support emitting this build attribute as GCC does, the 750 // -mfp16-format option and associated plumbing must be 751 // supported. For now the __fp16 type is exposed by default, so this 752 // attribute should be emitted with value 1. 753 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 754 ARMBuildAttrs::FP16FormatIEEE); 755 756 if (const Module *SourceModule = MMI->getModule()) { 757 // ABI_PCS_wchar_t to indicate wchar_t width 758 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 759 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 760 SourceModule->getModuleFlag("wchar_size"))) { 761 int WCharWidth = WCharWidthValue->getZExtValue(); 762 assert((WCharWidth == 2 || WCharWidth == 4) && 763 "wchar_t width must be 2 or 4 bytes"); 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 765 } 766 767 // ABI_enum_size to indicate enum width 768 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 769 // (all enums contain a value needing 32 bits to encode). 770 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 771 SourceModule->getModuleFlag("min_enum_size"))) { 772 int EnumWidth = EnumWidthValue->getZExtValue(); 773 assert((EnumWidth == 1 || EnumWidth == 4) && 774 "Minimum enum width must be 1 or 4 bytes"); 775 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 776 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 777 } 778 779 auto *PACValue = mdconst::extract_or_null<ConstantInt>( 780 SourceModule->getModuleFlag("sign-return-address")); 781 if (PACValue && PACValue->isOne()) { 782 // If "+pacbti" is used as an architecture extension, 783 // Tag_PAC_extension is emitted in 784 // ARMTargetStreamer::emitTargetAttributes(). 785 if (!STI.hasPACBTI()) { 786 ATS.emitAttribute(ARMBuildAttrs::PAC_extension, 787 ARMBuildAttrs::AllowPACInNOPSpace); 788 } 789 ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed); 790 } 791 792 auto *BTIValue = mdconst::extract_or_null<ConstantInt>( 793 SourceModule->getModuleFlag("branch-target-enforcement")); 794 if (BTIValue && BTIValue->isOne()) { 795 // If "+pacbti" is used as an architecture extension, 796 // Tag_BTI_extension is emitted in 797 // ARMTargetStreamer::emitTargetAttributes(). 798 if (!STI.hasPACBTI()) { 799 ATS.emitAttribute(ARMBuildAttrs::BTI_extension, 800 ARMBuildAttrs::AllowBTIInNOPSpace); 801 } 802 ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed); 803 } 804 } 805 806 // We currently do not support using R9 as the TLS pointer. 807 if (STI.isRWPI()) 808 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 809 ARMBuildAttrs::R9IsSB); 810 else if (STI.isR9Reserved()) 811 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 812 ARMBuildAttrs::R9Reserved); 813 else 814 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 815 ARMBuildAttrs::R9IsGPR); 816 } 817 818 //===----------------------------------------------------------------------===// 819 820 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 821 unsigned LabelId, MCContext &Ctx) { 822 823 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 824 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 825 return Label; 826 } 827 828 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 829 unsigned LabelId, MCContext &Ctx) { 830 831 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 832 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 833 return Label; 834 } 835 836 static MCSymbolRefExpr::VariantKind 837 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 838 switch (Modifier) { 839 case ARMCP::no_modifier: 840 return MCSymbolRefExpr::VK_None; 841 case ARMCP::TLSGD: 842 return MCSymbolRefExpr::VK_TLSGD; 843 case ARMCP::TPOFF: 844 return MCSymbolRefExpr::VK_TPOFF; 845 case ARMCP::GOTTPOFF: 846 return MCSymbolRefExpr::VK_GOTTPOFF; 847 case ARMCP::SBREL: 848 return MCSymbolRefExpr::VK_ARM_SBREL; 849 case ARMCP::GOT_PREL: 850 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 851 case ARMCP::SECREL: 852 return MCSymbolRefExpr::VK_SECREL; 853 } 854 llvm_unreachable("Invalid ARMCPModifier!"); 855 } 856 857 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 858 unsigned char TargetFlags) { 859 if (Subtarget->isTargetMachO()) { 860 bool IsIndirect = 861 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 862 863 if (!IsIndirect) 864 return getSymbol(GV); 865 866 // FIXME: Remove this when Darwin transition to @GOT like syntax. 867 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 868 MachineModuleInfoMachO &MMIMachO = 869 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 870 MachineModuleInfoImpl::StubValueTy &StubSym = 871 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 872 : MMIMachO.getGVStubEntry(MCSym); 873 874 if (!StubSym.getPointer()) 875 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 876 !GV->hasInternalLinkage()); 877 return MCSym; 878 } else if (Subtarget->isTargetCOFF()) { 879 assert(Subtarget->isTargetWindows() && 880 "Windows is the only supported COFF target"); 881 882 bool IsIndirect = 883 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 884 if (!IsIndirect) 885 return getSymbol(GV); 886 887 SmallString<128> Name; 888 if (TargetFlags & ARMII::MO_DLLIMPORT) 889 Name = "__imp_"; 890 else if (TargetFlags & ARMII::MO_COFFSTUB) 891 Name = ".refptr."; 892 getNameWithPrefix(Name, GV); 893 894 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 895 896 if (TargetFlags & ARMII::MO_COFFSTUB) { 897 MachineModuleInfoCOFF &MMICOFF = 898 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 899 MachineModuleInfoImpl::StubValueTy &StubSym = 900 MMICOFF.getGVStubEntry(MCSym); 901 902 if (!StubSym.getPointer()) 903 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 904 } 905 906 return MCSym; 907 } else if (Subtarget->isTargetELF()) { 908 return getSymbolPreferLocal(*GV); 909 } 910 llvm_unreachable("unexpected target"); 911 } 912 913 void ARMAsmPrinter::emitMachineConstantPoolValue( 914 MachineConstantPoolValue *MCPV) { 915 const DataLayout &DL = getDataLayout(); 916 int Size = DL.getTypeAllocSize(MCPV->getType()); 917 918 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 919 920 if (ACPV->isPromotedGlobal()) { 921 // This constant pool entry is actually a global whose storage has been 922 // promoted into the constant pool. This global may be referenced still 923 // by debug information, and due to the way AsmPrinter is set up, the debug 924 // info is immutable by the time we decide to promote globals to constant 925 // pools. Because of this, we need to ensure we emit a symbol for the global 926 // with private linkage (the default) so debug info can refer to it. 927 // 928 // However, if this global is promoted into several functions we must ensure 929 // we don't try and emit duplicate symbols! 930 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 931 for (const auto *GV : ACPC->promotedGlobals()) { 932 if (!EmittedPromotedGlobalLabels.count(GV)) { 933 MCSymbol *GVSym = getSymbol(GV); 934 OutStreamer->emitLabel(GVSym); 935 EmittedPromotedGlobalLabels.insert(GV); 936 } 937 } 938 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 939 } 940 941 MCSymbol *MCSym; 942 if (ACPV->isLSDA()) { 943 MCSym = getMBBExceptionSym(MF->front()); 944 } else if (ACPV->isBlockAddress()) { 945 const BlockAddress *BA = 946 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 947 MCSym = GetBlockAddressSymbol(BA); 948 } else if (ACPV->isGlobalValue()) { 949 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 950 951 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 952 // flag the global as MO_NONLAZY. 953 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 954 MCSym = GetARMGVSymbol(GV, TF); 955 } else if (ACPV->isMachineBasicBlock()) { 956 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 957 MCSym = MBB->getSymbol(); 958 } else { 959 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 960 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 961 MCSym = GetExternalSymbolSymbol(Sym); 962 } 963 964 // Create an MCSymbol for the reference. 965 const MCExpr *Expr = 966 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 967 OutContext); 968 969 if (ACPV->getPCAdjustment()) { 970 MCSymbol *PCLabel = 971 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 972 ACPV->getLabelId(), OutContext); 973 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 974 PCRelExpr = 975 MCBinaryExpr::createAdd(PCRelExpr, 976 MCConstantExpr::create(ACPV->getPCAdjustment(), 977 OutContext), 978 OutContext); 979 if (ACPV->mustAddCurrentAddress()) { 980 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 981 // label, so just emit a local label end reference that instead. 982 MCSymbol *DotSym = OutContext.createTempSymbol(); 983 OutStreamer->emitLabel(DotSym); 984 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 985 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 986 } 987 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 988 } 989 OutStreamer->emitValue(Expr, Size); 990 } 991 992 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 993 const MachineOperand &MO1 = MI->getOperand(1); 994 unsigned JTI = MO1.getIndex(); 995 996 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 997 // ARM mode tables. 998 emitAlignment(Align(4)); 999 1000 // Emit a label for the jump table. 1001 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1002 OutStreamer->emitLabel(JTISymbol); 1003 1004 // Mark the jump table as data-in-code. 1005 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1006 1007 // Emit each entry of the table. 1008 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1009 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1010 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1011 1012 for (MachineBasicBlock *MBB : JTBBs) { 1013 // Construct an MCExpr for the entry. We want a value of the form: 1014 // (BasicBlockAddr - TableBeginAddr) 1015 // 1016 // For example, a table with entries jumping to basic blocks BB0 and BB1 1017 // would look like: 1018 // LJTI_0_0: 1019 // .word (LBB0 - LJTI_0_0) 1020 // .word (LBB1 - LJTI_0_0) 1021 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1022 1023 if (isPositionIndependent() || Subtarget->isROPI()) 1024 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1025 OutContext), 1026 OutContext); 1027 // If we're generating a table of Thumb addresses in static relocation 1028 // model, we need to add one to keep interworking correctly. 1029 else if (AFI->isThumbFunction()) 1030 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1031 OutContext); 1032 OutStreamer->emitValue(Expr, 4); 1033 } 1034 // Mark the end of jump table data-in-code region. 1035 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1036 } 1037 1038 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 1039 const MachineOperand &MO1 = MI->getOperand(1); 1040 unsigned JTI = MO1.getIndex(); 1041 1042 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1043 // ARM mode tables. 1044 emitAlignment(Align(4)); 1045 1046 // Emit a label for the jump table. 1047 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1048 OutStreamer->emitLabel(JTISymbol); 1049 1050 // Emit each entry of the table. 1051 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1052 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1053 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1054 1055 for (MachineBasicBlock *MBB : JTBBs) { 1056 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1057 OutContext); 1058 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1059 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1060 .addExpr(MBBSymbolExpr) 1061 .addImm(ARMCC::AL) 1062 .addReg(0)); 1063 } 1064 } 1065 1066 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1067 unsigned OffsetWidth) { 1068 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1069 const MachineOperand &MO1 = MI->getOperand(1); 1070 unsigned JTI = MO1.getIndex(); 1071 1072 if (Subtarget->isThumb1Only()) 1073 emitAlignment(Align(4)); 1074 1075 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1076 OutStreamer->emitLabel(JTISymbol); 1077 1078 // Emit each entry of the table. 1079 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1080 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1081 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1082 1083 // Mark the jump table as data-in-code. 1084 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1085 : MCDR_DataRegionJT16); 1086 1087 for (auto *MBB : JTBBs) { 1088 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1089 OutContext); 1090 // Otherwise it's an offset from the dispatch instruction. Construct an 1091 // MCExpr for the entry. We want a value of the form: 1092 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1093 // 1094 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1095 // would look like: 1096 // LJTI_0_0: 1097 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1098 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1099 // where LCPI0_0 is a label defined just before the TBB instruction using 1100 // this table. 1101 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1102 const MCExpr *Expr = MCBinaryExpr::createAdd( 1103 MCSymbolRefExpr::create(TBInstPC, OutContext), 1104 MCConstantExpr::create(4, OutContext), OutContext); 1105 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1106 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1107 OutContext); 1108 OutStreamer->emitValue(Expr, OffsetWidth); 1109 } 1110 // Mark the end of jump table data-in-code region. 32-bit offsets use 1111 // actual branch instructions here, so we don't mark those as a data-region 1112 // at all. 1113 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1114 1115 // Make sure the next instruction is 2-byte aligned. 1116 emitAlignment(Align(2)); 1117 } 1118 1119 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, 1120 codeview::JumpTableEntrySize> 1121 ARMAsmPrinter::getCodeViewJumpTableInfo(int JTI, 1122 const MachineInstr *BranchInstr, 1123 const MCSymbol *BranchLabel) const { 1124 codeview::JumpTableEntrySize EntrySize; 1125 const MCSymbol *BaseLabel; 1126 uint64_t BaseOffset = 0; 1127 switch (BranchInstr->getOpcode()) { 1128 case ARM::BR_JTadd: 1129 case ARM::BR_JTr: 1130 case ARM::tBR_JTr: 1131 // Word relative to the jump table address. 1132 EntrySize = codeview::JumpTableEntrySize::UInt32; 1133 BaseLabel = GetARMJTIPICJumpTableLabel(JTI); 1134 break; 1135 case ARM::tTBH_JT: 1136 case ARM::t2TBH_JT: 1137 // half-word shifted left, relative to *after* the branch instruction. 1138 EntrySize = codeview::JumpTableEntrySize::UInt16ShiftLeft; 1139 BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); 1140 BaseLabel = BranchLabel; 1141 BaseOffset = 4; 1142 break; 1143 case ARM::tTBB_JT: 1144 case ARM::t2TBB_JT: 1145 // byte shifted left, relative to *after* the branch instruction. 1146 EntrySize = codeview::JumpTableEntrySize::UInt8ShiftLeft; 1147 BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); 1148 BaseLabel = BranchLabel; 1149 BaseOffset = 4; 1150 break; 1151 case ARM::t2BR_JT: 1152 // Direct jump. 1153 BaseLabel = nullptr; 1154 EntrySize = codeview::JumpTableEntrySize::Pointer; 1155 break; 1156 default: 1157 llvm_unreachable("Unknown jump table instruction"); 1158 } 1159 1160 return std::make_tuple(BaseLabel, BaseOffset, BranchLabel, EntrySize); 1161 } 1162 1163 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1164 assert(MI->getFlag(MachineInstr::FrameSetup) && 1165 "Only instruction which are involved into frame setup code are allowed"); 1166 1167 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1168 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1169 const MachineFunction &MF = *MI->getParent()->getParent(); 1170 const TargetRegisterInfo *TargetRegInfo = 1171 MF.getSubtarget().getRegisterInfo(); 1172 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1173 1174 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1175 unsigned Opc = MI->getOpcode(); 1176 unsigned SrcReg, DstReg; 1177 1178 switch (Opc) { 1179 case ARM::tPUSH: 1180 // special case: tPUSH does not have src/dst regs. 1181 SrcReg = DstReg = ARM::SP; 1182 break; 1183 case ARM::tLDRpci: 1184 case ARM::t2MOVi16: 1185 case ARM::t2MOVTi16: 1186 case ARM::tMOVi8: 1187 case ARM::tADDi8: 1188 case ARM::tLSLri: 1189 // special cases: 1190 // 1) for Thumb1 code we sometimes materialize the constant via constpool 1191 // load. 1192 // 2) for Thumb1 execute only code we materialize the constant via the 1193 // following pattern: 1194 // movs r3, #:upper8_15:<const> 1195 // lsls r3, #8 1196 // adds r3, #:upper0_7:<const> 1197 // lsls r3, #8 1198 // adds r3, #:lower8_15:<const> 1199 // lsls r3, #8 1200 // adds r3, #:lower0_7:<const> 1201 // So we need to special-case MOVS, ADDS and LSLS, and keep track of 1202 // where we are in the sequence with the simplest of state machines. 1203 // 3) for Thumb2 execute only code we materialize the constant via 1204 // immediate constants in 2 separate instructions (MOVW/MOVT). 1205 SrcReg = ~0U; 1206 DstReg = MI->getOperand(0).getReg(); 1207 break; 1208 default: 1209 SrcReg = MI->getOperand(1).getReg(); 1210 DstReg = MI->getOperand(0).getReg(); 1211 break; 1212 } 1213 1214 // Try to figure out the unwinding opcode out of src / dst regs. 1215 if (MI->mayStore()) { 1216 // Register saves. 1217 assert(DstReg == ARM::SP && 1218 "Only stack pointer as a destination reg is supported"); 1219 1220 SmallVector<MCRegister, 4> RegList; 1221 // Skip src & dst reg, and pred ops. 1222 unsigned StartOp = 2 + 2; 1223 // Use all the operands. 1224 unsigned NumOffset = 0; 1225 // Amount of SP adjustment folded into a push, before the 1226 // registers are stored (pad at higher addresses). 1227 unsigned PadBefore = 0; 1228 // Amount of SP adjustment folded into a push, after the 1229 // registers are stored (pad at lower addresses). 1230 unsigned PadAfter = 0; 1231 1232 switch (Opc) { 1233 default: 1234 MI->print(errs()); 1235 llvm_unreachable("Unsupported opcode for unwinding information"); 1236 case ARM::tPUSH: 1237 // Special case here: no src & dst reg, but two extra imp ops. 1238 StartOp = 2; NumOffset = 2; 1239 [[fallthrough]]; 1240 case ARM::STMDB_UPD: 1241 case ARM::t2STMDB_UPD: 1242 case ARM::VSTMDDB_UPD: 1243 assert(SrcReg == ARM::SP && 1244 "Only stack pointer as a source reg is supported"); 1245 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1246 i != NumOps; ++i) { 1247 const MachineOperand &MO = MI->getOperand(i); 1248 // Actually, there should never be any impdef stuff here. Skip it 1249 // temporary to workaround PR11902. 1250 if (MO.isImplicit()) 1251 continue; 1252 // Registers, pushed as a part of folding an SP update into the 1253 // push instruction are marked as undef and should not be 1254 // restored when unwinding, because the function can modify the 1255 // corresponding stack slots. 1256 if (MO.isUndef()) { 1257 assert(RegList.empty() && 1258 "Pad registers must come before restored ones"); 1259 unsigned Width = 1260 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1261 PadAfter += Width; 1262 continue; 1263 } 1264 // Check for registers that are remapped (for a Thumb1 prologue that 1265 // saves high registers). 1266 Register Reg = MO.getReg(); 1267 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1268 Reg = RemappedReg; 1269 RegList.push_back(Reg); 1270 } 1271 break; 1272 case ARM::STR_PRE_IMM: 1273 case ARM::STR_PRE_REG: 1274 case ARM::t2STR_PRE: 1275 assert(MI->getOperand(2).getReg() == ARM::SP && 1276 "Only stack pointer as a source reg is supported"); 1277 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1278 SrcReg = RemappedReg; 1279 1280 RegList.push_back(SrcReg); 1281 break; 1282 case ARM::t2STRD_PRE: 1283 assert(MI->getOperand(3).getReg() == ARM::SP && 1284 "Only stack pointer as a source reg is supported"); 1285 SrcReg = MI->getOperand(1).getReg(); 1286 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1287 SrcReg = RemappedReg; 1288 RegList.push_back(SrcReg); 1289 SrcReg = MI->getOperand(2).getReg(); 1290 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) 1291 SrcReg = RemappedReg; 1292 RegList.push_back(SrcReg); 1293 PadBefore = -MI->getOperand(4).getImm() - 8; 1294 break; 1295 } 1296 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1297 if (PadBefore) 1298 ATS.emitPad(PadBefore); 1299 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1300 // Account for the SP adjustment, folded into the push. 1301 if (PadAfter) 1302 ATS.emitPad(PadAfter); 1303 } 1304 } else { 1305 // Changes of stack / frame pointer. 1306 if (SrcReg == ARM::SP) { 1307 int64_t Offset = 0; 1308 switch (Opc) { 1309 default: 1310 MI->print(errs()); 1311 llvm_unreachable("Unsupported opcode for unwinding information"); 1312 case ARM::tLDRspi: 1313 // Used to restore LR in a prologue which uses it as a temporary, has 1314 // no effect on unwind tables. 1315 return; 1316 case ARM::MOVr: 1317 case ARM::tMOVr: 1318 Offset = 0; 1319 break; 1320 case ARM::ADDri: 1321 case ARM::t2ADDri: 1322 case ARM::t2ADDri12: 1323 case ARM::t2ADDspImm: 1324 case ARM::t2ADDspImm12: 1325 Offset = -MI->getOperand(2).getImm(); 1326 break; 1327 case ARM::SUBri: 1328 case ARM::t2SUBri: 1329 case ARM::t2SUBri12: 1330 case ARM::t2SUBspImm: 1331 case ARM::t2SUBspImm12: 1332 Offset = MI->getOperand(2).getImm(); 1333 break; 1334 case ARM::tSUBspi: 1335 Offset = MI->getOperand(2).getImm()*4; 1336 break; 1337 case ARM::tADDspi: 1338 case ARM::tADDrSPi: 1339 Offset = -MI->getOperand(2).getImm()*4; 1340 break; 1341 case ARM::tADDhirr: 1342 Offset = 1343 -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); 1344 break; 1345 } 1346 1347 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1348 if (DstReg == FramePtr && FramePtr != ARM::SP) 1349 // Set-up of the frame pointer. Positive values correspond to "add" 1350 // instruction. 1351 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1352 else if (DstReg == ARM::SP) { 1353 // Change of SP by an offset. Positive values correspond to "sub" 1354 // instruction. 1355 ATS.emitPad(Offset); 1356 } else { 1357 // Move of SP to a register. Positive values correspond to an "add" 1358 // instruction. 1359 ATS.emitMovSP(DstReg, -Offset); 1360 } 1361 } 1362 } else if (DstReg == ARM::SP) { 1363 MI->print(errs()); 1364 llvm_unreachable("Unsupported opcode for unwinding information"); 1365 } else { 1366 int64_t Offset = 0; 1367 switch (Opc) { 1368 case ARM::tMOVr: 1369 // If a Thumb1 function spills r8-r11, we copy the values to low 1370 // registers before pushing them. Record the copy so we can emit the 1371 // correct ".save" later. 1372 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1373 break; 1374 case ARM::tLDRpci: { 1375 // Grab the constpool index and check, whether it corresponds to 1376 // original or cloned constpool entry. 1377 unsigned CPI = MI->getOperand(1).getIndex(); 1378 const MachineConstantPool *MCP = MF.getConstantPool(); 1379 if (CPI >= MCP->getConstants().size()) 1380 CPI = AFI->getOriginalCPIdx(CPI); 1381 assert(CPI != -1U && "Invalid constpool index"); 1382 1383 // Derive the actual offset. 1384 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1385 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1386 Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1387 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1388 break; 1389 } 1390 case ARM::t2MOVi16: 1391 Offset = MI->getOperand(1).getImm(); 1392 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1393 break; 1394 case ARM::t2MOVTi16: 1395 Offset = MI->getOperand(2).getImm(); 1396 AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); 1397 break; 1398 case ARM::tMOVi8: 1399 Offset = MI->getOperand(2).getImm(); 1400 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1401 break; 1402 case ARM::tLSLri: 1403 assert(MI->getOperand(3).getImm() == 8 && 1404 "The shift amount is not equal to 8"); 1405 assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && 1406 "The source register is not equal to the destination register"); 1407 AFI->EHPrologueOffsetInRegs[DstReg] <<= 8; 1408 break; 1409 case ARM::tADDi8: 1410 assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && 1411 "The source register is not equal to the destination register"); 1412 Offset = MI->getOperand(3).getImm(); 1413 AFI->EHPrologueOffsetInRegs[DstReg] += Offset; 1414 break; 1415 case ARM::t2PAC: 1416 case ARM::t2PACBTI: 1417 AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; 1418 break; 1419 default: 1420 MI->print(errs()); 1421 llvm_unreachable("Unsupported opcode for unwinding information"); 1422 } 1423 } 1424 } 1425 } 1426 1427 // Simple pseudo-instructions have their lowering (with expansion to real 1428 // instructions) auto-generated. 1429 #include "ARMGenMCPseudoLowering.inc" 1430 1431 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1432 // TODOD FIXME: Enable feature predicate checks once all the test pass. 1433 // ARM_MC::verifyInstructionPredicates(MI->getOpcode(), 1434 // getSubtargetInfo().getFeatureBits()); 1435 1436 const DataLayout &DL = getDataLayout(); 1437 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1438 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1439 1440 // If we just ended a constant pool, mark it as such. 1441 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1442 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1443 InConstantPool = false; 1444 } 1445 1446 // Emit unwinding stuff for frame-related instructions 1447 if (Subtarget->isTargetEHABICompatible() && 1448 MI->getFlag(MachineInstr::FrameSetup)) 1449 EmitUnwindingInstruction(MI); 1450 1451 // Do any auto-generated pseudo lowerings. 1452 if (MCInst OutInst; lowerPseudoInstExpansion(MI, OutInst)) { 1453 EmitToStreamer(*OutStreamer, OutInst); 1454 return; 1455 } 1456 1457 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1458 "Pseudo flag setting opcode should be expanded early"); 1459 1460 // Check for manual lowerings. 1461 unsigned Opc = MI->getOpcode(); 1462 switch (Opc) { 1463 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1464 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1465 case ARM::LEApcrel: 1466 case ARM::tLEApcrel: 1467 case ARM::t2LEApcrel: { 1468 // FIXME: Need to also handle globals and externals 1469 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1470 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1471 ARM::t2LEApcrel ? ARM::t2ADR 1472 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1473 : ARM::ADR)) 1474 .addReg(MI->getOperand(0).getReg()) 1475 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1476 // Add predicate operands. 1477 .addImm(MI->getOperand(2).getImm()) 1478 .addReg(MI->getOperand(3).getReg())); 1479 return; 1480 } 1481 case ARM::LEApcrelJT: 1482 case ARM::tLEApcrelJT: 1483 case ARM::t2LEApcrelJT: { 1484 MCSymbol *JTIPICSymbol = 1485 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1486 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1487 ARM::t2LEApcrelJT ? ARM::t2ADR 1488 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1489 : ARM::ADR)) 1490 .addReg(MI->getOperand(0).getReg()) 1491 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1492 // Add predicate operands. 1493 .addImm(MI->getOperand(2).getImm()) 1494 .addReg(MI->getOperand(3).getReg())); 1495 return; 1496 } 1497 // Darwin call instructions are just normal call instructions with different 1498 // clobber semantics (they clobber R9). 1499 case ARM::BX_CALL: { 1500 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1501 .addReg(ARM::LR) 1502 .addReg(ARM::PC) 1503 // Add predicate operands. 1504 .addImm(ARMCC::AL) 1505 .addReg(0) 1506 // Add 's' bit operand (always reg0 for this) 1507 .addReg(0)); 1508 1509 assert(Subtarget->hasV4TOps()); 1510 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1511 .addReg(MI->getOperand(0).getReg())); 1512 return; 1513 } 1514 case ARM::tBX_CALL: { 1515 if (Subtarget->hasV5TOps()) 1516 llvm_unreachable("Expected BLX to be selected for v5t+"); 1517 1518 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1519 // that the saved lr has its LSB set correctly (the arch doesn't 1520 // have blx). 1521 // So here we generate a bl to a small jump pad that does bx rN. 1522 // The jump pads are emitted after the function body. 1523 1524 Register TReg = MI->getOperand(0).getReg(); 1525 MCSymbol *TRegSym = nullptr; 1526 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1527 if (TIP.first == TReg) { 1528 TRegSym = TIP.second; 1529 break; 1530 } 1531 } 1532 1533 if (!TRegSym) { 1534 TRegSym = OutContext.createTempSymbol(); 1535 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1536 } 1537 1538 // Create a link-saving branch to the Reg Indirect Jump Pad. 1539 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1540 // Predicate comes first here. 1541 .addImm(ARMCC::AL).addReg(0) 1542 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1543 return; 1544 } 1545 case ARM::BMOVPCRX_CALL: { 1546 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1547 .addReg(ARM::LR) 1548 .addReg(ARM::PC) 1549 // Add predicate operands. 1550 .addImm(ARMCC::AL) 1551 .addReg(0) 1552 // Add 's' bit operand (always reg0 for this) 1553 .addReg(0)); 1554 1555 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1556 .addReg(ARM::PC) 1557 .addReg(MI->getOperand(0).getReg()) 1558 // Add predicate operands. 1559 .addImm(ARMCC::AL) 1560 .addReg(0) 1561 // Add 's' bit operand (always reg0 for this) 1562 .addReg(0)); 1563 return; 1564 } 1565 case ARM::BMOVPCB_CALL: { 1566 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1567 .addReg(ARM::LR) 1568 .addReg(ARM::PC) 1569 // Add predicate operands. 1570 .addImm(ARMCC::AL) 1571 .addReg(0) 1572 // Add 's' bit operand (always reg0 for this) 1573 .addReg(0)); 1574 1575 const MachineOperand &Op = MI->getOperand(0); 1576 const GlobalValue *GV = Op.getGlobal(); 1577 const unsigned TF = Op.getTargetFlags(); 1578 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1579 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1580 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1581 .addExpr(GVSymExpr) 1582 // Add predicate operands. 1583 .addImm(ARMCC::AL) 1584 .addReg(0)); 1585 return; 1586 } 1587 case ARM::MOVi16_ga_pcrel: 1588 case ARM::t2MOVi16_ga_pcrel: { 1589 MCInst TmpInst; 1590 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1591 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1592 1593 unsigned TF = MI->getOperand(1).getTargetFlags(); 1594 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1595 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1596 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1597 1598 MCSymbol *LabelSym = 1599 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1600 MI->getOperand(2).getImm(), OutContext); 1601 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1602 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1603 const MCExpr *PCRelExpr = 1604 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1605 MCBinaryExpr::createAdd(LabelSymExpr, 1606 MCConstantExpr::create(PCAdj, OutContext), 1607 OutContext), OutContext), OutContext); 1608 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1609 1610 // Add predicate operands. 1611 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1612 TmpInst.addOperand(MCOperand::createReg(0)); 1613 // Add 's' bit operand (always reg0 for this) 1614 TmpInst.addOperand(MCOperand::createReg(0)); 1615 EmitToStreamer(*OutStreamer, TmpInst); 1616 return; 1617 } 1618 case ARM::MOVTi16_ga_pcrel: 1619 case ARM::t2MOVTi16_ga_pcrel: { 1620 MCInst TmpInst; 1621 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1622 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1623 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1624 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1625 1626 unsigned TF = MI->getOperand(2).getTargetFlags(); 1627 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1628 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1629 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1630 1631 MCSymbol *LabelSym = 1632 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1633 MI->getOperand(3).getImm(), OutContext); 1634 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1635 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1636 const MCExpr *PCRelExpr = 1637 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1638 MCBinaryExpr::createAdd(LabelSymExpr, 1639 MCConstantExpr::create(PCAdj, OutContext), 1640 OutContext), OutContext), OutContext); 1641 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1642 // Add predicate operands. 1643 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1644 TmpInst.addOperand(MCOperand::createReg(0)); 1645 // Add 's' bit operand (always reg0 for this) 1646 TmpInst.addOperand(MCOperand::createReg(0)); 1647 EmitToStreamer(*OutStreamer, TmpInst); 1648 return; 1649 } 1650 case ARM::t2BFi: 1651 case ARM::t2BFic: 1652 case ARM::t2BFLi: 1653 case ARM::t2BFr: 1654 case ARM::t2BFLr: { 1655 // This is a Branch Future instruction. 1656 1657 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1658 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1659 MI->getOperand(0).getIndex(), OutContext), 1660 OutContext); 1661 1662 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1663 if (MI->getOperand(1).isReg()) { 1664 // For BFr/BFLr 1665 MCInst.addReg(MI->getOperand(1).getReg()); 1666 } else { 1667 // For BFi/BFLi/BFic 1668 const MCExpr *BranchTarget; 1669 if (MI->getOperand(1).isMBB()) 1670 BranchTarget = MCSymbolRefExpr::create( 1671 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1672 else if (MI->getOperand(1).isGlobal()) { 1673 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1674 BranchTarget = MCSymbolRefExpr::create( 1675 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1676 } else if (MI->getOperand(1).isSymbol()) { 1677 BranchTarget = MCSymbolRefExpr::create( 1678 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1679 OutContext); 1680 } else 1681 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1682 1683 MCInst.addExpr(BranchTarget); 1684 } 1685 1686 if (Opc == ARM::t2BFic) { 1687 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1688 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1689 MI->getOperand(2).getIndex(), OutContext), 1690 OutContext); 1691 MCInst.addExpr(ElseLabel); 1692 MCInst.addImm(MI->getOperand(3).getImm()); 1693 } else { 1694 MCInst.addImm(MI->getOperand(2).getImm()) 1695 .addReg(MI->getOperand(3).getReg()); 1696 } 1697 1698 EmitToStreamer(*OutStreamer, MCInst); 1699 return; 1700 } 1701 case ARM::t2BF_LabelPseudo: { 1702 // This is a pseudo op for a label used by a branch future instruction 1703 1704 // Emit the label. 1705 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1706 getFunctionNumber(), 1707 MI->getOperand(0).getIndex(), OutContext)); 1708 return; 1709 } 1710 case ARM::tPICADD: { 1711 // This is a pseudo op for a label + instruction sequence, which looks like: 1712 // LPC0: 1713 // add r0, pc 1714 // This adds the address of LPC0 to r0. 1715 1716 // Emit the label. 1717 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1718 getFunctionNumber(), 1719 MI->getOperand(2).getImm(), OutContext)); 1720 1721 // Form and emit the add. 1722 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1723 .addReg(MI->getOperand(0).getReg()) 1724 .addReg(MI->getOperand(0).getReg()) 1725 .addReg(ARM::PC) 1726 // Add predicate operands. 1727 .addImm(ARMCC::AL) 1728 .addReg(0)); 1729 return; 1730 } 1731 case ARM::PICADD: { 1732 // This is a pseudo op for a label + instruction sequence, which looks like: 1733 // LPC0: 1734 // add r0, pc, r0 1735 // This adds the address of LPC0 to r0. 1736 1737 // Emit the label. 1738 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1739 getFunctionNumber(), 1740 MI->getOperand(2).getImm(), OutContext)); 1741 1742 // Form and emit the add. 1743 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1744 .addReg(MI->getOperand(0).getReg()) 1745 .addReg(ARM::PC) 1746 .addReg(MI->getOperand(1).getReg()) 1747 // Add predicate operands. 1748 .addImm(MI->getOperand(3).getImm()) 1749 .addReg(MI->getOperand(4).getReg()) 1750 // Add 's' bit operand (always reg0 for this) 1751 .addReg(0)); 1752 return; 1753 } 1754 case ARM::PICSTR: 1755 case ARM::PICSTRB: 1756 case ARM::PICSTRH: 1757 case ARM::PICLDR: 1758 case ARM::PICLDRB: 1759 case ARM::PICLDRH: 1760 case ARM::PICLDRSB: 1761 case ARM::PICLDRSH: { 1762 // This is a pseudo op for a label + instruction sequence, which looks like: 1763 // LPC0: 1764 // OP r0, [pc, r0] 1765 // The LCP0 label is referenced by a constant pool entry in order to get 1766 // a PC-relative address at the ldr instruction. 1767 1768 // Emit the label. 1769 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1770 getFunctionNumber(), 1771 MI->getOperand(2).getImm(), OutContext)); 1772 1773 // Form and emit the load 1774 unsigned Opcode; 1775 switch (MI->getOpcode()) { 1776 default: 1777 llvm_unreachable("Unexpected opcode!"); 1778 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1779 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1780 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1781 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1782 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1783 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1784 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1785 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1786 } 1787 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1788 .addReg(MI->getOperand(0).getReg()) 1789 .addReg(ARM::PC) 1790 .addReg(MI->getOperand(1).getReg()) 1791 .addImm(0) 1792 // Add predicate operands. 1793 .addImm(MI->getOperand(3).getImm()) 1794 .addReg(MI->getOperand(4).getReg())); 1795 1796 return; 1797 } 1798 case ARM::CONSTPOOL_ENTRY: { 1799 if (Subtarget->genExecuteOnly()) 1800 llvm_unreachable("execute-only should not generate constant pools"); 1801 1802 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1803 /// in the function. The first operand is the ID# for this instruction, the 1804 /// second is the index into the MachineConstantPool that this is, the third 1805 /// is the size in bytes of this constant pool entry. 1806 /// The required alignment is specified on the basic block holding this MI. 1807 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1808 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1809 1810 // If this is the first entry of the pool, mark it. 1811 if (!InConstantPool) { 1812 OutStreamer->emitDataRegion(MCDR_DataRegion); 1813 InConstantPool = true; 1814 } 1815 1816 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1817 1818 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1819 if (MCPE.isMachineConstantPoolEntry()) 1820 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1821 else 1822 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1823 return; 1824 } 1825 case ARM::JUMPTABLE_ADDRS: 1826 emitJumpTableAddrs(MI); 1827 return; 1828 case ARM::JUMPTABLE_INSTS: 1829 emitJumpTableInsts(MI); 1830 return; 1831 case ARM::JUMPTABLE_TBB: 1832 case ARM::JUMPTABLE_TBH: 1833 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1834 return; 1835 case ARM::t2BR_JT: { 1836 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1837 .addReg(ARM::PC) 1838 .addReg(MI->getOperand(0).getReg()) 1839 // Add predicate operands. 1840 .addImm(ARMCC::AL) 1841 .addReg(0)); 1842 return; 1843 } 1844 case ARM::t2TBB_JT: 1845 case ARM::t2TBH_JT: { 1846 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1847 // Lower and emit the PC label, then the instruction itself. 1848 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1849 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1850 .addReg(MI->getOperand(0).getReg()) 1851 .addReg(MI->getOperand(1).getReg()) 1852 // Add predicate operands. 1853 .addImm(ARMCC::AL) 1854 .addReg(0)); 1855 return; 1856 } 1857 case ARM::tTBB_JT: 1858 case ARM::tTBH_JT: { 1859 1860 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1861 Register Base = MI->getOperand(0).getReg(); 1862 Register Idx = MI->getOperand(1).getReg(); 1863 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1864 1865 // Multiply up idx if necessary. 1866 if (!Is8Bit) 1867 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1868 .addReg(Idx) 1869 .addReg(ARM::CPSR) 1870 .addReg(Idx) 1871 .addImm(1) 1872 // Add predicate operands. 1873 .addImm(ARMCC::AL) 1874 .addReg(0)); 1875 1876 if (Base == ARM::PC) { 1877 // TBB [base, idx] = 1878 // ADDS idx, idx, base 1879 // LDRB idx, [idx, #4] ; or LDRH if TBH 1880 // LSLS idx, #1 1881 // ADDS pc, pc, idx 1882 1883 // When using PC as the base, it's important that there is no padding 1884 // between the last ADDS and the start of the jump table. The jump table 1885 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1886 // 1887 // FIXME: Ideally we could vary the LDRB index based on the padding 1888 // between the sequence and jump table, however that relies on MCExprs 1889 // for load indexes which are currently not supported. 1890 OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo()); 1891 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1892 .addReg(Idx) 1893 .addReg(Idx) 1894 .addReg(Base) 1895 // Add predicate operands. 1896 .addImm(ARMCC::AL) 1897 .addReg(0)); 1898 1899 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1900 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1901 .addReg(Idx) 1902 .addReg(Idx) 1903 .addImm(Is8Bit ? 4 : 2) 1904 // Add predicate operands. 1905 .addImm(ARMCC::AL) 1906 .addReg(0)); 1907 } else { 1908 // TBB [base, idx] = 1909 // LDRB idx, [base, idx] ; or LDRH if TBH 1910 // LSLS idx, #1 1911 // ADDS pc, pc, idx 1912 1913 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1914 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1915 .addReg(Idx) 1916 .addReg(Base) 1917 .addReg(Idx) 1918 // Add predicate operands. 1919 .addImm(ARMCC::AL) 1920 .addReg(0)); 1921 } 1922 1923 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1924 .addReg(Idx) 1925 .addReg(ARM::CPSR) 1926 .addReg(Idx) 1927 .addImm(1) 1928 // Add predicate operands. 1929 .addImm(ARMCC::AL) 1930 .addReg(0)); 1931 1932 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1933 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1934 .addReg(ARM::PC) 1935 .addReg(ARM::PC) 1936 .addReg(Idx) 1937 // Add predicate operands. 1938 .addImm(ARMCC::AL) 1939 .addReg(0)); 1940 return; 1941 } 1942 case ARM::tBR_JTr: 1943 case ARM::BR_JTr: { 1944 // mov pc, target 1945 MCInst TmpInst; 1946 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1947 ARM::MOVr : ARM::tMOVr; 1948 TmpInst.setOpcode(Opc); 1949 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1950 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1951 // Add predicate operands. 1952 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1953 TmpInst.addOperand(MCOperand::createReg(0)); 1954 // Add 's' bit operand (always reg0 for this) 1955 if (Opc == ARM::MOVr) 1956 TmpInst.addOperand(MCOperand::createReg(0)); 1957 EmitToStreamer(*OutStreamer, TmpInst); 1958 return; 1959 } 1960 case ARM::BR_JTm_i12: { 1961 // ldr pc, target 1962 MCInst TmpInst; 1963 TmpInst.setOpcode(ARM::LDRi12); 1964 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1965 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1966 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1967 // Add predicate operands. 1968 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1969 TmpInst.addOperand(MCOperand::createReg(0)); 1970 EmitToStreamer(*OutStreamer, TmpInst); 1971 return; 1972 } 1973 case ARM::BR_JTm_rs: { 1974 // ldr pc, target 1975 MCInst TmpInst; 1976 TmpInst.setOpcode(ARM::LDRrs); 1977 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1978 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1979 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1980 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1981 // Add predicate operands. 1982 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1983 TmpInst.addOperand(MCOperand::createReg(0)); 1984 EmitToStreamer(*OutStreamer, TmpInst); 1985 return; 1986 } 1987 case ARM::BR_JTadd: { 1988 // add pc, target, idx 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1990 .addReg(ARM::PC) 1991 .addReg(MI->getOperand(0).getReg()) 1992 .addReg(MI->getOperand(1).getReg()) 1993 // Add predicate operands. 1994 .addImm(ARMCC::AL) 1995 .addReg(0) 1996 // Add 's' bit operand (always reg0 for this) 1997 .addReg(0)); 1998 return; 1999 } 2000 case ARM::SPACE: 2001 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 2002 return; 2003 case ARM::TRAP: { 2004 // Non-Darwin binutils don't yet support the "trap" mnemonic. 2005 // FIXME: Remove this special case when they do. 2006 if (!Subtarget->isTargetMachO()) { 2007 uint32_t Val = 0xe7ffdefeUL; 2008 OutStreamer->AddComment("trap"); 2009 ATS.emitInst(Val); 2010 return; 2011 } 2012 break; 2013 } 2014 case ARM::TRAPNaCl: { 2015 uint32_t Val = 0xe7fedef0UL; 2016 OutStreamer->AddComment("trap"); 2017 ATS.emitInst(Val); 2018 return; 2019 } 2020 case ARM::tTRAP: { 2021 // Non-Darwin binutils don't yet support the "trap" mnemonic. 2022 // FIXME: Remove this special case when they do. 2023 if (!Subtarget->isTargetMachO()) { 2024 uint16_t Val = 0xdefe; 2025 OutStreamer->AddComment("trap"); 2026 ATS.emitInst(Val, 'n'); 2027 return; 2028 } 2029 break; 2030 } 2031 case ARM::t2Int_eh_sjlj_setjmp: 2032 case ARM::t2Int_eh_sjlj_setjmp_nofp: 2033 case ARM::tInt_eh_sjlj_setjmp: { 2034 // Two incoming args: GPR:$src, GPR:$val 2035 // mov $val, pc 2036 // adds $val, #7 2037 // str $val, [$src, #4] 2038 // movs r0, #0 2039 // b LSJLJEH 2040 // movs r0, #1 2041 // LSJLJEH: 2042 Register SrcReg = MI->getOperand(0).getReg(); 2043 Register ValReg = MI->getOperand(1).getReg(); 2044 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH"); 2045 OutStreamer->AddComment("eh_setjmp begin"); 2046 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2047 .addReg(ValReg) 2048 .addReg(ARM::PC) 2049 // Predicate. 2050 .addImm(ARMCC::AL) 2051 .addReg(0)); 2052 2053 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 2054 .addReg(ValReg) 2055 // 's' bit operand 2056 .addReg(ARM::CPSR) 2057 .addReg(ValReg) 2058 .addImm(7) 2059 // Predicate. 2060 .addImm(ARMCC::AL) 2061 .addReg(0)); 2062 2063 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 2064 .addReg(ValReg) 2065 .addReg(SrcReg) 2066 // The offset immediate is #4. The operand value is scaled by 4 for the 2067 // tSTR instruction. 2068 .addImm(1) 2069 // Predicate. 2070 .addImm(ARMCC::AL) 2071 .addReg(0)); 2072 2073 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 2074 .addReg(ARM::R0) 2075 .addReg(ARM::CPSR) 2076 .addImm(0) 2077 // Predicate. 2078 .addImm(ARMCC::AL) 2079 .addReg(0)); 2080 2081 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 2082 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 2083 .addExpr(SymbolExpr) 2084 .addImm(ARMCC::AL) 2085 .addReg(0)); 2086 2087 OutStreamer->AddComment("eh_setjmp end"); 2088 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 2089 .addReg(ARM::R0) 2090 .addReg(ARM::CPSR) 2091 .addImm(1) 2092 // Predicate. 2093 .addImm(ARMCC::AL) 2094 .addReg(0)); 2095 2096 OutStreamer->emitLabel(Label); 2097 return; 2098 } 2099 2100 case ARM::Int_eh_sjlj_setjmp_nofp: 2101 case ARM::Int_eh_sjlj_setjmp: { 2102 // Two incoming args: GPR:$src, GPR:$val 2103 // add $val, pc, #8 2104 // str $val, [$src, #+4] 2105 // mov r0, #0 2106 // add pc, pc, #0 2107 // mov r0, #1 2108 Register SrcReg = MI->getOperand(0).getReg(); 2109 Register ValReg = MI->getOperand(1).getReg(); 2110 2111 OutStreamer->AddComment("eh_setjmp begin"); 2112 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2113 .addReg(ValReg) 2114 .addReg(ARM::PC) 2115 .addImm(8) 2116 // Predicate. 2117 .addImm(ARMCC::AL) 2118 .addReg(0) 2119 // 's' bit operand (always reg0 for this). 2120 .addReg(0)); 2121 2122 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 2123 .addReg(ValReg) 2124 .addReg(SrcReg) 2125 .addImm(4) 2126 // Predicate. 2127 .addImm(ARMCC::AL) 2128 .addReg(0)); 2129 2130 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2131 .addReg(ARM::R0) 2132 .addImm(0) 2133 // Predicate. 2134 .addImm(ARMCC::AL) 2135 .addReg(0) 2136 // 's' bit operand (always reg0 for this). 2137 .addReg(0)); 2138 2139 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2140 .addReg(ARM::PC) 2141 .addReg(ARM::PC) 2142 .addImm(0) 2143 // Predicate. 2144 .addImm(ARMCC::AL) 2145 .addReg(0) 2146 // 's' bit operand (always reg0 for this). 2147 .addReg(0)); 2148 2149 OutStreamer->AddComment("eh_setjmp end"); 2150 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2151 .addReg(ARM::R0) 2152 .addImm(1) 2153 // Predicate. 2154 .addImm(ARMCC::AL) 2155 .addReg(0) 2156 // 's' bit operand (always reg0 for this). 2157 .addReg(0)); 2158 return; 2159 } 2160 case ARM::Int_eh_sjlj_longjmp: { 2161 // ldr sp, [$src, #8] 2162 // ldr $scratch, [$src, #4] 2163 // ldr r7, [$src] 2164 // bx $scratch 2165 Register SrcReg = MI->getOperand(0).getReg(); 2166 Register ScratchReg = MI->getOperand(1).getReg(); 2167 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2168 .addReg(ARM::SP) 2169 .addReg(SrcReg) 2170 .addImm(8) 2171 // Predicate. 2172 .addImm(ARMCC::AL) 2173 .addReg(0)); 2174 2175 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2176 .addReg(ScratchReg) 2177 .addReg(SrcReg) 2178 .addImm(4) 2179 // Predicate. 2180 .addImm(ARMCC::AL) 2181 .addReg(0)); 2182 2183 const MachineFunction &MF = *MI->getParent()->getParent(); 2184 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2185 2186 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2187 // These platforms always use the same frame register 2188 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2189 .addReg(STI.getFramePointerReg()) 2190 .addReg(SrcReg) 2191 .addImm(0) 2192 // Predicate. 2193 .addImm(ARMCC::AL) 2194 .addReg(0)); 2195 } else { 2196 // If the calling code might use either R7 or R11 as 2197 // frame pointer register, restore it into both. 2198 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2199 .addReg(ARM::R7) 2200 .addReg(SrcReg) 2201 .addImm(0) 2202 // Predicate. 2203 .addImm(ARMCC::AL) 2204 .addReg(0)); 2205 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2206 .addReg(ARM::R11) 2207 .addReg(SrcReg) 2208 .addImm(0) 2209 // Predicate. 2210 .addImm(ARMCC::AL) 2211 .addReg(0)); 2212 } 2213 2214 assert(Subtarget->hasV4TOps()); 2215 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2216 .addReg(ScratchReg) 2217 // Predicate. 2218 .addImm(ARMCC::AL) 2219 .addReg(0)); 2220 return; 2221 } 2222 case ARM::tInt_eh_sjlj_longjmp: { 2223 // ldr $scratch, [$src, #8] 2224 // mov sp, $scratch 2225 // ldr $scratch, [$src, #4] 2226 // ldr r7, [$src] 2227 // bx $scratch 2228 Register SrcReg = MI->getOperand(0).getReg(); 2229 Register ScratchReg = MI->getOperand(1).getReg(); 2230 2231 const MachineFunction &MF = *MI->getParent()->getParent(); 2232 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2233 2234 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2235 .addReg(ScratchReg) 2236 .addReg(SrcReg) 2237 // The offset immediate is #8. The operand value is scaled by 4 for the 2238 // tLDR instruction. 2239 .addImm(2) 2240 // Predicate. 2241 .addImm(ARMCC::AL) 2242 .addReg(0)); 2243 2244 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2245 .addReg(ARM::SP) 2246 .addReg(ScratchReg) 2247 // Predicate. 2248 .addImm(ARMCC::AL) 2249 .addReg(0)); 2250 2251 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2252 .addReg(ScratchReg) 2253 .addReg(SrcReg) 2254 .addImm(1) 2255 // Predicate. 2256 .addImm(ARMCC::AL) 2257 .addReg(0)); 2258 2259 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2260 // These platforms always use the same frame register 2261 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2262 .addReg(STI.getFramePointerReg()) 2263 .addReg(SrcReg) 2264 .addImm(0) 2265 // Predicate. 2266 .addImm(ARMCC::AL) 2267 .addReg(0)); 2268 } else { 2269 // If the calling code might use either R7 or R11 as 2270 // frame pointer register, restore it into both. 2271 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2272 .addReg(ARM::R7) 2273 .addReg(SrcReg) 2274 .addImm(0) 2275 // Predicate. 2276 .addImm(ARMCC::AL) 2277 .addReg(0)); 2278 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2279 .addReg(ARM::R11) 2280 .addReg(SrcReg) 2281 .addImm(0) 2282 // Predicate. 2283 .addImm(ARMCC::AL) 2284 .addReg(0)); 2285 } 2286 2287 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2288 .addReg(ScratchReg) 2289 // Predicate. 2290 .addImm(ARMCC::AL) 2291 .addReg(0)); 2292 return; 2293 } 2294 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2295 // ldr.w r11, [$src, #0] 2296 // ldr.w sp, [$src, #8] 2297 // ldr.w pc, [$src, #4] 2298 2299 Register SrcReg = MI->getOperand(0).getReg(); 2300 2301 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2302 .addReg(ARM::R11) 2303 .addReg(SrcReg) 2304 .addImm(0) 2305 // Predicate 2306 .addImm(ARMCC::AL) 2307 .addReg(0)); 2308 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2309 .addReg(ARM::SP) 2310 .addReg(SrcReg) 2311 .addImm(8) 2312 // Predicate 2313 .addImm(ARMCC::AL) 2314 .addReg(0)); 2315 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2316 .addReg(ARM::PC) 2317 .addReg(SrcReg) 2318 .addImm(4) 2319 // Predicate 2320 .addImm(ARMCC::AL) 2321 .addReg(0)); 2322 return; 2323 } 2324 case ARM::PATCHABLE_FUNCTION_ENTER: 2325 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2326 return; 2327 case ARM::PATCHABLE_FUNCTION_EXIT: 2328 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2329 return; 2330 case ARM::PATCHABLE_TAIL_CALL: 2331 LowerPATCHABLE_TAIL_CALL(*MI); 2332 return; 2333 case ARM::SpeculationBarrierISBDSBEndBB: { 2334 // Print DSB SYS + ISB 2335 MCInst TmpInstDSB; 2336 TmpInstDSB.setOpcode(ARM::DSB); 2337 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2338 EmitToStreamer(*OutStreamer, TmpInstDSB); 2339 MCInst TmpInstISB; 2340 TmpInstISB.setOpcode(ARM::ISB); 2341 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2342 EmitToStreamer(*OutStreamer, TmpInstISB); 2343 return; 2344 } 2345 case ARM::t2SpeculationBarrierISBDSBEndBB: { 2346 // Print DSB SYS + ISB 2347 MCInst TmpInstDSB; 2348 TmpInstDSB.setOpcode(ARM::t2DSB); 2349 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 2350 TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL)); 2351 TmpInstDSB.addOperand(MCOperand::createReg(0)); 2352 EmitToStreamer(*OutStreamer, TmpInstDSB); 2353 MCInst TmpInstISB; 2354 TmpInstISB.setOpcode(ARM::t2ISB); 2355 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 2356 TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL)); 2357 TmpInstISB.addOperand(MCOperand::createReg(0)); 2358 EmitToStreamer(*OutStreamer, TmpInstISB); 2359 return; 2360 } 2361 case ARM::SpeculationBarrierSBEndBB: { 2362 // Print SB 2363 MCInst TmpInstSB; 2364 TmpInstSB.setOpcode(ARM::SB); 2365 EmitToStreamer(*OutStreamer, TmpInstSB); 2366 return; 2367 } 2368 case ARM::t2SpeculationBarrierSBEndBB: { 2369 // Print SB 2370 MCInst TmpInstSB; 2371 TmpInstSB.setOpcode(ARM::t2SB); 2372 EmitToStreamer(*OutStreamer, TmpInstSB); 2373 return; 2374 } 2375 2376 case ARM::SEH_StackAlloc: 2377 ATS.emitARMWinCFIAllocStack(MI->getOperand(0).getImm(), 2378 MI->getOperand(1).getImm()); 2379 return; 2380 2381 case ARM::SEH_SaveRegs: 2382 case ARM::SEH_SaveRegs_Ret: 2383 ATS.emitARMWinCFISaveRegMask(MI->getOperand(0).getImm(), 2384 MI->getOperand(1).getImm()); 2385 return; 2386 2387 case ARM::SEH_SaveSP: 2388 ATS.emitARMWinCFISaveSP(MI->getOperand(0).getImm()); 2389 return; 2390 2391 case ARM::SEH_SaveFRegs: 2392 ATS.emitARMWinCFISaveFRegs(MI->getOperand(0).getImm(), 2393 MI->getOperand(1).getImm()); 2394 return; 2395 2396 case ARM::SEH_SaveLR: 2397 ATS.emitARMWinCFISaveLR(MI->getOperand(0).getImm()); 2398 return; 2399 2400 case ARM::SEH_Nop: 2401 case ARM::SEH_Nop_Ret: 2402 ATS.emitARMWinCFINop(MI->getOperand(0).getImm()); 2403 return; 2404 2405 case ARM::SEH_PrologEnd: 2406 ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); 2407 return; 2408 2409 case ARM::SEH_EpilogStart: 2410 ATS.emitARMWinCFIEpilogStart(ARMCC::AL); 2411 return; 2412 2413 case ARM::SEH_EpilogEnd: 2414 ATS.emitARMWinCFIEpilogEnd(); 2415 return; 2416 } 2417 2418 MCInst TmpInst; 2419 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2420 2421 EmitToStreamer(*OutStreamer, TmpInst); 2422 } 2423 2424 //===----------------------------------------------------------------------===// 2425 // Target Registry Stuff 2426 //===----------------------------------------------------------------------===// 2427 2428 // Force static initialization. 2429 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2430 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2431 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2432 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2433 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2434 } 2435