xref: /llvm-project/libcxxabi/src/fallback_malloc.cpp (revision ba87515fea90b5d55836a8e3be63a7e683ce299d)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "fallback_malloc.h"
10 #include "abort_message.h"
11 
12 #include <__thread/support.h>
13 #ifndef _LIBCXXABI_HAS_NO_THREADS
14 #if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
15 #pragma comment(lib, "pthread")
16 #endif
17 #endif
18 
19 #include <__memory/aligned_alloc.h>
20 #include <__assert>
21 #include <stdlib.h> // for malloc, calloc, free
22 #include <string.h> // for memset
23 
24 //  A small, simple heap manager based (loosely) on
25 //  the startup heap manager from FreeBSD, optimized for space.
26 //
27 //  Manages a fixed-size memory pool, supports malloc and free only.
28 //  No support for realloc.
29 //
30 //  Allocates chunks in multiples of four bytes, with a four byte header
31 //  for each chunk. The overhead of each chunk is kept low by keeping pointers
32 //  as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
33 
34 namespace {
35 
36 // When POSIX threads are not available, make the mutex operations a nop
37 #ifndef _LIBCXXABI_HAS_NO_THREADS
38 static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER;
39 #else
40 static _LIBCPP_CONSTINIT void* heap_mutex = 0;
41 #endif
42 
43 class mutexor {
44 public:
45 #ifndef _LIBCXXABI_HAS_NO_THREADS
46   mutexor(std::__libcpp_mutex_t* m) : mtx_(m) {
47     std::__libcpp_mutex_lock(mtx_);
48   }
49   ~mutexor() { std::__libcpp_mutex_unlock(mtx_); }
50 #else
51   mutexor(void*) {}
52   ~mutexor() {}
53 #endif
54 private:
55   mutexor(const mutexor& rhs);
56   mutexor& operator=(const mutexor& rhs);
57 #ifndef _LIBCXXABI_HAS_NO_THREADS
58   std::__libcpp_mutex_t* mtx_;
59 #endif
60 };
61 
62 static const size_t HEAP_SIZE = 512;
63 char heap[HEAP_SIZE] __attribute__((aligned));
64 
65 typedef unsigned short heap_offset;
66 typedef unsigned short heap_size;
67 
68 // On both 64 and 32 bit targets heap_node should have the following properties
69 // Size: 4
70 // Alignment: 2
71 struct heap_node {
72   heap_offset next_node; // offset into heap
73   heap_size len;         // size in units of "sizeof(heap_node)"
74 };
75 
76 // All pointers returned by fallback_malloc must be at least aligned
77 // as RequiredAligned. Note that RequiredAlignment can be greater than
78 // alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
79 struct FallbackMaxAlignType {
80 } __attribute__((aligned));
81 const size_t RequiredAlignment = alignof(FallbackMaxAlignType);
82 
83 static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0,
84               "The required alignment must be evenly divisible by the sizeof(heap_node)");
85 
86 // The number of heap_node's that can fit in a chunk of memory with the size
87 // of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
88 const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node);
89 
90 static const heap_node* list_end =
91     (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap
92 static heap_node* freelist = NULL;
93 
94 heap_node* node_from_offset(const heap_offset offset) {
95   return (heap_node*)(heap + (offset * sizeof(heap_node)));
96 }
97 
98 heap_offset offset_from_node(const heap_node* ptr) {
99   return static_cast<heap_offset>(
100       static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) /
101       sizeof(heap_node));
102 }
103 
104 // Return a pointer to the first address, 'A', in `heap` that can actually be
105 // used to represent a heap_node. 'A' must be aligned so that
106 // '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
107 // address should be 12 bytes after the first 16 byte boundary.
108 heap_node* getFirstAlignedNodeInHeap() {
109   heap_node* node = (heap_node*)heap;
110   const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node);
111   size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment;
112   size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset;
113   size_t NElemOffset = requiredOffset / sizeof(heap_node);
114   return node + NElemOffset;
115 }
116 
117 void init_heap() {
118   freelist = getFirstAlignedNodeInHeap();
119   freelist->next_node = offset_from_node(list_end);
120   freelist->len = static_cast<heap_size>(list_end - freelist);
121 }
122 
123 //  How big a chunk we allocate
124 size_t alloc_size(size_t len) {
125   return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1;
126 }
127 
128 bool is_fallback_ptr(void* ptr) {
129   return ptr >= heap && ptr < (heap + HEAP_SIZE);
130 }
131 
132 void* fallback_malloc(size_t len) {
133   heap_node *p, *prev;
134   const size_t nelems = alloc_size(len);
135   mutexor mtx(&heap_mutex);
136 
137   if (NULL == freelist)
138     init_heap();
139 
140   //  Walk the free list, looking for a "big enough" chunk
141   for (p = freelist, prev = 0; p && p != list_end;
142        prev = p, p = node_from_offset(p->next_node)) {
143 
144     // Check the invariant that all heap_nodes pointers 'p' are aligned
145     // so that 'p + 1' has an alignment of at least RequiredAlignment
146     _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0, "");
147 
148     // Calculate the number of extra padding elements needed in order
149     // to split 'p' and create a properly aligned heap_node from the tail
150     // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
151     // will be a multiple of NodesPerAlignment.
152     size_t aligned_nelems = nelems;
153     if (p->len > nelems) {
154       heap_size remaining_len = static_cast<heap_size>(p->len - nelems);
155       aligned_nelems += remaining_len % NodesPerAlignment;
156     }
157 
158     // chunk is larger and we can create a properly aligned heap_node
159     // from the tail. In this case we shorten 'p' and return the tail.
160     if (p->len > aligned_nelems) {
161       heap_node* q;
162       p->len = static_cast<heap_size>(p->len - aligned_nelems);
163       q = p + p->len;
164       q->next_node = 0;
165       q->len = static_cast<heap_size>(aligned_nelems);
166       void* ptr = q + 1;
167       _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
168       return ptr;
169     }
170 
171     // The chunk is the exact size or the chunk is larger but not large
172     // enough to split due to alignment constraints.
173     if (p->len >= nelems) {
174       if (prev == 0)
175         freelist = node_from_offset(p->next_node);
176       else
177         prev->next_node = p->next_node;
178       p->next_node = 0;
179       void* ptr = p + 1;
180       _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, "");
181       return ptr;
182     }
183   }
184   return NULL; // couldn't find a spot big enough
185 }
186 
187 //  Return the start of the next block
188 heap_node* after(struct heap_node* p) { return p + p->len; }
189 
190 void fallback_free(void* ptr) {
191   struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk
192   struct heap_node *p, *prev;
193 
194   mutexor mtx(&heap_mutex);
195 
196 #ifdef DEBUG_FALLBACK_MALLOC
197   std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len);
198 #endif
199 
200   for (p = freelist, prev = 0; p && p != list_end;
201        prev = p, p = node_from_offset(p->next_node)) {
202 #ifdef DEBUG_FALLBACK_MALLOC
203     std::printf("  p=%d, cp=%d, after(p)=%d, after(cp)=%d\n",
204       offset_from_node(p), offset_from_node(cp),
205       offset_from_node(after(p)), offset_from_node(after(cp)));
206 #endif
207     if (after(p) == cp) {
208 #ifdef DEBUG_FALLBACK_MALLOC
209       std::printf("  Appending onto chunk at %d\n", offset_from_node(p));
210 #endif
211       p->len = static_cast<heap_size>(
212           p->len + cp->len); // make the free heap_node larger
213       return;
214     } else if (after(cp) == p) { // there's a free heap_node right after
215 #ifdef DEBUG_FALLBACK_MALLOC
216       std::printf("  Appending free chunk at %d\n", offset_from_node(p));
217 #endif
218       cp->len = static_cast<heap_size>(cp->len + p->len);
219       if (prev == 0) {
220         freelist = cp;
221         cp->next_node = p->next_node;
222       } else
223         prev->next_node = offset_from_node(cp);
224       return;
225     }
226   }
227 //  Nothing to merge with, add it to the start of the free list
228 #ifdef DEBUG_FALLBACK_MALLOC
229   std::printf("  Making new free list entry %d\n", offset_from_node(cp));
230 #endif
231   cp->next_node = offset_from_node(freelist);
232   freelist = cp;
233 }
234 
235 #ifdef INSTRUMENT_FALLBACK_MALLOC
236 size_t print_free_list() {
237   struct heap_node *p, *prev;
238   heap_size total_free = 0;
239   if (NULL == freelist)
240     init_heap();
241 
242   for (p = freelist, prev = 0; p && p != list_end;
243        prev = p, p = node_from_offset(p->next_node)) {
244     std::printf("%sOffset: %d\tsize: %d Next: %d\n",
245       (prev == 0 ? "" : "  "), offset_from_node(p), p->len, p->next_node);
246     total_free += p->len;
247   }
248   std::printf("Total Free space: %d\n", total_free);
249   return total_free;
250 }
251 #endif
252 } // end unnamed namespace
253 
254 namespace __cxxabiv1 {
255 
256 struct __attribute__((aligned)) __aligned_type {};
257 
258 void* __aligned_malloc_with_fallback(size_t size) {
259 #if defined(_WIN32)
260   if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size))
261     return dest;
262 #elif !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION
263   if (void* dest = ::malloc(size))
264     return dest;
265 #else
266   if (size == 0)
267     size = 1;
268   if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size))
269     return dest;
270 #endif
271   return fallback_malloc(size);
272 }
273 
274 void* __calloc_with_fallback(size_t count, size_t size) {
275   void* ptr = ::calloc(count, size);
276   if (NULL != ptr)
277     return ptr;
278   // if calloc fails, fall back to emergency stash
279   ptr = fallback_malloc(size * count);
280   if (NULL != ptr)
281     ::memset(ptr, 0, size * count);
282   return ptr;
283 }
284 
285 void __aligned_free_with_fallback(void* ptr) {
286   if (is_fallback_ptr(ptr))
287     fallback_free(ptr);
288   else {
289 #if !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION
290     ::free(ptr);
291 #else
292     std::__libcpp_aligned_free(ptr);
293 #endif
294   }
295 }
296 
297 void __free_with_fallback(void* ptr) {
298   if (is_fallback_ptr(ptr))
299     fallback_free(ptr);
300   else
301     ::free(ptr);
302 }
303 
304 } // namespace __cxxabiv1
305