1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "fallback_malloc.h" 10 #include "abort_message.h" 11 12 #include <__thread/support.h> 13 #ifndef _LIBCXXABI_HAS_NO_THREADS 14 #if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB) 15 #pragma comment(lib, "pthread") 16 #endif 17 #endif 18 19 #include <__memory/aligned_alloc.h> 20 #include <__assert> 21 #include <stdlib.h> // for malloc, calloc, free 22 #include <string.h> // for memset 23 24 // A small, simple heap manager based (loosely) on 25 // the startup heap manager from FreeBSD, optimized for space. 26 // 27 // Manages a fixed-size memory pool, supports malloc and free only. 28 // No support for realloc. 29 // 30 // Allocates chunks in multiples of four bytes, with a four byte header 31 // for each chunk. The overhead of each chunk is kept low by keeping pointers 32 // as two byte offsets within the heap, rather than (4 or 8 byte) pointers. 33 34 namespace { 35 36 // When POSIX threads are not available, make the mutex operations a nop 37 #ifndef _LIBCXXABI_HAS_NO_THREADS 38 static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER; 39 #else 40 static _LIBCPP_CONSTINIT void* heap_mutex = 0; 41 #endif 42 43 class mutexor { 44 public: 45 #ifndef _LIBCXXABI_HAS_NO_THREADS 46 mutexor(std::__libcpp_mutex_t* m) : mtx_(m) { 47 std::__libcpp_mutex_lock(mtx_); 48 } 49 ~mutexor() { std::__libcpp_mutex_unlock(mtx_); } 50 #else 51 mutexor(void*) {} 52 ~mutexor() {} 53 #endif 54 private: 55 mutexor(const mutexor& rhs); 56 mutexor& operator=(const mutexor& rhs); 57 #ifndef _LIBCXXABI_HAS_NO_THREADS 58 std::__libcpp_mutex_t* mtx_; 59 #endif 60 }; 61 62 static const size_t HEAP_SIZE = 512; 63 char heap[HEAP_SIZE] __attribute__((aligned)); 64 65 typedef unsigned short heap_offset; 66 typedef unsigned short heap_size; 67 68 // On both 64 and 32 bit targets heap_node should have the following properties 69 // Size: 4 70 // Alignment: 2 71 struct heap_node { 72 heap_offset next_node; // offset into heap 73 heap_size len; // size in units of "sizeof(heap_node)" 74 }; 75 76 // All pointers returned by fallback_malloc must be at least aligned 77 // as RequiredAligned. Note that RequiredAlignment can be greater than 78 // alignof(std::max_align_t) on 64 bit systems compiling 32 bit code. 79 struct FallbackMaxAlignType { 80 } __attribute__((aligned)); 81 const size_t RequiredAlignment = alignof(FallbackMaxAlignType); 82 83 static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0, 84 "The required alignment must be evenly divisible by the sizeof(heap_node)"); 85 86 // The number of heap_node's that can fit in a chunk of memory with the size 87 // of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4. 88 const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node); 89 90 static const heap_node* list_end = 91 (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap 92 static heap_node* freelist = NULL; 93 94 heap_node* node_from_offset(const heap_offset offset) { 95 return (heap_node*)(heap + (offset * sizeof(heap_node))); 96 } 97 98 heap_offset offset_from_node(const heap_node* ptr) { 99 return static_cast<heap_offset>( 100 static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) / 101 sizeof(heap_node)); 102 } 103 104 // Return a pointer to the first address, 'A', in `heap` that can actually be 105 // used to represent a heap_node. 'A' must be aligned so that 106 // '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this 107 // address should be 12 bytes after the first 16 byte boundary. 108 heap_node* getFirstAlignedNodeInHeap() { 109 heap_node* node = (heap_node*)heap; 110 const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node); 111 size_t boundaryOffset = reinterpret_cast<size_t>(node) % RequiredAlignment; 112 size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset; 113 size_t NElemOffset = requiredOffset / sizeof(heap_node); 114 return node + NElemOffset; 115 } 116 117 void init_heap() { 118 freelist = getFirstAlignedNodeInHeap(); 119 freelist->next_node = offset_from_node(list_end); 120 freelist->len = static_cast<heap_size>(list_end - freelist); 121 } 122 123 // How big a chunk we allocate 124 size_t alloc_size(size_t len) { 125 return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1; 126 } 127 128 bool is_fallback_ptr(void* ptr) { 129 return ptr >= heap && ptr < (heap + HEAP_SIZE); 130 } 131 132 void* fallback_malloc(size_t len) { 133 heap_node *p, *prev; 134 const size_t nelems = alloc_size(len); 135 mutexor mtx(&heap_mutex); 136 137 if (NULL == freelist) 138 init_heap(); 139 140 // Walk the free list, looking for a "big enough" chunk 141 for (p = freelist, prev = 0; p && p != list_end; 142 prev = p, p = node_from_offset(p->next_node)) { 143 144 // Check the invariant that all heap_nodes pointers 'p' are aligned 145 // so that 'p + 1' has an alignment of at least RequiredAlignment 146 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(p + 1) % RequiredAlignment == 0, ""); 147 148 // Calculate the number of extra padding elements needed in order 149 // to split 'p' and create a properly aligned heap_node from the tail 150 // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems' 151 // will be a multiple of NodesPerAlignment. 152 size_t aligned_nelems = nelems; 153 if (p->len > nelems) { 154 heap_size remaining_len = static_cast<heap_size>(p->len - nelems); 155 aligned_nelems += remaining_len % NodesPerAlignment; 156 } 157 158 // chunk is larger and we can create a properly aligned heap_node 159 // from the tail. In this case we shorten 'p' and return the tail. 160 if (p->len > aligned_nelems) { 161 heap_node* q; 162 p->len = static_cast<heap_size>(p->len - aligned_nelems); 163 q = p + p->len; 164 q->next_node = 0; 165 q->len = static_cast<heap_size>(aligned_nelems); 166 void* ptr = q + 1; 167 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, ""); 168 return ptr; 169 } 170 171 // The chunk is the exact size or the chunk is larger but not large 172 // enough to split due to alignment constraints. 173 if (p->len >= nelems) { 174 if (prev == 0) 175 freelist = node_from_offset(p->next_node); 176 else 177 prev->next_node = p->next_node; 178 p->next_node = 0; 179 void* ptr = p + 1; 180 _LIBCXXABI_ASSERT(reinterpret_cast<size_t>(ptr) % RequiredAlignment == 0, ""); 181 return ptr; 182 } 183 } 184 return NULL; // couldn't find a spot big enough 185 } 186 187 // Return the start of the next block 188 heap_node* after(struct heap_node* p) { return p + p->len; } 189 190 void fallback_free(void* ptr) { 191 struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk 192 struct heap_node *p, *prev; 193 194 mutexor mtx(&heap_mutex); 195 196 #ifdef DEBUG_FALLBACK_MALLOC 197 std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len); 198 #endif 199 200 for (p = freelist, prev = 0; p && p != list_end; 201 prev = p, p = node_from_offset(p->next_node)) { 202 #ifdef DEBUG_FALLBACK_MALLOC 203 std::printf(" p=%d, cp=%d, after(p)=%d, after(cp)=%d\n", 204 offset_from_node(p), offset_from_node(cp), 205 offset_from_node(after(p)), offset_from_node(after(cp))); 206 #endif 207 if (after(p) == cp) { 208 #ifdef DEBUG_FALLBACK_MALLOC 209 std::printf(" Appending onto chunk at %d\n", offset_from_node(p)); 210 #endif 211 p->len = static_cast<heap_size>( 212 p->len + cp->len); // make the free heap_node larger 213 return; 214 } else if (after(cp) == p) { // there's a free heap_node right after 215 #ifdef DEBUG_FALLBACK_MALLOC 216 std::printf(" Appending free chunk at %d\n", offset_from_node(p)); 217 #endif 218 cp->len = static_cast<heap_size>(cp->len + p->len); 219 if (prev == 0) { 220 freelist = cp; 221 cp->next_node = p->next_node; 222 } else 223 prev->next_node = offset_from_node(cp); 224 return; 225 } 226 } 227 // Nothing to merge with, add it to the start of the free list 228 #ifdef DEBUG_FALLBACK_MALLOC 229 std::printf(" Making new free list entry %d\n", offset_from_node(cp)); 230 #endif 231 cp->next_node = offset_from_node(freelist); 232 freelist = cp; 233 } 234 235 #ifdef INSTRUMENT_FALLBACK_MALLOC 236 size_t print_free_list() { 237 struct heap_node *p, *prev; 238 heap_size total_free = 0; 239 if (NULL == freelist) 240 init_heap(); 241 242 for (p = freelist, prev = 0; p && p != list_end; 243 prev = p, p = node_from_offset(p->next_node)) { 244 std::printf("%sOffset: %d\tsize: %d Next: %d\n", 245 (prev == 0 ? "" : " "), offset_from_node(p), p->len, p->next_node); 246 total_free += p->len; 247 } 248 std::printf("Total Free space: %d\n", total_free); 249 return total_free; 250 } 251 #endif 252 } // end unnamed namespace 253 254 namespace __cxxabiv1 { 255 256 struct __attribute__((aligned)) __aligned_type {}; 257 258 void* __aligned_malloc_with_fallback(size_t size) { 259 #if defined(_WIN32) 260 if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size)) 261 return dest; 262 #elif !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION 263 if (void* dest = ::malloc(size)) 264 return dest; 265 #else 266 if (size == 0) 267 size = 1; 268 if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size)) 269 return dest; 270 #endif 271 return fallback_malloc(size); 272 } 273 274 void* __calloc_with_fallback(size_t count, size_t size) { 275 void* ptr = ::calloc(count, size); 276 if (NULL != ptr) 277 return ptr; 278 // if calloc fails, fall back to emergency stash 279 ptr = fallback_malloc(size * count); 280 if (NULL != ptr) 281 ::memset(ptr, 0, size * count); 282 return ptr; 283 } 284 285 void __aligned_free_with_fallback(void* ptr) { 286 if (is_fallback_ptr(ptr)) 287 fallback_free(ptr); 288 else { 289 #if !_LIBCPP_HAS_LIBRARY_ALIGNED_ALLOCATION 290 ::free(ptr); 291 #else 292 std::__libcpp_aligned_free(ptr); 293 #endif 294 } 295 } 296 297 void __free_with_fallback(void* ptr) { 298 if (is_fallback_ptr(ptr)) 299 fallback_free(ptr); 300 else 301 ::free(ptr); 302 } 303 304 } // namespace __cxxabiv1 305