xref: /llvm-project/libclc/generic/lib/math/log1p.cl (revision 78b5bb702fe97fe85f66d72598d0dfa7c49fe001)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24#include <clc/clcmacro.h>
25#include <clc/math/math.h>
26#include <clc/math/tables.h>
27
28_CLC_OVERLOAD _CLC_DEF float log1p(float x)
29{
30    float w = x;
31    uint ux = as_uint(x);
32    uint ax = ux & EXSIGNBIT_SP32;
33
34    // |x| < 2^-4
35    float u2 = MATH_DIVIDE(x, 2.0f + x);
36    float u = u2 + u2;
37    float v = u * u;
38    // 2/(5 * 2^5), 2/(3 * 2^3)
39    float zsmall = mad(-u2, x, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f) * v * u) + x;
40
41    // |x| >= 2^-4
42    ux = as_uint(x + 1.0f);
43
44    int m = (int)((ux >> EXPSHIFTBITS_SP32) & 0xff) - EXPBIAS_SP32;
45    float mf = (float)m;
46    uint indx = (ux & 0x007f0000) + ((ux & 0x00008000) << 1);
47    float F = as_float(indx | 0x3f000000);
48
49    // x > 2^24
50    float fg24 = F - as_float(0x3f000000 | (ux & MANTBITS_SP32));
51
52    // x <= 2^24
53    uint xhi = ux & 0xffff8000;
54    float xh = as_float(xhi);
55    float xt = (1.0f - xh) + w;
56    uint xnm = ((~(xhi & 0x7f800000)) - 0x00800000) & 0x7f800000;
57    xt = xt * as_float(xnm) * 0.5f;
58    float fl24 = F - as_float(0x3f000000 | (xhi & MANTBITS_SP32)) - xt;
59
60    float f = mf > 24.0f ? fg24 : fl24;
61
62    indx = indx >> 16;
63    float r = f * USE_TABLE(log_inv_tbl, indx);
64
65    // 1/3, 1/2
66    float poly = mad(mad(r, 0x1.555556p-2f, 0x1.0p-1f), r*r, r);
67
68    const float LOG2_HEAD = 0x1.62e000p-1f;   // 0.693115234
69    const float LOG2_TAIL = 0x1.0bfbe8p-15f;  // 0.0000319461833
70
71    float2 tv = USE_TABLE(loge_tbl, indx);
72    float z1 = mad(mf, LOG2_HEAD, tv.s0);
73    float z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1;
74    float z = z1 + z2;
75
76    z = ax < 0x3d800000U ? zsmall : z;
77
78
79
80    // Edge cases
81    z = ax >= PINFBITPATT_SP32 ? w : z;
82    z = w  < -1.0f ? as_float(QNANBITPATT_SP32) : z;
83    z = w == -1.0f ? as_float(NINFBITPATT_SP32) : z;
84        //fix subnormals
85        z = ax  < 0x33800000 ? x : z;
86
87    return z;
88}
89
90_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, log1p, float);
91
92#ifdef cl_khr_fp64
93
94#pragma OPENCL EXTENSION cl_khr_fp64 : enable
95
96_CLC_OVERLOAD _CLC_DEF double log1p(double x)
97{
98    // Computes natural log(1+x). Algorithm based on:
99    // Ping-Tak Peter Tang
100    // "Table-driven implementation of the logarithm function in IEEE
101    // floating-point arithmetic"
102    // ACM Transactions on Mathematical Software (TOMS)
103    // Volume 16, Issue 4 (December 1990)
104    // Note that we use a lookup table of size 64 rather than 128,
105    // and compensate by having extra terms in the minimax polynomial
106    // for the kernel approximation.
107
108    // Process Inside the threshold now
109    ulong ux = as_ulong(1.0 + x);
110    int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64;
111    double f = as_double(ONEEXPBITS_DP64 | (ux & MANTBITS_DP64));
112
113    int j = as_int2(ux).hi >> 13;
114    j = ((0x80 | (j & 0x7e)) >> 1) + (j & 0x1);
115    double f1 = (double)j * 0x1.0p-6;
116    j -= 64;
117
118    double f2temp = f - f1;
119    double m2 = as_double(convert_ulong(0x3ff - xexp) << EXPSHIFTBITS_DP64);
120    double f2l = fma(m2, x, m2 - f1);
121    double f2g = fma(m2, x, -f1) + m2;
122    double f2 = xexp <= MANTLENGTH_DP64-1 ? f2l : f2g;
123    f2 = (xexp <= -2) | (xexp >= MANTLENGTH_DP64+8) ? f2temp : f2;
124
125    double2 tv = USE_TABLE(ln_tbl, j);
126    double z1 = tv.s0;
127    double q = tv.s1;
128
129    double u = MATH_DIVIDE(f2, fma(0.5, f2, f1));
130    double v = u * u;
131
132    double poly = v * fma(v,
133                          fma(v, 2.23219810758559851206e-03, 1.24999999978138668903e-02),
134                          8.33333333333333593622e-02);
135
136    // log2_lead and log2_tail sum to an extra-precise version of log(2)
137    const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
138    const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
139
140    double z2 = q + fma(u, poly, u);
141    double dxexp = (double)xexp;
142    double r1 = fma(dxexp, log2_lead, z1);
143    double r2 = fma(dxexp, log2_tail, z2);
144    double result1 = r1 + r2;
145
146    // Process Outside the threshold now
147    double r = x;
148    u = r / (2.0 + r);
149    double correction = r * u;
150    u = u + u;
151    v = u * u;
152    r1 = r;
153
154    poly = fma(v,
155               fma(v,
156                   fma(v, 4.34887777707614552256e-04, 2.23213998791944806202e-03),
157                   1.25000000037717509602e-02),
158               8.33333333333317923934e-02);
159
160    r2 = fma(u*v, poly, -correction);
161
162    // The values exp(-1/16)-1 and exp(1/16)-1
163    const double log1p_thresh1 = -0x1.f0540438fd5c3p-5;
164    const double log1p_thresh2 =  0x1.082b577d34ed8p-4;
165    double result2 = r1 + r2;
166    result2 = x < log1p_thresh1 | x > log1p_thresh2 ? result1 : result2;
167
168    result2 = isinf(x) ? x : result2;
169    result2 = x < -1.0 ? as_double(QNANBITPATT_DP64) : result2;
170    result2 = x == -1.0 ? as_double(NINFBITPATT_DP64) : result2;
171    return result2;
172}
173
174_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, log1p, double);
175
176#endif // cl_khr_fp64
177
178#ifdef cl_khr_fp16
179
180#pragma OPENCL EXTENSION cl_khr_fp16 : enable
181
182_CLC_DEFINE_UNARY_BUILTIN_FP16(log1p)
183
184#endif
185