xref: /llvm-project/libclc/generic/lib/math/atan.cl (revision 78b5bb702fe97fe85f66d72598d0dfa7c49fe001)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24#include <clc/clcmacro.h>
25#include <clc/math/math.h>
26
27_CLC_OVERLOAD _CLC_DEF float atan(float x)
28{
29    const float piby2 = 1.5707963267948966f; // 0x3ff921fb54442d18
30
31    uint ux = as_uint(x);
32    uint aux = ux & EXSIGNBIT_SP32;
33    uint sx = ux ^ aux;
34
35    float spiby2 = as_float(sx | as_uint(piby2));
36
37    float v = as_float(aux);
38
39    // Return for NaN
40    float ret = x;
41
42    // 2^26 <= |x| <= Inf => atan(x) is close to piby2
43    ret = aux <= PINFBITPATT_SP32  ? spiby2 : ret;
44
45    // Reduce arguments 2^-19 <= |x| < 2^26
46
47    // 39/16 <= x < 2^26
48    x = -MATH_RECIP(v);
49    float c = 1.57079632679489655800f; // atan(infinity)
50
51    // 19/16 <= x < 39/16
52    int l = aux < 0x401c0000;
53    float xx = MATH_DIVIDE(v - 1.5f, mad(v, 1.5f, 1.0f));
54    x = l ? xx : x;
55    c = l ? 9.82793723247329054082e-01f : c; // atan(1.5)
56
57    // 11/16 <= x < 19/16
58    l = aux < 0x3f980000U;
59    xx =  MATH_DIVIDE(v - 1.0f, 1.0f + v);
60    x = l ? xx : x;
61    c = l ? 7.85398163397448278999e-01f : c; // atan(1)
62
63    // 7/16 <= x < 11/16
64    l = aux < 0x3f300000;
65    xx = MATH_DIVIDE(mad(v, 2.0f, -1.0f), 2.0f + v);
66    x = l ? xx : x;
67    c = l ? 4.63647609000806093515e-01f : c; // atan(0.5)
68
69    // 2^-19 <= x < 7/16
70    l = aux < 0x3ee00000;
71    x = l ? v : x;
72    c = l ? 0.0f : c;
73
74    // Core approximation: Remez(2,2) on [-7/16,7/16]
75
76    float s = x * x;
77    float a = mad(s,
78                  mad(s, 0.470677934286149214138357545549e-2f, 0.192324546402108583211697690500f),
79                  0.296528598819239217902158651186f);
80
81    float b = mad(s,
82                  mad(s, 0.299309699959659728404442796915f, 0.111072499995399550138837673349e1f),
83                  0.889585796862432286486651434570f);
84
85    float q = x * s * MATH_DIVIDE(a, b);
86
87    float z = c - (q - x);
88    float zs = as_float(sx | as_uint(z));
89
90    ret  = aux < 0x4c800000 ?  zs : ret;
91
92    // |x| < 2^-19
93    ret = aux < 0x36000000 ? as_float(ux) : ret;
94    return ret;
95}
96
97_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan, float);
98
99#ifdef cl_khr_fp64
100
101#pragma OPENCL EXTENSION cl_khr_fp64 : enable
102
103
104_CLC_OVERLOAD _CLC_DEF double atan(double x)
105{
106    const double piby2 = 1.5707963267948966e+00; // 0x3ff921fb54442d18
107
108    double v = fabs(x);
109
110    // 2^56 > v > 39/16
111    double a = -1.0;
112    double b = v;
113    // (chi + clo) = arctan(infinity)
114    double chi = 1.57079632679489655800e+00;
115    double clo = 6.12323399573676480327e-17;
116
117    double ta = v - 1.5;
118    double tb = 1.0 + 1.5 * v;
119    int l = v <= 0x1.38p+1; // 39/16 > v > 19/16
120    a = l ? ta : a;
121    b = l ? tb : b;
122    // (chi + clo) = arctan(1.5)
123    chi = l ? 9.82793723247329054082e-01 : chi;
124    clo = l ? 1.39033110312309953701e-17 : clo;
125
126    ta = v - 1.0;
127    tb = 1.0 + v;
128    l = v <= 0x1.3p+0; // 19/16 > v > 11/16
129    a = l ? ta : a;
130    b = l ? tb : b;
131    // (chi + clo) = arctan(1.)
132    chi = l ? 7.85398163397448278999e-01 : chi;
133    clo = l ? 3.06161699786838240164e-17 : clo;
134
135    ta = 2.0 * v - 1.0;
136    tb = 2.0 + v;
137    l = v <= 0x1.6p-1; // 11/16 > v > 7/16
138    a = l ? ta : a;
139    b = l ? tb : b;
140    // (chi + clo) = arctan(0.5)
141    chi = l ? 4.63647609000806093515e-01 : chi;
142    clo = l ? 2.26987774529616809294e-17 : clo;
143
144    l = v <= 0x1.cp-2; // v < 7/16
145    a = l ? v : a;
146    b = l ? 1.0 : b;;
147    chi = l ? 0.0 : chi;
148    clo = l ? 0.0 : clo;
149
150    // Core approximation: Remez(4,4) on [-7/16,7/16]
151    double r = a / b;
152    double s = r * r;
153    double qn = fma(s,
154                    fma(s,
155                        fma(s,
156                            fma(s, 0.142316903342317766e-3,
157                                   0.304455919504853031e-1),
158                            0.220638780716667420e0),
159                        0.447677206805497472e0),
160                    0.268297920532545909e0);
161
162    double qd = fma(s,
163	            fma(s,
164			fma(s,
165			    fma(s, 0.389525873944742195e-1,
166				   0.424602594203847109e0),
167                            0.141254259931958921e1),
168                        0.182596787737507063e1),
169                    0.804893761597637733e0);
170
171    double q = r * s * qn / qd;
172    r = chi - ((q - clo) - r);
173
174    double z = isnan(x) ? x : piby2;
175    z = v <= 0x1.0p+56 ? r : z;
176    z = v < 0x1.0p-26 ? v : z;
177    return x == v ? z : -z;
178}
179
180_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan, double);
181
182#endif // cl_khr_fp64
183
184#ifdef cl_khr_fp16
185
186#pragma OPENCL EXTENSION cl_khr_fp16 : enable
187
188_CLC_DEFINE_UNARY_BUILTIN_FP16(atan)
189
190#endif
191