Home
last modified time | relevance | path

Searched full:matmul (Results 1 – 25 of 302) sorted by relevance

12345678910>>...13

/llvm-project/polly/docs/experiments/matmul/
H A Drunall.sh4 clang -S -emit-llvm matmul.c -Xclang -disable-O0-optnone -o matmul.ll
7 opt -S -polly-canonicalize matmul.ll -o matmul.preopt.ll
10 opt -basic-aa -polly-ast -analyze matmul.preopt.ll \
16 # opt -basic-aa -view-scops -disable-output matmul.preopt.ll
17 opt -basic-aa -dot-scops -disable-output matmul.preopt.ll -polly-use-llvm-names
23 # opt -basic-aa -view-scops-only -disable-output matmul.preopt.ll
24 opt -basic-aa -dot-scops-only -disable-output matmul.preopt.ll -polly-use-llvm-names
30 opt -basic-aa -polly-scops -analyze matmul.preopt.ll \
34 opt -basic-aa -polly-dependences -analyze matmul.preopt.ll \
38 opt -basic-aa -polly-export-jscop matmul.preopt.ll \
[all …]
/llvm-project/polly/docs/
H A DHowToManuallyUseTheIndividualPiecesOfPolly.rst24 clang -S -emit-llvm matmul.c -Xclang -disable-O0-optnone -o matmul.ll
37 opt -S -polly-canonicalize matmul.ll -o matmul.preopt.ll
48 …$ opt -basic-aa -polly-ast -analyze matmul.preopt.ll -polly-process-unprofitable -polly-use-llvm-n…
87 $ opt -polly-use-llvm-names -basic-aa -view-scops -disable-output matmul.preopt.ll
88 … $ opt -polly-use-llvm-names -basic-aa -view-scops-only -disable-output matmul.preopt.ll
95 .. _main: http://polly.llvm.org/experiments/matmul/scops.main.dot.png
96 .. _init_array: http://polly.llvm.org/experiments/matmul/scops.init_array.dot.png
97 .. _print_array: http://polly.llvm.org/experiments/matmul/scops.print_array.dot.png
98 .. _main-scopsonly: http://polly.llvm.org/experiments/matmul/scopsonly.main.dot.png
99 .. _init_array-scopsonly: http://polly.llvm.org/experiments/matmul/scopsonly.init_array.dot.png
[all …]
/llvm-project/mlir/test/Examples/transform/Ch4/
H A Dmultiple.mlir3 // Matmul+ReLU.
9 // expected-remark @below {{matmul # 0}}
10 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
16 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
28 // Matmul+ReLU with swapped operands.
34 // expected-remark @below {{matmul # 1}}
35 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
41 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
78 %matmul: !transform.any_op {transform.readonly},
82 transform.debug.emit_param_as_remark %pos, "matmul #" at %matmul
[all …]
H A Dsequence.mlir19 // expected-remark @below {{matmul}}
20 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
26 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
51 %matmul = transform.collect_matching @match_matmul in %root
56 transform.include @print_matmul failures(propagate) (%matmul)
67 %matmul, %el1, %el2 = transform.collect_matching @match_matmul_elemwise in %root
73 transform.include @print_matmul failures(propagate) (%matmul)
91 transform.match.operation_name %entry ["linalg.matmul"] : !transform.any_op
103 %matmul: !transform.any_op {transform.readonly}) {
104 transform.debug.emit_remark_at %matmul, "matmul" : !transform.any_op
[all …]
H A Dfeatures.mlir3 // Matmul as a named operation.
8 // expected-remark @below {{matmul}}
9 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
11 func.return %matmul : tensor<512x512xf32>
14 // Matmul as a generic operation.
19 // expected-remark @below {{matmul}}
20 %matmul = linalg.generic {
33 return %matmul : tensor<512x512xf32>
61 %matmul: !transform.any_op {transform.readonly}) {
62 transform.debug.emit_remark_at %matmul, "matmul" : !transform.any_op
/llvm-project/mlir/test/Dialect/Linalg/
H A Dtransform-op-hoist-pad.mlir8 %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
14 %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
18 %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul tile_sizes [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
46 %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
52 %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
56 %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul tile_sizes [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
90 // CHECK: linalg.matmul ins(%[[PADDED]]
91 %0 = linalg.matmul in
[all...]
H A Dtransform-op-hoist-pad-build-packing-loop-nest.mlir9 %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
15 %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
18 %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul tile_sizes [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
43 %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
49 %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
52 %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul tile_sizes [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
83 %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
89 %matmul
[all...]
H A Dtransform-op-pad.mlir25 // CHECK: %[[T5:.*]] = linalg.matmul
31 %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
38 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
65 // CHECK: linalg.matmul
68 %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
75 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
99 // CHECK: linalg.matmul
102 %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
110 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
144 // CHECK: %[[T5:.*]] = linalg.matmul
[all...]
H A Dcontinuous-tiling-multiway-split.mlir5 // The list of split points is consumed by splitOp to split the linalg.matmul op
6 // along dimension 1 to produce as many split-up linalg.matmul ops.
9 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
19 %0 = linalg.matmul ins(%arg0, %arg1: tensor<25x34xf32>, tensor<34x25xf32>)
30 // CHECK %[[MM0:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE]] : tensor<25x34xf32>, tensor<34x18xf32>) outs(%[[SLICE0]] : tensor<25x18xf32>) -> tensor<25x18xf32>
36 // CHECK %[[MM1:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE3]] : tensor<25x34xf32>, tensor<34x4xf32>) outs(%[[SLICE4]] : tensor<25x4xf32>) -> tensor<25x4xf32>
42 // CHECK %[[MM2:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE7]] : tensor<25x34xf32>, tensor<34x2xf32>) outs(%[[SLICE8]] : tensor<25x2xf32>) -> tensor<25x2xf32>
46 // CHECK %[[MM3:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE9]] : tensor<25x34xf32>, tensor<34x1xf32>) outs(%[[SLICE10]] : tensor<25x1xf32>) -> tensor<25x1xf32>
59 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
69 %0 = linalg.matmul in
[all...]
H A Dmatmul-shared-memory-padding.mlir23 // CHECK: linalg.matmul
36 %1 = linalg.matmul ins(%A, %B : tensor<1024x1024xf32>, tensor<1024x1024xf32>)
44 // Fuse linalg.fill into linalg.matmul and tile.
45 %matmul_op = transform.structured.match ops{["linalg.matmul"]} in %arg1
54 // Tile linalg.matmul a second time.
57 // Pad linalg.matmul.
143 // CHECK: linalg.matmul
155 %1 = linalg.matmul ins(%A, %B : tensor<1023x1023xf32>, tensor<1023x1023xf32>)
163 // Fuse linalg.fill into linalg.matmul and tile.
164 %matmul_op = transform.structured.match ops{["linalg.matmul"]} i
[all...]
H A Dcontinuous-tiling-full.mlir5 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
20 %0 = linalg.matmul ins(%arg0, %arg1: tensor<25x34xf32>, tensor<34x25xf32>)
37 // CHECK: %[[MATMUL:.+]] = linalg.matmul ins(%[[XSIN19]], %[[IN2]] : tensor<9x34xf32>, tensor<34x25xf32>) outs(%[[XSOUT9]] : tensor<9x25xf32>) -> tensor<9x25xf32>
38 // CHECK: %[[INS9:.+]] = tensor.insert_slice %[[MATMUL]] into %[[XSOUT18ARG]][%[[IDX]], 0] [9, 25] [1, 1] : tensor<9x25xf32> into tensor<18x25xf32>
46 // CHECK: %[[R1:.+]] = linalg.matmul ins(%[[XS3]], %[[IN2]] : tensor<4x34xf32>, tensor<34x25xf32>) outs(%[[XS4]] : tensor<4x25xf32>) -> tensor<4x25xf32>
52 // CHECK: %[[R2:.+]] = linalg.matmul ins(%[[XS8]], %[[IN2]] : tensor<2x34xf32>, tensor<34x25xf32>) outs(%[[XS9]] : tensor<2x25xf32>) -> tensor<2x25xf32>
56 // CHECK: %[[R3:.+]] = linalg.matmul ins(%[[XS11]], %[[IN2]] : tensor<1x34xf32>, tensor<34x25xf32>) outs(%[[XS12]] : tensor<1x25xf32>) -> tensor<1x25xf32>
66 %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
81 %0 = linalg.matmul in
[all...]
H A Dtransform-op-multitile-sizes.mlir7 …%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transfor…
17 %0 = linalg.matmul ins(%arg0, %arg1: tensor<13x34xf32>, tensor<34x42xf32>)
33 …%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transfor…
51 %0 = linalg.matmul ins(%arg0, %arg1: tensor<13x34xf32>, tensor<34x42xf32>)
62 …%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transfor…
78 // For matmul, the extent of the first iteration space dimension is equal to
94 %0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
105 …%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transfor…
117 %0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
/llvm-project/flang/test/Evaluate/
H A Dfold-matmul.f902 ! Tests folding of MATMUL()
8 integer, parameter :: iab(*,*) = matmul(ia, ib)
9 integer, parameter :: ixa(*) = matmul(ix, ia)
10 integer, parameter :: iay(*) = matmul(ia, iy)
19 real, parameter :: rab(*,*) = matmul(ra, rb)
20 real, parameter :: rxa(*) = matmul(rx, ra)
21 real, parameter :: ray(*) = matmul(ra, ry)
30 complex, parameter :: zab(*,*) = matmul(za, zb)
31 complex, parameter :: zxa(*) = matmul(zx, za)
32 complex, parameter :: zay(*) = matmul(za, zy)
[all …]
/llvm-project/mlir/docs/Tutorials/transform/
H A DCh1.md18 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
23 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
43 %arg1: !transform.op<"linalg.matmul">,
74 %arg1: !transform.op<"linalg.matmul">,
76 transform.debug.emit_remark_at %arg1, "matmul"
77 : !transform.op<"linalg.matmul">
92 debug-bind-trailing-args=linalg.matmul,linalg.elemwise_binary})"
95 …ciate the two extra arguments of the top-level sequence with all `linalg.matmul` and `linalg.elemw…
98 sequence.mlir:7:13: remark: matmul
99 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
[all …]
H A DCh4.md40 %matmul = linalg.matmul
46 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
61 additional arguments, `bind-first-extra-to-ops=linalg.matmul
84 %matmul = transform.collect_matching @match_matmul in %root
88 transform.include @print_matmul failures(propagate) (%matmul)
106 transform.match.operation_name %entry ["linalg.matmul"] : !transform.any_op
118 %matmul: !transform.any_op {transform.readonly}) {
119 transform.debug.emit_remark_at %matmul, "matmul" : !transform.any_op
130 `linalg.elemwise_binary` and `linalg.matmul` operations. In debug builds, the
139 [transform-matcher] matching %0 = linalg.matmul ins(%arg0, %arg1 : tensor<512x512xf32>, tensor<512x…
[all …]
/llvm-project/flang/test/HLFIR/
H A Dmatmul.fir1 // Test hlfir.matmul operation parse, verify (no errors), and unparse
7 …%res = hlfir.matmul %arg0 %arg1 : (!hlfir.expr<2x2xi32>, !hlfir.expr<2x2xi32>) -> !hlfir.expr<2x2x…
13 // CHECK-NEXT: %[[RES:.*]] = hlfir.matmul %[[ARG0]] %[[ARG1]] : (!hlfir.expr<2x2xi32>, !hlfir.ex…
19 …%res = hlfir.matmul %arg0 %arg1 : (!hlfir.expr<?x?xi32>, !hlfir.expr<?x?xi32>) -> !hlfir.expr<?x?x…
25 // CHECK-NEXT: %[[RES:.*]] = hlfir.matmul %[[ARG0]] %[[ARG1]] : (!hlfir.expr<?x?xi32>, !hlfir.ex…
31 …%res = hlfir.matmul %arg0 %arg1 : (!hlfir.expr<2x?xi32>, !hlfir.expr<?x2xi32>) -> !hlfir.expr<2x2x…
37 // CHECK-NEXT: %[[RES:.*]] = hlfir.matmul %[[ARG0]] %[[ARG1]] : (!hlfir.expr<2x?xi32>, !hlfir.ex…
43 …%res = hlfir.matmul %arg0 %arg1 : (!hlfir.expr<?x2xi32>, !hlfir.expr<2x?xi32>) -> !hlfir.expr<?x?x…
49 // CHECK-NEXT: %[[RES:.*]] = hlfir.matmul %[[ARG0]] %[[ARG1]] : (!hlfir.expr<?x2xi32>, !hlfir.ex…
55 …%res = hlfir.matmul %arg0 %arg1 : (!hlfir.expr<?x?x!fir.logical<4>>, !hlfir.expr<?x?x!fir.logical<…
[all …]
/llvm-project/mlir/test/Examples/transform/Ch1/
H A Dinvalidation-1.mlir3 // RUN: debug-bind-trailing-args=linalg.matmul,linalg.elemwise_binary},\
18 %arg1: !transform.op<"linalg.matmul">,
23 : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op)
27 transform.debug.emit_remark_at %arg1, "remark" : !transform.op<"linalg.matmul">
38 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
43 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
59 %arg1: !transform.op<"linalg.matmul">,
64 %casted = transform.cast %arg1 : !transform.op<"linalg.matmul"> to
70 : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op)
87 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
[all …]
H A Dsequence.mlir3 // RUN: debug-bind-trailing-args=linalg.matmul,linalg.elemwise_binary},\
19 %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
24 ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
36 // CHECK: linalg.matmul
48 // CHECK-NOT: linalg.matmul
65 %arg1: !transform.op<"linalg.matmul">,
87 … : (!transform.op<"linalg.matmul">, !transform.any_op) -> (!transform.any_op, !transform.any_op)
90 // "add" operation and fuses matmul into the loop, but doesn't affect the
/llvm-project/mlir/test/Dialect/Transform/
H A Dselective-targeting.mlir11 // CHECK: linalg.matmul
13 %0 = linalg.matmul { test.attrA }
29 // CHECK-NOT: linalg.matmul
31 %0 = linalg.matmul { test.attrA, test.attrC }
48 %0 = linalg.matmul { test.attrC }
59 // Match matmul operations inside @matmul_tensors with test.attrA set.
64 …%0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrA" = %attr}-> (%results : !pd…
69 // Match matmul operations inside @matmul_tensors with test.attrC set.
74 …%0 = operation "linalg.matmul"(%args : !pdl.range<value>) {"test.attrC" = %attr}-> (%results : !pd…
100 %0 = linalg.matmul {test.attrA}
[all …]
/llvm-project/mlir/test/Integration/Dialect/Transform/
H A Dmatch_matmul.mlir14 transform.match.operation_name %entry ["linalg.matmul", "linalg.generic"] : !transform.any_op
16 %fill, %matmul, %dims, %lhs_type, %rhs_type, %res_type, %kinds:4 =
23 transform.yield %fill, %matmul, %dims, %lhs_type, %rhs_type, %res_type
29 %matmul: !transform.any_op {transform.readonly},
35 transform.debug.emit_remark_at %matmul, "matmul" : !transform.any_op
36 …transform.debug.emit_param_as_remark %dims, "dimensions" at %matmul : !transform.param<i64>, !tran…
37 …transform.debug.emit_param_as_remark %lhs_type, "LHS type" at %matmul : !transform.type, !transfor…
38 …transform.debug.emit_param_as_remark %rhs_type, "RHS type" at %matmul : !transform.type, !transfor…
39 …transform.debug.emit_param_as_remark %res_type, "result type" at %matmul : !transform.type, !trans…
56 // expected-remark @below {{matmul}}
[all …]
/llvm-project/flang/include/flang/Runtime/
H A Dmatmul.h1 //===-- include/flang/Runtime/matmul.h --------------------------*- C++ -*-===//
9 // API for the transformational intrinsic function MATMUL.
20 // The most general MATMUL. All type and shape information is taken from the
22 void RTDECL(Matmul)(Descriptor &, const Descriptor &, const Descriptor &,
30 // MATMUL versions specialized by the categories of the operand types.
34 void RTDECL(Matmul##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \
44 #include "matmul-instances.inc"
/llvm-project/llvm/lib/Transforms/Scalar/
H A DLowerMatrixIntrinsics.cpp960 // If we have a TT matmul or a TT add, lift the transpose. We may be able in Visit()
1355 /// Special case for MatMul lowering. Prevents scalar loads of row-major in lowerDotProduct()
1358 void lowerDotProduct(CallInst *MatMul, in lowerDotProduct()
1361 if (FusedInsts.contains(MatMul) || in lowerDotProduct()
1364 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); in lowerDotProduct()
1365 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); in lowerDotProduct()
1370 Value *LHS = MatMul->getArgOperand(0); in lowerDotProduct()
1371 Value *RHS = MatMul in lowerDotProduct()
1332 lowerDotProduct(CallInst * MatMul,SmallPtrSet<Instruction *,16> & FusedInsts,FastMathFlags FMF) lowerDotProduct() argument
1608 getNonAliasingPointer(LoadInst * Load,StoreInst * Store,CallInst * MatMul) getNonAliasingPointer() argument
1692 isFusionProfitable(CallInst * MatMul) isFusionProfitable() argument
1736 createTiledLoops(CallInst * MatMul,Value * LPtr,ShapeInfo LShape,Value * RPtr,ShapeInfo RShape,StoreInst * Store) createTiledLoops() argument
1795 emitSIMDTiling(CallInst * MatMul,LoadInst * LoadOp0,LoadInst * LoadOp1,StoreInst * Store,SmallPtrSetImpl<Instruction * > & FusedInsts) emitSIMDTiling() argument
1864 LowerMatrixMultiplyFused(CallInst * MatMul,SmallPtrSetImpl<Instruction * > & FusedInsts,SmallVector<IntrinsicInst *,16> & LifetimeEnds) LowerMatrixMultiplyFused() argument
2010 LowerMultiply(CallInst * MatMul) LowerMultiply() argument
[all...]
/llvm-project/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/
H A Dmatmul.mlir34 // Matmul
35 %C_out = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>) outs(%C_in: tensor<?x?xf32>) -> tensor<?x?xf32>
71 // Matmul
72 %C_out = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) outs(%C_in: tensor<?x?xi32>) -> tensor<?x?xi32>
90 // A sequence that will tile and vectorise a Matmul Op
94 // Step 0: Get a handle to the matmul Op
95 %matmul = transform.structured.match ops{["linalg.matmul"]} in %func
99 %tiled_matmul, %loops:3 = transform.structured.tile_using_for %matmul tile_sizes [2, [4], 1]
/llvm-project/mlir/test/Integration/Dialect/PDL/CPU/
H A Dmultiroot.mlir19 …%op0 = pdl.operation "tf.MatMul" (%rxact, %weight : !pdl.value, !pdl.value) {"transpose_a" = %attr…
24 pdl.replace %op0 with (%val1 : !pdl.value) // tf.MatMul
40 …%op0 = pdl.operation "tf.MatMul" (%rxact, %rxdelta : !pdl.value, !pdl.value) {"transpose_a" = %att…
54 pdl.erase %op0 // tf.MatMul
106 …%3 = "tf.MatMul"(%arg0, %arg2) {transpose_a = false, transpose_b = false} : (tensor<2x20xf32>, ten…
111 …%7 = "tf.MatMul"(%arg0, %6) {transpose_a = true, transpose_b = false} : (tensor<2x20xf32>, tensor<…
160 …%op0 = pdl.operation "tf.MatMul" (%rxact, %weight : !pdl.value, !pdl.value) {"transpose_a" = %attr…
169 …%op4 = pdl.operation "tf.MatMul" (%rxact, %val3 : !pdl.value, !pdl.value) {"transpose_a" = %attr1,…
184 pdl.erase %op4 // tf.MatMul
188 pdl.erase %op0 // tf.MatMul
[all …]
/llvm-project/mlir/test/Dialect/Mesh/
H A Dsharding-propagation.mlir107 // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
108 %0 = tosa.matmul %arg0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
124 // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
125 %0 = tosa.matmul %arg0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
143 // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
144 %1 = tosa.matmul %0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
162 // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
163 %2 = tosa.matmul %0, %1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
188 // CHECK: %[[MATMUL:.*]] = linalg.matmul in
[all...]

12345678910>>...13