Home
last modified time | relevance | path

Searched +full:batch +full:- +full:reduce (Results 1 – 25 of 28) sorted by relevance

12

/llvm-project/mlir/include/mlir/Dialect/Linalg/IR/
H A DLinalgInterfaces.h1 //===- LinalgInterface.h - Linalg operations interfaces --------
44 SmallVector<unsigned, 2> batch; global() member
76 SmallVector<unsigned, 2> batch; global() member
[all...]
H A DLinalgNamedStructuredOps.yaml3 --- !LinalgOpConfig
7 doc: |-
13 - hasCanonicalizer
16 - !LinalgOperandDefConfig
20 shape_map: affine_map<() -> ()>
21 - !LinalgOperandDefConfig
25 shape_map: affine_map<() -> ()>
26 - !LinalgOperandDefConfi
[all...]
/llvm-project/mlir/include/mlir/Dialect/Vector/Transforms/
H A DLoweringPatterns.h1 //===- LoweringPatterns.h - Vector rewrite patterns --------*
[all...]
/llvm-project/llvm/tools/llvm-reduce/deltas/
H A DReduceFunctions.cpp1 //===- ReduceFunctions.cpp - Specialized Delta Pass -----------------------===//
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 // to reduce functions (and any instruction that calls it) in the provided
13 //===----------------------------------------------------------------------===//
29 // Record all out-of-chunk functions. in extractFunctionsFromModule()
33 // reduce. Additionally, intrinsics may have additional operand in extractFunctionsFromModule()
44 // Then, drop body of each of them. We want to batch this and do nothing else in extractFunctionsFromModule()
47 F->dropAllReferences(); in extractFunctionsFromModule()
52 F->replaceAllUsesWith(getDefaultValue(F->getType())); in extractFunctionsFromModule()
[all …]
/llvm-project/llvm/docs/
H A DHowToAddABuilder.rst28 commits from the llvm-zorg repository.
52 with the "config owner". We do expect "resource owners" - who are generally
53 the contact listed in a workers attributes - to proxy requests to the relevant
74 of parallelism (-j param) would give the fastest build. You can build
77 #. Install buildbot-worker (currently we are using buildbot version 2.8.4).
79 as ``pip3 install buildbot-worker==2.8.4``.
81 #. Create a designated user account, your buildbot-worker will be running under,
84 #. Choose the buildbot-worker root directory (all builds will be placed under
85 it), buildbot-worker access name and password the build master will be using
86 to authenticate your buildbot-worke
[all...]
H A DJITLink.rst11 This document aims to provide a high-level overview of the design and API
25 static constructors, eh-frame registration for exceptions, and TLV support for
26 thread locals; Swift and Objective-C require language runtime registration for
34 1. Cross-process and cross-architecture linking of single relocatable objects
57 -----
[all...]
/llvm-project/mlir/lib/Dialect/Vector/Transforms/
H A DLowerVectorContract.cpp1 //===- LowerVectorContract.cpp - Lower 'vector.contract' operation --------
[all...]
/llvm-project/mlir/python/mlir/dialects/linalg/opdsl/ops/
H A Dcore_named_ops.py6 Batch = S.Batch variable
398 includes zero-point adjustments for the left and right operands of the
402 C[D.m, D.n] += (TypeFn.cast_signed(U, A[D.m, D.k]) - TypeFn.cast_signed(U, AZp)) * (
403 TypeFn.cast_signed(U, B[D.k, D.n]) - TypeFn.cast_signed(U, BZp)
449 """Performs a matrix-matrix-transpose multiplication of two 4D inputs.
468 lhs=TensorDef(TV.LhsType, Batch, S.M, S.K, S.M0, S.K0),
469 rhs=TensorDef(TV.RhsType, Batch, S.N, S.K, S.N0, S.K0),
470 accum=TensorDef(TV.AccumType, Batch,
491 batch_mmt4d( lhs=TensorDef(TV.LhsType, Batch, S.M, S.K, S.M0, S.K0), rhs=TensorDef(TV.RhsType, Batch, S.N, S.K, S.N0, S.K0), accum=TensorDef(TV.AccumType, Batch, S.M, S.N, S.M0, S.N0, output=True), ) global() argument
512 batch_matmul( A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K, S.N), C=TensorDef(U, Batch, S.M, S.N, output=True), ) global() argument
530 batch_matmul_transpose_a( A=TensorDef(T1, Batch, S.K, S.M), B=TensorDef(T2, Batch, S.K, S.N), C=TensorDef(U, Batch, S.M, S.N, output=True), ) global() argument
549 batch_matmul_transpose_b( A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.N, S.K), C=TensorDef(U, Batch, S.M, S.N, output=True), ) global() argument
568 quantized_batch_matmul( A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K, S.N), AZp=ScalarDef(I32), BZp=ScalarDef(I32), C=TensorDef(U, Batch, S.M, S.N, output=True), ) global() argument
589 batch_reduce_matmul( A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True), ) global() argument
636 batch_matvec( A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K), C=TensorDef(U, Batch, S.M, output=True), ) global() argument
654 batch_vecmat( A=TensorDef(T1, Batch, S.K), B=TensorDef(T2, Batch, S.K, S.N), C=TensorDef(U, Batch, S.N, output=True), ) global() argument
[all...]
/llvm-project/clang-tools-extra/clangd/
H A DSelection.cpp1 //===--- Selection.cpp ----------------------------------------------------===//
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
53 for (const auto *N = Common; N; N = N->Parent) { in recordMetrics()
54 if (const auto *RE = N->ASTNode.get<RecoveryExpr>()) { in recordMetrics()
56 RecoveryType.record(RE->isTypeDependent() ? 0 : 1, LanguageLabel); in recordMetrics()
71 // [----] MemberExpr, base = A().<anonymous>, member = b in getSourceRange()
72 // [----] MemberExpr: base = A(), member = <anonymous> in getSourceRange()
73 // [-] CXXConstructExpr in getSourceRange()
75 // so we reduce its range to match the CXXConstructExpr. in getSourceRange()
[all …]
/llvm-project/mlir/lib/Dialect/Linalg/Transforms/
H A DDropUnitDims.cpp1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===---
[all...]
/llvm-project/mlir/test/Conversion/TosaToLinalg/
H A Dtosa-to-linalg.mlir1 // RUN: mlir-opt --split-input-file -pass-pipeline="builtin.module(func.func(tosa-to-linalg))" %s -verif
[all...]
/llvm-project/llvm/test/Transforms/SLPVectorizer/RISCV/
H A Dreductions.ll2 ; RUN: opt < %s -passes=slp-vectorizer -mtriple=riscv64 \
3 ; RUN: -mattr=+v,+zvfhmin,+zvfbfmin -riscv-v-slp-max-vf=0 -
[all...]
/llvm-project/clang-tools-extra/pseudo/lib/
H A DGLR.cpp
/llvm-project/mlir/lib/Dialect/Tosa/IR/
H A DTosaOps.cpp1 //===- TosaOps.cpp - MLIR Dialect for TOSA --------
[all...]
/llvm-project/llvm/lib/Transforms/IPO/
H A DInliner.cpp1 //===- Inliner.cpp - Code common to all inliners --------
[all...]
/llvm-project/clang/www/
H A Dfeatures.html1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
5 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
6 <title>Clang - Features and Goals</title>
14 <!--#include virtual="menu.html.incl"-->
18 <!--*************************************************************************-->
19 <h1>Clang - Features and Goals</h1>
20 <!--*************************************************************************-->
28 <p>End-User Features:</p>
48 <li><a href="#real">A real-world, production quality compiler</a></li>
56 <!--*************************************************************************-->
[all …]
/llvm-project/llvm/test/CodeGen/X86/
H A Datomic-unordered.ll2 ; RUN: llc -O0 < %s -mtriple=x86_64-linux-generic -verify-machineinstrs -mcpu=skylake | FileCheck -…
3 ; RUN: llc -O3 < %s -mtriple=x86_64-linux-generic -verify-machineinstrs -mcpu=skylake | FileCheck -…
6 ; CHECK-O0-LABEL: load_i8:
7 ; CHECK-O0: # %bb.0:
8 ; CHECK-O0-NEXT: movb (%rdi), %al
9 ; CHECK-O0-NEXT: retq
11 ; CHECK-O3-LABEL: load_i8:
12 ; CHECK-O3: # %bb.0:
13 ; CHECK-O3-NEXT: movzbl (%rdi), %eax
14 ; CHECK-O3-NEXT: retq
[all …]
/llvm-project/mlir/lib/Conversion/TosaToLinalg/
H A DTosaToLinalg.cpp1 //===- TosaToLinalg.cpp - Lowering Tosa to Linalg Dialect --------
1439 auto batch = inputTy.getDimSize(0); matchAndRewrite() local
1561 Value batch = b.create<linalg::IndexOp>(0); matchAndRewrite() local
[all...]
/llvm-project/llvm/lib/Analysis/
H A DMemorySSA.cpp1 //===- MemorySSA.cpp - Memory SSA Builder --------
[all...]
/llvm-project/mlir/docs/Rationale/
H A DRationale.md5 decisions we made. This is not intended to be a "finely groomed" document - we
14 three-address SSA representations (like
19 high level dataflow graphs as well as target-specific code generated for high
24 MLIR stands for one of "Multi-Level IR" or "Multi-dimensional Loop IR" or
26 provides the rationale behind MLIR -- its actual
31 The Multi-Level Intermediate Representation (MLIR) is intended for easy
33 matrices of high dimensionality. It is thus well-suited to deep learning
35 sequential computation. The representation allows high-level optimization and
37 deep memory hierarchies --- general-purpose multicores, GPUs, and specialized
45 MLIR is a multi-level IR, i.e., it represents code at a domain-specific
[all …]
/llvm-project/mlir/lib/Dialect/SparseTensor/IR/
H A DSparseTensorDialect.cpp1 //===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
5 // SPDX-License-Identifier: Apache-2.
[all...]
/llvm-project/compiler-rt/lib/scudo/standalone/
H A Dprimary32.h1 //===-- primary32.h --------
[all...]
H A Dprimary64.h1 //===-- primary64.h --------
[all...]
/llvm-project/mlir/include/mlir/Dialect/Linalg/Transforms/
H A DTransforms.h1 //===- Transforms.h - Linalg transformations as patterns --------*
[all...]
/llvm-project/llvm/lib/Transforms/Scalar/
H A DJumpThreading.cpp1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
5 // SPDX-License-Identifie
[all...]

12