xref: /onnv-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision 12450:c77e20e4e046)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License (the "License").
6   * You may not use this file except in compliance with the License.
7   *
8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9   * or http://www.opensolaris.org/os/licensing.
10   * See the License for the specific language governing permissions
11   * and limitations under the License.
12   *
13   * When distributing Covered Code, include this CDDL HEADER in each
14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15   * If applicable, add the following below this CDDL HEADER, with the
16   * fields enclosed by brackets "[]" replaced with your own identifying
17   * information: Portions Copyright [yyyy] [name of copyright owner]
18   *
19   * CDDL HEADER END
20   */
21  /*
22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23   */
24  
25  #include <sys/zio.h>
26  #include <sys/spa.h>
27  #include <sys/dmu.h>
28  #include <sys/zfs_context.h>
29  #include <sys/zap.h>
30  #include <sys/refcount.h>
31  #include <sys/zap_impl.h>
32  #include <sys/zap_leaf.h>
33  #include <sys/avl.h>
34  #include <sys/arc.h>
35  
36  #ifdef _KERNEL
37  #include <sys/sunddi.h>
38  #endif
39  
40  static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
41  
42  uint64_t
zap_getflags(zap_t * zap)43  zap_getflags(zap_t *zap)
44  {
45  	if (zap->zap_ismicro)
46  		return (0);
47  	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
48  }
49  
50  int
zap_hashbits(zap_t * zap)51  zap_hashbits(zap_t *zap)
52  {
53  	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
54  		return (48);
55  	else
56  		return (28);
57  }
58  
59  uint32_t
zap_maxcd(zap_t * zap)60  zap_maxcd(zap_t *zap)
61  {
62  	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63  		return ((1<<16)-1);
64  	else
65  		return (-1U);
66  }
67  
68  static uint64_t
zap_hash(zap_name_t * zn)69  zap_hash(zap_name_t *zn)
70  {
71  	zap_t *zap = zn->zn_zap;
72  	uint64_t h = 0;
73  
74  	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
75  		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
76  		h = *(uint64_t *)zn->zn_key_orig;
77  	} else {
78  		h = zap->zap_salt;
79  		ASSERT(h != 0);
80  		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
81  
82  		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
83  			int i;
84  			const uint64_t *wp = zn->zn_key_norm;
85  
86  			ASSERT(zn->zn_key_intlen == 8);
87  			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
88  				int j;
89  				uint64_t word = *wp;
90  
91  				for (j = 0; j < zn->zn_key_intlen; j++) {
92  					h = (h >> 8) ^
93  					    zfs_crc64_table[(h ^ word) & 0xFF];
94  					word >>= NBBY;
95  				}
96  			}
97  		} else {
98  			int i, len;
99  			const uint8_t *cp = zn->zn_key_norm;
100  
101  			/*
102  			 * We previously stored the terminating null on
103  			 * disk, but didn't hash it, so we need to
104  			 * continue to not hash it.  (The
105  			 * zn_key_*_numints includes the terminating
106  			 * null for non-binary keys.)
107  			 */
108  			len = zn->zn_key_norm_numints - 1;
109  
110  			ASSERT(zn->zn_key_intlen == 1);
111  			for (i = 0; i < len; cp++, i++) {
112  				h = (h >> 8) ^
113  				    zfs_crc64_table[(h ^ *cp) & 0xFF];
114  			}
115  		}
116  	}
117  	/*
118  	 * Don't use all 64 bits, since we need some in the cookie for
119  	 * the collision differentiator.  We MUST use the high bits,
120  	 * since those are the ones that we first pay attention to when
121  	 * chosing the bucket.
122  	 */
123  	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
124  
125  	return (h);
126  }
127  
128  static int
zap_normalize(zap_t * zap,const char * name,char * namenorm)129  zap_normalize(zap_t *zap, const char *name, char *namenorm)
130  {
131  	size_t inlen, outlen;
132  	int err;
133  
134  	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
135  
136  	inlen = strlen(name) + 1;
137  	outlen = ZAP_MAXNAMELEN;
138  
139  	err = 0;
140  	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
141  	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
142  	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
143  
144  	return (err);
145  }
146  
147  boolean_t
zap_match(zap_name_t * zn,const char * matchname)148  zap_match(zap_name_t *zn, const char *matchname)
149  {
150  	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
151  
152  	if (zn->zn_matchtype == MT_FIRST) {
153  		char norm[ZAP_MAXNAMELEN];
154  
155  		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
156  			return (B_FALSE);
157  
158  		return (strcmp(zn->zn_key_norm, norm) == 0);
159  	} else {
160  		/* MT_BEST or MT_EXACT */
161  		return (strcmp(zn->zn_key_orig, matchname) == 0);
162  	}
163  }
164  
165  void
zap_name_free(zap_name_t * zn)166  zap_name_free(zap_name_t *zn)
167  {
168  	kmem_free(zn, sizeof (zap_name_t));
169  }
170  
171  zap_name_t *
zap_name_alloc(zap_t * zap,const char * key,matchtype_t mt)172  zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
173  {
174  	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
175  
176  	zn->zn_zap = zap;
177  	zn->zn_key_intlen = sizeof (*key);
178  	zn->zn_key_orig = key;
179  	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
180  	zn->zn_matchtype = mt;
181  	if (zap->zap_normflags) {
182  		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
183  			zap_name_free(zn);
184  			return (NULL);
185  		}
186  		zn->zn_key_norm = zn->zn_normbuf;
187  		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
188  	} else {
189  		if (mt != MT_EXACT) {
190  			zap_name_free(zn);
191  			return (NULL);
192  		}
193  		zn->zn_key_norm = zn->zn_key_orig;
194  		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
195  	}
196  
197  	zn->zn_hash = zap_hash(zn);
198  	return (zn);
199  }
200  
201  zap_name_t *
zap_name_alloc_uint64(zap_t * zap,const uint64_t * key,int numints)202  zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
203  {
204  	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
205  
206  	ASSERT(zap->zap_normflags == 0);
207  	zn->zn_zap = zap;
208  	zn->zn_key_intlen = sizeof (*key);
209  	zn->zn_key_orig = zn->zn_key_norm = key;
210  	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
211  	zn->zn_matchtype = MT_EXACT;
212  
213  	zn->zn_hash = zap_hash(zn);
214  	return (zn);
215  }
216  
217  static void
mzap_byteswap(mzap_phys_t * buf,size_t size)218  mzap_byteswap(mzap_phys_t *buf, size_t size)
219  {
220  	int i, max;
221  	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
222  	buf->mz_salt = BSWAP_64(buf->mz_salt);
223  	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
224  	max = (size / MZAP_ENT_LEN) - 1;
225  	for (i = 0; i < max; i++) {
226  		buf->mz_chunk[i].mze_value =
227  		    BSWAP_64(buf->mz_chunk[i].mze_value);
228  		buf->mz_chunk[i].mze_cd =
229  		    BSWAP_32(buf->mz_chunk[i].mze_cd);
230  	}
231  }
232  
233  void
zap_byteswap(void * buf,size_t size)234  zap_byteswap(void *buf, size_t size)
235  {
236  	uint64_t block_type;
237  
238  	block_type = *(uint64_t *)buf;
239  
240  	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
241  		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
242  		mzap_byteswap(buf, size);
243  	} else {
244  		fzap_byteswap(buf, size);
245  	}
246  }
247  
248  static int
mze_compare(const void * arg1,const void * arg2)249  mze_compare(const void *arg1, const void *arg2)
250  {
251  	const mzap_ent_t *mze1 = arg1;
252  	const mzap_ent_t *mze2 = arg2;
253  
254  	if (mze1->mze_hash > mze2->mze_hash)
255  		return (+1);
256  	if (mze1->mze_hash < mze2->mze_hash)
257  		return (-1);
258  	if (mze1->mze_cd > mze2->mze_cd)
259  		return (+1);
260  	if (mze1->mze_cd < mze2->mze_cd)
261  		return (-1);
262  	return (0);
263  }
264  
265  static void
mze_insert(zap_t * zap,int chunkid,uint64_t hash)266  mze_insert(zap_t *zap, int chunkid, uint64_t hash)
267  {
268  	mzap_ent_t *mze;
269  
270  	ASSERT(zap->zap_ismicro);
271  	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
272  
273  	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
274  	mze->mze_chunkid = chunkid;
275  	mze->mze_hash = hash;
276  	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
277  	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
278  	avl_add(&zap->zap_m.zap_avl, mze);
279  }
280  
281  static mzap_ent_t *
mze_find(zap_name_t * zn)282  mze_find(zap_name_t *zn)
283  {
284  	mzap_ent_t mze_tofind;
285  	mzap_ent_t *mze;
286  	avl_index_t idx;
287  	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
288  
289  	ASSERT(zn->zn_zap->zap_ismicro);
290  	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
291  
292  	mze_tofind.mze_hash = zn->zn_hash;
293  	mze_tofind.mze_cd = 0;
294  
295  again:
296  	mze = avl_find(avl, &mze_tofind, &idx);
297  	if (mze == NULL)
298  		mze = avl_nearest(avl, idx, AVL_AFTER);
299  	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
300  		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
301  		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
302  			return (mze);
303  	}
304  	if (zn->zn_matchtype == MT_BEST) {
305  		zn->zn_matchtype = MT_FIRST;
306  		goto again;
307  	}
308  	return (NULL);
309  }
310  
311  static uint32_t
mze_find_unused_cd(zap_t * zap,uint64_t hash)312  mze_find_unused_cd(zap_t *zap, uint64_t hash)
313  {
314  	mzap_ent_t mze_tofind;
315  	mzap_ent_t *mze;
316  	avl_index_t idx;
317  	avl_tree_t *avl = &zap->zap_m.zap_avl;
318  	uint32_t cd;
319  
320  	ASSERT(zap->zap_ismicro);
321  	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
322  
323  	mze_tofind.mze_hash = hash;
324  	mze_tofind.mze_cd = 0;
325  
326  	cd = 0;
327  	for (mze = avl_find(avl, &mze_tofind, &idx);
328  	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
329  		if (mze->mze_cd != cd)
330  			break;
331  		cd++;
332  	}
333  
334  	return (cd);
335  }
336  
337  static void
mze_remove(zap_t * zap,mzap_ent_t * mze)338  mze_remove(zap_t *zap, mzap_ent_t *mze)
339  {
340  	ASSERT(zap->zap_ismicro);
341  	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
342  
343  	avl_remove(&zap->zap_m.zap_avl, mze);
344  	kmem_free(mze, sizeof (mzap_ent_t));
345  }
346  
347  static void
mze_destroy(zap_t * zap)348  mze_destroy(zap_t *zap)
349  {
350  	mzap_ent_t *mze;
351  	void *avlcookie = NULL;
352  
353  	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
354  		kmem_free(mze, sizeof (mzap_ent_t));
355  	avl_destroy(&zap->zap_m.zap_avl);
356  }
357  
358  static zap_t *
mzap_open(objset_t * os,uint64_t obj,dmu_buf_t * db)359  mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
360  {
361  	zap_t *winner;
362  	zap_t *zap;
363  	int i;
364  
365  	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
366  
367  	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
368  	rw_init(&zap->zap_rwlock, 0, 0, 0);
369  	rw_enter(&zap->zap_rwlock, RW_WRITER);
370  	zap->zap_objset = os;
371  	zap->zap_object = obj;
372  	zap->zap_dbuf = db;
373  
374  	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
375  		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
376  		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
377  	} else {
378  		zap->zap_ismicro = TRUE;
379  	}
380  
381  	/*
382  	 * Make sure that zap_ismicro is set before we let others see
383  	 * it, because zap_lockdir() checks zap_ismicro without the lock
384  	 * held.
385  	 */
386  	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
387  
388  	if (winner != NULL) {
389  		rw_exit(&zap->zap_rwlock);
390  		rw_destroy(&zap->zap_rwlock);
391  		if (!zap->zap_ismicro)
392  			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
393  		kmem_free(zap, sizeof (zap_t));
394  		return (winner);
395  	}
396  
397  	if (zap->zap_ismicro) {
398  		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
399  		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
400  		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
401  		avl_create(&zap->zap_m.zap_avl, mze_compare,
402  		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
403  
404  		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
405  			mzap_ent_phys_t *mze =
406  			    &zap->zap_m.zap_phys->mz_chunk[i];
407  			if (mze->mze_name[0]) {
408  				zap_name_t *zn;
409  
410  				zap->zap_m.zap_num_entries++;
411  				zn = zap_name_alloc(zap, mze->mze_name,
412  				    MT_EXACT);
413  				mze_insert(zap, i, zn->zn_hash);
414  				zap_name_free(zn);
415  			}
416  		}
417  	} else {
418  		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
419  		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
420  
421  		ASSERT3U(sizeof (struct zap_leaf_header), ==,
422  		    2*ZAP_LEAF_CHUNKSIZE);
423  
424  		/*
425  		 * The embedded pointer table should not overlap the
426  		 * other members.
427  		 */
428  		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
429  		    &zap->zap_f.zap_phys->zap_salt);
430  
431  		/*
432  		 * The embedded pointer table should end at the end of
433  		 * the block
434  		 */
435  		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
436  		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
437  		    (uintptr_t)zap->zap_f.zap_phys, ==,
438  		    zap->zap_dbuf->db_size);
439  	}
440  	rw_exit(&zap->zap_rwlock);
441  	return (zap);
442  }
443  
444  int
zap_lockdir(objset_t * os,uint64_t obj,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,zap_t ** zapp)445  zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
446      krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
447  {
448  	zap_t *zap;
449  	dmu_buf_t *db;
450  	krw_t lt;
451  	int err;
452  
453  	*zapp = NULL;
454  
455  	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
456  	if (err)
457  		return (err);
458  
459  #ifdef ZFS_DEBUG
460  	{
461  		dmu_object_info_t doi;
462  		dmu_object_info_from_db(db, &doi);
463  		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
464  	}
465  #endif
466  
467  	zap = dmu_buf_get_user(db);
468  	if (zap == NULL)
469  		zap = mzap_open(os, obj, db);
470  
471  	/*
472  	 * We're checking zap_ismicro without the lock held, in order to
473  	 * tell what type of lock we want.  Once we have some sort of
474  	 * lock, see if it really is the right type.  In practice this
475  	 * can only be different if it was upgraded from micro to fat,
476  	 * and micro wanted WRITER but fat only needs READER.
477  	 */
478  	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
479  	rw_enter(&zap->zap_rwlock, lt);
480  	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
481  		/* it was upgraded, now we only need reader */
482  		ASSERT(lt == RW_WRITER);
483  		ASSERT(RW_READER ==
484  		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
485  		rw_downgrade(&zap->zap_rwlock);
486  		lt = RW_READER;
487  	}
488  
489  	zap->zap_objset = os;
490  
491  	if (lt == RW_WRITER)
492  		dmu_buf_will_dirty(db, tx);
493  
494  	ASSERT3P(zap->zap_dbuf, ==, db);
495  
496  	ASSERT(!zap->zap_ismicro ||
497  	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
498  	if (zap->zap_ismicro && tx && adding &&
499  	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
500  		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
501  		if (newsz > MZAP_MAX_BLKSZ) {
502  			dprintf("upgrading obj %llu: num_entries=%u\n",
503  			    obj, zap->zap_m.zap_num_entries);
504  			*zapp = zap;
505  			return (mzap_upgrade(zapp, tx, 0));
506  		}
507  		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
508  		ASSERT3U(err, ==, 0);
509  		zap->zap_m.zap_num_chunks =
510  		    db->db_size / MZAP_ENT_LEN - 1;
511  	}
512  
513  	*zapp = zap;
514  	return (0);
515  }
516  
517  void
zap_unlockdir(zap_t * zap)518  zap_unlockdir(zap_t *zap)
519  {
520  	rw_exit(&zap->zap_rwlock);
521  	dmu_buf_rele(zap->zap_dbuf, NULL);
522  }
523  
524  static int
mzap_upgrade(zap_t ** zapp,dmu_tx_t * tx,zap_flags_t flags)525  mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
526  {
527  	mzap_phys_t *mzp;
528  	int i, sz, nchunks;
529  	int err = 0;
530  	zap_t *zap = *zapp;
531  
532  	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
533  
534  	sz = zap->zap_dbuf->db_size;
535  	mzp = kmem_alloc(sz, KM_SLEEP);
536  	bcopy(zap->zap_dbuf->db_data, mzp, sz);
537  	nchunks = zap->zap_m.zap_num_chunks;
538  
539  	if (!flags) {
540  		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
541  		    1ULL << fzap_default_block_shift, 0, tx);
542  		if (err) {
543  			kmem_free(mzp, sz);
544  			return (err);
545  		}
546  	}
547  
548  	dprintf("upgrading obj=%llu with %u chunks\n",
549  	    zap->zap_object, nchunks);
550  	/* XXX destroy the avl later, so we can use the stored hash value */
551  	mze_destroy(zap);
552  
553  	fzap_upgrade(zap, tx, flags);
554  
555  	for (i = 0; i < nchunks; i++) {
556  		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
557  		zap_name_t *zn;
558  		if (mze->mze_name[0] == 0)
559  			continue;
560  		dprintf("adding %s=%llu\n",
561  		    mze->mze_name, mze->mze_value);
562  		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
563  		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
564  		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
565  		zap_name_free(zn);
566  		if (err)
567  			break;
568  	}
569  	kmem_free(mzp, sz);
570  	*zapp = zap;
571  	return (err);
572  }
573  
574  static void
mzap_create_impl(objset_t * os,uint64_t obj,int normflags,zap_flags_t flags,dmu_tx_t * tx)575  mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
576      dmu_tx_t *tx)
577  {
578  	dmu_buf_t *db;
579  	mzap_phys_t *zp;
580  
581  	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
582  
583  #ifdef ZFS_DEBUG
584  	{
585  		dmu_object_info_t doi;
586  		dmu_object_info_from_db(db, &doi);
587  		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
588  	}
589  #endif
590  
591  	dmu_buf_will_dirty(db, tx);
592  	zp = db->db_data;
593  	zp->mz_block_type = ZBT_MICRO;
594  	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
595  	zp->mz_normflags = normflags;
596  	dmu_buf_rele(db, FTAG);
597  
598  	if (flags != 0) {
599  		zap_t *zap;
600  		/* Only fat zap supports flags; upgrade immediately. */
601  		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
602  		    B_FALSE, B_FALSE, &zap));
603  		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
604  		zap_unlockdir(zap);
605  	}
606  }
607  
608  int
zap_create_claim(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)609  zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
610      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
611  {
612  	return (zap_create_claim_norm(os, obj,
613  	    0, ot, bonustype, bonuslen, tx));
614  }
615  
616  int
zap_create_claim_norm(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)617  zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
618      dmu_object_type_t ot,
619      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
620  {
621  	int err;
622  
623  	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
624  	if (err != 0)
625  		return (err);
626  	mzap_create_impl(os, obj, normflags, 0, tx);
627  	return (0);
628  }
629  
630  uint64_t
zap_create(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)631  zap_create(objset_t *os, dmu_object_type_t ot,
632      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
633  {
634  	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
635  }
636  
637  uint64_t
zap_create_norm(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)638  zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
639      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
640  {
641  	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
642  
643  	mzap_create_impl(os, obj, normflags, 0, tx);
644  	return (obj);
645  }
646  
647  uint64_t
zap_create_flags(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)648  zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
649      dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
650      dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
651  {
652  	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
653  
654  	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
655  	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
656  	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
657  	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
658  
659  	VERIFY(dmu_object_set_blocksize(os, obj,
660  	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
661  
662  	mzap_create_impl(os, obj, normflags, flags, tx);
663  	return (obj);
664  }
665  
666  int
zap_destroy(objset_t * os,uint64_t zapobj,dmu_tx_t * tx)667  zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
668  {
669  	/*
670  	 * dmu_object_free will free the object number and free the
671  	 * data.  Freeing the data will cause our pageout function to be
672  	 * called, which will destroy our data (zap_leaf_t's and zap_t).
673  	 */
674  
675  	return (dmu_object_free(os, zapobj, tx));
676  }
677  
678  _NOTE(ARGSUSED(0))
679  void
zap_evict(dmu_buf_t * db,void * vzap)680  zap_evict(dmu_buf_t *db, void *vzap)
681  {
682  	zap_t *zap = vzap;
683  
684  	rw_destroy(&zap->zap_rwlock);
685  
686  	if (zap->zap_ismicro)
687  		mze_destroy(zap);
688  	else
689  		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
690  
691  	kmem_free(zap, sizeof (zap_t));
692  }
693  
694  int
zap_count(objset_t * os,uint64_t zapobj,uint64_t * count)695  zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
696  {
697  	zap_t *zap;
698  	int err;
699  
700  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
701  	if (err)
702  		return (err);
703  	if (!zap->zap_ismicro) {
704  		err = fzap_count(zap, count);
705  	} else {
706  		*count = zap->zap_m.zap_num_entries;
707  	}
708  	zap_unlockdir(zap);
709  	return (err);
710  }
711  
712  /*
713   * zn may be NULL; if not specified, it will be computed if needed.
714   * See also the comment above zap_entry_normalization_conflict().
715   */
716  static boolean_t
mzap_normalization_conflict(zap_t * zap,zap_name_t * zn,mzap_ent_t * mze)717  mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
718  {
719  	mzap_ent_t *other;
720  	int direction = AVL_BEFORE;
721  	boolean_t allocdzn = B_FALSE;
722  
723  	if (zap->zap_normflags == 0)
724  		return (B_FALSE);
725  
726  again:
727  	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
728  	    other && other->mze_hash == mze->mze_hash;
729  	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
730  
731  		if (zn == NULL) {
732  			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
733  			    MT_FIRST);
734  			allocdzn = B_TRUE;
735  		}
736  		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
737  			if (allocdzn)
738  				zap_name_free(zn);
739  			return (B_TRUE);
740  		}
741  	}
742  
743  	if (direction == AVL_BEFORE) {
744  		direction = AVL_AFTER;
745  		goto again;
746  	}
747  
748  	if (allocdzn)
749  		zap_name_free(zn);
750  	return (B_FALSE);
751  }
752  
753  /*
754   * Routines for manipulating attributes.
755   */
756  
757  int
zap_lookup(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)758  zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
759      uint64_t integer_size, uint64_t num_integers, void *buf)
760  {
761  	return (zap_lookup_norm(os, zapobj, name, integer_size,
762  	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
763  }
764  
765  int
zap_lookup_norm(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)766  zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
767      uint64_t integer_size, uint64_t num_integers, void *buf,
768      matchtype_t mt, char *realname, int rn_len,
769      boolean_t *ncp)
770  {
771  	zap_t *zap;
772  	int err;
773  	mzap_ent_t *mze;
774  	zap_name_t *zn;
775  
776  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
777  	if (err)
778  		return (err);
779  	zn = zap_name_alloc(zap, name, mt);
780  	if (zn == NULL) {
781  		zap_unlockdir(zap);
782  		return (ENOTSUP);
783  	}
784  
785  	if (!zap->zap_ismicro) {
786  		err = fzap_lookup(zn, integer_size, num_integers, buf,
787  		    realname, rn_len, ncp);
788  	} else {
789  		mze = mze_find(zn);
790  		if (mze == NULL) {
791  			err = ENOENT;
792  		} else {
793  			if (num_integers < 1) {
794  				err = EOVERFLOW;
795  			} else if (integer_size != 8) {
796  				err = EINVAL;
797  			} else {
798  				*(uint64_t *)buf =
799  				    MZE_PHYS(zap, mze)->mze_value;
800  				(void) strlcpy(realname,
801  				    MZE_PHYS(zap, mze)->mze_name, rn_len);
802  				if (ncp) {
803  					*ncp = mzap_normalization_conflict(zap,
804  					    zn, mze);
805  				}
806  			}
807  		}
808  	}
809  	zap_name_free(zn);
810  	zap_unlockdir(zap);
811  	return (err);
812  }
813  
814  int
zap_prefetch_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints)815  zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
816      int key_numints)
817  {
818  	zap_t *zap;
819  	int err;
820  	zap_name_t *zn;
821  
822  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
823  	if (err)
824  		return (err);
825  	zn = zap_name_alloc_uint64(zap, key, key_numints);
826  	if (zn == NULL) {
827  		zap_unlockdir(zap);
828  		return (ENOTSUP);
829  	}
830  
831  	fzap_prefetch(zn);
832  	zap_name_free(zn);
833  	zap_unlockdir(zap);
834  	return (err);
835  }
836  
837  int
zap_lookup_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)838  zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
839      int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
840  {
841  	zap_t *zap;
842  	int err;
843  	zap_name_t *zn;
844  
845  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
846  	if (err)
847  		return (err);
848  	zn = zap_name_alloc_uint64(zap, key, key_numints);
849  	if (zn == NULL) {
850  		zap_unlockdir(zap);
851  		return (ENOTSUP);
852  	}
853  
854  	err = fzap_lookup(zn, integer_size, num_integers, buf,
855  	    NULL, 0, NULL);
856  	zap_name_free(zn);
857  	zap_unlockdir(zap);
858  	return (err);
859  }
860  
861  int
zap_contains(objset_t * os,uint64_t zapobj,const char * name)862  zap_contains(objset_t *os, uint64_t zapobj, const char *name)
863  {
864  	int err = (zap_lookup_norm(os, zapobj, name, 0,
865  	    0, NULL, MT_EXACT, NULL, 0, NULL));
866  	if (err == EOVERFLOW || err == EINVAL)
867  		err = 0; /* found, but skipped reading the value */
868  	return (err);
869  }
870  
871  int
zap_length(objset_t * os,uint64_t zapobj,const char * name,uint64_t * integer_size,uint64_t * num_integers)872  zap_length(objset_t *os, uint64_t zapobj, const char *name,
873      uint64_t *integer_size, uint64_t *num_integers)
874  {
875  	zap_t *zap;
876  	int err;
877  	mzap_ent_t *mze;
878  	zap_name_t *zn;
879  
880  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
881  	if (err)
882  		return (err);
883  	zn = zap_name_alloc(zap, name, MT_EXACT);
884  	if (zn == NULL) {
885  		zap_unlockdir(zap);
886  		return (ENOTSUP);
887  	}
888  	if (!zap->zap_ismicro) {
889  		err = fzap_length(zn, integer_size, num_integers);
890  	} else {
891  		mze = mze_find(zn);
892  		if (mze == NULL) {
893  			err = ENOENT;
894  		} else {
895  			if (integer_size)
896  				*integer_size = 8;
897  			if (num_integers)
898  				*num_integers = 1;
899  		}
900  	}
901  	zap_name_free(zn);
902  	zap_unlockdir(zap);
903  	return (err);
904  }
905  
906  int
zap_length_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t * integer_size,uint64_t * num_integers)907  zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
908      int key_numints, uint64_t *integer_size, uint64_t *num_integers)
909  {
910  	zap_t *zap;
911  	int err;
912  	zap_name_t *zn;
913  
914  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
915  	if (err)
916  		return (err);
917  	zn = zap_name_alloc_uint64(zap, key, key_numints);
918  	if (zn == NULL) {
919  		zap_unlockdir(zap);
920  		return (ENOTSUP);
921  	}
922  	err = fzap_length(zn, integer_size, num_integers);
923  	zap_name_free(zn);
924  	zap_unlockdir(zap);
925  	return (err);
926  }
927  
928  static void
mzap_addent(zap_name_t * zn,uint64_t value)929  mzap_addent(zap_name_t *zn, uint64_t value)
930  {
931  	int i;
932  	zap_t *zap = zn->zn_zap;
933  	int start = zap->zap_m.zap_alloc_next;
934  	uint32_t cd;
935  
936  	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
937  
938  #ifdef ZFS_DEBUG
939  	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
940  		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
941  		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
942  	}
943  #endif
944  
945  	cd = mze_find_unused_cd(zap, zn->zn_hash);
946  	/* given the limited size of the microzap, this can't happen */
947  	ASSERT(cd < zap_maxcd(zap));
948  
949  again:
950  	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
951  		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
952  		if (mze->mze_name[0] == 0) {
953  			mze->mze_value = value;
954  			mze->mze_cd = cd;
955  			(void) strcpy(mze->mze_name, zn->zn_key_orig);
956  			zap->zap_m.zap_num_entries++;
957  			zap->zap_m.zap_alloc_next = i+1;
958  			if (zap->zap_m.zap_alloc_next ==
959  			    zap->zap_m.zap_num_chunks)
960  				zap->zap_m.zap_alloc_next = 0;
961  			mze_insert(zap, i, zn->zn_hash);
962  			return;
963  		}
964  	}
965  	if (start != 0) {
966  		start = 0;
967  		goto again;
968  	}
969  	ASSERT(!"out of entries!");
970  }
971  
972  int
zap_add(objset_t * os,uint64_t zapobj,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)973  zap_add(objset_t *os, uint64_t zapobj, const char *key,
974      int integer_size, uint64_t num_integers,
975      const void *val, dmu_tx_t *tx)
976  {
977  	zap_t *zap;
978  	int err;
979  	mzap_ent_t *mze;
980  	const uint64_t *intval = val;
981  	zap_name_t *zn;
982  
983  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
984  	if (err)
985  		return (err);
986  	zn = zap_name_alloc(zap, key, MT_EXACT);
987  	if (zn == NULL) {
988  		zap_unlockdir(zap);
989  		return (ENOTSUP);
990  	}
991  	if (!zap->zap_ismicro) {
992  		err = fzap_add(zn, integer_size, num_integers, val, tx);
993  		zap = zn->zn_zap;	/* fzap_add() may change zap */
994  	} else if (integer_size != 8 || num_integers != 1 ||
995  	    strlen(key) >= MZAP_NAME_LEN) {
996  		err = mzap_upgrade(&zn->zn_zap, tx, 0);
997  		if (err == 0)
998  			err = fzap_add(zn, integer_size, num_integers, val, tx);
999  		zap = zn->zn_zap;	/* fzap_add() may change zap */
1000  	} else {
1001  		mze = mze_find(zn);
1002  		if (mze != NULL) {
1003  			err = EEXIST;
1004  		} else {
1005  			mzap_addent(zn, *intval);
1006  		}
1007  	}
1008  	ASSERT(zap == zn->zn_zap);
1009  	zap_name_free(zn);
1010  	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1011  		zap_unlockdir(zap);
1012  	return (err);
1013  }
1014  
1015  int
zap_add_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1016  zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1017      int key_numints, int integer_size, uint64_t num_integers,
1018      const void *val, dmu_tx_t *tx)
1019  {
1020  	zap_t *zap;
1021  	int err;
1022  	zap_name_t *zn;
1023  
1024  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1025  	if (err)
1026  		return (err);
1027  	zn = zap_name_alloc_uint64(zap, key, key_numints);
1028  	if (zn == NULL) {
1029  		zap_unlockdir(zap);
1030  		return (ENOTSUP);
1031  	}
1032  	err = fzap_add(zn, integer_size, num_integers, val, tx);
1033  	zap = zn->zn_zap;	/* fzap_add() may change zap */
1034  	zap_name_free(zn);
1035  	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1036  		zap_unlockdir(zap);
1037  	return (err);
1038  }
1039  
1040  int
zap_update(objset_t * os,uint64_t zapobj,const char * name,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1041  zap_update(objset_t *os, uint64_t zapobj, const char *name,
1042      int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1043  {
1044  	zap_t *zap;
1045  	mzap_ent_t *mze;
1046  	uint64_t oldval;
1047  	const uint64_t *intval = val;
1048  	zap_name_t *zn;
1049  	int err;
1050  
1051  #ifdef ZFS_DEBUG
1052  	/*
1053  	 * If there is an old value, it shouldn't change across the
1054  	 * lockdir (eg, due to bprewrite's xlation).
1055  	 */
1056  	if (integer_size == 8 && num_integers == 1)
1057  		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1058  #endif
1059  
1060  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1061  	if (err)
1062  		return (err);
1063  	zn = zap_name_alloc(zap, name, MT_EXACT);
1064  	if (zn == NULL) {
1065  		zap_unlockdir(zap);
1066  		return (ENOTSUP);
1067  	}
1068  	if (!zap->zap_ismicro) {
1069  		err = fzap_update(zn, integer_size, num_integers, val, tx);
1070  		zap = zn->zn_zap;	/* fzap_update() may change zap */
1071  	} else if (integer_size != 8 || num_integers != 1 ||
1072  	    strlen(name) >= MZAP_NAME_LEN) {
1073  		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1074  		    zapobj, integer_size, num_integers, name);
1075  		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1076  		if (err == 0)
1077  			err = fzap_update(zn, integer_size, num_integers,
1078  			    val, tx);
1079  		zap = zn->zn_zap;	/* fzap_update() may change zap */
1080  	} else {
1081  		mze = mze_find(zn);
1082  		if (mze != NULL) {
1083  			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1084  			MZE_PHYS(zap, mze)->mze_value = *intval;
1085  		} else {
1086  			mzap_addent(zn, *intval);
1087  		}
1088  	}
1089  	ASSERT(zap == zn->zn_zap);
1090  	zap_name_free(zn);
1091  	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1092  		zap_unlockdir(zap);
1093  	return (err);
1094  }
1095  
1096  int
zap_update_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1097  zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1098      int key_numints,
1099      int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1100  {
1101  	zap_t *zap;
1102  	zap_name_t *zn;
1103  	int err;
1104  
1105  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1106  	if (err)
1107  		return (err);
1108  	zn = zap_name_alloc_uint64(zap, key, key_numints);
1109  	if (zn == NULL) {
1110  		zap_unlockdir(zap);
1111  		return (ENOTSUP);
1112  	}
1113  	err = fzap_update(zn, integer_size, num_integers, val, tx);
1114  	zap = zn->zn_zap;	/* fzap_update() may change zap */
1115  	zap_name_free(zn);
1116  	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1117  		zap_unlockdir(zap);
1118  	return (err);
1119  }
1120  
1121  int
zap_remove(objset_t * os,uint64_t zapobj,const char * name,dmu_tx_t * tx)1122  zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1123  {
1124  	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1125  }
1126  
1127  int
zap_remove_norm(objset_t * os,uint64_t zapobj,const char * name,matchtype_t mt,dmu_tx_t * tx)1128  zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1129      matchtype_t mt, dmu_tx_t *tx)
1130  {
1131  	zap_t *zap;
1132  	int err;
1133  	mzap_ent_t *mze;
1134  	zap_name_t *zn;
1135  
1136  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1137  	if (err)
1138  		return (err);
1139  	zn = zap_name_alloc(zap, name, mt);
1140  	if (zn == NULL) {
1141  		zap_unlockdir(zap);
1142  		return (ENOTSUP);
1143  	}
1144  	if (!zap->zap_ismicro) {
1145  		err = fzap_remove(zn, tx);
1146  	} else {
1147  		mze = mze_find(zn);
1148  		if (mze == NULL) {
1149  			err = ENOENT;
1150  		} else {
1151  			zap->zap_m.zap_num_entries--;
1152  			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1153  			    sizeof (mzap_ent_phys_t));
1154  			mze_remove(zap, mze);
1155  		}
1156  	}
1157  	zap_name_free(zn);
1158  	zap_unlockdir(zap);
1159  	return (err);
1160  }
1161  
1162  int
zap_remove_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,dmu_tx_t * tx)1163  zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1164      int key_numints, dmu_tx_t *tx)
1165  {
1166  	zap_t *zap;
1167  	int err;
1168  	zap_name_t *zn;
1169  
1170  	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1171  	if (err)
1172  		return (err);
1173  	zn = zap_name_alloc_uint64(zap, key, key_numints);
1174  	if (zn == NULL) {
1175  		zap_unlockdir(zap);
1176  		return (ENOTSUP);
1177  	}
1178  	err = fzap_remove(zn, tx);
1179  	zap_name_free(zn);
1180  	zap_unlockdir(zap);
1181  	return (err);
1182  }
1183  
1184  /*
1185   * Routines for iterating over the attributes.
1186   */
1187  
1188  void
zap_cursor_init_serialized(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized)1189  zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1190      uint64_t serialized)
1191  {
1192  	zc->zc_objset = os;
1193  	zc->zc_zap = NULL;
1194  	zc->zc_leaf = NULL;
1195  	zc->zc_zapobj = zapobj;
1196  	zc->zc_serialized = serialized;
1197  	zc->zc_hash = 0;
1198  	zc->zc_cd = 0;
1199  }
1200  
1201  void
zap_cursor_init(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1202  zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1203  {
1204  	zap_cursor_init_serialized(zc, os, zapobj, 0);
1205  }
1206  
1207  void
zap_cursor_fini(zap_cursor_t * zc)1208  zap_cursor_fini(zap_cursor_t *zc)
1209  {
1210  	if (zc->zc_zap) {
1211  		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1212  		zap_unlockdir(zc->zc_zap);
1213  		zc->zc_zap = NULL;
1214  	}
1215  	if (zc->zc_leaf) {
1216  		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1217  		zap_put_leaf(zc->zc_leaf);
1218  		zc->zc_leaf = NULL;
1219  	}
1220  	zc->zc_objset = NULL;
1221  }
1222  
1223  uint64_t
zap_cursor_serialize(zap_cursor_t * zc)1224  zap_cursor_serialize(zap_cursor_t *zc)
1225  {
1226  	if (zc->zc_hash == -1ULL)
1227  		return (-1ULL);
1228  	if (zc->zc_zap == NULL)
1229  		return (zc->zc_serialized);
1230  	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1231  	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1232  
1233  	/*
1234  	 * We want to keep the high 32 bits of the cursor zero if we can, so
1235  	 * that 32-bit programs can access this.  So usually use a small
1236  	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1237  	 * of the cursor.
1238  	 *
1239  	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1240  	 */
1241  	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1242  	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1243  }
1244  
1245  int
zap_cursor_retrieve(zap_cursor_t * zc,zap_attribute_t * za)1246  zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1247  {
1248  	int err;
1249  	avl_index_t idx;
1250  	mzap_ent_t mze_tofind;
1251  	mzap_ent_t *mze;
1252  
1253  	if (zc->zc_hash == -1ULL)
1254  		return (ENOENT);
1255  
1256  	if (zc->zc_zap == NULL) {
1257  		int hb;
1258  		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1259  		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1260  		if (err)
1261  			return (err);
1262  
1263  		/*
1264  		 * To support zap_cursor_init_serialized, advance, retrieve,
1265  		 * we must add to the existing zc_cd, which may already
1266  		 * be 1 due to the zap_cursor_advance.
1267  		 */
1268  		ASSERT(zc->zc_hash == 0);
1269  		hb = zap_hashbits(zc->zc_zap);
1270  		zc->zc_hash = zc->zc_serialized << (64 - hb);
1271  		zc->zc_cd += zc->zc_serialized >> hb;
1272  		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1273  			zc->zc_cd = 0;
1274  	} else {
1275  		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1276  	}
1277  	if (!zc->zc_zap->zap_ismicro) {
1278  		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1279  	} else {
1280  		err = ENOENT;
1281  
1282  		mze_tofind.mze_hash = zc->zc_hash;
1283  		mze_tofind.mze_cd = zc->zc_cd;
1284  
1285  		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1286  		if (mze == NULL) {
1287  			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1288  			    idx, AVL_AFTER);
1289  		}
1290  		if (mze) {
1291  			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1292  			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1293  			za->za_normalization_conflict =
1294  			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1295  			za->za_integer_length = 8;
1296  			za->za_num_integers = 1;
1297  			za->za_first_integer = mzep->mze_value;
1298  			(void) strcpy(za->za_name, mzep->mze_name);
1299  			zc->zc_hash = mze->mze_hash;
1300  			zc->zc_cd = mze->mze_cd;
1301  			err = 0;
1302  		} else {
1303  			zc->zc_hash = -1ULL;
1304  		}
1305  	}
1306  	rw_exit(&zc->zc_zap->zap_rwlock);
1307  	return (err);
1308  }
1309  
1310  void
zap_cursor_advance(zap_cursor_t * zc)1311  zap_cursor_advance(zap_cursor_t *zc)
1312  {
1313  	if (zc->zc_hash == -1ULL)
1314  		return;
1315  	zc->zc_cd++;
1316  }
1317  
1318  int
zap_cursor_move_to_key(zap_cursor_t * zc,const char * name,matchtype_t mt)1319  zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1320  {
1321  	int err = 0;
1322  	mzap_ent_t *mze;
1323  	zap_name_t *zn;
1324  
1325  	if (zc->zc_zap == NULL) {
1326  		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1327  		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1328  		if (err)
1329  			return (err);
1330  	} else {
1331  		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1332  	}
1333  
1334  	zn = zap_name_alloc(zc->zc_zap, name, mt);
1335  	if (zn == NULL) {
1336  		rw_exit(&zc->zc_zap->zap_rwlock);
1337  		return (ENOTSUP);
1338  	}
1339  
1340  	if (!zc->zc_zap->zap_ismicro) {
1341  		err = fzap_cursor_move_to_key(zc, zn);
1342  	} else {
1343  		mze = mze_find(zn);
1344  		if (mze == NULL) {
1345  			err = ENOENT;
1346  			goto out;
1347  		}
1348  		zc->zc_hash = mze->mze_hash;
1349  		zc->zc_cd = mze->mze_cd;
1350  	}
1351  
1352  out:
1353  	zap_name_free(zn);
1354  	rw_exit(&zc->zc_zap->zap_rwlock);
1355  	return (err);
1356  }
1357  
1358  int
zap_get_stats(objset_t * os,uint64_t zapobj,zap_stats_t * zs)1359  zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1360  {
1361  	int err;
1362  	zap_t *zap;
1363  
1364  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1365  	if (err)
1366  		return (err);
1367  
1368  	bzero(zs, sizeof (zap_stats_t));
1369  
1370  	if (zap->zap_ismicro) {
1371  		zs->zs_blocksize = zap->zap_dbuf->db_size;
1372  		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1373  		zs->zs_num_blocks = 1;
1374  	} else {
1375  		fzap_get_stats(zap, zs);
1376  	}
1377  	zap_unlockdir(zap);
1378  	return (0);
1379  }
1380  
1381  int
zap_count_write(objset_t * os,uint64_t zapobj,const char * name,int add,uint64_t * towrite,uint64_t * tooverwrite)1382  zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1383      uint64_t *towrite, uint64_t *tooverwrite)
1384  {
1385  	zap_t *zap;
1386  	int err = 0;
1387  
1388  
1389  	/*
1390  	 * Since, we don't have a name, we cannot figure out which blocks will
1391  	 * be affected in this operation. So, account for the worst case :
1392  	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1393  	 * - 4 new blocks written if adding:
1394  	 * 	- 2 blocks for possibly split leaves,
1395  	 * 	- 2 grown ptrtbl blocks
1396  	 *
1397  	 * This also accomodates the case where an add operation to a fairly
1398  	 * large microzap results in a promotion to fatzap.
1399  	 */
1400  	if (name == NULL) {
1401  		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1402  		return (err);
1403  	}
1404  
1405  	/*
1406  	 * We lock the zap with adding ==  FALSE. Because, if we pass
1407  	 * the actual value of add, it could trigger a mzap_upgrade().
1408  	 * At present we are just evaluating the possibility of this operation
1409  	 * and hence we donot want to trigger an upgrade.
1410  	 */
1411  	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1412  	if (err)
1413  		return (err);
1414  
1415  	if (!zap->zap_ismicro) {
1416  		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1417  		if (zn) {
1418  			err = fzap_count_write(zn, add, towrite,
1419  			    tooverwrite);
1420  			zap_name_free(zn);
1421  		} else {
1422  			/*
1423  			 * We treat this case as similar to (name == NULL)
1424  			 */
1425  			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1426  		}
1427  	} else {
1428  		/*
1429  		 * We are here if (name != NULL) and this is a micro-zap.
1430  		 * We account for the header block depending on whether it
1431  		 * is freeable.
1432  		 *
1433  		 * Incase of an add-operation it is hard to find out
1434  		 * if this add will promote this microzap to fatzap.
1435  		 * Hence, we consider the worst case and account for the
1436  		 * blocks assuming this microzap would be promoted to a
1437  		 * fatzap.
1438  		 *
1439  		 * 1 block overwritten  : header block
1440  		 * 4 new blocks written : 2 new split leaf, 2 grown
1441  		 *			ptrtbl blocks
1442  		 */
1443  		if (dmu_buf_freeable(zap->zap_dbuf))
1444  			*tooverwrite += SPA_MAXBLOCKSIZE;
1445  		else
1446  			*towrite += SPA_MAXBLOCKSIZE;
1447  
1448  		if (add) {
1449  			*towrite += 4 * SPA_MAXBLOCKSIZE;
1450  		}
1451  	}
1452  
1453  	zap_unlockdir(zap);
1454  	return (err);
1455  }
1456