xref: /openbsd-src/gnu/gcc/gcc/tree-vrp.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Support routines for Value Range Propagation (VRP).
2    Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
41 
42 /* Set of SSA names found during the dominator traversal of a
43    sub-graph in find_assert_locations.  */
44 static sbitmap found_in_subgraph;
45 
46 /* Local functions.  */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50 
51 /* Location information for ASSERT_EXPRs.  Each instance of this
52    structure describes an ASSERT_EXPR for an SSA name.  Since a single
53    SSA name may have more than one assertion associated with it, these
54    locations are kept in a linked list attached to the corresponding
55    SSA name.  */
56 struct assert_locus_d
57 {
58   /* Basic block where the assertion would be inserted.  */
59   basic_block bb;
60 
61   /* Some assertions need to be inserted on an edge (e.g., assertions
62      generated by COND_EXPRs).  In those cases, BB will be NULL.  */
63   edge e;
64 
65   /* Pointer to the statement that generated this assertion.  */
66   block_stmt_iterator si;
67 
68   /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
69   enum tree_code comp_code;
70 
71   /* Value being compared against.  */
72   tree val;
73 
74   /* Next node in the linked list.  */
75   struct assert_locus_d *next;
76 };
77 
78 typedef struct assert_locus_d *assert_locus_t;
79 
80 /* If bit I is present, it means that SSA name N_i has a list of
81    assertions that should be inserted in the IL.  */
82 static bitmap need_assert_for;
83 
84 /* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
85    holds a list of ASSERT_LOCUS_T nodes that describe where
86    ASSERT_EXPRs for SSA name N_I should be inserted.  */
87 static assert_locus_t *asserts_for;
88 
89 /* Set of blocks visited in find_assert_locations.  Used to avoid
90    visiting the same block more than once.  */
91 static sbitmap blocks_visited;
92 
93 /* Value range array.  After propagation, VR_VALUE[I] holds the range
94    of values that SSA name N_I may take.  */
95 static value_range_t **vr_value;
96 
97 
98 /* Return whether TYPE should use an overflow infinity distinct from
99    TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
100    represent a signed overflow during VRP computations.  An infinity
101    is distinct from a half-range, which will go from some number to
102    TYPE_{MIN,MAX}_VALUE.  */
103 
104 static inline bool
needs_overflow_infinity(tree type)105 needs_overflow_infinity (tree type)
106 {
107   return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
108 }
109 
110 /* Return whether TYPE can support our overflow infinity
111    representation: we use the TREE_OVERFLOW flag, which only exists
112    for constants.  If TYPE doesn't support this, we don't optimize
113    cases which would require signed overflow--we drop them to
114    VARYING.  */
115 
116 static inline bool
supports_overflow_infinity(tree type)117 supports_overflow_infinity (tree type)
118 {
119 #ifdef ENABLE_CHECKING
120   gcc_assert (needs_overflow_infinity (type));
121 #endif
122   return (TYPE_MIN_VALUE (type) != NULL_TREE
123 	  && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
124 	  && TYPE_MAX_VALUE (type) != NULL_TREE
125 	  && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
126 }
127 
128 /* VAL is the maximum or minimum value of a type.  Return a
129    corresponding overflow infinity.  */
130 
131 static inline tree
make_overflow_infinity(tree val)132 make_overflow_infinity (tree val)
133 {
134 #ifdef ENABLE_CHECKING
135   gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
136 #endif
137   val = copy_node (val);
138   TREE_OVERFLOW (val) = 1;
139   return val;
140 }
141 
142 /* Return a negative overflow infinity for TYPE.  */
143 
144 static inline tree
negative_overflow_infinity(tree type)145 negative_overflow_infinity (tree type)
146 {
147 #ifdef ENABLE_CHECKING
148   gcc_assert (supports_overflow_infinity (type));
149 #endif
150   return make_overflow_infinity (TYPE_MIN_VALUE (type));
151 }
152 
153 /* Return a positive overflow infinity for TYPE.  */
154 
155 static inline tree
positive_overflow_infinity(tree type)156 positive_overflow_infinity (tree type)
157 {
158 #ifdef ENABLE_CHECKING
159   gcc_assert (supports_overflow_infinity (type));
160 #endif
161   return make_overflow_infinity (TYPE_MAX_VALUE (type));
162 }
163 
164 /* Return whether VAL is a negative overflow infinity.  */
165 
166 static inline bool
is_negative_overflow_infinity(tree val)167 is_negative_overflow_infinity (tree val)
168 {
169   return (needs_overflow_infinity (TREE_TYPE (val))
170 	  && CONSTANT_CLASS_P (val)
171 	  && TREE_OVERFLOW (val)
172 	  && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
173 }
174 
175 /* Return whether VAL is a positive overflow infinity.  */
176 
177 static inline bool
is_positive_overflow_infinity(tree val)178 is_positive_overflow_infinity (tree val)
179 {
180   return (needs_overflow_infinity (TREE_TYPE (val))
181 	  && CONSTANT_CLASS_P (val)
182 	  && TREE_OVERFLOW (val)
183 	  && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
184 }
185 
186 /* Return whether VAL is a positive or negative overflow infinity.  */
187 
188 static inline bool
is_overflow_infinity(tree val)189 is_overflow_infinity (tree val)
190 {
191   return (needs_overflow_infinity (TREE_TYPE (val))
192 	  && CONSTANT_CLASS_P (val)
193 	  && TREE_OVERFLOW (val)
194 	  && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
195 	      || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
196 }
197 
198 /* If VAL is now an overflow infinity, return VAL.  Otherwise, return
199    the same value with TREE_OVERFLOW clear.  This can be used to avoid
200    confusing a regular value with an overflow value.  */
201 
202 static inline tree
avoid_overflow_infinity(tree val)203 avoid_overflow_infinity (tree val)
204 {
205   if (!is_overflow_infinity (val))
206     return val;
207 
208   if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
209     return TYPE_MAX_VALUE (TREE_TYPE (val));
210   else
211     {
212 #ifdef ENABLE_CHECKING
213       gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
214 #endif
215       return TYPE_MIN_VALUE (TREE_TYPE (val));
216     }
217 }
218 
219 
220 /* Return whether VAL is equal to the maximum value of its type.  This
221    will be true for a positive overflow infinity.  We can't do a
222    simple equality comparison with TYPE_MAX_VALUE because C typedefs
223    and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
224    to the integer constant with the same value in the type.  */
225 
226 static inline bool
vrp_val_is_max(tree val)227 vrp_val_is_max (tree val)
228 {
229   tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
230 
231   return (val == type_max
232 	  || (type_max != NULL_TREE
233 	      && operand_equal_p (val, type_max, 0)));
234 }
235 
236 /* Return whether VAL is equal to the minimum value of its type.  This
237    will be true for a negative overflow infinity.  */
238 
239 static inline bool
vrp_val_is_min(tree val)240 vrp_val_is_min (tree val)
241 {
242   tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
243 
244   return (val == type_min
245 	  || (type_min != NULL_TREE
246 	      && operand_equal_p (val, type_min, 0)));
247 }
248 
249 
250 /* Return true if ARG is marked with the nonnull attribute in the
251    current function signature.  */
252 
253 static bool
nonnull_arg_p(tree arg)254 nonnull_arg_p (tree arg)
255 {
256   tree t, attrs, fntype;
257   unsigned HOST_WIDE_INT arg_num;
258 
259   gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
260 
261   /* The static chain decl is always non null.  */
262   if (arg == cfun->static_chain_decl)
263     return true;
264 
265   fntype = TREE_TYPE (current_function_decl);
266   attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
267 
268   /* If "nonnull" wasn't specified, we know nothing about the argument.  */
269   if (attrs == NULL_TREE)
270     return false;
271 
272   /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
273   if (TREE_VALUE (attrs) == NULL_TREE)
274     return true;
275 
276   /* Get the position number for ARG in the function signature.  */
277   for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
278        t;
279        t = TREE_CHAIN (t), arg_num++)
280     {
281       if (t == arg)
282 	break;
283     }
284 
285   gcc_assert (t == arg);
286 
287   /* Now see if ARG_NUM is mentioned in the nonnull list.  */
288   for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
289     {
290       if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
291 	return true;
292     }
293 
294   return false;
295 }
296 
297 
298 /* Set value range VR to {T, MIN, MAX, EQUIV}.  */
299 
300 static void
set_value_range(value_range_t * vr,enum value_range_type t,tree min,tree max,bitmap equiv)301 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
302 		 tree max, bitmap equiv)
303 {
304 #if defined ENABLE_CHECKING
305   /* Check the validity of the range.  */
306   if (t == VR_RANGE || t == VR_ANTI_RANGE)
307     {
308       int cmp;
309 
310       gcc_assert (min && max);
311 
312       if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
313 	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
314 
315       cmp = compare_values (min, max);
316       gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
317 
318       if (needs_overflow_infinity (TREE_TYPE (min)))
319 	gcc_assert (!is_overflow_infinity (min)
320 		    || !is_overflow_infinity (max));
321     }
322 
323   if (t == VR_UNDEFINED || t == VR_VARYING)
324     gcc_assert (min == NULL_TREE && max == NULL_TREE);
325 
326   if (t == VR_UNDEFINED || t == VR_VARYING)
327     gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
328 #endif
329 
330   vr->type = t;
331   vr->min = min;
332   vr->max = max;
333 
334   /* Since updating the equivalence set involves deep copying the
335      bitmaps, only do it if absolutely necessary.  */
336   if (vr->equiv == NULL)
337     vr->equiv = BITMAP_ALLOC (NULL);
338 
339   if (equiv != vr->equiv)
340     {
341       if (equiv && !bitmap_empty_p (equiv))
342 	bitmap_copy (vr->equiv, equiv);
343       else
344 	bitmap_clear (vr->equiv);
345     }
346 }
347 
348 
349 /* Copy value range FROM into value range TO.  */
350 
351 static inline void
copy_value_range(value_range_t * to,value_range_t * from)352 copy_value_range (value_range_t *to, value_range_t *from)
353 {
354   set_value_range (to, from->type, from->min, from->max, from->equiv);
355 }
356 
357 
358 /* Set value range VR to VR_VARYING.  */
359 
360 static inline void
set_value_range_to_varying(value_range_t * vr)361 set_value_range_to_varying (value_range_t *vr)
362 {
363   vr->type = VR_VARYING;
364   vr->min = vr->max = NULL_TREE;
365   if (vr->equiv)
366     bitmap_clear (vr->equiv);
367 }
368 
369 /* Set value range VR to a single value.  This function is only called
370    with values we get from statements, and exists to clear the
371    TREE_OVERFLOW flag so that we don't think we have an overflow
372    infinity when we shouldn't.  */
373 
374 static inline void
set_value_range_to_value(value_range_t * vr,tree val,bitmap equiv)375 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
376 {
377   gcc_assert (is_gimple_min_invariant (val));
378   val = avoid_overflow_infinity (val);
379   set_value_range (vr, VR_RANGE, val, val, equiv);
380 }
381 
382 /* Set value range VR to a non-negative range of type TYPE.
383    OVERFLOW_INFINITY indicates whether to use a overflow infinity
384    rather than TYPE_MAX_VALUE; this should be true if we determine
385    that the range is nonnegative based on the assumption that signed
386    overflow does not occur.  */
387 
388 static inline void
set_value_range_to_nonnegative(value_range_t * vr,tree type,bool overflow_infinity)389 set_value_range_to_nonnegative (value_range_t *vr, tree type,
390 				bool overflow_infinity)
391 {
392   tree zero;
393 
394   if (overflow_infinity && !supports_overflow_infinity (type))
395     {
396       set_value_range_to_varying (vr);
397       return;
398     }
399 
400   zero = build_int_cst (type, 0);
401   set_value_range (vr, VR_RANGE, zero,
402 		   (overflow_infinity
403 		    ? positive_overflow_infinity (type)
404 		    : TYPE_MAX_VALUE (type)),
405 		   vr->equiv);
406 }
407 
408 /* Set value range VR to a non-NULL range of type TYPE.  */
409 
410 static inline void
set_value_range_to_nonnull(value_range_t * vr,tree type)411 set_value_range_to_nonnull (value_range_t *vr, tree type)
412 {
413   tree zero = build_int_cst (type, 0);
414   set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
415 }
416 
417 
418 /* Set value range VR to a NULL range of type TYPE.  */
419 
420 static inline void
set_value_range_to_null(value_range_t * vr,tree type)421 set_value_range_to_null (value_range_t *vr, tree type)
422 {
423   set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
424 }
425 
426 
427 /* Set value range VR to VR_UNDEFINED.  */
428 
429 static inline void
set_value_range_to_undefined(value_range_t * vr)430 set_value_range_to_undefined (value_range_t *vr)
431 {
432   vr->type = VR_UNDEFINED;
433   vr->min = vr->max = NULL_TREE;
434   if (vr->equiv)
435     bitmap_clear (vr->equiv);
436 }
437 
438 
439 /* Return value range information for VAR.
440 
441    If we have no values ranges recorded (ie, VRP is not running), then
442    return NULL.  Otherwise create an empty range if none existed for VAR.  */
443 
444 static value_range_t *
get_value_range(tree var)445 get_value_range (tree var)
446 {
447   value_range_t *vr;
448   tree sym;
449   unsigned ver = SSA_NAME_VERSION (var);
450 
451   /* If we have no recorded ranges, then return NULL.  */
452   if (! vr_value)
453     return NULL;
454 
455   vr = vr_value[ver];
456   if (vr)
457     return vr;
458 
459   /* Create a default value range.  */
460   vr_value[ver] = vr = XNEW (value_range_t);
461   memset (vr, 0, sizeof (*vr));
462 
463   /* Allocate an equivalence set.  */
464   vr->equiv = BITMAP_ALLOC (NULL);
465 
466   /* If VAR is a default definition, the variable can take any value
467      in VAR's type.  */
468   sym = SSA_NAME_VAR (var);
469   if (var == default_def (sym))
470     {
471       /* Try to use the "nonnull" attribute to create ~[0, 0]
472 	 anti-ranges for pointers.  Note that this is only valid with
473 	 default definitions of PARM_DECLs.  */
474       if (TREE_CODE (sym) == PARM_DECL
475 	  && POINTER_TYPE_P (TREE_TYPE (sym))
476 	  && nonnull_arg_p (sym))
477 	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
478       else
479 	set_value_range_to_varying (vr);
480     }
481 
482   return vr;
483 }
484 
485 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
486 
487 static inline bool
vrp_operand_equal_p(tree val1,tree val2)488 vrp_operand_equal_p (tree val1, tree val2)
489 {
490   if (val1 == val2)
491     return true;
492   if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
493     return false;
494   if (is_overflow_infinity (val1))
495     return is_overflow_infinity (val2);
496   return true;
497 }
498 
499 /* Return true, if the bitmaps B1 and B2 are equal.  */
500 
501 static inline bool
vrp_bitmap_equal_p(bitmap b1,bitmap b2)502 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
503 {
504   return (b1 == b2
505 	  || (b1 && b2
506 	      && bitmap_equal_p (b1, b2)));
507 }
508 
509 /* Update the value range and equivalence set for variable VAR to
510    NEW_VR.  Return true if NEW_VR is different from VAR's previous
511    value.
512 
513    NOTE: This function assumes that NEW_VR is a temporary value range
514    object created for the sole purpose of updating VAR's range.  The
515    storage used by the equivalence set from NEW_VR will be freed by
516    this function.  Do not call update_value_range when NEW_VR
517    is the range object associated with another SSA name.  */
518 
519 static inline bool
update_value_range(tree var,value_range_t * new_vr)520 update_value_range (tree var, value_range_t *new_vr)
521 {
522   value_range_t *old_vr;
523   bool is_new;
524 
525   /* Update the value range, if necessary.  */
526   old_vr = get_value_range (var);
527   is_new = old_vr->type != new_vr->type
528 	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
529 	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
530 	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
531 
532   if (is_new)
533     set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
534 	             new_vr->equiv);
535 
536   BITMAP_FREE (new_vr->equiv);
537   new_vr->equiv = NULL;
538 
539   return is_new;
540 }
541 
542 
543 /* Add VAR and VAR's equivalence set to EQUIV.  */
544 
545 static void
add_equivalence(bitmap equiv,tree var)546 add_equivalence (bitmap equiv, tree var)
547 {
548   unsigned ver = SSA_NAME_VERSION (var);
549   value_range_t *vr = vr_value[ver];
550 
551   bitmap_set_bit (equiv, ver);
552   if (vr && vr->equiv)
553     bitmap_ior_into (equiv, vr->equiv);
554 }
555 
556 
557 /* Return true if VR is ~[0, 0].  */
558 
559 static inline bool
range_is_nonnull(value_range_t * vr)560 range_is_nonnull (value_range_t *vr)
561 {
562   return vr->type == VR_ANTI_RANGE
563 	 && integer_zerop (vr->min)
564 	 && integer_zerop (vr->max);
565 }
566 
567 
568 /* Return true if VR is [0, 0].  */
569 
570 static inline bool
range_is_null(value_range_t * vr)571 range_is_null (value_range_t *vr)
572 {
573   return vr->type == VR_RANGE
574 	 && integer_zerop (vr->min)
575 	 && integer_zerop (vr->max);
576 }
577 
578 
579 /* Return true if value range VR involves at least one symbol.  */
580 
581 static inline bool
symbolic_range_p(value_range_t * vr)582 symbolic_range_p (value_range_t *vr)
583 {
584   return (!is_gimple_min_invariant (vr->min)
585           || !is_gimple_min_invariant (vr->max));
586 }
587 
588 /* Return true if value range VR uses a overflow infinity.  */
589 
590 static inline bool
overflow_infinity_range_p(value_range_t * vr)591 overflow_infinity_range_p (value_range_t *vr)
592 {
593   return (vr->type == VR_RANGE
594 	  && (is_overflow_infinity (vr->min)
595 	      || is_overflow_infinity (vr->max)));
596 }
597 
598 /* Return false if we can not make a valid comparison based on VR;
599    this will be the case if it uses an overflow infinity and overflow
600    is not undefined (i.e., -fno-strict-overflow is in effect).
601    Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
602    uses an overflow infinity.  */
603 
604 static bool
usable_range_p(value_range_t * vr,bool * strict_overflow_p)605 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
606 {
607   gcc_assert (vr->type == VR_RANGE);
608   if (is_overflow_infinity (vr->min))
609     {
610       *strict_overflow_p = true;
611       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
612 	return false;
613     }
614   if (is_overflow_infinity (vr->max))
615     {
616       *strict_overflow_p = true;
617       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
618 	return false;
619     }
620   return true;
621 }
622 
623 
624 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
625    ranges obtained so far.  */
626 
627 static bool
vrp_expr_computes_nonnegative(tree expr,bool * strict_overflow_p)628 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
629 {
630   return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
631 }
632 
633 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
634    obtained so far.  */
635 
636 static bool
vrp_expr_computes_nonzero(tree expr,bool * strict_overflow_p)637 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
638 {
639   if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
640     return true;
641 
642   /* If we have an expression of the form &X->a, then the expression
643      is nonnull if X is nonnull.  */
644   if (TREE_CODE (expr) == ADDR_EXPR)
645     {
646       tree base = get_base_address (TREE_OPERAND (expr, 0));
647 
648       if (base != NULL_TREE
649 	  && TREE_CODE (base) == INDIRECT_REF
650 	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
651 	{
652 	  value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
653 	  if (range_is_nonnull (vr))
654 	    return true;
655 	}
656     }
657 
658   return false;
659 }
660 
661 /* Returns true if EXPR is a valid value (as expected by compare_values) --
662    a gimple invariant, or SSA_NAME +- CST.  */
663 
664 static bool
valid_value_p(tree expr)665 valid_value_p (tree expr)
666 {
667   if (TREE_CODE (expr) == SSA_NAME)
668     return true;
669 
670   if (TREE_CODE (expr) == PLUS_EXPR
671       || TREE_CODE (expr) == MINUS_EXPR)
672     return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
673 	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
674 
675   return is_gimple_min_invariant (expr);
676 }
677 
678 /* Compare two values VAL1 and VAL2.  Return
679 
680    	-2 if VAL1 and VAL2 cannot be compared at compile-time,
681    	-1 if VAL1 < VAL2,
682    	 0 if VAL1 == VAL2,
683 	+1 if VAL1 > VAL2, and
684 	+2 if VAL1 != VAL2
685 
686    This is similar to tree_int_cst_compare but supports pointer values
687    and values that cannot be compared at compile time.
688 
689    If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
690    true if the return value is only valid if we assume that signed
691    overflow is undefined.  */
692 
693 static int
compare_values_warnv(tree val1,tree val2,bool * strict_overflow_p)694 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
695 {
696   if (val1 == val2)
697     return 0;
698 
699   /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
700      both integers.  */
701   gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
702 	      == POINTER_TYPE_P (TREE_TYPE (val2)));
703 
704   if ((TREE_CODE (val1) == SSA_NAME
705        || TREE_CODE (val1) == PLUS_EXPR
706        || TREE_CODE (val1) == MINUS_EXPR)
707       && (TREE_CODE (val2) == SSA_NAME
708 	  || TREE_CODE (val2) == PLUS_EXPR
709 	  || TREE_CODE (val2) == MINUS_EXPR))
710     {
711       tree n1, c1, n2, c2;
712       enum tree_code code1, code2;
713 
714       /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
715 	 return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
716 	 same name, return -2.  */
717       if (TREE_CODE (val1) == SSA_NAME)
718 	{
719 	  code1 = SSA_NAME;
720 	  n1 = val1;
721 	  c1 = NULL_TREE;
722 	}
723       else
724 	{
725 	  code1 = TREE_CODE (val1);
726 	  n1 = TREE_OPERAND (val1, 0);
727 	  c1 = TREE_OPERAND (val1, 1);
728 	  if (tree_int_cst_sgn (c1) == -1)
729 	    {
730 	      if (is_negative_overflow_infinity (c1))
731 		return -2;
732 	      c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
733 	      if (!c1)
734 		return -2;
735 	      code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
736 	    }
737 	}
738 
739       if (TREE_CODE (val2) == SSA_NAME)
740 	{
741 	  code2 = SSA_NAME;
742 	  n2 = val2;
743 	  c2 = NULL_TREE;
744 	}
745       else
746 	{
747 	  code2 = TREE_CODE (val2);
748 	  n2 = TREE_OPERAND (val2, 0);
749 	  c2 = TREE_OPERAND (val2, 1);
750 	  if (tree_int_cst_sgn (c2) == -1)
751 	    {
752 	      if (is_negative_overflow_infinity (c2))
753 		return -2;
754 	      c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
755 	      if (!c2)
756 		return -2;
757 	      code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
758 	    }
759 	}
760 
761       /* Both values must use the same name.  */
762       if (n1 != n2)
763 	return -2;
764 
765       if (code1 == SSA_NAME
766 	  && code2 == SSA_NAME)
767 	/* NAME == NAME  */
768 	return 0;
769 
770       /* If overflow is defined we cannot simplify more.  */
771       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
772 	return -2;
773 
774       if (strict_overflow_p != NULL
775 	  && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
776 	  && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
777 	*strict_overflow_p = true;
778 
779       if (code1 == SSA_NAME)
780 	{
781 	  if (code2 == PLUS_EXPR)
782 	    /* NAME < NAME + CST  */
783 	    return -1;
784 	  else if (code2 == MINUS_EXPR)
785 	    /* NAME > NAME - CST  */
786 	    return 1;
787 	}
788       else if (code1 == PLUS_EXPR)
789 	{
790 	  if (code2 == SSA_NAME)
791 	    /* NAME + CST > NAME  */
792 	    return 1;
793 	  else if (code2 == PLUS_EXPR)
794 	    /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
795 	    return compare_values_warnv (c1, c2, strict_overflow_p);
796 	  else if (code2 == MINUS_EXPR)
797 	    /* NAME + CST1 > NAME - CST2  */
798 	    return 1;
799 	}
800       else if (code1 == MINUS_EXPR)
801 	{
802 	  if (code2 == SSA_NAME)
803 	    /* NAME - CST < NAME  */
804 	    return -1;
805 	  else if (code2 == PLUS_EXPR)
806 	    /* NAME - CST1 < NAME + CST2  */
807 	    return -1;
808 	  else if (code2 == MINUS_EXPR)
809 	    /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
810 	       C1 and C2 are swapped in the call to compare_values.  */
811 	    return compare_values_warnv (c2, c1, strict_overflow_p);
812 	}
813 
814       gcc_unreachable ();
815     }
816 
817   /* We cannot compare non-constants.  */
818   if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
819     return -2;
820 
821   if (!POINTER_TYPE_P (TREE_TYPE (val1)))
822     {
823       /* We cannot compare overflowed values, except for overflow
824 	 infinities.  */
825       if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
826 	{
827 	  if (strict_overflow_p != NULL)
828 	    *strict_overflow_p = true;
829 	  if (is_negative_overflow_infinity (val1))
830 	    return is_negative_overflow_infinity (val2) ? 0 : -1;
831 	  else if (is_negative_overflow_infinity (val2))
832 	    return 1;
833 	  else if (is_positive_overflow_infinity (val1))
834 	    return is_positive_overflow_infinity (val2) ? 0 : 1;
835 	  else if (is_positive_overflow_infinity (val2))
836 	    return -1;
837 	  return -2;
838 	}
839 
840       return tree_int_cst_compare (val1, val2);
841     }
842   else
843     {
844       tree t;
845 
846       /* First see if VAL1 and VAL2 are not the same.  */
847       if (val1 == val2 || operand_equal_p (val1, val2, 0))
848 	return 0;
849 
850       /* If VAL1 is a lower address than VAL2, return -1.  */
851       t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
852       if (t == boolean_true_node)
853 	return -1;
854 
855       /* If VAL1 is a higher address than VAL2, return +1.  */
856       t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
857       if (t == boolean_true_node)
858 	return 1;
859 
860       /* If VAL1 is different than VAL2, return +2.  */
861       t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
862       if (t == boolean_true_node)
863 	return 2;
864 
865       return -2;
866     }
867 }
868 
869 /* Compare values like compare_values_warnv, but treat comparisons of
870    nonconstants which rely on undefined overflow as incomparable.  */
871 
872 static int
compare_values(tree val1,tree val2)873 compare_values (tree val1, tree val2)
874 {
875   bool sop;
876   int ret;
877 
878   sop = false;
879   ret = compare_values_warnv (val1, val2, &sop);
880   if (sop
881       && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
882     ret = -2;
883   return ret;
884 }
885 
886 
887 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
888           0 if VAL is not inside VR,
889 	 -2 if we cannot tell either way.
890 
891    FIXME, the current semantics of this functions are a bit quirky
892 	  when taken in the context of VRP.  In here we do not care
893 	  about VR's type.  If VR is the anti-range ~[3, 5] the call
894 	  value_inside_range (4, VR) will return 1.
895 
896 	  This is counter-intuitive in a strict sense, but the callers
897 	  currently expect this.  They are calling the function
898 	  merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
899 	  callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
900 	  themselves.
901 
902 	  This also applies to value_ranges_intersect_p and
903 	  range_includes_zero_p.  The semantics of VR_RANGE and
904 	  VR_ANTI_RANGE should be encoded here, but that also means
905 	  adapting the users of these functions to the new semantics.  */
906 
907 static inline int
value_inside_range(tree val,value_range_t * vr)908 value_inside_range (tree val, value_range_t *vr)
909 {
910   tree cmp1, cmp2;
911 
912   fold_defer_overflow_warnings ();
913 
914   cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
915   if (!cmp1)
916   {
917     fold_undefer_and_ignore_overflow_warnings ();
918     return -2;
919   }
920 
921   cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
922 
923   fold_undefer_and_ignore_overflow_warnings ();
924 
925   if (!cmp2)
926     return -2;
927 
928   return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
929 }
930 
931 
932 /* Return true if value ranges VR0 and VR1 have a non-empty
933    intersection.  */
934 
935 static inline bool
value_ranges_intersect_p(value_range_t * vr0,value_range_t * vr1)936 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
937 {
938   return (value_inside_range (vr1->min, vr0) == 1
939 	  || value_inside_range (vr1->max, vr0) == 1
940 	  || value_inside_range (vr0->min, vr1) == 1
941 	  || value_inside_range (vr0->max, vr1) == 1);
942 }
943 
944 
945 /* Return true if VR includes the value zero, false otherwise.  FIXME,
946    currently this will return false for an anti-range like ~[-4, 3].
947    This will be wrong when the semantics of value_inside_range are
948    modified (currently the users of this function expect these
949    semantics).  */
950 
951 static inline bool
range_includes_zero_p(value_range_t * vr)952 range_includes_zero_p (value_range_t *vr)
953 {
954   tree zero;
955 
956   gcc_assert (vr->type != VR_UNDEFINED
957               && vr->type != VR_VARYING
958 	      && !symbolic_range_p (vr));
959 
960   zero = build_int_cst (TREE_TYPE (vr->min), 0);
961   return (value_inside_range (zero, vr) == 1);
962 }
963 
964 /* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
965    false otherwise or if no value range information is available.  */
966 
967 bool
ssa_name_nonnegative_p(tree t)968 ssa_name_nonnegative_p (tree t)
969 {
970   value_range_t *vr = get_value_range (t);
971 
972   if (!vr)
973     return false;
974 
975   /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
976      which would return a useful value should be encoded as a VR_RANGE.  */
977   if (vr->type == VR_RANGE)
978     {
979       int result = compare_values (vr->min, integer_zero_node);
980 
981       return (result == 0 || result == 1);
982     }
983   return false;
984 }
985 
986 /* Return true if T, an SSA_NAME, is known to be nonzero.  Return
987    false otherwise or if no value range information is available.  */
988 
989 bool
ssa_name_nonzero_p(tree t)990 ssa_name_nonzero_p (tree t)
991 {
992   value_range_t *vr = get_value_range (t);
993 
994   if (!vr)
995     return false;
996 
997   /* A VR_RANGE which does not include zero is a nonzero value.  */
998   if (vr->type == VR_RANGE && !symbolic_range_p (vr))
999     return ! range_includes_zero_p (vr);
1000 
1001   /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
1002   if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1003     return range_includes_zero_p (vr);
1004 
1005   return false;
1006 }
1007 
1008 
1009 /* Extract value range information from an ASSERT_EXPR EXPR and store
1010    it in *VR_P.  */
1011 
1012 static void
extract_range_from_assert(value_range_t * vr_p,tree expr)1013 extract_range_from_assert (value_range_t *vr_p, tree expr)
1014 {
1015   tree var, cond, limit, min, max, type;
1016   value_range_t *var_vr, *limit_vr;
1017   enum tree_code cond_code;
1018 
1019   var = ASSERT_EXPR_VAR (expr);
1020   cond = ASSERT_EXPR_COND (expr);
1021 
1022   gcc_assert (COMPARISON_CLASS_P (cond));
1023 
1024   /* Find VAR in the ASSERT_EXPR conditional.  */
1025   if (var == TREE_OPERAND (cond, 0))
1026     {
1027       /* If the predicate is of the form VAR COMP LIMIT, then we just
1028 	 take LIMIT from the RHS and use the same comparison code.  */
1029       limit = TREE_OPERAND (cond, 1);
1030       cond_code = TREE_CODE (cond);
1031     }
1032   else
1033     {
1034       /* If the predicate is of the form LIMIT COMP VAR, then we need
1035 	 to flip around the comparison code to create the proper range
1036 	 for VAR.  */
1037       limit = TREE_OPERAND (cond, 0);
1038       cond_code = swap_tree_comparison (TREE_CODE (cond));
1039     }
1040 
1041   limit = avoid_overflow_infinity (limit);
1042 
1043   type = TREE_TYPE (limit);
1044   gcc_assert (limit != var);
1045 
1046   /* For pointer arithmetic, we only keep track of pointer equality
1047      and inequality.  */
1048   if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1049     {
1050       set_value_range_to_varying (vr_p);
1051       return;
1052     }
1053 
1054   /* If LIMIT is another SSA name and LIMIT has a range of its own,
1055      try to use LIMIT's range to avoid creating symbolic ranges
1056      unnecessarily. */
1057   limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1058 
1059   /* LIMIT's range is only interesting if it has any useful information.  */
1060   if (limit_vr
1061       && (limit_vr->type == VR_UNDEFINED
1062 	  || limit_vr->type == VR_VARYING
1063 	  || symbolic_range_p (limit_vr)))
1064     limit_vr = NULL;
1065 
1066   /* Initially, the new range has the same set of equivalences of
1067      VAR's range.  This will be revised before returning the final
1068      value.  Since assertions may be chained via mutually exclusive
1069      predicates, we will need to trim the set of equivalences before
1070      we are done.  */
1071   gcc_assert (vr_p->equiv == NULL);
1072   vr_p->equiv = BITMAP_ALLOC (NULL);
1073   add_equivalence (vr_p->equiv, var);
1074 
1075   /* Extract a new range based on the asserted comparison for VAR and
1076      LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1077      will only use it for equality comparisons (EQ_EXPR).  For any
1078      other kind of assertion, we cannot derive a range from LIMIT's
1079      anti-range that can be used to describe the new range.  For
1080      instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1081      then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1082      no single range for x_2 that could describe LE_EXPR, so we might
1083      as well build the range [b_4, +INF] for it.  */
1084   if (cond_code == EQ_EXPR)
1085     {
1086       enum value_range_type range_type;
1087 
1088       if (limit_vr)
1089 	{
1090 	  range_type = limit_vr->type;
1091 	  min = limit_vr->min;
1092 	  max = limit_vr->max;
1093 	}
1094       else
1095 	{
1096 	  range_type = VR_RANGE;
1097 	  min = limit;
1098 	  max = limit;
1099 	}
1100 
1101       set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1102 
1103       /* When asserting the equality VAR == LIMIT and LIMIT is another
1104 	 SSA name, the new range will also inherit the equivalence set
1105 	 from LIMIT.  */
1106       if (TREE_CODE (limit) == SSA_NAME)
1107 	add_equivalence (vr_p->equiv, limit);
1108     }
1109   else if (cond_code == NE_EXPR)
1110     {
1111       /* As described above, when LIMIT's range is an anti-range and
1112 	 this assertion is an inequality (NE_EXPR), then we cannot
1113 	 derive anything from the anti-range.  For instance, if
1114 	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1115 	 not imply that VAR's range is [0, 0].  So, in the case of
1116 	 anti-ranges, we just assert the inequality using LIMIT and
1117 	 not its anti-range.
1118 
1119 	 If LIMIT_VR is a range, we can only use it to build a new
1120 	 anti-range if LIMIT_VR is a single-valued range.  For
1121 	 instance, if LIMIT_VR is [0, 1], the predicate
1122 	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1123 	 Rather, it means that for value 0 VAR should be ~[0, 0]
1124 	 and for value 1, VAR should be ~[1, 1].  We cannot
1125 	 represent these ranges.
1126 
1127 	 The only situation in which we can build a valid
1128 	 anti-range is when LIMIT_VR is a single-valued range
1129 	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
1130 	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1131       if (limit_vr
1132 	  && limit_vr->type == VR_RANGE
1133 	  && compare_values (limit_vr->min, limit_vr->max) == 0)
1134 	{
1135 	  min = limit_vr->min;
1136 	  max = limit_vr->max;
1137 	}
1138       else
1139 	{
1140 	  /* In any other case, we cannot use LIMIT's range to build a
1141 	     valid anti-range.  */
1142 	  min = max = limit;
1143 	}
1144 
1145       /* If MIN and MAX cover the whole range for their type, then
1146 	 just use the original LIMIT.  */
1147       if (INTEGRAL_TYPE_P (type)
1148 	  && vrp_val_is_min (min)
1149 	  && vrp_val_is_max (max))
1150 	min = max = limit;
1151 
1152       set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1153     }
1154   else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1155     {
1156       min = TYPE_MIN_VALUE (type);
1157 
1158       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1159 	max = limit;
1160       else
1161 	{
1162 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1163 	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1164 	     LT_EXPR.  */
1165 	  max = limit_vr->max;
1166 	}
1167 
1168       /* If the maximum value forces us to be out of bounds, simply punt.
1169 	 It would be pointless to try and do anything more since this
1170 	 all should be optimized away above us.  */
1171       if ((cond_code == LT_EXPR
1172 	   && compare_values (max, min) == 0)
1173 	  || is_overflow_infinity (max))
1174 	set_value_range_to_varying (vr_p);
1175       else
1176 	{
1177 	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1178 	  if (cond_code == LT_EXPR)
1179 	    {
1180 	      tree one = build_int_cst (type, 1);
1181 	      max = fold_build2 (MINUS_EXPR, type, max, one);
1182 	      if (EXPR_P (max))
1183 		TREE_NO_WARNING (max) = 1;
1184 	    }
1185 
1186 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1187 	}
1188     }
1189   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1190     {
1191       max = TYPE_MAX_VALUE (type);
1192 
1193       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1194 	min = limit;
1195       else
1196 	{
1197 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1198 	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1199 	     GT_EXPR.  */
1200 	  min = limit_vr->min;
1201 	}
1202 
1203       /* If the minimum value forces us to be out of bounds, simply punt.
1204 	 It would be pointless to try and do anything more since this
1205 	 all should be optimized away above us.  */
1206       if ((cond_code == GT_EXPR
1207 	   && compare_values (min, max) == 0)
1208 	  || is_overflow_infinity (min))
1209 	set_value_range_to_varying (vr_p);
1210       else
1211 	{
1212 	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1213 	  if (cond_code == GT_EXPR)
1214 	    {
1215 	      tree one = build_int_cst (type, 1);
1216 	      min = fold_build2 (PLUS_EXPR, type, min, one);
1217 	      if (EXPR_P (min))
1218 		TREE_NO_WARNING (min) = 1;
1219 	    }
1220 
1221 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1222 	}
1223     }
1224   else
1225     gcc_unreachable ();
1226 
1227   /* If VAR already had a known range, it may happen that the new
1228      range we have computed and VAR's range are not compatible.  For
1229      instance,
1230 
1231 	if (p_5 == NULL)
1232 	  p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1233 	  x_7 = p_6->fld;
1234 	  p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1235 
1236      While the above comes from a faulty program, it will cause an ICE
1237      later because p_8 and p_6 will have incompatible ranges and at
1238      the same time will be considered equivalent.  A similar situation
1239      would arise from
1240 
1241      	if (i_5 > 10)
1242 	  i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1243 	  if (i_5 < 5)
1244 	    i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1245 
1246      Again i_6 and i_7 will have incompatible ranges.  It would be
1247      pointless to try and do anything with i_7's range because
1248      anything dominated by 'if (i_5 < 5)' will be optimized away.
1249      Note, due to the wa in which simulation proceeds, the statement
1250      i_7 = ASSERT_EXPR <...> we would never be visited because the
1251      conditional 'if (i_5 < 5)' always evaluates to false.  However,
1252      this extra check does not hurt and may protect against future
1253      changes to VRP that may get into a situation similar to the
1254      NULL pointer dereference example.
1255 
1256      Note that these compatibility tests are only needed when dealing
1257      with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
1258      are both anti-ranges, they will always be compatible, because two
1259      anti-ranges will always have a non-empty intersection.  */
1260 
1261   var_vr = get_value_range (var);
1262 
1263   /* We may need to make adjustments when VR_P and VAR_VR are numeric
1264      ranges or anti-ranges.  */
1265   if (vr_p->type == VR_VARYING
1266       || vr_p->type == VR_UNDEFINED
1267       || var_vr->type == VR_VARYING
1268       || var_vr->type == VR_UNDEFINED
1269       || symbolic_range_p (vr_p)
1270       || symbolic_range_p (var_vr))
1271     return;
1272 
1273   if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1274     {
1275       /* If the two ranges have a non-empty intersection, we can
1276 	 refine the resulting range.  Since the assert expression
1277 	 creates an equivalency and at the same time it asserts a
1278 	 predicate, we can take the intersection of the two ranges to
1279 	 get better precision.  */
1280       if (value_ranges_intersect_p (var_vr, vr_p))
1281 	{
1282 	  /* Use the larger of the two minimums.  */
1283 	  if (compare_values (vr_p->min, var_vr->min) == -1)
1284 	    min = var_vr->min;
1285 	  else
1286 	    min = vr_p->min;
1287 
1288 	  /* Use the smaller of the two maximums.  */
1289 	  if (compare_values (vr_p->max, var_vr->max) == 1)
1290 	    max = var_vr->max;
1291 	  else
1292 	    max = vr_p->max;
1293 
1294 	  set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1295 	}
1296       else
1297 	{
1298 	  /* The two ranges do not intersect, set the new range to
1299 	     VARYING, because we will not be able to do anything
1300 	     meaningful with it.  */
1301 	  set_value_range_to_varying (vr_p);
1302 	}
1303     }
1304   else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1305            || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1306     {
1307       /* A range and an anti-range will cancel each other only if
1308 	 their ends are the same.  For instance, in the example above,
1309 	 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1310 	 so VR_P should be set to VR_VARYING.  */
1311       if (compare_values (var_vr->min, vr_p->min) == 0
1312 	  && compare_values (var_vr->max, vr_p->max) == 0)
1313 	set_value_range_to_varying (vr_p);
1314       else
1315 	{
1316 	  tree min, max, anti_min, anti_max, real_min, real_max;
1317 
1318 	  /* We want to compute the logical AND of the two ranges;
1319 	     there are three cases to consider.
1320 
1321 
1322 	     1. The VR_ANTI_RANGE range is completely within the
1323 		VR_RANGE and the endpoints of the ranges are
1324 		different.  In that case the resulting range
1325 		should be whichever range is more precise.
1326 		Typically that will be the VR_RANGE.
1327 
1328 	     2. The VR_ANTI_RANGE is completely disjoint from
1329 		the VR_RANGE.  In this case the resulting range
1330 		should be the VR_RANGE.
1331 
1332 	     3. There is some overlap between the VR_ANTI_RANGE
1333 		and the VR_RANGE.
1334 
1335 		3a. If the high limit of the VR_ANTI_RANGE resides
1336 		    within the VR_RANGE, then the result is a new
1337 		    VR_RANGE starting at the high limit of the
1338 		    the VR_ANTI_RANGE + 1 and extending to the
1339 		    high limit of the original VR_RANGE.
1340 
1341 		3b. If the low limit of the VR_ANTI_RANGE resides
1342 		    within the VR_RANGE, then the result is a new
1343 		    VR_RANGE starting at the low limit of the original
1344 		    VR_RANGE and extending to the low limit of the
1345 		    VR_ANTI_RANGE - 1.  */
1346 	  if (vr_p->type == VR_ANTI_RANGE)
1347 	    {
1348 	      anti_min = vr_p->min;
1349 	      anti_max = vr_p->max;
1350 	      real_min = var_vr->min;
1351 	      real_max = var_vr->max;
1352 	    }
1353 	  else
1354 	    {
1355 	      anti_min = var_vr->min;
1356 	      anti_max = var_vr->max;
1357 	      real_min = vr_p->min;
1358 	      real_max = vr_p->max;
1359 	    }
1360 
1361 
1362 	  /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1363 	     not including any endpoints.  */
1364 	  if (compare_values (anti_max, real_max) == -1
1365 	      && compare_values (anti_min, real_min) == 1)
1366 	    {
1367 	      set_value_range (vr_p, VR_RANGE, real_min,
1368 			       real_max, vr_p->equiv);
1369 	    }
1370 	  /* Case 2, VR_ANTI_RANGE completely disjoint from
1371 	     VR_RANGE.  */
1372 	  else if (compare_values (anti_min, real_max) == 1
1373 		   || compare_values (anti_max, real_min) == -1)
1374 	    {
1375 	      set_value_range (vr_p, VR_RANGE, real_min,
1376 			       real_max, vr_p->equiv);
1377 	    }
1378 	  /* Case 3a, the anti-range extends into the low
1379 	     part of the real range.  Thus creating a new
1380 	     low for the real range.  */
1381 	  else if ((compare_values (anti_max, real_min) == 1
1382 		    || compare_values (anti_max, real_min) == 0)
1383 		   && compare_values (anti_max, real_max) == -1)
1384 	    {
1385 	      gcc_assert (!is_positive_overflow_infinity (anti_max));
1386 	      if (needs_overflow_infinity (TREE_TYPE (anti_max))
1387 		  && vrp_val_is_max (anti_max))
1388 		{
1389 		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1390 		    {
1391 		      set_value_range_to_varying (vr_p);
1392 		      return;
1393 		    }
1394 		  min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1395 		}
1396 	      else
1397 		min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1398 				   anti_max,
1399 				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1400 	      max = real_max;
1401 	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1402 	    }
1403 	  /* Case 3b, the anti-range extends into the high
1404 	     part of the real range.  Thus creating a new
1405 	     higher for the real range.  */
1406 	  else if (compare_values (anti_min, real_min) == 1
1407 		   && (compare_values (anti_min, real_max) == -1
1408 		       || compare_values (anti_min, real_max) == 0))
1409 	    {
1410 	      gcc_assert (!is_negative_overflow_infinity (anti_min));
1411 	      if (needs_overflow_infinity (TREE_TYPE (anti_min))
1412 		  && vrp_val_is_min (anti_min))
1413 		{
1414 		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1415 		    {
1416 		      set_value_range_to_varying (vr_p);
1417 		      return;
1418 		    }
1419 		  max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1420 		}
1421 	      else
1422 		max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1423 				   anti_min,
1424 				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1425 	      min = real_min;
1426 	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427 	    }
1428 	}
1429     }
1430 }
1431 
1432 
1433 /* Extract range information from SSA name VAR and store it in VR.  If
1434    VAR has an interesting range, use it.  Otherwise, create the
1435    range [VAR, VAR] and return it.  This is useful in situations where
1436    we may have conditionals testing values of VARYING names.  For
1437    instance,
1438 
1439    	x_3 = y_5;
1440 	if (x_3 > y_5)
1441 	  ...
1442 
1443     Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1444     always false.  */
1445 
1446 static void
extract_range_from_ssa_name(value_range_t * vr,tree var)1447 extract_range_from_ssa_name (value_range_t *vr, tree var)
1448 {
1449   value_range_t *var_vr = get_value_range (var);
1450 
1451   if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1452     copy_value_range (vr, var_vr);
1453   else
1454     set_value_range (vr, VR_RANGE, var, var, NULL);
1455 
1456   add_equivalence (vr->equiv, var);
1457 }
1458 
1459 
1460 /* Wrapper around int_const_binop.  If the operation overflows and we
1461    are not using wrapping arithmetic, then adjust the result to be
1462    -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1463    NULL_TREE if we need to use an overflow infinity representation but
1464    the type does not support it.  */
1465 
1466 static tree
vrp_int_const_binop(enum tree_code code,tree val1,tree val2)1467 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1468 {
1469   tree res;
1470 
1471   res = int_const_binop (code, val1, val2, 0);
1472 
1473   /* If we are not using wrapping arithmetic, operate symbolically
1474      on -INF and +INF.  */
1475   if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1476     {
1477       int checkz = compare_values (res, val1);
1478       bool overflow = false;
1479 
1480       /* Ensure that res = val1 [+*] val2 >= val1
1481          or that res = val1 - val2 <= val1.  */
1482       if ((code == PLUS_EXPR
1483 	   && !(checkz == 1 || checkz == 0))
1484           || (code == MINUS_EXPR
1485 	      && !(checkz == 0 || checkz == -1)))
1486 	{
1487 	  overflow = true;
1488 	}
1489       /* Checking for multiplication overflow is done by dividing the
1490 	 output of the multiplication by the first input of the
1491 	 multiplication.  If the result of that division operation is
1492 	 not equal to the second input of the multiplication, then the
1493 	 multiplication overflowed.  */
1494       else if (code == MULT_EXPR && !integer_zerop (val1))
1495 	{
1496 	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1497 				      res,
1498 				      val1, 0);
1499 	  int check = compare_values (tmp, val2);
1500 
1501 	  if (check != 0)
1502 	    overflow = true;
1503 	}
1504 
1505       if (overflow)
1506 	{
1507 	  res = copy_node (res);
1508 	  TREE_OVERFLOW (res) = 1;
1509 	}
1510 
1511     }
1512   else if ((TREE_OVERFLOW (res)
1513 	    && !TREE_OVERFLOW (val1)
1514 	    && !TREE_OVERFLOW (val2))
1515 	   || is_overflow_infinity (val1)
1516 	   || is_overflow_infinity (val2))
1517     {
1518       /* If the operation overflowed but neither VAL1 nor VAL2 are
1519 	 overflown, return -INF or +INF depending on the operation
1520 	 and the combination of signs of the operands.  */
1521       int sgn1 = tree_int_cst_sgn (val1);
1522       int sgn2 = tree_int_cst_sgn (val2);
1523 
1524       if (needs_overflow_infinity (TREE_TYPE (res))
1525 	  && !supports_overflow_infinity (TREE_TYPE (res)))
1526 	return NULL_TREE;
1527 
1528       /* We have to punt on adding infinities of different signs,
1529 	 since we can't tell what the sign of the result should be.
1530 	 Likewise for subtracting infinities of the same sign.  */
1531       if (((code == PLUS_EXPR && sgn1 != sgn2)
1532 	   || (code == MINUS_EXPR && sgn1 == sgn2))
1533 	  && is_overflow_infinity (val1)
1534 	  && is_overflow_infinity (val2))
1535 	return NULL_TREE;
1536 
1537       /* Don't try to handle division or shifting of infinities.  */
1538       if ((code == TRUNC_DIV_EXPR
1539 	   || code == FLOOR_DIV_EXPR
1540 	   || code == CEIL_DIV_EXPR
1541 	   || code == EXACT_DIV_EXPR
1542 	   || code == ROUND_DIV_EXPR
1543 	   || code == RSHIFT_EXPR)
1544 	  && (is_overflow_infinity (val1)
1545 	      || is_overflow_infinity (val2)))
1546 	return NULL_TREE;
1547 
1548       /* Notice that we only need to handle the restricted set of
1549 	 operations handled by extract_range_from_binary_expr.
1550 	 Among them, only multiplication, addition and subtraction
1551 	 can yield overflow without overflown operands because we
1552 	 are working with integral types only... except in the
1553 	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1554 	 for division too.  */
1555 
1556       /* For multiplication, the sign of the overflow is given
1557 	 by the comparison of the signs of the operands.  */
1558       if ((code == MULT_EXPR && sgn1 == sgn2)
1559           /* For addition, the operands must be of the same sign
1560 	     to yield an overflow.  Its sign is therefore that
1561 	     of one of the operands, for example the first.  For
1562 	     infinite operands X + -INF is negative, not positive.  */
1563 	  || (code == PLUS_EXPR
1564 	      && (sgn1 >= 0
1565 		  ? !is_negative_overflow_infinity (val2)
1566 		  : is_positive_overflow_infinity (val2)))
1567 	  /* For subtraction, non-infinite operands must be of
1568 	     different signs to yield an overflow.  Its sign is
1569 	     therefore that of the first operand or the opposite of
1570 	     that of the second operand.  A first operand of 0 counts
1571 	     as positive here, for the corner case 0 - (-INF), which
1572 	     overflows, but must yield +INF.  For infinite operands 0
1573 	     - INF is negative, not positive.  */
1574 	  || (code == MINUS_EXPR
1575 	      && (sgn1 >= 0
1576 		  ? !is_positive_overflow_infinity (val2)
1577 		  : is_negative_overflow_infinity (val2)))
1578 	  /* For division, the only case is -INF / -1 = +INF.  */
1579 	  || code == TRUNC_DIV_EXPR
1580 	  || code == FLOOR_DIV_EXPR
1581 	  || code == CEIL_DIV_EXPR
1582 	  || code == EXACT_DIV_EXPR
1583 	  || code == ROUND_DIV_EXPR)
1584 	return (needs_overflow_infinity (TREE_TYPE (res))
1585 		? positive_overflow_infinity (TREE_TYPE (res))
1586 		: TYPE_MAX_VALUE (TREE_TYPE (res)));
1587       else
1588 	return (needs_overflow_infinity (TREE_TYPE (res))
1589 		? negative_overflow_infinity (TREE_TYPE (res))
1590 		: TYPE_MIN_VALUE (TREE_TYPE (res)));
1591     }
1592 
1593   return res;
1594 }
1595 
1596 
1597 /* Extract range information from a binary expression EXPR based on
1598    the ranges of each of its operands and the expression code.  */
1599 
1600 static void
extract_range_from_binary_expr(value_range_t * vr,tree expr)1601 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1602 {
1603   enum tree_code code = TREE_CODE (expr);
1604   enum value_range_type type;
1605   tree op0, op1, min, max;
1606   int cmp;
1607   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608   value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1609 
1610   /* Not all binary expressions can be applied to ranges in a
1611      meaningful way.  Handle only arithmetic operations.  */
1612   if (code != PLUS_EXPR
1613       && code != MINUS_EXPR
1614       && code != MULT_EXPR
1615       && code != TRUNC_DIV_EXPR
1616       && code != FLOOR_DIV_EXPR
1617       && code != CEIL_DIV_EXPR
1618       && code != EXACT_DIV_EXPR
1619       && code != ROUND_DIV_EXPR
1620       && code != MIN_EXPR
1621       && code != MAX_EXPR
1622       && code != BIT_AND_EXPR
1623       && code != TRUTH_ANDIF_EXPR
1624       && code != TRUTH_ORIF_EXPR
1625       && code != TRUTH_AND_EXPR
1626       && code != TRUTH_OR_EXPR)
1627     {
1628       set_value_range_to_varying (vr);
1629       return;
1630     }
1631 
1632   /* Get value ranges for each operand.  For constant operands, create
1633      a new value range with the operand to simplify processing.  */
1634   op0 = TREE_OPERAND (expr, 0);
1635   if (TREE_CODE (op0) == SSA_NAME)
1636     vr0 = *(get_value_range (op0));
1637   else if (is_gimple_min_invariant (op0))
1638     set_value_range_to_value (&vr0, op0, NULL);
1639   else
1640     set_value_range_to_varying (&vr0);
1641 
1642   op1 = TREE_OPERAND (expr, 1);
1643   if (TREE_CODE (op1) == SSA_NAME)
1644     vr1 = *(get_value_range (op1));
1645   else if (is_gimple_min_invariant (op1))
1646     set_value_range_to_value (&vr1, op1, NULL);
1647   else
1648     set_value_range_to_varying (&vr1);
1649 
1650   /* If either range is UNDEFINED, so is the result.  */
1651   if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1652     {
1653       set_value_range_to_undefined (vr);
1654       return;
1655     }
1656 
1657   /* The type of the resulting value range defaults to VR0.TYPE.  */
1658   type = vr0.type;
1659 
1660   /* Refuse to operate on VARYING ranges, ranges of different kinds
1661      and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
1662      because we may be able to derive a useful range even if one of
1663      the operands is VR_VARYING or symbolic range.  TODO, we may be
1664      able to derive anti-ranges in some cases.  */
1665   if (code != BIT_AND_EXPR
1666       && code != TRUTH_AND_EXPR
1667       && code != TRUTH_OR_EXPR
1668       && (vr0.type == VR_VARYING
1669 	  || vr1.type == VR_VARYING
1670 	  || vr0.type != vr1.type
1671 	  || symbolic_range_p (&vr0)
1672 	  || symbolic_range_p (&vr1)))
1673     {
1674       set_value_range_to_varying (vr);
1675       return;
1676     }
1677 
1678   /* Now evaluate the expression to determine the new range.  */
1679   if (POINTER_TYPE_P (TREE_TYPE (expr))
1680       || POINTER_TYPE_P (TREE_TYPE (op0))
1681       || POINTER_TYPE_P (TREE_TYPE (op1)))
1682     {
1683       /* For pointer types, we are really only interested in asserting
1684 	 whether the expression evaluates to non-NULL.  FIXME, we used
1685 	 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1686 	 ivopts is generating expressions with pointer multiplication
1687 	 in them.  */
1688       if (code == PLUS_EXPR)
1689 	{
1690 	  if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1691 	    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1692 	  else if (range_is_null (&vr0) && range_is_null (&vr1))
1693 	    set_value_range_to_null (vr, TREE_TYPE (expr));
1694 	  else
1695 	    set_value_range_to_varying (vr);
1696 	}
1697       else
1698 	{
1699 	  /* Subtracting from a pointer, may yield 0, so just drop the
1700 	     resulting range to varying.  */
1701 	  set_value_range_to_varying (vr);
1702 	}
1703 
1704       return;
1705     }
1706 
1707   /* For integer ranges, apply the operation to each end of the
1708      range and see what we end up with.  */
1709   if (code == TRUTH_ANDIF_EXPR
1710       || code == TRUTH_ORIF_EXPR
1711       || code == TRUTH_AND_EXPR
1712       || code == TRUTH_OR_EXPR)
1713     {
1714       /* If one of the operands is zero, we know that the whole
1715 	 expression evaluates zero.  */
1716       if (code == TRUTH_AND_EXPR
1717 	  && ((vr0.type == VR_RANGE
1718 	       && integer_zerop (vr0.min)
1719 	       && integer_zerop (vr0.max))
1720 	      || (vr1.type == VR_RANGE
1721 		  && integer_zerop (vr1.min)
1722 		  && integer_zerop (vr1.max))))
1723 	{
1724 	  type = VR_RANGE;
1725 	  min = max = build_int_cst (TREE_TYPE (expr), 0);
1726 	}
1727       /* If one of the operands is one, we know that the whole
1728 	 expression evaluates one.  */
1729       else if (code == TRUTH_OR_EXPR
1730 	       && ((vr0.type == VR_RANGE
1731 		    && integer_onep (vr0.min)
1732 		    && integer_onep (vr0.max))
1733 		   || (vr1.type == VR_RANGE
1734 		       && integer_onep (vr1.min)
1735 		       && integer_onep (vr1.max))))
1736 	{
1737 	  type = VR_RANGE;
1738 	  min = max = build_int_cst (TREE_TYPE (expr), 1);
1739 	}
1740       else if (vr0.type != VR_VARYING
1741 	       && vr1.type != VR_VARYING
1742 	       && vr0.type == vr1.type
1743 	       && !symbolic_range_p (&vr0)
1744 	       && !overflow_infinity_range_p (&vr0)
1745 	       && !symbolic_range_p (&vr1)
1746 	       && !overflow_infinity_range_p (&vr1))
1747 	{
1748 	  /* Boolean expressions cannot be folded with int_const_binop.  */
1749 	  min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1750 	  max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1751 	}
1752       else
1753 	{
1754 	  set_value_range_to_varying (vr);
1755 	  return;
1756 	}
1757     }
1758   else if (code == PLUS_EXPR
1759 	   || code == MIN_EXPR
1760 	   || code == MAX_EXPR)
1761     {
1762       /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1763 	 VR_VARYING.  It would take more effort to compute a precise
1764 	 range for such a case.  For example, if we have op0 == 1 and
1765 	 op1 == -1 with their ranges both being ~[0,0], we would have
1766 	 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1767 	 Note that we are guaranteed to have vr0.type == vr1.type at
1768 	 this point.  */
1769       if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1770 	{
1771 	  set_value_range_to_varying (vr);
1772 	  return;
1773 	}
1774 
1775       /* For operations that make the resulting range directly
1776 	 proportional to the original ranges, apply the operation to
1777 	 the same end of each range.  */
1778       min = vrp_int_const_binop (code, vr0.min, vr1.min);
1779       max = vrp_int_const_binop (code, vr0.max, vr1.max);
1780     }
1781   else if (code == MULT_EXPR
1782 	   || code == TRUNC_DIV_EXPR
1783 	   || code == FLOOR_DIV_EXPR
1784 	   || code == CEIL_DIV_EXPR
1785 	   || code == EXACT_DIV_EXPR
1786 	   || code == ROUND_DIV_EXPR)
1787     {
1788       tree val[4];
1789       size_t i;
1790       bool sop;
1791 
1792       /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1793 	 drop to VR_VARYING.  It would take more effort to compute a
1794 	 precise range for such a case.  For example, if we have
1795 	 op0 == 65536 and op1 == 65536 with their ranges both being
1796 	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1797 	 we cannot claim that the product is in ~[0,0].  Note that we
1798 	 are guaranteed to have vr0.type == vr1.type at this
1799 	 point.  */
1800       if (code == MULT_EXPR
1801 	  && vr0.type == VR_ANTI_RANGE
1802 	  && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1803 	{
1804 	  set_value_range_to_varying (vr);
1805 	  return;
1806 	}
1807 
1808       /* Multiplications and divisions are a bit tricky to handle,
1809 	 depending on the mix of signs we have in the two ranges, we
1810 	 need to operate on different values to get the minimum and
1811 	 maximum values for the new range.  One approach is to figure
1812 	 out all the variations of range combinations and do the
1813 	 operations.
1814 
1815 	 However, this involves several calls to compare_values and it
1816 	 is pretty convoluted.  It's simpler to do the 4 operations
1817 	 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1818 	 MAX1) and then figure the smallest and largest values to form
1819 	 the new range.  */
1820 
1821       /* Divisions by zero result in a VARYING value.  */
1822       if (code != MULT_EXPR
1823 	  && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1824 	{
1825 	  set_value_range_to_varying (vr);
1826 	  return;
1827 	}
1828 
1829       /* Compute the 4 cross operations.  */
1830       sop = false;
1831       val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1832       if (val[0] == NULL_TREE)
1833 	sop = true;
1834 
1835       if (vr1.max == vr1.min)
1836 	val[1] = NULL_TREE;
1837       else
1838 	{
1839 	  val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1840 	  if (val[1] == NULL_TREE)
1841 	    sop = true;
1842 	}
1843 
1844       if (vr0.max == vr0.min)
1845 	val[2] = NULL_TREE;
1846       else
1847 	{
1848 	  val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1849 	  if (val[2] == NULL_TREE)
1850 	    sop = true;
1851 	}
1852 
1853       if (vr0.min == vr0.max || vr1.min == vr1.max)
1854 	val[3] = NULL_TREE;
1855       else
1856 	{
1857 	  val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1858 	  if (val[3] == NULL_TREE)
1859 	    sop = true;
1860 	}
1861 
1862       if (sop)
1863 	{
1864 	  set_value_range_to_varying (vr);
1865 	  return;
1866 	}
1867 
1868       /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1869 	 of VAL[i].  */
1870       min = val[0];
1871       max = val[0];
1872       for (i = 1; i < 4; i++)
1873 	{
1874 	  if (!is_gimple_min_invariant (min)
1875 	      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1876 	      || !is_gimple_min_invariant (max)
1877 	      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1878 	    break;
1879 
1880 	  if (val[i])
1881 	    {
1882 	      if (!is_gimple_min_invariant (val[i])
1883 		  || (TREE_OVERFLOW (val[i])
1884 		      && !is_overflow_infinity (val[i])))
1885 		{
1886 		  /* If we found an overflowed value, set MIN and MAX
1887 		     to it so that we set the resulting range to
1888 		     VARYING.  */
1889 		  min = max = val[i];
1890 		  break;
1891 		}
1892 
1893 	      if (compare_values (val[i], min) == -1)
1894 		min = val[i];
1895 
1896 	      if (compare_values (val[i], max) == 1)
1897 		max = val[i];
1898 	    }
1899 	}
1900     }
1901   else if (code == MINUS_EXPR)
1902     {
1903       /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1904 	 VR_VARYING.  It would take more effort to compute a precise
1905 	 range for such a case.  For example, if we have op0 == 1 and
1906 	 op1 == 1 with their ranges both being ~[0,0], we would have
1907 	 op0 - op1 == 0, so we cannot claim that the difference is in
1908 	 ~[0,0].  Note that we are guaranteed to have
1909 	 vr0.type == vr1.type at this point.  */
1910       if (vr0.type == VR_ANTI_RANGE)
1911 	{
1912 	  set_value_range_to_varying (vr);
1913 	  return;
1914 	}
1915 
1916       /* For MINUS_EXPR, apply the operation to the opposite ends of
1917 	 each range.  */
1918       min = vrp_int_const_binop (code, vr0.min, vr1.max);
1919       max = vrp_int_const_binop (code, vr0.max, vr1.min);
1920     }
1921   else if (code == BIT_AND_EXPR)
1922     {
1923       if (vr0.type == VR_RANGE
1924 	  && vr0.min == vr0.max
1925 	  && TREE_CODE (vr0.max) == INTEGER_CST
1926 	  && !TREE_OVERFLOW (vr0.max)
1927 	  && tree_int_cst_sgn (vr0.max) >= 0)
1928 	{
1929 	  min = build_int_cst (TREE_TYPE (expr), 0);
1930 	  max = vr0.max;
1931 	}
1932       else if (vr1.type == VR_RANGE
1933 	       && vr1.min == vr1.max
1934 	       && TREE_CODE (vr1.max) == INTEGER_CST
1935 	       && !TREE_OVERFLOW (vr1.max)
1936 	       && tree_int_cst_sgn (vr1.max) >= 0)
1937 	{
1938 	  type = VR_RANGE;
1939 	  min = build_int_cst (TREE_TYPE (expr), 0);
1940 	  max = vr1.max;
1941 	}
1942       else
1943 	{
1944 	  set_value_range_to_varying (vr);
1945 	  return;
1946 	}
1947     }
1948   else
1949     gcc_unreachable ();
1950 
1951   /* If either MIN or MAX overflowed, then set the resulting range to
1952      VARYING.  But we do accept an overflow infinity
1953      representation.  */
1954   if (min == NULL_TREE
1955       || !is_gimple_min_invariant (min)
1956       || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1957       || max == NULL_TREE
1958       || !is_gimple_min_invariant (max)
1959       || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1960     {
1961       set_value_range_to_varying (vr);
1962       return;
1963     }
1964 
1965   /* We punt if:
1966      1) [-INF, +INF]
1967      2) [-INF, +-INF(OVF)]
1968      3) [+-INF(OVF), +INF]
1969      4) [+-INF(OVF), +-INF(OVF)]
1970      We learn nothing when we have INF and INF(OVF) on both sides.
1971      Note that we do accept [-INF, -INF] and [+INF, +INF] without
1972      overflow.  */
1973   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
1974       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
1975     {
1976       set_value_range_to_varying (vr);
1977       return;
1978     }
1979 
1980   cmp = compare_values (min, max);
1981   if (cmp == -2 || cmp == 1)
1982     {
1983       /* If the new range has its limits swapped around (MIN > MAX),
1984 	 then the operation caused one of them to wrap around, mark
1985 	 the new range VARYING.  */
1986       set_value_range_to_varying (vr);
1987     }
1988   else
1989     set_value_range (vr, type, min, max, NULL);
1990 }
1991 
1992 
1993 /* Extract range information from a unary expression EXPR based on
1994    the range of its operand and the expression code.  */
1995 
1996 static void
extract_range_from_unary_expr(value_range_t * vr,tree expr)1997 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1998 {
1999   enum tree_code code = TREE_CODE (expr);
2000   tree min, max, op0;
2001   int cmp;
2002   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2003 
2004   /* Refuse to operate on certain unary expressions for which we
2005      cannot easily determine a resulting range.  */
2006   if (code == FIX_TRUNC_EXPR
2007       || code == FIX_CEIL_EXPR
2008       || code == FIX_FLOOR_EXPR
2009       || code == FIX_ROUND_EXPR
2010       || code == FLOAT_EXPR
2011       || code == BIT_NOT_EXPR
2012       || code == NON_LVALUE_EXPR
2013       || code == CONJ_EXPR)
2014     {
2015       set_value_range_to_varying (vr);
2016       return;
2017     }
2018 
2019   /* Get value ranges for the operand.  For constant operands, create
2020      a new value range with the operand to simplify processing.  */
2021   op0 = TREE_OPERAND (expr, 0);
2022   if (TREE_CODE (op0) == SSA_NAME)
2023     vr0 = *(get_value_range (op0));
2024   else if (is_gimple_min_invariant (op0))
2025     set_value_range_to_value (&vr0, op0, NULL);
2026   else
2027     set_value_range_to_varying (&vr0);
2028 
2029   /* If VR0 is UNDEFINED, so is the result.  */
2030   if (vr0.type == VR_UNDEFINED)
2031     {
2032       set_value_range_to_undefined (vr);
2033       return;
2034     }
2035 
2036   /* Refuse to operate on symbolic ranges, or if neither operand is
2037      a pointer or integral type.  */
2038   if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2039        && !POINTER_TYPE_P (TREE_TYPE (op0)))
2040       || (vr0.type != VR_VARYING
2041 	  && symbolic_range_p (&vr0)))
2042     {
2043       set_value_range_to_varying (vr);
2044       return;
2045     }
2046 
2047   /* If the expression involves pointers, we are only interested in
2048      determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
2049   if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2050     {
2051       bool sop;
2052 
2053       sop = false;
2054       if (range_is_nonnull (&vr0)
2055 	  || (tree_expr_nonzero_warnv_p (expr, &sop)
2056 	      && !sop))
2057 	set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2058       else if (range_is_null (&vr0))
2059 	set_value_range_to_null (vr, TREE_TYPE (expr));
2060       else
2061 	set_value_range_to_varying (vr);
2062 
2063       return;
2064     }
2065 
2066   /* Handle unary expressions on integer ranges.  */
2067   if (code == NOP_EXPR || code == CONVERT_EXPR)
2068     {
2069       tree inner_type = TREE_TYPE (op0);
2070       tree outer_type = TREE_TYPE (expr);
2071 
2072       /* If VR0 represents a simple range, then try to convert
2073 	 the min and max values for the range to the same type
2074 	 as OUTER_TYPE.  If the results compare equal to VR0's
2075 	 min and max values and the new min is still less than
2076 	 or equal to the new max, then we can safely use the newly
2077 	 computed range for EXPR.  This allows us to compute
2078 	 accurate ranges through many casts.  */
2079       if ((vr0.type == VR_RANGE
2080 	   && !overflow_infinity_range_p (&vr0))
2081 	  || (vr0.type == VR_VARYING
2082 	      && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2083 	{
2084 	  tree new_min, new_max, orig_min, orig_max;
2085 
2086 	  /* Convert the input operand min/max to OUTER_TYPE.   If
2087 	     the input has no range information, then use the min/max
2088 	     for the input's type.  */
2089 	  if (vr0.type == VR_RANGE)
2090 	    {
2091 	      orig_min = vr0.min;
2092 	      orig_max = vr0.max;
2093 	    }
2094 	  else
2095 	    {
2096 	      orig_min = TYPE_MIN_VALUE (inner_type);
2097 	      orig_max = TYPE_MAX_VALUE (inner_type);
2098 	    }
2099 
2100 	  new_min = fold_convert (outer_type, orig_min);
2101 	  new_max = fold_convert (outer_type, orig_max);
2102 
2103 	  /* Verify the new min/max values are gimple values and
2104 	     that they compare equal to the original input's
2105 	     min/max values.  */
2106 	  if (is_gimple_val (new_min)
2107 	      && is_gimple_val (new_max)
2108 	      && tree_int_cst_equal (new_min, orig_min)
2109 	      && tree_int_cst_equal (new_max, orig_max)
2110 	      && (!is_overflow_infinity (new_min)
2111 		  || !is_overflow_infinity (new_max))
2112 	      && compare_values (new_min, new_max) <= 0
2113 	      && compare_values (new_min, new_max) >= -1)
2114 	    {
2115 	      set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2116 	      return;
2117 	    }
2118 	}
2119 
2120       /* When converting types of different sizes, set the result to
2121 	 VARYING.  Things like sign extensions and precision loss may
2122 	 change the range.  For instance, if x_3 is of type 'long long
2123 	 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2124 	 is impossible to know at compile time whether y_5 will be
2125 	 ~[0, 0].  */
2126       if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2127 	  || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2128 	{
2129 	  set_value_range_to_varying (vr);
2130 	  return;
2131 	}
2132     }
2133 
2134   /* Conversion of a VR_VARYING value to a wider type can result
2135      in a usable range.  So wait until after we've handled conversions
2136      before dropping the result to VR_VARYING if we had a source
2137      operand that is VR_VARYING.  */
2138   if (vr0.type == VR_VARYING)
2139     {
2140       set_value_range_to_varying (vr);
2141       return;
2142     }
2143 
2144   /* Apply the operation to each end of the range and see what we end
2145      up with.  */
2146   if (code == NEGATE_EXPR
2147       && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2148     {
2149       /* NEGATE_EXPR flips the range around.  We need to treat
2150 	 TYPE_MIN_VALUE specially.  */
2151       if (is_positive_overflow_infinity (vr0.max))
2152 	min = negative_overflow_infinity (TREE_TYPE (expr));
2153       else if (is_negative_overflow_infinity (vr0.max))
2154 	min = positive_overflow_infinity (TREE_TYPE (expr));
2155       else if (!vrp_val_is_min (vr0.max))
2156 	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2157       else if (needs_overflow_infinity (TREE_TYPE (expr)))
2158 	{
2159 	  if (supports_overflow_infinity (TREE_TYPE (expr))
2160 	      && !is_overflow_infinity (vr0.min)
2161 	      && !vrp_val_is_min (vr0.min))
2162 	    min = positive_overflow_infinity (TREE_TYPE (expr));
2163 	  else
2164 	    {
2165 	      set_value_range_to_varying (vr);
2166 	      return;
2167 	    }
2168 	}
2169       else
2170 	min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2171 
2172       if (is_positive_overflow_infinity (vr0.min))
2173 	max = negative_overflow_infinity (TREE_TYPE (expr));
2174       else if (is_negative_overflow_infinity (vr0.min))
2175 	max = positive_overflow_infinity (TREE_TYPE (expr));
2176       else if (!vrp_val_is_min (vr0.min))
2177 	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2178       else if (needs_overflow_infinity (TREE_TYPE (expr)))
2179 	{
2180 	  if (supports_overflow_infinity (TREE_TYPE (expr)))
2181 	    max = positive_overflow_infinity (TREE_TYPE (expr));
2182 	  else
2183 	    {
2184 	      set_value_range_to_varying (vr);
2185 	      return;
2186 	    }
2187 	}
2188       else
2189 	max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2190     }
2191   else if (code == NEGATE_EXPR
2192 	   && TYPE_UNSIGNED (TREE_TYPE (expr)))
2193     {
2194       if (!range_includes_zero_p (&vr0))
2195 	{
2196 	  max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2197 	  min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2198 	}
2199       else
2200 	{
2201 	  if (range_is_null (&vr0))
2202 	    set_value_range_to_null (vr, TREE_TYPE (expr));
2203 	  else
2204 	    set_value_range_to_varying (vr);
2205 	  return;
2206 	}
2207     }
2208   else if (code == ABS_EXPR
2209            && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2210     {
2211       /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2212          useful range.  */
2213       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2214 	  && ((vr0.type == VR_RANGE
2215 	       && vrp_val_is_min (vr0.min))
2216 	      || (vr0.type == VR_ANTI_RANGE
2217 		  && !vrp_val_is_min (vr0.min)
2218 		  && !range_includes_zero_p (&vr0))))
2219 	{
2220 	  set_value_range_to_varying (vr);
2221 	  return;
2222 	}
2223 
2224       /* ABS_EXPR may flip the range around, if the original range
2225 	 included negative values.  */
2226       if (is_overflow_infinity (vr0.min))
2227 	min = positive_overflow_infinity (TREE_TYPE (expr));
2228       else if (!vrp_val_is_min (vr0.min))
2229 	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2230       else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2231 	min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2232       else if (supports_overflow_infinity (TREE_TYPE (expr)))
2233 	min = positive_overflow_infinity (TREE_TYPE (expr));
2234       else
2235 	{
2236 	  set_value_range_to_varying (vr);
2237 	  return;
2238 	}
2239 
2240       if (is_overflow_infinity (vr0.max))
2241 	max = positive_overflow_infinity (TREE_TYPE (expr));
2242       else if (!vrp_val_is_min (vr0.max))
2243 	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2244       else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2245 	max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2246       else if (supports_overflow_infinity (TREE_TYPE (expr)))
2247 	max = positive_overflow_infinity (TREE_TYPE (expr));
2248       else
2249 	{
2250 	  set_value_range_to_varying (vr);
2251 	  return;
2252 	}
2253 
2254       cmp = compare_values (min, max);
2255 
2256       /* If a VR_ANTI_RANGEs contains zero, then we have
2257 	 ~[-INF, min(MIN, MAX)].  */
2258       if (vr0.type == VR_ANTI_RANGE)
2259 	{
2260 	  if (range_includes_zero_p (&vr0))
2261 	    {
2262 	      /* Take the lower of the two values.  */
2263 	      if (cmp != 1)
2264 		max = min;
2265 
2266 	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2267 	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2268 		 flag_wrapv is set and the original anti-range doesn't include
2269 	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
2270 	      if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2271 		{
2272 		  tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2273 
2274 		  min = (vr0.min != type_min_value
2275 			 ? int_const_binop (PLUS_EXPR, type_min_value,
2276 					    integer_one_node, 0)
2277 			 : type_min_value);
2278 		}
2279 	      else
2280 		{
2281 		  if (overflow_infinity_range_p (&vr0))
2282 		    min = negative_overflow_infinity (TREE_TYPE (expr));
2283 		  else
2284 		    min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2285 		}
2286 	    }
2287 	  else
2288 	    {
2289 	      /* All else has failed, so create the range [0, INF], even for
2290 	         flag_wrapv since TYPE_MIN_VALUE is in the original
2291 	         anti-range.  */
2292 	      vr0.type = VR_RANGE;
2293 	      min = build_int_cst (TREE_TYPE (expr), 0);
2294 	      if (needs_overflow_infinity (TREE_TYPE (expr)))
2295 		{
2296 		  if (supports_overflow_infinity (TREE_TYPE (expr)))
2297 		    max = positive_overflow_infinity (TREE_TYPE (expr));
2298 		  else
2299 		    {
2300 		      set_value_range_to_varying (vr);
2301 		      return;
2302 		    }
2303 		}
2304 	      else
2305 		max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2306 	    }
2307 	}
2308 
2309       /* If the range contains zero then we know that the minimum value in the
2310          range will be zero.  */
2311       else if (range_includes_zero_p (&vr0))
2312 	{
2313 	  if (cmp == 1)
2314 	    max = min;
2315 	  min = build_int_cst (TREE_TYPE (expr), 0);
2316 	}
2317       else
2318 	{
2319           /* If the range was reversed, swap MIN and MAX.  */
2320 	  if (cmp == 1)
2321 	    {
2322 	      tree t = min;
2323 	      min = max;
2324 	      max = t;
2325 	    }
2326 	}
2327     }
2328   else
2329     {
2330       /* Otherwise, operate on each end of the range.  */
2331       min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2332       max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2333 
2334       if (needs_overflow_infinity (TREE_TYPE (expr)))
2335 	{
2336 	  gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2337 
2338 	  /* If both sides have overflowed, we don't know
2339 	     anything.  */
2340 	  if ((is_overflow_infinity (vr0.min)
2341 	       || TREE_OVERFLOW (min))
2342 	      && (is_overflow_infinity (vr0.max)
2343 		  || TREE_OVERFLOW (max)))
2344 	    {
2345 	      set_value_range_to_varying (vr);
2346 	      return;
2347 	    }
2348 
2349 	  if (is_overflow_infinity (vr0.min))
2350 	    min = vr0.min;
2351 	  else if (TREE_OVERFLOW (min))
2352 	    {
2353 	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2354 		min = (tree_int_cst_sgn (min) >= 0
2355 		       ? positive_overflow_infinity (TREE_TYPE (min))
2356 		       : negative_overflow_infinity (TREE_TYPE (min)));
2357 	      else
2358 		{
2359 		  set_value_range_to_varying (vr);
2360 		  return;
2361 		}
2362 	    }
2363 
2364 	  if (is_overflow_infinity (vr0.max))
2365 	    max = vr0.max;
2366 	  else if (TREE_OVERFLOW (max))
2367 	    {
2368 	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2369 		max = (tree_int_cst_sgn (max) >= 0
2370 		       ? positive_overflow_infinity (TREE_TYPE (max))
2371 		       : negative_overflow_infinity (TREE_TYPE (max)));
2372 	      else
2373 		{
2374 		  set_value_range_to_varying (vr);
2375 		  return;
2376 		}
2377 	    }
2378 	}
2379     }
2380 
2381   cmp = compare_values (min, max);
2382   if (cmp == -2 || cmp == 1)
2383     {
2384       /* If the new range has its limits swapped around (MIN > MAX),
2385 	 then the operation caused one of them to wrap around, mark
2386 	 the new range VARYING.  */
2387       set_value_range_to_varying (vr);
2388     }
2389   else
2390     set_value_range (vr, vr0.type, min, max, NULL);
2391 }
2392 
2393 
2394 /* Extract range information from a comparison expression EXPR based
2395    on the range of its operand and the expression code.  */
2396 
2397 static void
extract_range_from_comparison(value_range_t * vr,tree expr)2398 extract_range_from_comparison (value_range_t *vr, tree expr)
2399 {
2400   bool sop = false;
2401   tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2402 
2403   /* A disadvantage of using a special infinity as an overflow
2404      representation is that we lose the ability to record overflow
2405      when we don't have an infinity.  So we have to ignore a result
2406      which relies on overflow.  */
2407 
2408   if (val && !is_overflow_infinity (val) && !sop)
2409     {
2410       /* Since this expression was found on the RHS of an assignment,
2411 	 its type may be different from _Bool.  Convert VAL to EXPR's
2412 	 type.  */
2413       val = fold_convert (TREE_TYPE (expr), val);
2414       if (is_gimple_min_invariant (val))
2415 	set_value_range_to_value (vr, val, vr->equiv);
2416       else
2417 	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2418     }
2419   else
2420     set_value_range_to_varying (vr);
2421 }
2422 
2423 
2424 /* Try to compute a useful range out of expression EXPR and store it
2425    in *VR.  */
2426 
2427 static void
extract_range_from_expr(value_range_t * vr,tree expr)2428 extract_range_from_expr (value_range_t *vr, tree expr)
2429 {
2430   enum tree_code code = TREE_CODE (expr);
2431 
2432   if (code == ASSERT_EXPR)
2433     extract_range_from_assert (vr, expr);
2434   else if (code == SSA_NAME)
2435     extract_range_from_ssa_name (vr, expr);
2436   else if (TREE_CODE_CLASS (code) == tcc_binary
2437 	   || code == TRUTH_ANDIF_EXPR
2438 	   || code == TRUTH_ORIF_EXPR
2439 	   || code == TRUTH_AND_EXPR
2440 	   || code == TRUTH_OR_EXPR
2441 	   || code == TRUTH_XOR_EXPR)
2442     extract_range_from_binary_expr (vr, expr);
2443   else if (TREE_CODE_CLASS (code) == tcc_unary)
2444     extract_range_from_unary_expr (vr, expr);
2445   else if (TREE_CODE_CLASS (code) == tcc_comparison)
2446     extract_range_from_comparison (vr, expr);
2447   else if (is_gimple_min_invariant (expr))
2448     set_value_range_to_value (vr, expr, NULL);
2449   else
2450     set_value_range_to_varying (vr);
2451 
2452   /* If we got a varying range from the tests above, try a final
2453      time to derive a nonnegative or nonzero range.  This time
2454      relying primarily on generic routines in fold in conjunction
2455      with range data.  */
2456   if (vr->type == VR_VARYING)
2457     {
2458       bool sop = false;
2459 
2460       if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2461 	  && vrp_expr_computes_nonnegative (expr, &sop))
2462 	set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2463 					sop || is_overflow_infinity (expr));
2464       else if (vrp_expr_computes_nonzero (expr, &sop)
2465 	       && !sop)
2466         set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2467     }
2468 }
2469 
2470 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2471    would be profitable to adjust VR using scalar evolution information
2472    for VAR.  If so, update VR with the new limits.  */
2473 
2474 static void
adjust_range_with_scev(value_range_t * vr,struct loop * loop,tree stmt,tree var)2475 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2476 			tree var)
2477 {
2478   tree init, step, chrec, tmin, tmax, min, max, type;
2479   enum ev_direction dir;
2480 
2481   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
2482      better opportunities than a regular range, but I'm not sure.  */
2483   if (vr->type == VR_ANTI_RANGE)
2484     return;
2485 
2486   chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2487   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2488     return;
2489 
2490   init = initial_condition_in_loop_num (chrec, loop->num);
2491   step = evolution_part_in_loop_num (chrec, loop->num);
2492 
2493   /* If STEP is symbolic, we can't know whether INIT will be the
2494      minimum or maximum value in the range.  Also, unless INIT is
2495      a simple expression, compare_values and possibly other functions
2496      in tree-vrp won't be able to handle it.  */
2497   if (step == NULL_TREE
2498       || !is_gimple_min_invariant (step)
2499       || !valid_value_p (init))
2500     return;
2501 
2502   dir = scev_direction (chrec);
2503   if (/* Do not adjust ranges if we do not know whether the iv increases
2504 	 or decreases,  ... */
2505       dir == EV_DIR_UNKNOWN
2506       /* ... or if it may wrap.  */
2507       || scev_probably_wraps_p (init, step, stmt,
2508 				current_loops->parray[CHREC_VARIABLE (chrec)],
2509 				true))
2510     return;
2511 
2512   /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2513      negative_overflow_infinity and positive_overflow_infinity,
2514      because we have concluded that the loop probably does not
2515      wrap.  */
2516 
2517   type = TREE_TYPE (var);
2518   if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2519     tmin = lower_bound_in_type (type, type);
2520   else
2521     tmin = TYPE_MIN_VALUE (type);
2522   if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2523     tmax = upper_bound_in_type (type, type);
2524   else
2525     tmax = TYPE_MAX_VALUE (type);
2526 
2527   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2528     {
2529       min = tmin;
2530       max = tmax;
2531 
2532       /* For VARYING or UNDEFINED ranges, just about anything we get
2533 	 from scalar evolutions should be better.  */
2534 
2535       if (dir == EV_DIR_DECREASES)
2536 	max = init;
2537       else
2538 	min = init;
2539 
2540       /* If we would create an invalid range, then just assume we
2541 	 know absolutely nothing.  This may be over-conservative,
2542 	 but it's clearly safe, and should happen only in unreachable
2543          parts of code, or for invalid programs.  */
2544       if (compare_values (min, max) == 1)
2545 	return;
2546 
2547       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2548     }
2549   else if (vr->type == VR_RANGE)
2550     {
2551       min = vr->min;
2552       max = vr->max;
2553 
2554       if (dir == EV_DIR_DECREASES)
2555 	{
2556 	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
2557 	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
2558 	  if (compare_values (init, max) == -1)
2559 	    {
2560 	      max = init;
2561 
2562 	      /* If we just created an invalid range with the minimum
2563 		 greater than the maximum, we fail conservatively.
2564 		 This should happen only in unreachable
2565 		 parts of code, or for invalid programs.  */
2566 	      if (compare_values (min, max) == 1)
2567 		return;
2568 	    }
2569 
2570 	  /* According to the loop information, the variable does not
2571 	     overflow.  If we think it does, probably because of an
2572 	     overflow due to arithmetic on a different INF value,
2573 	     reset now.  */
2574 	  if (is_negative_overflow_infinity (min))
2575 	    min = tmin;
2576 	}
2577       else
2578 	{
2579 	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
2580 	  if (compare_values (init, min) == 1)
2581 	    {
2582 	      min = init;
2583 
2584 	      /* Again, avoid creating invalid range by failing.  */
2585 	      if (compare_values (min, max) == 1)
2586 		return;
2587 	    }
2588 
2589 	  if (is_positive_overflow_infinity (max))
2590 	    max = tmax;
2591 	}
2592 
2593       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2594     }
2595 }
2596 
2597 /* Return true if VAR may overflow at STMT.  This checks any available
2598    loop information to see if we can determine that VAR does not
2599    overflow.  */
2600 
2601 static bool
vrp_var_may_overflow(tree var,tree stmt)2602 vrp_var_may_overflow (tree var, tree stmt)
2603 {
2604   struct loop *l;
2605   tree chrec, init, step;
2606 
2607   if (current_loops == NULL)
2608     return true;
2609 
2610   l = loop_containing_stmt (stmt);
2611   if (l == NULL)
2612     return true;
2613 
2614   chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2615   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2616     return true;
2617 
2618   init = initial_condition_in_loop_num (chrec, l->num);
2619   step = evolution_part_in_loop_num (chrec, l->num);
2620 
2621   if (step == NULL_TREE
2622       || !is_gimple_min_invariant (step)
2623       || !valid_value_p (init))
2624     return true;
2625 
2626   /* If we get here, we know something useful about VAR based on the
2627      loop information.  If it wraps, it may overflow.  */
2628 
2629   if (scev_probably_wraps_p (init, step, stmt,
2630 			     current_loops->parray[CHREC_VARIABLE (chrec)],
2631 			     true))
2632     return true;
2633 
2634   if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2635     {
2636       print_generic_expr (dump_file, var, 0);
2637       fprintf (dump_file, ": loop information indicates does not overflow\n");
2638     }
2639 
2640   return false;
2641 }
2642 
2643 
2644 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2645 
2646    - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2647      all the values in the ranges.
2648 
2649    - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2650 
2651    - Return NULL_TREE if it is not always possible to determine the
2652      value of the comparison.
2653 
2654    Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2655    overflow infinity was used in the test.  */
2656 
2657 
2658 static tree
compare_ranges(enum tree_code comp,value_range_t * vr0,value_range_t * vr1,bool * strict_overflow_p)2659 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2660 		bool *strict_overflow_p)
2661 {
2662   /* VARYING or UNDEFINED ranges cannot be compared.  */
2663   if (vr0->type == VR_VARYING
2664       || vr0->type == VR_UNDEFINED
2665       || vr1->type == VR_VARYING
2666       || vr1->type == VR_UNDEFINED)
2667     return NULL_TREE;
2668 
2669   /* Anti-ranges need to be handled separately.  */
2670   if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2671     {
2672       /* If both are anti-ranges, then we cannot compute any
2673 	 comparison.  */
2674       if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2675 	return NULL_TREE;
2676 
2677       /* These comparisons are never statically computable.  */
2678       if (comp == GT_EXPR
2679 	  || comp == GE_EXPR
2680 	  || comp == LT_EXPR
2681 	  || comp == LE_EXPR)
2682 	return NULL_TREE;
2683 
2684       /* Equality can be computed only between a range and an
2685 	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
2686       if (vr0->type == VR_RANGE)
2687 	{
2688 	  /* To simplify processing, make VR0 the anti-range.  */
2689 	  value_range_t *tmp = vr0;
2690 	  vr0 = vr1;
2691 	  vr1 = tmp;
2692 	}
2693 
2694       gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2695 
2696       if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2697 	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2698 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2699 
2700       return NULL_TREE;
2701     }
2702 
2703   if (!usable_range_p (vr0, strict_overflow_p)
2704       || !usable_range_p (vr1, strict_overflow_p))
2705     return NULL_TREE;
2706 
2707   /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
2708      operands around and change the comparison code.  */
2709   if (comp == GT_EXPR || comp == GE_EXPR)
2710     {
2711       value_range_t *tmp;
2712       comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2713       tmp = vr0;
2714       vr0 = vr1;
2715       vr1 = tmp;
2716     }
2717 
2718   if (comp == EQ_EXPR)
2719     {
2720       /* Equality may only be computed if both ranges represent
2721 	 exactly one value.  */
2722       if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2723 	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2724 	{
2725 	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2726 					      strict_overflow_p);
2727 	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2728 					      strict_overflow_p);
2729 	  if (cmp_min == 0 && cmp_max == 0)
2730 	    return boolean_true_node;
2731 	  else if (cmp_min != -2 && cmp_max != -2)
2732 	    return boolean_false_node;
2733 	}
2734       /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
2735       else if (compare_values_warnv (vr0->min, vr1->max,
2736 				     strict_overflow_p) == 1
2737 	       || compare_values_warnv (vr1->min, vr0->max,
2738 					strict_overflow_p) == 1)
2739 	return boolean_false_node;
2740 
2741       return NULL_TREE;
2742     }
2743   else if (comp == NE_EXPR)
2744     {
2745       int cmp1, cmp2;
2746 
2747       /* If VR0 is completely to the left or completely to the right
2748 	 of VR1, they are always different.  Notice that we need to
2749 	 make sure that both comparisons yield similar results to
2750 	 avoid comparing values that cannot be compared at
2751 	 compile-time.  */
2752       cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2753       cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2754       if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2755 	return boolean_true_node;
2756 
2757       /* If VR0 and VR1 represent a single value and are identical,
2758 	 return false.  */
2759       else if (compare_values_warnv (vr0->min, vr0->max,
2760 				     strict_overflow_p) == 0
2761 	       && compare_values_warnv (vr1->min, vr1->max,
2762 					strict_overflow_p) == 0
2763 	       && compare_values_warnv (vr0->min, vr1->min,
2764 					strict_overflow_p) == 0
2765 	       && compare_values_warnv (vr0->max, vr1->max,
2766 					strict_overflow_p) == 0)
2767 	return boolean_false_node;
2768 
2769       /* Otherwise, they may or may not be different.  */
2770       else
2771 	return NULL_TREE;
2772     }
2773   else if (comp == LT_EXPR || comp == LE_EXPR)
2774     {
2775       int tst;
2776 
2777       /* If VR0 is to the left of VR1, return true.  */
2778       tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2779       if ((comp == LT_EXPR && tst == -1)
2780 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2781 	{
2782 	  if (overflow_infinity_range_p (vr0)
2783 	      || overflow_infinity_range_p (vr1))
2784 	    *strict_overflow_p = true;
2785 	  return boolean_true_node;
2786 	}
2787 
2788       /* If VR0 is to the right of VR1, return false.  */
2789       tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2790       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2791 	  || (comp == LE_EXPR && tst == 1))
2792 	{
2793 	  if (overflow_infinity_range_p (vr0)
2794 	      || overflow_infinity_range_p (vr1))
2795 	    *strict_overflow_p = true;
2796 	  return boolean_false_node;
2797 	}
2798 
2799       /* Otherwise, we don't know.  */
2800       return NULL_TREE;
2801     }
2802 
2803   gcc_unreachable ();
2804 }
2805 
2806 
2807 /* Given a value range VR, a value VAL and a comparison code COMP, return
2808    BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2809    values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
2810    always returns false.  Return NULL_TREE if it is not always
2811    possible to determine the value of the comparison.  Also set
2812    *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2813    infinity was used in the test.  */
2814 
2815 static tree
compare_range_with_value(enum tree_code comp,value_range_t * vr,tree val,bool * strict_overflow_p)2816 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2817 			  bool *strict_overflow_p)
2818 {
2819   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2820     return NULL_TREE;
2821 
2822   /* Anti-ranges need to be handled separately.  */
2823   if (vr->type == VR_ANTI_RANGE)
2824     {
2825       /* For anti-ranges, the only predicates that we can compute at
2826 	 compile time are equality and inequality.  */
2827       if (comp == GT_EXPR
2828 	  || comp == GE_EXPR
2829 	  || comp == LT_EXPR
2830 	  || comp == LE_EXPR)
2831 	return NULL_TREE;
2832 
2833       /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
2834       if (value_inside_range (val, vr) == 1)
2835 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2836 
2837       return NULL_TREE;
2838     }
2839 
2840   if (!usable_range_p (vr, strict_overflow_p))
2841     return NULL_TREE;
2842 
2843   if (comp == EQ_EXPR)
2844     {
2845       /* EQ_EXPR may only be computed if VR represents exactly
2846 	 one value.  */
2847       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2848 	{
2849 	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2850 	  if (cmp == 0)
2851 	    return boolean_true_node;
2852 	  else if (cmp == -1 || cmp == 1 || cmp == 2)
2853 	    return boolean_false_node;
2854 	}
2855       else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2856 	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2857 	return boolean_false_node;
2858 
2859       return NULL_TREE;
2860     }
2861   else if (comp == NE_EXPR)
2862     {
2863       /* If VAL is not inside VR, then they are always different.  */
2864       if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2865 	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2866 	return boolean_true_node;
2867 
2868       /* If VR represents exactly one value equal to VAL, then return
2869 	 false.  */
2870       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2871 	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2872 	return boolean_false_node;
2873 
2874       /* Otherwise, they may or may not be different.  */
2875       return NULL_TREE;
2876     }
2877   else if (comp == LT_EXPR || comp == LE_EXPR)
2878     {
2879       int tst;
2880 
2881       /* If VR is to the left of VAL, return true.  */
2882       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2883       if ((comp == LT_EXPR && tst == -1)
2884 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2885 	{
2886 	  if (overflow_infinity_range_p (vr))
2887 	    *strict_overflow_p = true;
2888 	  return boolean_true_node;
2889 	}
2890 
2891       /* If VR is to the right of VAL, return false.  */
2892       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2893       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2894 	  || (comp == LE_EXPR && tst == 1))
2895 	{
2896 	  if (overflow_infinity_range_p (vr))
2897 	    *strict_overflow_p = true;
2898 	  return boolean_false_node;
2899 	}
2900 
2901       /* Otherwise, we don't know.  */
2902       return NULL_TREE;
2903     }
2904   else if (comp == GT_EXPR || comp == GE_EXPR)
2905     {
2906       int tst;
2907 
2908       /* If VR is to the right of VAL, return true.  */
2909       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2910       if ((comp == GT_EXPR && tst == 1)
2911 	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2912 	{
2913 	  if (overflow_infinity_range_p (vr))
2914 	    *strict_overflow_p = true;
2915 	  return boolean_true_node;
2916 	}
2917 
2918       /* If VR is to the left of VAL, return false.  */
2919       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2920       if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2921 	  || (comp == GE_EXPR && tst == -1))
2922 	{
2923 	  if (overflow_infinity_range_p (vr))
2924 	    *strict_overflow_p = true;
2925 	  return boolean_false_node;
2926 	}
2927 
2928       /* Otherwise, we don't know.  */
2929       return NULL_TREE;
2930     }
2931 
2932   gcc_unreachable ();
2933 }
2934 
2935 
2936 /* Debugging dumps.  */
2937 
2938 void dump_value_range (FILE *, value_range_t *);
2939 void debug_value_range (value_range_t *);
2940 void dump_all_value_ranges (FILE *);
2941 void debug_all_value_ranges (void);
2942 void dump_vr_equiv (FILE *, bitmap);
2943 void debug_vr_equiv (bitmap);
2944 
2945 
2946 /* Dump value range VR to FILE.  */
2947 
2948 void
dump_value_range(FILE * file,value_range_t * vr)2949 dump_value_range (FILE *file, value_range_t *vr)
2950 {
2951   if (vr == NULL)
2952     fprintf (file, "[]");
2953   else if (vr->type == VR_UNDEFINED)
2954     fprintf (file, "UNDEFINED");
2955   else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2956     {
2957       tree type = TREE_TYPE (vr->min);
2958 
2959       fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2960 
2961       if (is_negative_overflow_infinity (vr->min))
2962 	fprintf (file, "-INF(OVF)");
2963       else if (INTEGRAL_TYPE_P (type)
2964 	       && !TYPE_UNSIGNED (type)
2965 	       && vrp_val_is_min (vr->min))
2966 	fprintf (file, "-INF");
2967       else
2968 	print_generic_expr (file, vr->min, 0);
2969 
2970       fprintf (file, ", ");
2971 
2972       if (is_positive_overflow_infinity (vr->max))
2973 	fprintf (file, "+INF(OVF)");
2974       else if (INTEGRAL_TYPE_P (type)
2975 	       && vrp_val_is_max (vr->max))
2976 	fprintf (file, "+INF");
2977       else
2978 	print_generic_expr (file, vr->max, 0);
2979 
2980       fprintf (file, "]");
2981 
2982       if (vr->equiv)
2983 	{
2984 	  bitmap_iterator bi;
2985 	  unsigned i, c = 0;
2986 
2987 	  fprintf (file, "  EQUIVALENCES: { ");
2988 
2989 	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2990 	    {
2991 	      print_generic_expr (file, ssa_name (i), 0);
2992 	      fprintf (file, " ");
2993 	      c++;
2994 	    }
2995 
2996 	  fprintf (file, "} (%u elements)", c);
2997 	}
2998     }
2999   else if (vr->type == VR_VARYING)
3000     fprintf (file, "VARYING");
3001   else
3002     fprintf (file, "INVALID RANGE");
3003 }
3004 
3005 
3006 /* Dump value range VR to stderr.  */
3007 
3008 void
debug_value_range(value_range_t * vr)3009 debug_value_range (value_range_t *vr)
3010 {
3011   dump_value_range (stderr, vr);
3012   fprintf (stderr, "\n");
3013 }
3014 
3015 
3016 /* Dump value ranges of all SSA_NAMEs to FILE.  */
3017 
3018 void
dump_all_value_ranges(FILE * file)3019 dump_all_value_ranges (FILE *file)
3020 {
3021   size_t i;
3022 
3023   for (i = 0; i < num_ssa_names; i++)
3024     {
3025       if (vr_value[i])
3026 	{
3027 	  print_generic_expr (file, ssa_name (i), 0);
3028 	  fprintf (file, ": ");
3029 	  dump_value_range (file, vr_value[i]);
3030 	  fprintf (file, "\n");
3031 	}
3032     }
3033 
3034   fprintf (file, "\n");
3035 }
3036 
3037 
3038 /* Dump all value ranges to stderr.  */
3039 
3040 void
debug_all_value_ranges(void)3041 debug_all_value_ranges (void)
3042 {
3043   dump_all_value_ranges (stderr);
3044 }
3045 
3046 
3047 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3048    create a new SSA name N and return the assertion assignment
3049    'V = ASSERT_EXPR <V, V OP W>'.  */
3050 
3051 static tree
build_assert_expr_for(tree cond,tree v)3052 build_assert_expr_for (tree cond, tree v)
3053 {
3054   tree n, assertion;
3055 
3056   gcc_assert (TREE_CODE (v) == SSA_NAME);
3057   n = duplicate_ssa_name (v, NULL_TREE);
3058 
3059   if (COMPARISON_CLASS_P (cond))
3060     {
3061       tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3062       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
3063     }
3064   else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3065     {
3066       /* Given !V, build the assignment N = false.  */
3067       tree op0 = TREE_OPERAND (cond, 0);
3068       gcc_assert (op0 == v);
3069       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
3070     }
3071   else if (TREE_CODE (cond) == SSA_NAME)
3072     {
3073       /* Given V, build the assignment N = true.  */
3074       gcc_assert (v == cond);
3075       assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
3076     }
3077   else
3078     gcc_unreachable ();
3079 
3080   SSA_NAME_DEF_STMT (n) = assertion;
3081 
3082   /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3083      operand of the ASSERT_EXPR. Register the new name and the old one
3084      in the replacement table so that we can fix the SSA web after
3085      adding all the ASSERT_EXPRs.  */
3086   register_new_name_mapping (n, v);
3087 
3088   return assertion;
3089 }
3090 
3091 
3092 /* Return false if EXPR is a predicate expression involving floating
3093    point values.  */
3094 
3095 static inline bool
fp_predicate(tree expr)3096 fp_predicate (tree expr)
3097 {
3098   return (COMPARISON_CLASS_P (expr)
3099 	  && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3100 }
3101 
3102 
3103 /* If the range of values taken by OP can be inferred after STMT executes,
3104    return the comparison code (COMP_CODE_P) and value (VAL_P) that
3105    describes the inferred range.  Return true if a range could be
3106    inferred.  */
3107 
3108 static bool
infer_value_range(tree stmt,tree op,enum tree_code * comp_code_p,tree * val_p)3109 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3110 {
3111   *val_p = NULL_TREE;
3112   *comp_code_p = ERROR_MARK;
3113 
3114   /* Do not attempt to infer anything in names that flow through
3115      abnormal edges.  */
3116   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3117     return false;
3118 
3119   /* Similarly, don't infer anything from statements that may throw
3120      exceptions.  */
3121   if (tree_could_throw_p (stmt))
3122     return false;
3123 
3124   /* If STMT is the last statement of a basic block with no
3125      successors, there is no point inferring anything about any of its
3126      operands.  We would not be able to find a proper insertion point
3127      for the assertion, anyway.  */
3128   if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3129     return false;
3130 
3131   /* We can only assume that a pointer dereference will yield
3132      non-NULL if -fdelete-null-pointer-checks is enabled.  */
3133   if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3134     {
3135       bool is_store;
3136       unsigned num_uses, num_derefs;
3137 
3138       count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3139       if (num_derefs > 0)
3140 	{
3141 	  *val_p = build_int_cst (TREE_TYPE (op), 0);
3142 	  *comp_code_p = NE_EXPR;
3143 	  return true;
3144 	}
3145     }
3146 
3147   return false;
3148 }
3149 
3150 
3151 void dump_asserts_for (FILE *, tree);
3152 void debug_asserts_for (tree);
3153 void dump_all_asserts (FILE *);
3154 void debug_all_asserts (void);
3155 
3156 /* Dump all the registered assertions for NAME to FILE.  */
3157 
3158 void
dump_asserts_for(FILE * file,tree name)3159 dump_asserts_for (FILE *file, tree name)
3160 {
3161   assert_locus_t loc;
3162 
3163   fprintf (file, "Assertions to be inserted for ");
3164   print_generic_expr (file, name, 0);
3165   fprintf (file, "\n");
3166 
3167   loc = asserts_for[SSA_NAME_VERSION (name)];
3168   while (loc)
3169     {
3170       fprintf (file, "\t");
3171       print_generic_expr (file, bsi_stmt (loc->si), 0);
3172       fprintf (file, "\n\tBB #%d", loc->bb->index);
3173       if (loc->e)
3174 	{
3175 	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3176 	           loc->e->dest->index);
3177 	  dump_edge_info (file, loc->e, 0);
3178 	}
3179       fprintf (file, "\n\tPREDICATE: ");
3180       print_generic_expr (file, name, 0);
3181       fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3182       print_generic_expr (file, loc->val, 0);
3183       fprintf (file, "\n\n");
3184       loc = loc->next;
3185     }
3186 
3187   fprintf (file, "\n");
3188 }
3189 
3190 
3191 /* Dump all the registered assertions for NAME to stderr.  */
3192 
3193 void
debug_asserts_for(tree name)3194 debug_asserts_for (tree name)
3195 {
3196   dump_asserts_for (stderr, name);
3197 }
3198 
3199 
3200 /* Dump all the registered assertions for all the names to FILE.  */
3201 
3202 void
dump_all_asserts(FILE * file)3203 dump_all_asserts (FILE *file)
3204 {
3205   unsigned i;
3206   bitmap_iterator bi;
3207 
3208   fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3209   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3210     dump_asserts_for (file, ssa_name (i));
3211   fprintf (file, "\n");
3212 }
3213 
3214 
3215 /* Dump all the registered assertions for all the names to stderr.  */
3216 
3217 void
debug_all_asserts(void)3218 debug_all_asserts (void)
3219 {
3220   dump_all_asserts (stderr);
3221 }
3222 
3223 
3224 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3225    'NAME COMP_CODE VAL' at a location that dominates block BB or
3226    E->DEST, then register this location as a possible insertion point
3227    for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3228 
3229    BB, E and SI provide the exact insertion point for the new
3230    ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
3231    on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3232    BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3233    must not be NULL.  */
3234 
3235 static void
register_new_assert_for(tree name,enum tree_code comp_code,tree val,basic_block bb,edge e,block_stmt_iterator si)3236 register_new_assert_for (tree name,
3237 			 enum tree_code comp_code,
3238 			 tree val,
3239 			 basic_block bb,
3240 			 edge e,
3241 			 block_stmt_iterator si)
3242 {
3243   assert_locus_t n, loc, last_loc;
3244   bool found;
3245   basic_block dest_bb;
3246 
3247 #if defined ENABLE_CHECKING
3248   gcc_assert (bb == NULL || e == NULL);
3249 
3250   if (e == NULL)
3251     gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3252 		&& TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3253 #endif
3254 
3255   /* The new assertion A will be inserted at BB or E.  We need to
3256      determine if the new location is dominated by a previously
3257      registered location for A.  If we are doing an edge insertion,
3258      assume that A will be inserted at E->DEST.  Note that this is not
3259      necessarily true.
3260 
3261      If E is a critical edge, it will be split.  But even if E is
3262      split, the new block will dominate the same set of blocks that
3263      E->DEST dominates.
3264 
3265      The reverse, however, is not true, blocks dominated by E->DEST
3266      will not be dominated by the new block created to split E.  So,
3267      if the insertion location is on a critical edge, we will not use
3268      the new location to move another assertion previously registered
3269      at a block dominated by E->DEST.  */
3270   dest_bb = (bb) ? bb : e->dest;
3271 
3272   /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3273      VAL at a block dominating DEST_BB, then we don't need to insert a new
3274      one.  Similarly, if the same assertion already exists at a block
3275      dominated by DEST_BB and the new location is not on a critical
3276      edge, then update the existing location for the assertion (i.e.,
3277      move the assertion up in the dominance tree).
3278 
3279      Note, this is implemented as a simple linked list because there
3280      should not be more than a handful of assertions registered per
3281      name.  If this becomes a performance problem, a table hashed by
3282      COMP_CODE and VAL could be implemented.  */
3283   loc = asserts_for[SSA_NAME_VERSION (name)];
3284   last_loc = loc;
3285   found = false;
3286   while (loc)
3287     {
3288       if (loc->comp_code == comp_code
3289 	  && (loc->val == val
3290 	      || operand_equal_p (loc->val, val, 0)))
3291 	{
3292 	  /* If the assertion NAME COMP_CODE VAL has already been
3293 	     registered at a basic block that dominates DEST_BB, then
3294 	     we don't need to insert the same assertion again.  Note
3295 	     that we don't check strict dominance here to avoid
3296 	     replicating the same assertion inside the same basic
3297 	     block more than once (e.g., when a pointer is
3298 	     dereferenced several times inside a block).
3299 
3300 	     An exception to this rule are edge insertions.  If the
3301 	     new assertion is to be inserted on edge E, then it will
3302 	     dominate all the other insertions that we may want to
3303 	     insert in DEST_BB.  So, if we are doing an edge
3304 	     insertion, don't do this dominance check.  */
3305           if (e == NULL
3306 	      && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3307 	    return;
3308 
3309 	  /* Otherwise, if E is not a critical edge and DEST_BB
3310 	     dominates the existing location for the assertion, move
3311 	     the assertion up in the dominance tree by updating its
3312 	     location information.  */
3313 	  if ((e == NULL || !EDGE_CRITICAL_P (e))
3314 	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3315 	    {
3316 	      loc->bb = dest_bb;
3317 	      loc->e = e;
3318 	      loc->si = si;
3319 	      return;
3320 	    }
3321 	}
3322 
3323       /* Update the last node of the list and move to the next one.  */
3324       last_loc = loc;
3325       loc = loc->next;
3326     }
3327 
3328   /* If we didn't find an assertion already registered for
3329      NAME COMP_CODE VAL, add a new one at the end of the list of
3330      assertions associated with NAME.  */
3331   n = XNEW (struct assert_locus_d);
3332   n->bb = dest_bb;
3333   n->e = e;
3334   n->si = si;
3335   n->comp_code = comp_code;
3336   n->val = val;
3337   n->next = NULL;
3338 
3339   if (last_loc)
3340     last_loc->next = n;
3341   else
3342     asserts_for[SSA_NAME_VERSION (name)] = n;
3343 
3344   bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3345 }
3346 
3347 
3348 /* Try to register an edge assertion for SSA name NAME on edge E for
3349    the conditional jump pointed to by SI.  Return true if an assertion
3350    for NAME could be registered.  */
3351 
3352 static bool
register_edge_assert_for(tree name,edge e,block_stmt_iterator si)3353 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
3354 {
3355   tree val, stmt;
3356   enum tree_code comp_code;
3357 
3358   stmt = bsi_stmt (si);
3359 
3360   /* Do not attempt to infer anything in names that flow through
3361      abnormal edges.  */
3362   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3363     return false;
3364 
3365   /* If NAME was not found in the sub-graph reachable from E, then
3366      there's nothing to do.  */
3367   if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3368     return false;
3369 
3370   /* We found a use of NAME in the sub-graph rooted at E->DEST.
3371      Register an assertion for NAME according to the value that NAME
3372      takes on edge E.  */
3373   if (TREE_CODE (stmt) == COND_EXPR)
3374     {
3375       /* If BB ends in a COND_EXPR then NAME then we should insert
3376 	 the original predicate on EDGE_TRUE_VALUE and the
3377 	 opposite predicate on EDGE_FALSE_VALUE.  */
3378       tree cond = COND_EXPR_COND (stmt);
3379       bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3380 
3381       /* Predicates may be a single SSA name or NAME OP VAL.  */
3382       if (cond == name)
3383 	{
3384 	  /* If the predicate is a name, it must be NAME, in which
3385 	     case we create the predicate NAME == true or
3386 	     NAME == false accordingly.  */
3387 	  comp_code = EQ_EXPR;
3388 	  val = (is_else_edge) ? boolean_false_node : boolean_true_node;
3389 	}
3390       else
3391 	{
3392 	  /* Otherwise, we have a comparison of the form NAME COMP VAL
3393 	     or VAL COMP NAME.  */
3394 	  if (name == TREE_OPERAND (cond, 1))
3395 	    {
3396 	      /* If the predicate is of the form VAL COMP NAME, flip
3397 		 COMP around because we need to register NAME as the
3398 		 first operand in the predicate.  */
3399 	      comp_code = swap_tree_comparison (TREE_CODE (cond));
3400 	      val = TREE_OPERAND (cond, 0);
3401 	    }
3402 	  else
3403 	    {
3404 	      /* The comparison is of the form NAME COMP VAL, so the
3405 		 comparison code remains unchanged.  */
3406 	      comp_code = TREE_CODE (cond);
3407 	      val = TREE_OPERAND (cond, 1);
3408 	    }
3409 
3410 	  /* If we are inserting the assertion on the ELSE edge, we
3411 	     need to invert the sign comparison.  */
3412 	  if (is_else_edge)
3413 	    comp_code = invert_tree_comparison (comp_code, 0);
3414 
3415 	  /* Do not register always-false predicates.  FIXME, this
3416 	     works around a limitation in fold() when dealing with
3417 	     enumerations.  Given 'enum { N1, N2 } x;', fold will not
3418 	     fold 'if (x > N2)' to 'if (0)'.  */
3419 	  if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3420 	      && (INTEGRAL_TYPE_P (TREE_TYPE (val))
3421 		  || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
3422 	    {
3423 	      tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3424 	      tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3425 
3426 	      if (comp_code == GT_EXPR && compare_values (val, max) == 0)
3427 		return false;
3428 
3429 	      if (comp_code == LT_EXPR && compare_values (val, min) == 0)
3430 		return false;
3431 	    }
3432 	}
3433     }
3434   else
3435     {
3436       /* FIXME.  Handle SWITCH_EXPR.  */
3437       gcc_unreachable ();
3438     }
3439 
3440   register_new_assert_for (name, comp_code, val, NULL, e, si);
3441   return true;
3442 }
3443 
3444 
3445 static bool find_assert_locations (basic_block bb);
3446 
3447 /* Determine whether the outgoing edges of BB should receive an
3448    ASSERT_EXPR for each of the operands of BB's last statement.  The
3449    last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3450 
3451    If any of the sub-graphs rooted at BB have an interesting use of
3452    the predicate operands, an assert location node is added to the
3453    list of assertions for the corresponding operands.  */
3454 
3455 static bool
find_conditional_asserts(basic_block bb)3456 find_conditional_asserts (basic_block bb)
3457 {
3458   bool need_assert;
3459   block_stmt_iterator last_si;
3460   tree op, last;
3461   edge_iterator ei;
3462   edge e;
3463   ssa_op_iter iter;
3464 
3465   need_assert = false;
3466   last_si = bsi_last (bb);
3467   last = bsi_stmt (last_si);
3468 
3469   /* Look for uses of the operands in each of the sub-graphs
3470      rooted at BB.  We need to check each of the outgoing edges
3471      separately, so that we know what kind of ASSERT_EXPR to
3472      insert.  */
3473   FOR_EACH_EDGE (e, ei, bb->succs)
3474     {
3475       if (e->dest == bb)
3476 	continue;
3477 
3478       /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3479 	 Otherwise, when we finish traversing each of the sub-graphs, we
3480 	 won't know whether the variables were found in the sub-graphs or
3481 	 if they had been found in a block upstream from BB.
3482 
3483 	 This is actually a bad idea is some cases, particularly jump
3484 	 threading.  Consider a CFG like the following:
3485 
3486                     0
3487                    /|
3488                   1 |
3489                    \|
3490                     2
3491                    / \
3492                   3   4
3493 
3494 	 Assume that one or more operands in the conditional at the
3495 	 end of block 0 are used in a conditional in block 2, but not
3496 	 anywhere in block 1.  In this case we will not insert any
3497 	 assert statements in block 1, which may cause us to miss
3498 	 opportunities to optimize, particularly for jump threading.  */
3499       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3500 	RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3501 
3502       /* Traverse the strictly dominated sub-graph rooted at E->DEST
3503 	 to determine if any of the operands in the conditional
3504 	 predicate are used.  */
3505       if (e->dest != bb)
3506 	need_assert |= find_assert_locations (e->dest);
3507 
3508       /* Register the necessary assertions for each operand in the
3509 	 conditional predicate.  */
3510       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3511 	need_assert |= register_edge_assert_for (op, e, last_si);
3512     }
3513 
3514   /* Finally, indicate that we have found the operands in the
3515      conditional.  */
3516   FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3517     SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3518 
3519   return need_assert;
3520 }
3521 
3522 
3523 /* Traverse all the statements in block BB looking for statements that
3524    may generate useful assertions for the SSA names in their operand.
3525    If a statement produces a useful assertion A for name N_i, then the
3526    list of assertions already generated for N_i is scanned to
3527    determine if A is actually needed.
3528 
3529    If N_i already had the assertion A at a location dominating the
3530    current location, then nothing needs to be done.  Otherwise, the
3531    new location for A is recorded instead.
3532 
3533    1- For every statement S in BB, all the variables used by S are
3534       added to bitmap FOUND_IN_SUBGRAPH.
3535 
3536    2- If statement S uses an operand N in a way that exposes a known
3537       value range for N, then if N was not already generated by an
3538       ASSERT_EXPR, create a new assert location for N.  For instance,
3539       if N is a pointer and the statement dereferences it, we can
3540       assume that N is not NULL.
3541 
3542    3- COND_EXPRs are a special case of #2.  We can derive range
3543       information from the predicate but need to insert different
3544       ASSERT_EXPRs for each of the sub-graphs rooted at the
3545       conditional block.  If the last statement of BB is a conditional
3546       expression of the form 'X op Y', then
3547 
3548       a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3549 
3550       b) If the conditional is the only entry point to the sub-graph
3551 	 corresponding to the THEN_CLAUSE, recurse into it.  On
3552 	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3553 	 an ASSERT_EXPR is added for the corresponding variable.
3554 
3555       c) Repeat step (b) on the ELSE_CLAUSE.
3556 
3557       d) Mark X and Y in FOUND_IN_SUBGRAPH.
3558 
3559       For instance,
3560 
3561 	    if (a == 9)
3562 	      b = a;
3563 	    else
3564 	      b = c + 1;
3565 
3566       In this case, an assertion on the THEN clause is useful to
3567       determine that 'a' is always 9 on that edge.  However, an assertion
3568       on the ELSE clause would be unnecessary.
3569 
3570    4- If BB does not end in a conditional expression, then we recurse
3571       into BB's dominator children.
3572 
3573    At the end of the recursive traversal, every SSA name will have a
3574    list of locations where ASSERT_EXPRs should be added.  When a new
3575    location for name N is found, it is registered by calling
3576    register_new_assert_for.  That function keeps track of all the
3577    registered assertions to prevent adding unnecessary assertions.
3578    For instance, if a pointer P_4 is dereferenced more than once in a
3579    dominator tree, only the location dominating all the dereference of
3580    P_4 will receive an ASSERT_EXPR.
3581 
3582    If this function returns true, then it means that there are names
3583    for which we need to generate ASSERT_EXPRs.  Those assertions are
3584    inserted by process_assert_insertions.
3585 
3586    TODO.  Handle SWITCH_EXPR.  */
3587 
3588 static bool
find_assert_locations(basic_block bb)3589 find_assert_locations (basic_block bb)
3590 {
3591   block_stmt_iterator si;
3592   tree last, phi;
3593   bool need_assert;
3594   basic_block son;
3595 
3596   if (TEST_BIT (blocks_visited, bb->index))
3597     return false;
3598 
3599   SET_BIT (blocks_visited, bb->index);
3600 
3601   need_assert = false;
3602 
3603   /* Traverse all PHI nodes in BB marking used operands.  */
3604   for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3605     {
3606       use_operand_p arg_p;
3607       ssa_op_iter i;
3608 
3609       FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3610 	{
3611 	  tree arg = USE_FROM_PTR (arg_p);
3612 	  if (TREE_CODE (arg) == SSA_NAME)
3613 	    {
3614 	      gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3615 	      SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3616 	    }
3617 	}
3618     }
3619 
3620   /* Traverse all the statements in BB marking used names and looking
3621      for statements that may infer assertions for their used operands.  */
3622   last = NULL_TREE;
3623   for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3624     {
3625       tree stmt, op;
3626       ssa_op_iter i;
3627 
3628       stmt = bsi_stmt (si);
3629 
3630       /* See if we can derive an assertion for any of STMT's operands.  */
3631       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3632 	{
3633 	  tree value;
3634 	  enum tree_code comp_code;
3635 
3636 	  /* Mark OP in bitmap FOUND_IN_SUBGRAPH.  If STMT is inside
3637 	     the sub-graph of a conditional block, when we return from
3638 	     this recursive walk, our parent will use the
3639 	     FOUND_IN_SUBGRAPH bitset to determine if one of the
3640 	     operands it was looking for was present in the sub-graph.  */
3641 	  SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3642 
3643 	  /* If OP is used in such a way that we can infer a value
3644 	     range for it, and we don't find a previous assertion for
3645 	     it, create a new assertion location node for OP.  */
3646 	  if (infer_value_range (stmt, op, &comp_code, &value))
3647 	    {
3648 	      /* If we are able to infer a nonzero value range for OP,
3649 		 then walk backwards through the use-def chain to see if OP
3650 		 was set via a typecast.
3651 
3652 		 If so, then we can also infer a nonzero value range
3653 		 for the operand of the NOP_EXPR.  */
3654 	      if (comp_code == NE_EXPR && integer_zerop (value))
3655 		{
3656 		  tree t = op;
3657 		  tree def_stmt = SSA_NAME_DEF_STMT (t);
3658 
3659 		  while (TREE_CODE (def_stmt) == MODIFY_EXPR
3660 			 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3661 			 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3662 			 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3663 		    {
3664 		      t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3665 		      def_stmt = SSA_NAME_DEF_STMT (t);
3666 
3667 		      /* Note we want to register the assert for the
3668 			 operand of the NOP_EXPR after SI, not after the
3669 			 conversion.  */
3670 		      if (! has_single_use (t))
3671 			{
3672 			  register_new_assert_for (t, comp_code, value,
3673 						   bb, NULL, si);
3674 			  need_assert = true;
3675 			}
3676 		    }
3677 		}
3678 
3679 	      /* If OP is used only once, namely in this STMT, don't
3680 		 bother creating an ASSERT_EXPR for it.  Such an
3681 		 ASSERT_EXPR would do nothing but increase compile time.  */
3682 	      if (!has_single_use (op))
3683 		{
3684 		  register_new_assert_for (op, comp_code, value, bb, NULL, si);
3685 		  need_assert = true;
3686 		}
3687 	    }
3688 	}
3689 
3690       /* Remember the last statement of the block.  */
3691       last = stmt;
3692     }
3693 
3694   /* If BB's last statement is a conditional expression
3695      involving integer operands, recurse into each of the sub-graphs
3696      rooted at BB to determine if we need to add ASSERT_EXPRs.  */
3697   if (last
3698       && TREE_CODE (last) == COND_EXPR
3699       && !fp_predicate (COND_EXPR_COND (last))
3700       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3701     need_assert |= find_conditional_asserts (bb);
3702 
3703   /* Recurse into the dominator children of BB.  */
3704   for (son = first_dom_son (CDI_DOMINATORS, bb);
3705        son;
3706        son = next_dom_son (CDI_DOMINATORS, son))
3707     need_assert |= find_assert_locations (son);
3708 
3709   return need_assert;
3710 }
3711 
3712 
3713 /* Create an ASSERT_EXPR for NAME and insert it in the location
3714    indicated by LOC.  Return true if we made any edge insertions.  */
3715 
3716 static bool
process_assert_insertions_for(tree name,assert_locus_t loc)3717 process_assert_insertions_for (tree name, assert_locus_t loc)
3718 {
3719   /* Build the comparison expression NAME_i COMP_CODE VAL.  */
3720   tree stmt, cond, assert_expr;
3721   edge_iterator ei;
3722   edge e;
3723 
3724   cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3725   assert_expr = build_assert_expr_for (cond, name);
3726 
3727   if (loc->e)
3728     {
3729       /* We have been asked to insert the assertion on an edge.  This
3730 	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
3731 #if defined ENABLE_CHECKING
3732       gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3733 	  || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3734 #endif
3735 
3736       bsi_insert_on_edge (loc->e, assert_expr);
3737       return true;
3738     }
3739 
3740   /* Otherwise, we can insert right after LOC->SI iff the
3741      statement must not be the last statement in the block.  */
3742   stmt = bsi_stmt (loc->si);
3743   if (!stmt_ends_bb_p (stmt))
3744     {
3745       bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3746       return false;
3747     }
3748 
3749   /* If STMT must be the last statement in BB, we can only insert new
3750      assertions on the non-abnormal edge out of BB.  Note that since
3751      STMT is not control flow, there may only be one non-abnormal edge
3752      out of BB.  */
3753   FOR_EACH_EDGE (e, ei, loc->bb->succs)
3754     if (!(e->flags & EDGE_ABNORMAL))
3755       {
3756 	bsi_insert_on_edge (e, assert_expr);
3757 	return true;
3758       }
3759 
3760   gcc_unreachable ();
3761 }
3762 
3763 
3764 /* Process all the insertions registered for every name N_i registered
3765    in NEED_ASSERT_FOR.  The list of assertions to be inserted are
3766    found in ASSERTS_FOR[i].  */
3767 
3768 static void
process_assert_insertions(void)3769 process_assert_insertions (void)
3770 {
3771   unsigned i;
3772   bitmap_iterator bi;
3773   bool update_edges_p = false;
3774   int num_asserts = 0;
3775 
3776   if (dump_file && (dump_flags & TDF_DETAILS))
3777     dump_all_asserts (dump_file);
3778 
3779   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3780     {
3781       assert_locus_t loc = asserts_for[i];
3782       gcc_assert (loc);
3783 
3784       while (loc)
3785 	{
3786 	  assert_locus_t next = loc->next;
3787 	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3788 	  free (loc);
3789 	  loc = next;
3790 	  num_asserts++;
3791 	}
3792     }
3793 
3794   if (update_edges_p)
3795     bsi_commit_edge_inserts ();
3796 
3797   if (dump_file && (dump_flags & TDF_STATS))
3798     fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3799 	     num_asserts);
3800 }
3801 
3802 
3803 /* Traverse the flowgraph looking for conditional jumps to insert range
3804    expressions.  These range expressions are meant to provide information
3805    to optimizations that need to reason in terms of value ranges.  They
3806    will not be expanded into RTL.  For instance, given:
3807 
3808    x = ...
3809    y = ...
3810    if (x < y)
3811      y = x - 2;
3812    else
3813      x = y + 3;
3814 
3815    this pass will transform the code into:
3816 
3817    x = ...
3818    y = ...
3819    if (x < y)
3820     {
3821       x = ASSERT_EXPR <x, x < y>
3822       y = x - 2
3823     }
3824    else
3825     {
3826       y = ASSERT_EXPR <y, x <= y>
3827       x = y + 3
3828     }
3829 
3830    The idea is that once copy and constant propagation have run, other
3831    optimizations will be able to determine what ranges of values can 'x'
3832    take in different paths of the code, simply by checking the reaching
3833    definition of 'x'.  */
3834 
3835 static void
insert_range_assertions(void)3836 insert_range_assertions (void)
3837 {
3838   edge e;
3839   edge_iterator ei;
3840   bool update_ssa_p;
3841 
3842   found_in_subgraph = sbitmap_alloc (num_ssa_names);
3843   sbitmap_zero (found_in_subgraph);
3844 
3845   blocks_visited = sbitmap_alloc (last_basic_block);
3846   sbitmap_zero (blocks_visited);
3847 
3848   need_assert_for = BITMAP_ALLOC (NULL);
3849   asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3850   memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3851 
3852   calculate_dominance_info (CDI_DOMINATORS);
3853 
3854   update_ssa_p = false;
3855   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3856     if (find_assert_locations (e->dest))
3857       update_ssa_p = true;
3858 
3859   if (update_ssa_p)
3860     {
3861       process_assert_insertions ();
3862       update_ssa (TODO_update_ssa_no_phi);
3863     }
3864 
3865   if (dump_file && (dump_flags & TDF_DETAILS))
3866     {
3867       fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3868       dump_function_to_file (current_function_decl, dump_file, dump_flags);
3869     }
3870 
3871   sbitmap_free (found_in_subgraph);
3872   free (asserts_for);
3873   BITMAP_FREE (need_assert_for);
3874 }
3875 
3876 
3877 /* Convert range assertion expressions into the implied copies and
3878    copy propagate away the copies.  Doing the trivial copy propagation
3879    here avoids the need to run the full copy propagation pass after
3880    VRP.
3881 
3882    FIXME, this will eventually lead to copy propagation removing the
3883    names that had useful range information attached to them.  For
3884    instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3885    then N_i will have the range [3, +INF].
3886 
3887    However, by converting the assertion into the implied copy
3888    operation N_i = N_j, we will then copy-propagate N_j into the uses
3889    of N_i and lose the range information.  We may want to hold on to
3890    ASSERT_EXPRs a little while longer as the ranges could be used in
3891    things like jump threading.
3892 
3893    The problem with keeping ASSERT_EXPRs around is that passes after
3894    VRP need to handle them appropriately.
3895 
3896    Another approach would be to make the range information a first
3897    class property of the SSA_NAME so that it can be queried from
3898    any pass.  This is made somewhat more complex by the need for
3899    multiple ranges to be associated with one SSA_NAME.  */
3900 
3901 static void
remove_range_assertions(void)3902 remove_range_assertions (void)
3903 {
3904   basic_block bb;
3905   block_stmt_iterator si;
3906 
3907   /* Note that the BSI iterator bump happens at the bottom of the
3908      loop and no bump is necessary if we're removing the statement
3909      referenced by the current BSI.  */
3910   FOR_EACH_BB (bb)
3911     for (si = bsi_start (bb); !bsi_end_p (si);)
3912       {
3913 	tree stmt = bsi_stmt (si);
3914 	tree use_stmt;
3915 
3916 	if (TREE_CODE (stmt) == MODIFY_EXPR
3917 	    && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3918 	  {
3919 	    tree rhs = TREE_OPERAND (stmt, 1), var;
3920 	    tree cond = fold (ASSERT_EXPR_COND (rhs));
3921 	    use_operand_p use_p;
3922 	    imm_use_iterator iter;
3923 
3924 	    gcc_assert (cond != boolean_false_node);
3925 
3926 	    /* Propagate the RHS into every use of the LHS.  */
3927 	    var = ASSERT_EXPR_VAR (rhs);
3928 	    FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3929 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3930 		{
3931 		  SET_USE (use_p, var);
3932 		  gcc_assert (TREE_CODE (var) == SSA_NAME);
3933 		}
3934 
3935 	    /* And finally, remove the copy, it is not needed.  */
3936 	    bsi_remove (&si, true);
3937 	  }
3938 	else
3939 	  bsi_next (&si);
3940       }
3941 
3942   sbitmap_free (blocks_visited);
3943 }
3944 
3945 
3946 /* Return true if STMT is interesting for VRP.  */
3947 
3948 static bool
stmt_interesting_for_vrp(tree stmt)3949 stmt_interesting_for_vrp (tree stmt)
3950 {
3951   if (TREE_CODE (stmt) == PHI_NODE
3952       && is_gimple_reg (PHI_RESULT (stmt))
3953       && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3954 	  || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3955     return true;
3956   else if (TREE_CODE (stmt) == MODIFY_EXPR)
3957     {
3958       tree lhs = TREE_OPERAND (stmt, 0);
3959       tree rhs = TREE_OPERAND (stmt, 1);
3960 
3961       /* In general, assignments with virtual operands are not useful
3962 	 for deriving ranges, with the obvious exception of calls to
3963 	 builtin functions.  */
3964       if (TREE_CODE (lhs) == SSA_NAME
3965 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3966 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
3967 	  && ((TREE_CODE (rhs) == CALL_EXPR
3968 	       && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3969 	       && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3970 	       && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3971 	      || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3972 	return true;
3973     }
3974   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3975     return true;
3976 
3977   return false;
3978 }
3979 
3980 
3981 /* Initialize local data structures for VRP.  */
3982 
3983 static void
vrp_initialize(void)3984 vrp_initialize (void)
3985 {
3986   basic_block bb;
3987 
3988   vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3989   memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3990 
3991   FOR_EACH_BB (bb)
3992     {
3993       block_stmt_iterator si;
3994       tree phi;
3995 
3996       for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3997 	{
3998 	  if (!stmt_interesting_for_vrp (phi))
3999 	    {
4000 	      tree lhs = PHI_RESULT (phi);
4001 	      set_value_range_to_varying (get_value_range (lhs));
4002 	      DONT_SIMULATE_AGAIN (phi) = true;
4003 	    }
4004 	  else
4005 	    DONT_SIMULATE_AGAIN (phi) = false;
4006 	}
4007 
4008       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4009         {
4010 	  tree stmt = bsi_stmt (si);
4011 
4012 	  if (!stmt_interesting_for_vrp (stmt))
4013 	    {
4014 	      ssa_op_iter i;
4015 	      tree def;
4016 	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4017 		set_value_range_to_varying (get_value_range (def));
4018 	      DONT_SIMULATE_AGAIN (stmt) = true;
4019 	    }
4020 	  else
4021 	    {
4022 	      DONT_SIMULATE_AGAIN (stmt) = false;
4023 	    }
4024 	}
4025     }
4026 }
4027 
4028 
4029 /* Visit assignment STMT.  If it produces an interesting range, record
4030    the SSA name in *OUTPUT_P.  */
4031 
4032 static enum ssa_prop_result
vrp_visit_assignment(tree stmt,tree * output_p)4033 vrp_visit_assignment (tree stmt, tree *output_p)
4034 {
4035   tree lhs, rhs, def;
4036   ssa_op_iter iter;
4037 
4038   lhs = TREE_OPERAND (stmt, 0);
4039   rhs = TREE_OPERAND (stmt, 1);
4040 
4041   /* We only keep track of ranges in integral and pointer types.  */
4042   if (TREE_CODE (lhs) == SSA_NAME
4043       && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4044 	   /* It is valid to have NULL MIN/MAX values on a type.  See
4045 	      build_range_type.  */
4046 	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4047 	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4048 	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
4049     {
4050       struct loop *l;
4051       value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4052 
4053       extract_range_from_expr (&new_vr, rhs);
4054 
4055       /* If STMT is inside a loop, we may be able to know something
4056 	 else about the range of LHS by examining scalar evolution
4057 	 information.  */
4058       if (current_loops && (l = loop_containing_stmt (stmt)))
4059 	adjust_range_with_scev (&new_vr, l, stmt, lhs);
4060 
4061       if (update_value_range (lhs, &new_vr))
4062 	{
4063 	  *output_p = lhs;
4064 
4065 	  if (dump_file && (dump_flags & TDF_DETAILS))
4066 	    {
4067 	      fprintf (dump_file, "Found new range for ");
4068 	      print_generic_expr (dump_file, lhs, 0);
4069 	      fprintf (dump_file, ": ");
4070 	      dump_value_range (dump_file, &new_vr);
4071 	      fprintf (dump_file, "\n\n");
4072 	    }
4073 
4074 	  if (new_vr.type == VR_VARYING)
4075 	    return SSA_PROP_VARYING;
4076 
4077 	  return SSA_PROP_INTERESTING;
4078 	}
4079 
4080       return SSA_PROP_NOT_INTERESTING;
4081     }
4082 
4083   /* Every other statement produces no useful ranges.  */
4084   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4085     set_value_range_to_varying (get_value_range (def));
4086 
4087   return SSA_PROP_VARYING;
4088 }
4089 
4090 
4091 /* Compare all the value ranges for names equivalent to VAR with VAL
4092    using comparison code COMP.  Return the same value returned by
4093    compare_range_with_value, including the setting of
4094    *STRICT_OVERFLOW_P.  */
4095 
4096 static tree
compare_name_with_value(enum tree_code comp,tree var,tree val,bool * strict_overflow_p)4097 compare_name_with_value (enum tree_code comp, tree var, tree val,
4098 			 bool *strict_overflow_p)
4099 {
4100   bitmap_iterator bi;
4101   unsigned i;
4102   bitmap e;
4103   tree retval, t;
4104   int used_strict_overflow;
4105 
4106   t = retval = NULL_TREE;
4107 
4108   /* Get the set of equivalences for VAR.  */
4109   e = get_value_range (var)->equiv;
4110 
4111   /* Add VAR to its own set of equivalences so that VAR's value range
4112      is processed by this loop (otherwise, we would have to replicate
4113      the body of the loop just to check VAR's value range).  */
4114   bitmap_set_bit (e, SSA_NAME_VERSION (var));
4115 
4116   /* Start at -1.  Set it to 0 if we do a comparison without relying
4117      on overflow, or 1 if all comparisons rely on overflow.  */
4118   used_strict_overflow = -1;
4119 
4120   EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4121     {
4122       bool sop;
4123 
4124       value_range_t equiv_vr = *(vr_value[i]);
4125 
4126       /* If name N_i does not have a valid range, use N_i as its own
4127 	 range.  This allows us to compare against names that may
4128 	 have N_i in their ranges.  */
4129       if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4130 	{
4131 	  equiv_vr.type = VR_RANGE;
4132 	  equiv_vr.min = ssa_name (i);
4133 	  equiv_vr.max = ssa_name (i);
4134 	}
4135 
4136       sop = false;
4137       t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4138       if (t)
4139 	{
4140 	  /* If we get different answers from different members
4141 	     of the equivalence set this check must be in a dead
4142 	     code region.  Folding it to a trap representation
4143 	     would be correct here.  For now just return don't-know.  */
4144 	  if (retval != NULL
4145 	      && t != retval)
4146 	    {
4147 	      retval = NULL_TREE;
4148 	      break;
4149 	    }
4150 	  retval = t;
4151 
4152 	  if (!sop)
4153 	    used_strict_overflow = 0;
4154 	  else if (used_strict_overflow < 0)
4155 	    used_strict_overflow = 1;
4156 	}
4157     }
4158 
4159   /* Remove VAR from its own equivalence set.  */
4160   bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4161 
4162   if (retval)
4163     {
4164       if (used_strict_overflow > 0)
4165 	*strict_overflow_p = true;
4166       return retval;
4167     }
4168 
4169   /* We couldn't find a non-NULL value for the predicate.  */
4170   return NULL_TREE;
4171 }
4172 
4173 
4174 /* Given a comparison code COMP and names N1 and N2, compare all the
4175    ranges equivalent to N1 against all the ranges equivalent to N2
4176    to determine the value of N1 COMP N2.  Return the same value
4177    returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
4178    whether we relied on an overflow infinity in the comparison.  */
4179 
4180 
4181 static tree
compare_names(enum tree_code comp,tree n1,tree n2,bool * strict_overflow_p)4182 compare_names (enum tree_code comp, tree n1, tree n2,
4183 	       bool *strict_overflow_p)
4184 {
4185   tree t, retval;
4186   bitmap e1, e2;
4187   bitmap_iterator bi1, bi2;
4188   unsigned i1, i2;
4189   int used_strict_overflow;
4190 
4191   /* Compare the ranges of every name equivalent to N1 against the
4192      ranges of every name equivalent to N2.  */
4193   e1 = get_value_range (n1)->equiv;
4194   e2 = get_value_range (n2)->equiv;
4195 
4196   /* Add N1 and N2 to their own set of equivalences to avoid
4197      duplicating the body of the loop just to check N1 and N2
4198      ranges.  */
4199   bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4200   bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4201 
4202   /* If the equivalence sets have a common intersection, then the two
4203      names can be compared without checking their ranges.  */
4204   if (bitmap_intersect_p (e1, e2))
4205     {
4206       bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4207       bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4208 
4209       return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4210 	     ? boolean_true_node
4211 	     : boolean_false_node;
4212     }
4213 
4214   /* Start at -1.  Set it to 0 if we do a comparison without relying
4215      on overflow, or 1 if all comparisons rely on overflow.  */
4216   used_strict_overflow = -1;
4217 
4218   /* Otherwise, compare all the equivalent ranges.  First, add N1 and
4219      N2 to their own set of equivalences to avoid duplicating the body
4220      of the loop just to check N1 and N2 ranges.  */
4221   EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4222     {
4223       value_range_t vr1 = *(vr_value[i1]);
4224 
4225       /* If the range is VARYING or UNDEFINED, use the name itself.  */
4226       if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4227 	{
4228 	  vr1.type = VR_RANGE;
4229 	  vr1.min = ssa_name (i1);
4230 	  vr1.max = ssa_name (i1);
4231 	}
4232 
4233       t = retval = NULL_TREE;
4234       EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4235 	{
4236 	  bool sop = false;
4237 
4238 	  value_range_t vr2 = *(vr_value[i2]);
4239 
4240 	  if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4241 	    {
4242 	      vr2.type = VR_RANGE;
4243 	      vr2.min = ssa_name (i2);
4244 	      vr2.max = ssa_name (i2);
4245 	    }
4246 
4247 	  t = compare_ranges (comp, &vr1, &vr2, &sop);
4248 	  if (t)
4249 	    {
4250 	      /* If we get different answers from different members
4251 		 of the equivalence set this check must be in a dead
4252 		 code region.  Folding it to a trap representation
4253 		 would be correct here.  For now just return don't-know.  */
4254 	      if (retval != NULL
4255 		  && t != retval)
4256 		{
4257 		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4258 		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4259 		  return NULL_TREE;
4260 		}
4261 	      retval = t;
4262 
4263 	      if (!sop)
4264 		used_strict_overflow = 0;
4265 	      else if (used_strict_overflow < 0)
4266 		used_strict_overflow = 1;
4267 	    }
4268 	}
4269 
4270       if (retval)
4271 	{
4272 	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4273 	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4274 	  if (used_strict_overflow > 0)
4275 	    *strict_overflow_p = true;
4276 	  return retval;
4277 	}
4278     }
4279 
4280   /* None of the equivalent ranges are useful in computing this
4281      comparison.  */
4282   bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4283   bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4284   return NULL_TREE;
4285 }
4286 
4287 
4288 /* Given a conditional predicate COND, try to determine if COND yields
4289    true or false based on the value ranges of its operands.  Return
4290    BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4291    BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4292    NULL if the conditional cannot be evaluated at compile time.
4293 
4294    If USE_EQUIV_P is true, the ranges of all the names equivalent with
4295    the operands in COND are used when trying to compute its value.
4296    This is only used during final substitution.  During propagation,
4297    we only check the range of each variable and not its equivalents.
4298 
4299    Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4300    infinity to produce the result.  */
4301 
4302 static tree
vrp_evaluate_conditional_warnv(tree cond,bool use_equiv_p,bool * strict_overflow_p)4303 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4304 				bool *strict_overflow_p)
4305 {
4306   gcc_assert (TREE_CODE (cond) == SSA_NAME
4307               || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4308 
4309   if (TREE_CODE (cond) == SSA_NAME)
4310     {
4311       value_range_t *vr;
4312       tree retval;
4313 
4314       if (use_equiv_p)
4315 	retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4316 					  strict_overflow_p);
4317       else
4318 	{
4319 	  value_range_t *vr = get_value_range (cond);
4320 	  retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4321 					     strict_overflow_p);
4322 	}
4323 
4324       /* If COND has a known boolean range, return it.  */
4325       if (retval)
4326 	return retval;
4327 
4328       /* Otherwise, if COND has a symbolic range of exactly one value,
4329 	 return it.  */
4330       vr = get_value_range (cond);
4331       if (vr->type == VR_RANGE && vr->min == vr->max)
4332 	return vr->min;
4333     }
4334   else
4335     {
4336       tree op0 = TREE_OPERAND (cond, 0);
4337       tree op1 = TREE_OPERAND (cond, 1);
4338 
4339       /* We only deal with integral and pointer types.  */
4340       if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4341 	  && !POINTER_TYPE_P (TREE_TYPE (op0)))
4342 	return NULL_TREE;
4343 
4344       if (use_equiv_p)
4345 	{
4346 	  if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4347 	    return compare_names (TREE_CODE (cond), op0, op1,
4348 				  strict_overflow_p);
4349 	  else if (TREE_CODE (op0) == SSA_NAME)
4350 	    return compare_name_with_value (TREE_CODE (cond), op0, op1,
4351 					    strict_overflow_p);
4352 	  else if (TREE_CODE (op1) == SSA_NAME)
4353 	    return (compare_name_with_value
4354 		    (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4355 		     strict_overflow_p));
4356 	}
4357       else
4358 	{
4359 	  value_range_t *vr0, *vr1;
4360 
4361 	  vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4362 	  vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4363 
4364 	  if (vr0 && vr1)
4365 	    return compare_ranges (TREE_CODE (cond), vr0, vr1,
4366 				   strict_overflow_p);
4367 	  else if (vr0 && vr1 == NULL)
4368 	    return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4369 					     strict_overflow_p);
4370 	  else if (vr0 == NULL && vr1)
4371 	    return (compare_range_with_value
4372 		    (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4373 		     strict_overflow_p));
4374 	}
4375     }
4376 
4377   /* Anything else cannot be computed statically.  */
4378   return NULL_TREE;
4379 }
4380 
4381 /* Given COND within STMT, try to simplify it based on value range
4382    information.  Return NULL if the conditional can not be evaluated.
4383    The ranges of all the names equivalent with the operands in COND
4384    will be used when trying to compute the value.  If the result is
4385    based on undefined signed overflow, issue a warning if
4386    appropriate.  */
4387 
4388 tree
vrp_evaluate_conditional(tree cond,tree stmt)4389 vrp_evaluate_conditional (tree cond, tree stmt)
4390 {
4391   bool sop;
4392   tree ret;
4393 
4394   sop = false;
4395   ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4396 
4397   if (ret && sop)
4398     {
4399       enum warn_strict_overflow_code wc;
4400       const char* warnmsg;
4401 
4402       if (is_gimple_min_invariant (ret))
4403 	{
4404 	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4405 	  warnmsg = G_("assuming signed overflow does not occur when "
4406 		       "simplifying conditional to constant");
4407 	}
4408       else
4409 	{
4410 	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
4411 	  warnmsg = G_("assuming signed overflow does not occur when "
4412 		       "simplifying conditional");
4413 	}
4414 
4415       if (issue_strict_overflow_warning (wc))
4416 	{
4417 	  location_t locus;
4418 
4419 	  if (!EXPR_HAS_LOCATION (stmt))
4420 	    locus = input_location;
4421 	  else
4422 	    locus = EXPR_LOCATION (stmt);
4423 	  warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4424 	}
4425     }
4426 
4427   return ret;
4428 }
4429 
4430 
4431 /* Visit conditional statement STMT.  If we can determine which edge
4432    will be taken out of STMT's basic block, record it in
4433    *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
4434    SSA_PROP_VARYING.  */
4435 
4436 static enum ssa_prop_result
vrp_visit_cond_stmt(tree stmt,edge * taken_edge_p)4437 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4438 {
4439   tree cond, val;
4440   bool sop;
4441 
4442   *taken_edge_p = NULL;
4443 
4444   /* FIXME.  Handle SWITCH_EXPRs.  But first, the assert pass needs to
4445      add ASSERT_EXPRs for them.  */
4446   if (TREE_CODE (stmt) == SWITCH_EXPR)
4447     return SSA_PROP_VARYING;
4448 
4449   cond = COND_EXPR_COND (stmt);
4450 
4451   if (dump_file && (dump_flags & TDF_DETAILS))
4452     {
4453       tree use;
4454       ssa_op_iter i;
4455 
4456       fprintf (dump_file, "\nVisiting conditional with predicate: ");
4457       print_generic_expr (dump_file, cond, 0);
4458       fprintf (dump_file, "\nWith known ranges\n");
4459 
4460       FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4461 	{
4462 	  fprintf (dump_file, "\t");
4463 	  print_generic_expr (dump_file, use, 0);
4464 	  fprintf (dump_file, ": ");
4465 	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4466 	}
4467 
4468       fprintf (dump_file, "\n");
4469     }
4470 
4471   /* Compute the value of the predicate COND by checking the known
4472      ranges of each of its operands.
4473 
4474      Note that we cannot evaluate all the equivalent ranges here
4475      because those ranges may not yet be final and with the current
4476      propagation strategy, we cannot determine when the value ranges
4477      of the names in the equivalence set have changed.
4478 
4479      For instance, given the following code fragment
4480 
4481         i_5 = PHI <8, i_13>
4482 	...
4483      	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4484 	if (i_14 == 1)
4485 	  ...
4486 
4487      Assume that on the first visit to i_14, i_5 has the temporary
4488      range [8, 8] because the second argument to the PHI function is
4489      not yet executable.  We derive the range ~[0, 0] for i_14 and the
4490      equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
4491      the first time, since i_14 is equivalent to the range [8, 8], we
4492      determine that the predicate is always false.
4493 
4494      On the next round of propagation, i_13 is determined to be
4495      VARYING, which causes i_5 to drop down to VARYING.  So, another
4496      visit to i_14 is scheduled.  In this second visit, we compute the
4497      exact same range and equivalence set for i_14, namely ~[0, 0] and
4498      { i_5 }.  But we did not have the previous range for i_5
4499      registered, so vrp_visit_assignment thinks that the range for
4500      i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
4501      is not visited again, which stops propagation from visiting
4502      statements in the THEN clause of that if().
4503 
4504      To properly fix this we would need to keep the previous range
4505      value for the names in the equivalence set.  This way we would've
4506      discovered that from one visit to the other i_5 changed from
4507      range [8, 8] to VR_VARYING.
4508 
4509      However, fixing this apparent limitation may not be worth the
4510      additional checking.  Testing on several code bases (GCC, DLV,
4511      MICO, TRAMP3D and SPEC2000) showed that doing this results in
4512      4 more predicates folded in SPEC.  */
4513   sop = false;
4514   val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4515   if (val)
4516     {
4517       if (!sop)
4518 	*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4519       else
4520 	{
4521 	  if (dump_file && (dump_flags & TDF_DETAILS))
4522 	    fprintf (dump_file,
4523 		     "\nIgnoring predicate evaluation because "
4524 		     "it assumes that signed overflow is undefined");
4525 	  val = NULL_TREE;
4526 	}
4527     }
4528 
4529   if (dump_file && (dump_flags & TDF_DETAILS))
4530     {
4531       fprintf (dump_file, "\nPredicate evaluates to: ");
4532       if (val == NULL_TREE)
4533 	fprintf (dump_file, "DON'T KNOW\n");
4534       else
4535 	print_generic_stmt (dump_file, val, 0);
4536     }
4537 
4538   return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4539 }
4540 
4541 
4542 /* Evaluate statement STMT.  If the statement produces a useful range,
4543    return SSA_PROP_INTERESTING and record the SSA name with the
4544    interesting range into *OUTPUT_P.
4545 
4546    If STMT is a conditional branch and we can determine its truth
4547    value, the taken edge is recorded in *TAKEN_EDGE_P.
4548 
4549    If STMT produces a varying value, return SSA_PROP_VARYING.  */
4550 
4551 static enum ssa_prop_result
vrp_visit_stmt(tree stmt,edge * taken_edge_p,tree * output_p)4552 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4553 {
4554   tree def;
4555   ssa_op_iter iter;
4556   stmt_ann_t ann;
4557 
4558   if (dump_file && (dump_flags & TDF_DETAILS))
4559     {
4560       fprintf (dump_file, "\nVisiting statement:\n");
4561       print_generic_stmt (dump_file, stmt, dump_flags);
4562       fprintf (dump_file, "\n");
4563     }
4564 
4565   ann = stmt_ann (stmt);
4566   if (TREE_CODE (stmt) == MODIFY_EXPR)
4567     {
4568       tree rhs = TREE_OPERAND (stmt, 1);
4569 
4570       /* In general, assignments with virtual operands are not useful
4571 	 for deriving ranges, with the obvious exception of calls to
4572 	 builtin functions.  */
4573       if ((TREE_CODE (rhs) == CALL_EXPR
4574 	   && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4575 	   && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4576 	   && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4577 	  || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4578 	return vrp_visit_assignment (stmt, output_p);
4579     }
4580   else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4581     return vrp_visit_cond_stmt (stmt, taken_edge_p);
4582 
4583   /* All other statements produce nothing of interest for VRP, so mark
4584      their outputs varying and prevent further simulation.  */
4585   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4586     set_value_range_to_varying (get_value_range (def));
4587 
4588   return SSA_PROP_VARYING;
4589 }
4590 
4591 
4592 /* Meet operation for value ranges.  Given two value ranges VR0 and
4593    VR1, store in VR0 the result of meeting VR0 and VR1.
4594 
4595    The meeting rules are as follows:
4596 
4597    1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
4598 
4599    2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
4600       union of VR0 and VR1.  */
4601 
4602 static void
vrp_meet(value_range_t * vr0,value_range_t * vr1)4603 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4604 {
4605   if (vr0->type == VR_UNDEFINED)
4606     {
4607       copy_value_range (vr0, vr1);
4608       return;
4609     }
4610 
4611   if (vr1->type == VR_UNDEFINED)
4612     {
4613       /* Nothing to do.  VR0 already has the resulting range.  */
4614       return;
4615     }
4616 
4617   if (vr0->type == VR_VARYING)
4618     {
4619       /* Nothing to do.  VR0 already has the resulting range.  */
4620       return;
4621     }
4622 
4623   if (vr1->type == VR_VARYING)
4624     {
4625       set_value_range_to_varying (vr0);
4626       return;
4627     }
4628 
4629   if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4630     {
4631       /* If VR0 and VR1 have a non-empty intersection, compute the
4632 	 union of both ranges.  */
4633       if (value_ranges_intersect_p (vr0, vr1))
4634 	{
4635 	  int cmp;
4636 	  tree min, max;
4637 
4638 	  /* The lower limit of the new range is the minimum of the
4639 	     two ranges.  If they cannot be compared, the result is
4640 	     VARYING.  */
4641 	  cmp = compare_values (vr0->min, vr1->min);
4642 	  if (cmp == 0 || cmp == 1)
4643 	    min = vr1->min;
4644 	  else if (cmp == -1)
4645 	    min = vr0->min;
4646 	  else
4647 	    {
4648 	      set_value_range_to_varying (vr0);
4649 	      return;
4650 	    }
4651 
4652 	  /* Similarly, the upper limit of the new range is the
4653 	     maximum of the two ranges.  If they cannot be compared,
4654 	     the result is VARYING.  */
4655 	  cmp = compare_values (vr0->max, vr1->max);
4656 	  if (cmp == 0 || cmp == -1)
4657 	    max = vr1->max;
4658 	  else if (cmp == 1)
4659 	    max = vr0->max;
4660 	  else
4661 	    {
4662 	      set_value_range_to_varying (vr0);
4663 	      return;
4664 	    }
4665 
4666 	  /* Check for useless ranges.  */
4667 	  if (INTEGRAL_TYPE_P (TREE_TYPE (min))
4668 	      && ((vrp_val_is_min (min) || is_overflow_infinity (min))
4669 		  && (vrp_val_is_max (max) || is_overflow_infinity (max))))
4670 	    {
4671 	      set_value_range_to_varying (vr0);
4672 	      return;
4673 	    }
4674 
4675 	  /* The resulting set of equivalences is the intersection of
4676 	     the two sets.  */
4677 	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4678 	    bitmap_and_into (vr0->equiv, vr1->equiv);
4679 	  else if (vr0->equiv && !vr1->equiv)
4680 	    bitmap_clear (vr0->equiv);
4681 
4682 	  set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4683 	}
4684       else
4685 	goto no_meet;
4686     }
4687   else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4688     {
4689       /* Two anti-ranges meet only if they are both identical.  */
4690       if (compare_values (vr0->min, vr1->min) == 0
4691 	  && compare_values (vr0->max, vr1->max) == 0
4692 	  && compare_values (vr0->min, vr0->max) == 0)
4693 	{
4694 	  /* The resulting set of equivalences is the intersection of
4695 	     the two sets.  */
4696 	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4697 	    bitmap_and_into (vr0->equiv, vr1->equiv);
4698 	  else if (vr0->equiv && !vr1->equiv)
4699 	    bitmap_clear (vr0->equiv);
4700 	}
4701       else
4702 	goto no_meet;
4703     }
4704   else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4705     {
4706       /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
4707 	 meet only if the ranges have an empty intersection.  The
4708 	 result of the meet operation is the anti-range.  */
4709       if (!symbolic_range_p (vr0)
4710 	  && !symbolic_range_p (vr1)
4711 	  && !value_ranges_intersect_p (vr0, vr1))
4712 	{
4713 	  /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
4714 	     set.  We need to compute the intersection of the two
4715 	     equivalence sets.  */
4716 	  if (vr1->type == VR_ANTI_RANGE)
4717 	    set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4718 
4719 	  /* The resulting set of equivalences is the intersection of
4720 	     the two sets.  */
4721 	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4722 	    bitmap_and_into (vr0->equiv, vr1->equiv);
4723 	  else if (vr0->equiv && !vr1->equiv)
4724 	    bitmap_clear (vr0->equiv);
4725 	}
4726       else
4727 	goto no_meet;
4728     }
4729   else
4730     gcc_unreachable ();
4731 
4732   return;
4733 
4734 no_meet:
4735   /* The two range VR0 and VR1 do not meet.  Before giving up and
4736      setting the result to VARYING, see if we can at least derive a
4737      useful anti-range.  FIXME, all this nonsense about distinguishing
4738      anti-ranges from ranges is necessary because of the odd
4739      semantics of range_includes_zero_p and friends.  */
4740   if (!symbolic_range_p (vr0)
4741       && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4742 	  || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4743       && !symbolic_range_p (vr1)
4744       && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4745 	  || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4746     {
4747       set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4748 
4749       /* Since this meet operation did not result from the meeting of
4750 	 two equivalent names, VR0 cannot have any equivalences.  */
4751       if (vr0->equiv)
4752 	bitmap_clear (vr0->equiv);
4753     }
4754   else
4755     set_value_range_to_varying (vr0);
4756 }
4757 
4758 
4759 /* Visit all arguments for PHI node PHI that flow through executable
4760    edges.  If a valid value range can be derived from all the incoming
4761    value ranges, set a new range for the LHS of PHI.  */
4762 
4763 static enum ssa_prop_result
vrp_visit_phi_node(tree phi)4764 vrp_visit_phi_node (tree phi)
4765 {
4766   int i;
4767   tree lhs = PHI_RESULT (phi);
4768   value_range_t *lhs_vr = get_value_range (lhs);
4769   value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4770 
4771   copy_value_range (&vr_result, lhs_vr);
4772 
4773   if (dump_file && (dump_flags & TDF_DETAILS))
4774     {
4775       fprintf (dump_file, "\nVisiting PHI node: ");
4776       print_generic_expr (dump_file, phi, dump_flags);
4777     }
4778 
4779   for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4780     {
4781       edge e = PHI_ARG_EDGE (phi, i);
4782 
4783       if (dump_file && (dump_flags & TDF_DETAILS))
4784 	{
4785 	  fprintf (dump_file,
4786 	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
4787 	      i, e->src->index, e->dest->index,
4788 	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4789 	}
4790 
4791       if (e->flags & EDGE_EXECUTABLE)
4792 	{
4793 	  tree arg = PHI_ARG_DEF (phi, i);
4794 	  value_range_t vr_arg;
4795 
4796 	  if (TREE_CODE (arg) == SSA_NAME)
4797 	    vr_arg = *(get_value_range (arg));
4798 	  else
4799 	    {
4800 	      if (is_overflow_infinity (arg))
4801 		{
4802 		  arg = copy_node (arg);
4803 		  TREE_OVERFLOW (arg) = 0;
4804 		}
4805 
4806 	      vr_arg.type = VR_RANGE;
4807 	      vr_arg.min = arg;
4808 	      vr_arg.max = arg;
4809 	      vr_arg.equiv = NULL;
4810 	    }
4811 
4812 	  if (dump_file && (dump_flags & TDF_DETAILS))
4813 	    {
4814 	      fprintf (dump_file, "\t");
4815 	      print_generic_expr (dump_file, arg, dump_flags);
4816 	      fprintf (dump_file, "\n\tValue: ");
4817 	      dump_value_range (dump_file, &vr_arg);
4818 	      fprintf (dump_file, "\n");
4819 	    }
4820 
4821 	  vrp_meet (&vr_result, &vr_arg);
4822 
4823 	  if (vr_result.type == VR_VARYING)
4824 	    break;
4825 	}
4826     }
4827 
4828   if (vr_result.type == VR_VARYING)
4829     goto varying;
4830 
4831   /* To prevent infinite iterations in the algorithm, derive ranges
4832      when the new value is slightly bigger or smaller than the
4833      previous one.  */
4834   if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4835     {
4836       if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4837 	{
4838 	  int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4839 	  int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4840 
4841 	  /* If the new minimum is smaller or larger than the previous
4842 	     one, go all the way to -INF.  In the first case, to avoid
4843 	     iterating millions of times to reach -INF, and in the
4844 	     other case to avoid infinite bouncing between different
4845 	     minimums.  */
4846 	  if (cmp_min > 0 || cmp_min < 0)
4847 	    {
4848 	      /* If we will end up with a (-INF, +INF) range, set it
4849 		 to VARYING.  */
4850 	      if (vrp_val_is_max (vr_result.max))
4851 		goto varying;
4852 
4853 	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
4854 		  || !vrp_var_may_overflow (lhs, phi))
4855 		vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4856 	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
4857 		vr_result.min =
4858 		  negative_overflow_infinity (TREE_TYPE (vr_result.min));
4859 	      else
4860 		goto varying;
4861 	    }
4862 
4863 	  /* Similarly, if the new maximum is smaller or larger than
4864 	     the previous one, go all the way to +INF.  */
4865 	  if (cmp_max < 0 || cmp_max > 0)
4866 	    {
4867 	      /* If we will end up with a (-INF, +INF) range, set it
4868 		 to VARYING.  */
4869 	      if (vrp_val_is_min (vr_result.min))
4870 		goto varying;
4871 
4872 	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
4873 		  || !vrp_var_may_overflow (lhs, phi))
4874 		vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4875 	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
4876 		vr_result.max =
4877 		  positive_overflow_infinity (TREE_TYPE (vr_result.max));
4878 	      else
4879 		goto varying;
4880 	    }
4881 	}
4882     }
4883 
4884   /* If the new range is different than the previous value, keep
4885      iterating.  */
4886   if (update_value_range (lhs, &vr_result))
4887     return SSA_PROP_INTERESTING;
4888 
4889   /* Nothing changed, don't add outgoing edges.  */
4890   return SSA_PROP_NOT_INTERESTING;
4891 
4892   /* No match found.  Set the LHS to VARYING.  */
4893 varying:
4894   set_value_range_to_varying (lhs_vr);
4895   return SSA_PROP_VARYING;
4896 }
4897 
4898 /* Simplify a division or modulo operator to a right shift or
4899    bitwise and if the first operand is unsigned or is greater
4900    than zero and the second operand is an exact power of two.  */
4901 
4902 static void
simplify_div_or_mod_using_ranges(tree stmt,tree rhs,enum tree_code rhs_code)4903 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4904 {
4905   tree val = NULL;
4906   tree op = TREE_OPERAND (rhs, 0);
4907   value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4908 
4909   if (TYPE_UNSIGNED (TREE_TYPE (op)))
4910     {
4911       val = integer_one_node;
4912     }
4913   else
4914     {
4915       bool sop = false;
4916 
4917       val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
4918 
4919       if (val
4920 	  && sop
4921 	  && integer_onep (val)
4922 	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
4923 	{
4924 	  location_t locus;
4925 
4926 	  if (!EXPR_HAS_LOCATION (stmt))
4927 	    locus = input_location;
4928 	  else
4929 	    locus = EXPR_LOCATION (stmt);
4930 	  warning (OPT_Wstrict_overflow,
4931 		   ("%Hassuming signed overflow does not occur when "
4932 		    "simplifying / or %% to >> or &"),
4933 		   &locus);
4934 	}
4935     }
4936 
4937   if (val && integer_onep (val))
4938     {
4939       tree t;
4940       tree op0 = TREE_OPERAND (rhs, 0);
4941       tree op1 = TREE_OPERAND (rhs, 1);
4942 
4943       if (rhs_code == TRUNC_DIV_EXPR)
4944 	{
4945 	  t = build_int_cst (NULL_TREE, tree_log2 (op1));
4946 	  t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4947 	}
4948       else
4949 	{
4950 	  t = build_int_cst (TREE_TYPE (op1), 1);
4951 	  t = int_const_binop (MINUS_EXPR, op1, t, 0);
4952 	  t = fold_convert (TREE_TYPE (op0), t);
4953 	  t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4954 	}
4955 
4956       TREE_OPERAND (stmt, 1) = t;
4957       update_stmt (stmt);
4958     }
4959 }
4960 
4961 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4962    ABS_EXPR.  If the operand is <= 0, then simplify the
4963    ABS_EXPR into a NEGATE_EXPR.  */
4964 
4965 static void
simplify_abs_using_ranges(tree stmt,tree rhs)4966 simplify_abs_using_ranges (tree stmt, tree rhs)
4967 {
4968   tree val = NULL;
4969   tree op = TREE_OPERAND (rhs, 0);
4970   tree type = TREE_TYPE (op);
4971   value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4972 
4973   if (TYPE_UNSIGNED (type))
4974     {
4975       val = integer_zero_node;
4976     }
4977   else if (vr)
4978     {
4979       bool sop = false;
4980 
4981       val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
4982       if (!val)
4983 	{
4984 	  sop = false;
4985 	  val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
4986 					  &sop);
4987 
4988 	  if (val)
4989 	    {
4990 	      if (integer_zerop (val))
4991 		val = integer_one_node;
4992 	      else if (integer_onep (val))
4993 		val = integer_zero_node;
4994 	    }
4995 	}
4996 
4997       if (val
4998 	  && (integer_onep (val) || integer_zerop (val)))
4999 	{
5000 	  tree t;
5001 
5002 	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5003 	    {
5004 	      location_t locus;
5005 
5006 	      if (!EXPR_HAS_LOCATION (stmt))
5007 		locus = input_location;
5008 	      else
5009 		locus = EXPR_LOCATION (stmt);
5010 	      warning (OPT_Wstrict_overflow,
5011 		       ("%Hassuming signed overflow does not occur when "
5012 			"simplifying abs (X) to X or -X"),
5013 		       &locus);
5014 	    }
5015 
5016 	  if (integer_onep (val))
5017 	    t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5018 	  else
5019 	    t = op;
5020 
5021 	  TREE_OPERAND (stmt, 1) = t;
5022 	  update_stmt (stmt);
5023 	}
5024     }
5025 }
5026 
5027 /* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
5028    a known value range VR.
5029 
5030    If there is one and only one value which will satisfy the
5031    conditional, then return that value.  Else return NULL.  */
5032 
5033 static tree
test_for_singularity(enum tree_code cond_code,tree op0,tree op1,value_range_t * vr)5034 test_for_singularity (enum tree_code cond_code, tree op0,
5035 		      tree op1, value_range_t *vr)
5036 {
5037   tree min = NULL;
5038   tree max = NULL;
5039 
5040   /* Extract minimum/maximum values which satisfy the
5041      the conditional as it was written.  */
5042   if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5043     {
5044       /* This should not be negative infinity; there is no overflow
5045 	 here.  */
5046       min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5047 
5048       max = op1;
5049       if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5050 	{
5051 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5052 	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5053 	  if (EXPR_P (max))
5054 	    TREE_NO_WARNING (max) = 1;
5055 	}
5056     }
5057   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5058     {
5059       /* This should not be positive infinity; there is no overflow
5060 	 here.  */
5061       max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5062 
5063       min = op1;
5064       if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5065 	{
5066 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5067 	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5068 	  if (EXPR_P (min))
5069 	    TREE_NO_WARNING (min) = 1;
5070 	}
5071     }
5072 
5073   /* Now refine the minimum and maximum values using any
5074      value range information we have for op0.  */
5075   if (min && max)
5076     {
5077       if (compare_values (vr->min, min) == -1)
5078 	min = min;
5079       else
5080 	min = vr->min;
5081       if (compare_values (vr->max, max) == 1)
5082 	max = max;
5083       else
5084 	max = vr->max;
5085 
5086       /* If the new min/max values have converged to a single value,
5087 	 then there is only one value which can satisfy the condition,
5088 	 return that value.  */
5089       if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5090 	return min;
5091     }
5092   return NULL;
5093 }
5094 
5095 /* Simplify a conditional using a relational operator to an equality
5096    test if the range information indicates only one value can satisfy
5097    the original conditional.  */
5098 
5099 static void
simplify_cond_using_ranges(tree stmt)5100 simplify_cond_using_ranges (tree stmt)
5101 {
5102   tree cond = COND_EXPR_COND (stmt);
5103   tree op0 = TREE_OPERAND (cond, 0);
5104   tree op1 = TREE_OPERAND (cond, 1);
5105   enum tree_code cond_code = TREE_CODE (cond);
5106 
5107   if (cond_code != NE_EXPR
5108       && cond_code != EQ_EXPR
5109       && TREE_CODE (op0) == SSA_NAME
5110       && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5111       && is_gimple_min_invariant (op1))
5112     {
5113       value_range_t *vr = get_value_range (op0);
5114 
5115       /* If we have range information for OP0, then we might be
5116 	 able to simplify this conditional. */
5117       if (vr->type == VR_RANGE)
5118 	{
5119 	  tree new = test_for_singularity (cond_code, op0, op1, vr);
5120 
5121 	  if (new)
5122 	    {
5123 	      if (dump_file)
5124 		{
5125 		  fprintf (dump_file, "Simplified relational ");
5126 		  print_generic_expr (dump_file, cond, 0);
5127 		  fprintf (dump_file, " into ");
5128 		}
5129 
5130 	      COND_EXPR_COND (stmt)
5131 		= build2 (EQ_EXPR, boolean_type_node, op0, new);
5132 	      update_stmt (stmt);
5133 
5134 	      if (dump_file)
5135 		{
5136 		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5137 		  fprintf (dump_file, "\n");
5138 		}
5139 	      return;
5140 
5141 	    }
5142 
5143 	  /* Try again after inverting the condition.  We only deal
5144 	     with integral types here, so no need to worry about
5145 	     issues with inverting FP comparisons.  */
5146 	  cond_code = invert_tree_comparison (cond_code, false);
5147 	  new = test_for_singularity (cond_code, op0, op1, vr);
5148 
5149 	  if (new)
5150 	    {
5151 	      if (dump_file)
5152 		{
5153 		  fprintf (dump_file, "Simplified relational ");
5154 		  print_generic_expr (dump_file, cond, 0);
5155 		  fprintf (dump_file, " into ");
5156 		}
5157 
5158 	      COND_EXPR_COND (stmt)
5159 		= build2 (NE_EXPR, boolean_type_node, op0, new);
5160 	      update_stmt (stmt);
5161 
5162 	      if (dump_file)
5163 		{
5164 		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5165 		  fprintf (dump_file, "\n");
5166 		}
5167 	      return;
5168 
5169 	    }
5170 	}
5171     }
5172 }
5173 
5174 /* Simplify STMT using ranges if possible.  */
5175 
5176 void
simplify_stmt_using_ranges(tree stmt)5177 simplify_stmt_using_ranges (tree stmt)
5178 {
5179   if (TREE_CODE (stmt) == MODIFY_EXPR)
5180     {
5181       tree rhs = TREE_OPERAND (stmt, 1);
5182       enum tree_code rhs_code = TREE_CODE (rhs);
5183 
5184       /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5185 	 and BIT_AND_EXPR respectively if the first operand is greater
5186 	 than zero and the second operand is an exact power of two.  */
5187       if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5188 	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5189 	  && integer_pow2p (TREE_OPERAND (rhs, 1)))
5190 	simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5191 
5192       /* Transform ABS (X) into X or -X as appropriate.  */
5193       if (rhs_code == ABS_EXPR
5194 	  && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5195 	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5196 	simplify_abs_using_ranges (stmt, rhs);
5197     }
5198   else if (TREE_CODE (stmt) == COND_EXPR
5199 	   && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5200     {
5201       simplify_cond_using_ranges (stmt);
5202     }
5203 }
5204 
5205 /* Stack of dest,src equivalency pairs that need to be restored after
5206    each attempt to thread a block's incoming edge to an outgoing edge.
5207 
5208    A NULL entry is used to mark the end of pairs which need to be
5209    restored.  */
VEC(tree,heap)5210 static VEC(tree,heap) *stack;
5211 
5212 /* A trivial wrapper so that we can present the generic jump threading
5213    code with a simple API for simplifying statements.  STMT is the
5214    statement we want to simplify, WITHIN_STMT provides the location
5215    for any overflow warnings.  */
5216 
5217 static tree
5218 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5219 {
5220   /* We only use VRP information to simplify conditionals.  This is
5221      overly conservative, but it's unclear if doing more would be
5222      worth the compile time cost.  */
5223   if (TREE_CODE (stmt) != COND_EXPR)
5224     return NULL;
5225 
5226   return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5227 }
5228 
5229 /* Blocks which have more than one predecessor and more than
5230    one successor present jump threading opportunities.  ie,
5231    when the block is reached from a specific predecessor, we
5232    may be able to determine which of the outgoing edges will
5233    be traversed.  When this optimization applies, we are able
5234    to avoid conditionals at runtime and we may expose secondary
5235    optimization opportunities.
5236 
5237    This routine is effectively a driver for the generic jump
5238    threading code.  It basically just presents the generic code
5239    with edges that may be suitable for jump threading.
5240 
5241    Unlike DOM, we do not iterate VRP if jump threading was successful.
5242    While iterating may expose new opportunities for VRP, it is expected
5243    those opportunities would be very limited and the compile time cost
5244    to expose those opportunities would be significant.
5245 
5246    As jump threading opportunities are discovered, they are registered
5247    for later realization.  */
5248 
5249 static void
identify_jump_threads(void)5250 identify_jump_threads (void)
5251 {
5252   basic_block bb;
5253   tree dummy;
5254 
5255   /* Ugh.  When substituting values earlier in this pass we can
5256      wipe the dominance information.  So rebuild the dominator
5257      information as we need it within the jump threading code.  */
5258   calculate_dominance_info (CDI_DOMINATORS);
5259 
5260   /* We do not allow VRP information to be used for jump threading
5261      across a back edge in the CFG.  Otherwise it becomes too
5262      difficult to avoid eliminating loop exit tests.  Of course
5263      EDGE_DFS_BACK is not accurate at this time so we have to
5264      recompute it.  */
5265   mark_dfs_back_edges ();
5266 
5267   /* Allocate our unwinder stack to unwind any temporary equivalences
5268      that might be recorded.  */
5269   stack = VEC_alloc (tree, heap, 20);
5270 
5271   /* To avoid lots of silly node creation, we create a single
5272      conditional and just modify it in-place when attempting to
5273      thread jumps.  */
5274   dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5275   dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5276 
5277   /* Walk through all the blocks finding those which present a
5278      potential jump threading opportunity.  We could set this up
5279      as a dominator walker and record data during the walk, but
5280      I doubt it's worth the effort for the classes of jump
5281      threading opportunities we are trying to identify at this
5282      point in compilation.  */
5283   FOR_EACH_BB (bb)
5284     {
5285       tree last, cond;
5286 
5287       /* If the generic jump threading code does not find this block
5288 	 interesting, then there is nothing to do.  */
5289       if (! potentially_threadable_block (bb))
5290 	continue;
5291 
5292       /* We only care about blocks ending in a COND_EXPR.  While there
5293 	 may be some value in handling SWITCH_EXPR here, I doubt it's
5294 	 terribly important.  */
5295       last = bsi_stmt (bsi_last (bb));
5296       if (TREE_CODE (last) != COND_EXPR)
5297 	continue;
5298 
5299       /* We're basically looking for any kind of conditional with
5300 	 integral type arguments.  */
5301       cond = COND_EXPR_COND (last);
5302       if ((TREE_CODE (cond) == SSA_NAME
5303 	   && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5304 	  || (COMPARISON_CLASS_P (cond)
5305 	      && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5306 	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5307 	      && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5308 		  || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5309 	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5310 	{
5311 	  edge_iterator ei;
5312 	  edge e;
5313 
5314 	  /* We've got a block with multiple predecessors and multiple
5315 	     successors which also ends in a suitable conditional.  For
5316 	     each predecessor, see if we can thread it to a specific
5317 	     successor.  */
5318 	  FOR_EACH_EDGE (e, ei, bb->preds)
5319 	    {
5320 	      /* Do not thread across back edges or abnormal edges
5321 		 in the CFG.  */
5322 	      if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5323 		continue;
5324 
5325 	      thread_across_edge (dummy, e, true,
5326 				  &stack,
5327 				  simplify_stmt_for_jump_threading);
5328 	    }
5329 	}
5330     }
5331 
5332   /* We do not actually update the CFG or SSA graphs at this point as
5333      ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5334      handle ASSERT_EXPRs gracefully.  */
5335 }
5336 
5337 /* We identified all the jump threading opportunities earlier, but could
5338    not transform the CFG at that time.  This routine transforms the
5339    CFG and arranges for the dominator tree to be rebuilt if necessary.
5340 
5341    Note the SSA graph update will occur during the normal TODO
5342    processing by the pass manager.  */
5343 static void
finalize_jump_threads(void)5344 finalize_jump_threads (void)
5345 {
5346   bool cfg_altered = false;
5347   cfg_altered = thread_through_all_blocks ();
5348 
5349   /* If we threaded jumps, then we need to recompute the dominance
5350      information, to safely do that we must clean up the CFG first.  */
5351   if (cfg_altered)
5352     {
5353       free_dominance_info (CDI_DOMINATORS);
5354       cleanup_tree_cfg ();
5355       calculate_dominance_info (CDI_DOMINATORS);
5356     }
5357   VEC_free (tree, heap, stack);
5358 }
5359 
5360 
5361 /* Traverse all the blocks folding conditionals with known ranges.  */
5362 
5363 static void
vrp_finalize(void)5364 vrp_finalize (void)
5365 {
5366   size_t i;
5367   prop_value_t *single_val_range;
5368   bool do_value_subst_p;
5369 
5370   if (dump_file)
5371     {
5372       fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5373       dump_all_value_ranges (dump_file);
5374       fprintf (dump_file, "\n");
5375     }
5376 
5377   /* We may have ended with ranges that have exactly one value.  Those
5378      values can be substituted as any other copy/const propagated
5379      value using substitute_and_fold.  */
5380   single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
5381   memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
5382 
5383   do_value_subst_p = false;
5384   for (i = 0; i < num_ssa_names; i++)
5385     if (vr_value[i]
5386 	&& vr_value[i]->type == VR_RANGE
5387 	&& vr_value[i]->min == vr_value[i]->max)
5388       {
5389 	single_val_range[i].value = vr_value[i]->min;
5390 	do_value_subst_p = true;
5391       }
5392 
5393   if (!do_value_subst_p)
5394     {
5395       /* We found no single-valued ranges, don't waste time trying to
5396 	 do single value substitution in substitute_and_fold.  */
5397       free (single_val_range);
5398       single_val_range = NULL;
5399     }
5400 
5401   substitute_and_fold (single_val_range, true);
5402 
5403   /* We must identify jump threading opportunities before we release
5404      the datastructures built by VRP.  */
5405   identify_jump_threads ();
5406 
5407   /* Free allocated memory.  */
5408   for (i = 0; i < num_ssa_names; i++)
5409     if (vr_value[i])
5410       {
5411 	BITMAP_FREE (vr_value[i]->equiv);
5412 	free (vr_value[i]);
5413       }
5414 
5415   free (single_val_range);
5416   free (vr_value);
5417 
5418   /* So that we can distinguish between VRP data being available
5419      and not available.  */
5420   vr_value = NULL;
5421 }
5422 
5423 
5424 /* Main entry point to VRP (Value Range Propagation).  This pass is
5425    loosely based on J. R. C. Patterson, ``Accurate Static Branch
5426    Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5427    Programming Language Design and Implementation, pp. 67-78, 1995.
5428    Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5429 
5430    This is essentially an SSA-CCP pass modified to deal with ranges
5431    instead of constants.
5432 
5433    While propagating ranges, we may find that two or more SSA name
5434    have equivalent, though distinct ranges.  For instance,
5435 
5436      1	x_9 = p_3->a;
5437      2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5438      3	if (p_4 == q_2)
5439      4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5440      5	endif
5441      6	if (q_2)
5442 
5443    In the code above, pointer p_5 has range [q_2, q_2], but from the
5444    code we can also determine that p_5 cannot be NULL and, if q_2 had
5445    a non-varying range, p_5's range should also be compatible with it.
5446 
5447    These equivalences are created by two expressions: ASSERT_EXPR and
5448    copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
5449    result of another assertion, then we can use the fact that p_5 and
5450    p_4 are equivalent when evaluating p_5's range.
5451 
5452    Together with value ranges, we also propagate these equivalences
5453    between names so that we can take advantage of information from
5454    multiple ranges when doing final replacement.  Note that this
5455    equivalency relation is transitive but not symmetric.
5456 
5457    In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5458    cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5459    in contexts where that assertion does not hold (e.g., in line 6).
5460 
5461    TODO, the main difference between this pass and Patterson's is that
5462    we do not propagate edge probabilities.  We only compute whether
5463    edges can be taken or not.  That is, instead of having a spectrum
5464    of jump probabilities between 0 and 1, we only deal with 0, 1 and
5465    DON'T KNOW.  In the future, it may be worthwhile to propagate
5466    probabilities to aid branch prediction.  */
5467 
5468 static unsigned int
execute_vrp(void)5469 execute_vrp (void)
5470 {
5471   insert_range_assertions ();
5472 
5473   current_loops = loop_optimizer_init (LOOPS_NORMAL);
5474   if (current_loops)
5475     scev_initialize (current_loops);
5476 
5477   vrp_initialize ();
5478   ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5479   vrp_finalize ();
5480 
5481   if (current_loops)
5482     {
5483       scev_finalize ();
5484       loop_optimizer_finalize (current_loops);
5485       current_loops = NULL;
5486     }
5487 
5488   /* ASSERT_EXPRs must be removed before finalizing jump threads
5489      as finalizing jump threads calls the CFG cleanup code which
5490      does not properly handle ASSERT_EXPRs.  */
5491   remove_range_assertions ();
5492 
5493   /* If we exposed any new variables, go ahead and put them into
5494      SSA form now, before we handle jump threading.  This simplifies
5495      interactions between rewriting of _DECL nodes into SSA form
5496      and rewriting SSA_NAME nodes into SSA form after block
5497      duplication and CFG manipulation.  */
5498   update_ssa (TODO_update_ssa);
5499 
5500   finalize_jump_threads ();
5501   return 0;
5502 }
5503 
5504 static bool
gate_vrp(void)5505 gate_vrp (void)
5506 {
5507   return flag_tree_vrp != 0;
5508 }
5509 
5510 struct tree_opt_pass pass_vrp =
5511 {
5512   "vrp",				/* name */
5513   gate_vrp,				/* gate */
5514   execute_vrp,				/* execute */
5515   NULL,					/* sub */
5516   NULL,					/* next */
5517   0,					/* static_pass_number */
5518   TV_TREE_VRP,				/* tv_id */
5519   PROP_ssa | PROP_alias,		/* properties_required */
5520   0,					/* properties_provided */
5521   PROP_smt_usage,			/* properties_destroyed */
5522   0,					/* todo_flags_start */
5523   TODO_cleanup_cfg
5524     | TODO_ggc_collect
5525     | TODO_verify_ssa
5526     | TODO_dump_func
5527     | TODO_update_ssa
5528     | TODO_update_smt_usage,			/* todo_flags_finish */
5529   0					/* letter */
5530 };
5531