xref: /dpdk/drivers/net/enic/enic_rxtx_vec_avx2.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2008-2018 Cisco Systems, Inc.  All rights reserved.
3  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
4  */
5 
6 #include <rte_mbuf.h>
7 #include <ethdev_driver.h>
8 #include <rte_vect.h>
9 
10 #include "enic_compat.h"
11 #include "rq_enet_desc.h"
12 #include "enic.h"
13 #include "enic_rxtx_common.h"
14 
15 #include <x86intrin.h>
16 
17 static struct rte_mbuf *
rx_one(struct cq_enet_rq_desc * cqd,struct rte_mbuf * mb,struct enic * enic)18 rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
19 {
20 	bool tnl;
21 
22 	*(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
23 	mb->data_len = cqd->bytes_written_flags &
24 		CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
25 	mb->pkt_len = mb->data_len;
26 	tnl = enic->overlay_offload && (cqd->completed_index_flags &
27 					CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
28 	mb->packet_type =
29 		enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
30 	enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
31 	/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
32 	if (tnl) {
33 		mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
34 				     RTE_PTYPE_L4_MASK);
35 	}
36 	return mb;
37 }
38 
39 static uint16_t
enic_noscatter_vec_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)40 enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
41 			     uint16_t nb_pkts)
42 {
43 	struct rte_mbuf **rx, **rxmb;
44 	uint16_t cq_idx, nb_rx, max_rx;
45 	struct cq_enet_rq_desc *cqd;
46 	struct rq_enet_desc *rqd;
47 	struct vnic_cq *cq;
48 	struct vnic_rq *rq;
49 	struct enic *enic;
50 	uint8_t color;
51 
52 	rq = rx_queue;
53 	enic = vnic_dev_priv(rq->vdev);
54 	cq = &enic->cq[enic_cq_rq(enic, rq->index)];
55 	cq_idx = cq->to_clean;
56 
57 	/*
58 	 * Fill up the reserve of free mbufs. Below, we restock the receive
59 	 * ring with these mbufs to avoid allocation failures.
60 	 */
61 	if (rq->num_free_mbufs == 0) {
62 		if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
63 					 ENIC_RX_BURST_MAX))
64 			return 0;
65 		rq->num_free_mbufs = ENIC_RX_BURST_MAX;
66 	}
67 	/* Receive until the end of the ring, at most. */
68 	max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
69 	max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
70 
71 	rxmb = rq->mbuf_ring + cq_idx;
72 	color = cq->last_color;
73 	cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
74 	rx = rx_pkts;
75 	if (max_rx == 0 ||
76 	    (cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
77 		return 0;
78 
79 	/* Step 1: Process one packet to do aligned 256-bit load below */
80 	if (cq_idx & 0x1) {
81 		if (unlikely(cqd->bytes_written_flags &
82 			     CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
83 			rte_pktmbuf_free(*rxmb++);
84 			rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
85 		} else {
86 			*rx++ = rx_one(cqd, *rxmb++, enic);
87 		}
88 		cqd++;
89 		max_rx--;
90 	}
91 
92 	const __m256i mask =
93 		_mm256_set_epi8(/* Second descriptor */
94 			0xff, /* type_color */
95 			(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
96 			 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
97 			 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
98 			 CQ_ENET_RQ_DESC_FLAGS_TCP |
99 			 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
100 			0, 0, /* checksum_fcoe */
101 			0xff, 0xff, /* vlan */
102 			0x3f, 0xff, /* bytes_written_flags */
103 			0xff, 0xff, 0xff, 0xff, /* rss_hash */
104 			0xff, 0xff, /* q_number_rss_type_flags */
105 			0, 0, /* completed_index_flags */
106 			/* First descriptor */
107 			0xff, /* type_color */
108 			(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
109 			 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
110 			 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
111 			 CQ_ENET_RQ_DESC_FLAGS_TCP |
112 			 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
113 			0, 0, /* checksum_fcoe */
114 			0xff, 0xff, /* vlan */
115 			0x3f, 0xff, /* bytes_written_flags */
116 			0xff, 0xff, 0xff, 0xff, /* rss_hash */
117 			0xff, 0xff, /* q_number_rss_type_flags */
118 			0, 0 /* completed_index_flags */
119 			);
120 	const __m256i shuffle_mask =
121 		_mm256_set_epi8(/* Second descriptor */
122 			7, 6, 5, 4,             /* rss = rss_hash */
123 			11, 10,                 /* vlan_tci = vlan */
124 			9, 8,                   /* data_len = bytes_written */
125 			0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
126 			0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
127 			/* First descriptor */
128 			7, 6, 5, 4,             /* rss = rss_hash */
129 			11, 10,                 /* vlan_tci = vlan */
130 			9, 8,                   /* data_len = bytes_written */
131 			0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
132 			0x80, 0x80, 0x80, 0x80  /* packet_type = 0 */
133 			);
134 	/* Used to collect 8 flags from 8 desc into one register */
135 	const __m256i flags_shuffle_mask =
136 		_mm256_set_epi8(/* Second descriptor */
137 			1, 3, 9, 14,
138 			1, 3, 9, 14,
139 			1, 3, 9, 14,
140 			1, 3, 9, 14,
141 			/* First descriptor */
142 			1, 3, 9, 14,
143 			1, 3, 9, 14,
144 			1, 3, 9, 14,
145 			/*
146 			 * Byte 3: upper byte of completed_index_flags
147 			 *         bit 5 = fcoe (tunnel)
148 			 * Byte 2: upper byte of q_number_rss_type_flags
149 			 *         bits 2,3,4,5 = rss type
150 			 *         bit 6 = csum_not_calc
151 			 * Byte 1: upper byte of bytes_written_flags
152 			 *         bit 6 = truncated
153 			 *         bit 7 = vlan stripped
154 			 * Byte 0: flags
155 			 */
156 			1, 3, 9, 14
157 			);
158 	/* Used to collect 8 VLAN IDs from 8 desc into one register */
159 	const __m256i vlan_shuffle_mask =
160 		_mm256_set_epi8(/* Second descriptor */
161 			0x80, 0x80, 11, 10,
162 			0x80, 0x80, 11, 10,
163 			0x80, 0x80, 11, 10,
164 			0x80, 0x80, 11, 10,
165 			/* First descriptor */
166 			0x80, 0x80, 11, 10,
167 			0x80, 0x80, 11, 10,
168 			0x80, 0x80, 11, 10,
169 			0x80, 0x80, 11, 10);
170 	/* RTE_MBUF_F_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
171 	const __m256i rss_shuffle =
172 		_mm256_set_epi8(/* second 128 bits */
173 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
174 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
175 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
176 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
177 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
178 			0, /* rss_types = 0 */
179 			/* first 128 bits */
180 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
181 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
182 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
183 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
184 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
185 			0 /* rss_types = 0 */);
186 	/*
187 	 * VLAN offload flags.
188 	 * shuffle index:
189 	 * vlan_stripped => bit 0
190 	 * vlan_id == 0  => bit 1
191 	 */
192 	const __m256i vlan_shuffle =
193 		_mm256_set_epi32(0, 0, 0, 0,
194 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
195 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN);
196 	/* Use the same shuffle index as vlan_shuffle */
197 	const __m256i vlan_ptype_shuffle =
198 		_mm256_set_epi32(0, 0, 0, 0,
199 				 RTE_PTYPE_L2_ETHER,
200 				 RTE_PTYPE_L2_ETHER,
201 				 RTE_PTYPE_L2_ETHER,
202 				 RTE_PTYPE_L2_ETHER_VLAN);
203 	/*
204 	 * CKSUM flags. Shift right so they fit int 8-bit integers.
205 	 * shuffle index:
206 	 * ipv4_csum_ok    => bit 3
207 	 * ip4             => bit 2
208 	 * tcp_or_udp      => bit 1
209 	 * tcp_udp_csum_ok => bit 0
210 	 */
211 	const __m256i csum_shuffle =
212 		_mm256_set_epi8(/* second 128 bits */
213 			/* 1111 ip4+ip4_ok+l4+l4_ok */
214 			((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
215 			/* 1110 ip4_ok+ip4+l4+!l4_ok */
216 			((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
217 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
218 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
219 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
220 			(RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),  /* 1010 l4+!l4_ok */
221 			0, /* 1001 */
222 			0, /* 1000 */
223 			/* 0111 !ip4_ok+ip4+l4+l4_ok */
224 			((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
225 			/* 0110 !ip4_ok+ip4+l4+!l4_ok */
226 			((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
227 			(RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),  /* 0101 !ip4_ok+ip4 */
228 			(RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),  /* 0100 !ip4_ok+ip4 */
229 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
230 			(RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),  /* 0010 l4+!l4_ok */
231 			0, /* 0001 */
232 			0, /* 0000 */
233 			/* first 128 bits */
234 			((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
235 			((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
236 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
237 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
238 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
239 			(RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
240 			0, 0,
241 			((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
242 			((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
243 			(RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
244 			(RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
245 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
246 			(RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
247 			0, 0);
248 	/*
249 	 * Non-fragment PTYPEs.
250 	 * Shuffle 4-bit index:
251 	 * ip6 => bit 0
252 	 * ip4 => bit 1
253 	 * udp => bit 2
254 	 * tcp => bit 3
255 	 *   bit
256 	 * 3 2 1 0
257 	 * -------
258 	 * 0 0 0 0 unknown
259 	 * 0 0 0 1 ip6 | nonfrag
260 	 * 0 0 1 0 ip4 | nonfrag
261 	 * 0 0 1 1 unknown
262 	 * 0 1 0 0 unknown
263 	 * 0 1 0 1 ip6 | udp
264 	 * 0 1 1 0 ip4 | udp
265 	 * 0 1 1 1 unknown
266 	 * 1 0 0 0 unknown
267 	 * 1 0 0 1 ip6 | tcp
268 	 * 1 0 1 0 ip4 | tcp
269 	 * 1 0 1 1 unknown
270 	 * 1 1 0 0 unknown
271 	 * 1 1 0 1 unknown
272 	 * 1 1 1 0 unknown
273 	 * 1 1 1 1 unknown
274 	 *
275 	 * PTYPEs do not fit in 8 bits, so shift right 4..
276 	 */
277 	const __m256i nonfrag_ptype_shuffle =
278 		_mm256_set_epi8(/* second 128 bits */
279 			RTE_PTYPE_UNKNOWN,
280 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
281 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
282 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
283 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
284 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
285 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
286 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
287 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
288 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
289 			 RTE_PTYPE_L4_NONFRAG) >> 4,
290 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
291 			 RTE_PTYPE_L4_NONFRAG) >> 4,
292 			RTE_PTYPE_UNKNOWN,
293 			/* first 128 bits */
294 			RTE_PTYPE_UNKNOWN,
295 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
296 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
297 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
298 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
299 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
300 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
301 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
302 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
303 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
304 			 RTE_PTYPE_L4_NONFRAG) >> 4,
305 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
306 			 RTE_PTYPE_L4_NONFRAG) >> 4,
307 			RTE_PTYPE_UNKNOWN);
308 	/* Fragment PTYPEs. Use the same shuffle index as above. */
309 	const __m256i frag_ptype_shuffle =
310 		_mm256_set_epi8(/* second 128 bits */
311 			RTE_PTYPE_UNKNOWN,
312 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
313 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
314 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
315 			 RTE_PTYPE_L4_FRAG) >> 4,
316 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
317 			 RTE_PTYPE_L4_FRAG) >> 4,
318 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
319 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
320 			 RTE_PTYPE_L4_FRAG) >> 4,
321 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
322 			 RTE_PTYPE_L4_FRAG) >> 4,
323 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
324 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
325 			 RTE_PTYPE_L4_FRAG) >> 4,
326 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
327 			 RTE_PTYPE_L4_FRAG) >> 4,
328 			RTE_PTYPE_UNKNOWN,
329 			/* first 128 bits */
330 			RTE_PTYPE_UNKNOWN,
331 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
332 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
333 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
334 			 RTE_PTYPE_L4_FRAG) >> 4,
335 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
336 			 RTE_PTYPE_L4_FRAG) >> 4,
337 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
338 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
339 			 RTE_PTYPE_L4_FRAG) >> 4,
340 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
341 			 RTE_PTYPE_L4_FRAG) >> 4,
342 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
343 			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
344 			 RTE_PTYPE_L4_FRAG) >> 4,
345 			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
346 			 RTE_PTYPE_L4_FRAG) >> 4,
347 			RTE_PTYPE_UNKNOWN);
348 	/*
349 	 * Tunnel PTYPEs. Use the same shuffle index as above.
350 	 * L4 types are not part of this table. They come from non-tunnel
351 	 * types above.
352 	 */
353 	const __m256i tnl_l3_ptype_shuffle =
354 		_mm256_set_epi8(/* second 128 bits */
355 			RTE_PTYPE_UNKNOWN,
356 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
357 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
358 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
359 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
360 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
361 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
362 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
363 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
364 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
365 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
366 			RTE_PTYPE_UNKNOWN,
367 			/* first 128 bits */
368 			RTE_PTYPE_UNKNOWN,
369 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
370 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
371 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
372 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
373 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
374 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
375 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
376 			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
377 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
378 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
379 			RTE_PTYPE_UNKNOWN);
380 
381 	const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
382 						    0, enic->mbuf_initializer);
383 
384 	/*
385 	 * --- cq desc fields ---    offset
386 	 * completed_index_flags    - 0   use: fcoe
387 	 * q_number_rss_type_flags  - 2   use: rss types, csum_not_calc
388 	 * rss_hash                 - 4   ==> mbuf.hash.rss
389 	 * bytes_written_flags      - 8   ==> mbuf.pkt_len,data_len
390 	 *                                use: truncated, vlan_stripped
391 	 * vlan                     - 10  ==> mbuf.vlan_tci
392 	 * checksum_fcoe            - 12  (unused)
393 	 * flags                    - 14  use: all bits
394 	 * type_color               - 15  (unused)
395 	 *
396 	 * --- mbuf fields ---       offset
397 	 * rearm_data              ---- 16
398 	 * data_off    - 0      (mbuf_init) -+
399 	 * refcnt      - 2      (mbuf_init)  |
400 	 * nb_segs     - 4      (mbuf_init)  | 16B 128b
401 	 * port        - 6      (mbuf_init)  |
402 	 * ol_flag     - 8      (from cqd)  -+
403 	 * rx_descriptor_fields1   ---- 32
404 	 * packet_type - 0      (from cqd)  -+
405 	 * pkt_len     - 4      (from cqd)   |
406 	 * data_len    - 8      (from cqd)   | 16B 128b
407 	 * vlan_tci    - 10     (from cqd)   |
408 	 * rss         - 12     (from cqd)  -+
409 	 */
410 
411 	__m256i overlay_enabled =
412 		_mm256_set1_epi32((uint32_t)enic->overlay_offload);
413 
414 	/* Step 2: Process 8 packets per loop using SIMD */
415 	while (max_rx > 7 && (((cqd + 7)->type_color &
416 			       CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
417 		/* Load 8 16B CQ descriptors */
418 		__m256i cqd01 = _mm256_load_si256((void *)cqd);
419 		__m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
420 		__m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
421 		__m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
422 		/* Copy 8 mbuf pointers to rx_pkts */
423 		_mm256_storeu_si256((void *)rx,
424 				    _mm256_loadu_si256((void *)rxmb));
425 		_mm256_storeu_si256((void *)(rx + 4),
426 				    _mm256_loadu_si256((void *)(rxmb + 4)));
427 
428 		/*
429 		 * Collect 8 flags (each 32 bits) into one register.
430 		 * 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
431 		 */
432 		__m256i flags01 =
433 			_mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
434 		/*
435 		 * Shuffle above produces 8 x 32-bit flags for 8 descriptors
436 		 * in this order: 0, 0, 0, 0, 1, 1, 1, 1
437 		 * The duplicates in each 128-bit lane simplifies blending
438 		 * below.
439 		 */
440 		__m256i flags23 =
441 			_mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
442 		__m256i flags45 =
443 			_mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
444 		__m256i flags67 =
445 			_mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
446 		/* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
447 		__m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
448 		/* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
449 		__m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
450 		/* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
451 		__m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
452 		/*
453 		 * Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
454 		 * This order simplifies blend operations way below that
455 		 * produce 'rearm' data for each mbuf.
456 		 */
457 		flags0_7 = _mm256_permute4x64_epi64(flags0_7,
458 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
459 
460 		/*
461 		 * Check truncated bits and bail out early on.
462 		 * 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
463 		 */
464 		__m256i trunc =
465 			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
466 		trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
467 			(1 << 6) + (0 << 4) + (3 << 2) + 2));
468 		/* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
469 		if (_mm256_extract_epi64(trunc, 0) ||
470 		    _mm256_extract_epi64(trunc, 1))
471 			break;
472 
473 		/*
474 		 * Compute RTE_MBUF_F_RX_RSS_HASH.
475 		 * Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
476 		 * RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
477 		 * Everything else is zero.
478 		 */
479 		__m256i rss_types =
480 			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
481 		/*
482 		 * RSS flags (RTE_MBUF_F_RX_RSS_HASH) are in
483 		 * byte 0, 4, 8, 12, 16, 20, 24, 28
484 		 * Everything else is zero.
485 		 */
486 		__m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);
487 
488 		/*
489 		 * Compute CKSUM flags. First build the index and then
490 		 * use it to shuffle csum_shuffle.
491 		 * 20 instructions including const loads: 2.5 inst/desc
492 		 */
493 		/*
494 		 * csum_not_calc (bit 22)
495 		 * csum_not_calc (0) => 0xffffffff
496 		 * csum_not_calc (1) => 0x0
497 		 */
498 		const __m256i zero4 = _mm256_setzero_si256();
499 		const __m256i mask22 = _mm256_set1_epi32(0x400000);
500 		__m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
501 			_mm256_and_si256(flags0_7, mask22));
502 		/*
503 		 * (tcp|udp) && !fragment => bit 1
504 		 * tcp = bit 2, udp = bit 1, frag = bit 6
505 		 */
506 		const __m256i mask1 = _mm256_set1_epi32(0x2);
507 		__m256i tcp_udp =
508 			_mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
509 				_mm256_or_si256(flags0_7,
510 					_mm256_srli_epi32(flags0_7, 1)));
511 		tcp_udp = _mm256_and_si256(tcp_udp, mask1);
512 		/* ipv4 (bit 5) => bit 2 */
513 		const __m256i mask2 = _mm256_set1_epi32(0x4);
514 		__m256i ipv4 = _mm256_and_si256(mask2,
515 			_mm256_srli_epi32(flags0_7, 3));
516 		/*
517 		 * ipv4_csum_ok (bit 3) => bit 3
518 		 * tcp_udp_csum_ok (bit 0) => bit 0
519 		 * 0x9
520 		 */
521 		const __m256i mask0_3 = _mm256_set1_epi32(0x9);
522 		__m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
523 		csum_idx = _mm256_and_si256(csum_not_calc,
524 			_mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
525 				tcp_udp));
526 		__m256i csum_flags =
527 			_mm256_shuffle_epi8(csum_shuffle, csum_idx);
528 		/* Shift left to restore CKSUM flags. See csum_shuffle. */
529 		csum_flags = _mm256_slli_epi32(csum_flags, 1);
530 		/* Combine csum flags and offload flags: 0.125 inst/desc */
531 		rss_flags = _mm256_or_si256(rss_flags, csum_flags);
532 
533 		/*
534 		 * Collect 8 VLAN IDs and compute vlan_id != 0 on each.
535 		 * 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
536 		 * 1.25 inst/desc
537 		 */
538 		__m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
539 		__m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
540 		__m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
541 		__m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
542 		__m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
543 		__m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
544 		/* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
545 		__m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
546 		/* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
547 		vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
548 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
549 		/*
550 		 * Compare 0 == vlan_id produces 0xffffffff (-1) if
551 		 * vlan 0 and 0 if vlan non-0. Then subtracting the
552 		 * result from 0 produces 0 - (-1) = 1 for vlan 0, and
553 		 * 0 - 0 = 0 for vlan non-0.
554 		 */
555 		vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
556 		/* vlan_id != 0 => 0, vlan_id == 0 => 1 */
557 		vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);
558 
559 		/*
560 		 * Compute RTE_MBUF_F_RX_VLAN and RTE_MBUF_F_RX_VLAN_STRIPPED.
561 		 * Use 3 shifts, 1 or,  1 shuffle for 8 desc: 0.625 inst/desc
562 		 * VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
563 		 * Everything else is zero.
564 		 */
565 		__m256i vlan_idx =
566 			_mm256_or_si256(/* vlan_stripped => bit 0 */
567 				_mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
568 					16), 31),
569 				/* (vlan_id == 0) => bit 1 */
570 				_mm256_slli_epi32(vlan0_7, 1));
571 		/*
572 		 * The index captures 4 cases.
573 		 * stripped, id = 0   ==> 11b = 3
574 		 * stripped, id != 0  ==> 01b = 1
575 		 * not strip, id == 0 ==> 10b = 2
576 		 * not strip, id != 0 ==> 00b = 0
577 		 */
578 		__m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
579 			vlan_idx);
580 		/* Combine vlan and offload flags: 0.125 inst/desc */
581 		rss_flags = _mm256_or_si256(rss_flags, vlan_flags);
582 
583 		/*
584 		 * Compute non-tunnel PTYPEs.
585 		 * 17 inst / 8 desc = 2.125 inst/desc
586 		 */
587 		/* ETHER and ETHER_VLAN */
588 		__m256i vlan_ptype =
589 			_mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
590 				vlan_idx);
591 		/* Build the ptype index from flags */
592 		tcp_udp = _mm256_slli_epi32(flags0_7, 29);
593 		tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
594 		__m256i ip4_ip6 =
595 			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
596 		__m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
597 		__m256i frag_bit =
598 			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
599 		__m256i nonfrag_ptype =
600 			_mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
601 		__m256i frag_ptype =
602 			_mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
603 		/*
604 		 * Zero out the unwanted types and combine the remaining bits.
605 		 * The effect is same as selecting non-frag or frag types
606 		 * depending on the frag bit.
607 		 */
608 		nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
609 			_mm256_cmpeq_epi32(zero4, frag_bit));
610 		frag_ptype = _mm256_and_si256(frag_ptype,
611 			_mm256_cmpgt_epi32(frag_bit, zero4));
612 		__m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
613 		ptype = _mm256_slli_epi32(ptype, 4);
614 		/*
615 		 * Compute tunnel PTYPEs.
616 		 * 15 inst / 8 desc = 1.875 inst/desc
617 		 */
618 		__m256i tnl_l3_ptype =
619 			_mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
620 		tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
621 		/*
622 		 * Shift non-tunnel L4 types to make them tunnel types.
623 		 * RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
624 		 */
625 		__m256i tnl_l4_ptype =
626 			_mm256_slli_epi32(_mm256_and_si256(ptype,
627 				_mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
628 		__m256i tnl_ptype =
629 			_mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
630 		tnl_ptype = _mm256_or_si256(tnl_ptype,
631 			_mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
632 				RTE_PTYPE_INNER_L2_ETHER));
633 		/*
634 		 * Select non-tunnel or tunnel types by zeroing out the
635 		 * unwanted ones.
636 		 */
637 		__m256i tnl_flags = _mm256_and_si256(overlay_enabled,
638 			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
639 		tnl_ptype = _mm256_and_si256(tnl_ptype,
640 			_mm256_sub_epi32(zero4, tnl_flags));
641 		ptype =	_mm256_and_si256(ptype,
642 			_mm256_cmpeq_epi32(zero4, tnl_flags));
643 		/*
644 		 * Combine types and swap to have ptypes in the same order
645 		 * as desc.
646 		 * desc: 0 2 4 6 1 3 5 7
647 		 * 3 inst / 8 desc = 0.375 inst/desc
648 		 */
649 		ptype = _mm256_or_si256(ptype, tnl_ptype);
650 		ptype = _mm256_or_si256(ptype, vlan_ptype);
651 		ptype = _mm256_permute4x64_epi64(ptype,
652 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
653 
654 		/*
655 		 * Mask packet length.
656 		 * Use 4 ands: 0.5 instructions/desc
657 		 */
658 		cqd01 = _mm256_and_si256(cqd01, mask);
659 		cqd23 = _mm256_and_si256(cqd23, mask);
660 		cqd45 = _mm256_and_si256(cqd45, mask);
661 		cqd67 = _mm256_and_si256(cqd67, mask);
662 		/*
663 		 * Shuffle. Two 16B sets of the mbuf fields.
664 		 * packet_type, pkt_len, data_len, vlan_tci, rss
665 		 */
666 		__m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
667 		__m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
668 		__m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
669 		__m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);
670 
671 		/*
672 		 * Blend in ptypes
673 		 * 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
674 		 */
675 		rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
676 		rearm23 = _mm256_blend_epi32(rearm23,
677 			_mm256_shuffle_epi32(ptype, 1), 0x11);
678 		rearm45 = _mm256_blend_epi32(rearm45,
679 			_mm256_shuffle_epi32(ptype, 2), 0x11);
680 		rearm67 = _mm256_blend_epi32(rearm67,
681 			_mm256_shuffle_epi32(ptype, 3), 0x11);
682 
683 		/*
684 		 * Move rss_flags into ol_flags in mbuf_init.
685 		 * Use 1 shift and 1 blend for each desc: 2 inst/desc
686 		 */
687 		__m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
688 			rss_flags, 0x44);
689 		__m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
690 			_mm256_slli_si256(rss_flags, 4), 0x44);
691 		__m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
692 			_mm256_slli_si256(rss_flags, 8), 0x44);
693 		__m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
694 			_mm256_srli_si256(rss_flags, 4), 0x44);
695 
696 		/*
697 		 * Build rearm, one per desc.
698 		 * 8 blends and 4 permutes: 1.5 inst/desc
699 		 */
700 		__m256i rearm0 = _mm256_blend_epi32(rearm01,
701 			mbuf_init0_1, 0xf0);
702 		__m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
703 			rearm01, 0xf0);
704 		__m256i rearm2 = _mm256_blend_epi32(rearm23,
705 			mbuf_init2_3, 0xf0);
706 		__m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
707 			rearm23, 0xf0);
708 		/* Swap upper and lower 64 bits */
709 		rearm0 = _mm256_permute4x64_epi64(rearm0,
710 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
711 		rearm2 = _mm256_permute4x64_epi64(rearm2,
712 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
713 		/* Second set of 4 descriptors */
714 		__m256i rearm4 = _mm256_blend_epi32(rearm45,
715 			mbuf_init4_5, 0xf0);
716 		__m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
717 			rearm45, 0xf0);
718 		__m256i rearm6 = _mm256_blend_epi32(rearm67,
719 			mbuf_init6_7, 0xf0);
720 		__m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
721 			rearm67, 0xf0);
722 		rearm4 = _mm256_permute4x64_epi64(rearm4,
723 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
724 		rearm6 = _mm256_permute4x64_epi64(rearm6,
725 			(1 << 6) + (0 << 4) + (3 << 2) + 2);
726 
727 		/*
728 		 * Write out 32B of mbuf fields.
729 		 * data_off    - off 0  (mbuf_init)
730 		 * refcnt      - 2      (mbuf_init)
731 		 * nb_segs     - 4      (mbuf_init)
732 		 * port        - 6      (mbuf_init)
733 		 * ol_flag     - 8      (from cqd)
734 		 * packet_type - 16     (from cqd)
735 		 * pkt_len     - 20     (from cqd)
736 		 * data_len    - 24     (from cqd)
737 		 * vlan_tci    - 26     (from cqd)
738 		 * rss         - 28     (from cqd)
739 		 */
740 		_mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
741 		_mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
742 		_mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
743 		_mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
744 		_mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
745 		_mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
746 		_mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
747 		_mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);
748 
749 		max_rx -= 8;
750 		cqd += 8;
751 		rx += 8;
752 		rxmb += 8;
753 	}
754 
755 	/*
756 	 * Step 3: Slow path to handle a small (<8) number of packets and
757 	 * occasional truncated packets.
758 	 */
759 	while (max_rx && ((cqd->type_color &
760 			   CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
761 		if (unlikely(cqd->bytes_written_flags &
762 			     CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
763 			rte_pktmbuf_free(*rxmb++);
764 			rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
765 		} else {
766 			*rx++ = rx_one(cqd, *rxmb++, enic);
767 		}
768 		cqd++;
769 		max_rx--;
770 	}
771 
772 	/* Number of descriptors visited */
773 	nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
774 	if (nb_rx == 0)
775 		return 0;
776 	rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
777 	rxmb = rq->mbuf_ring + cq_idx;
778 	cq_idx += nb_rx;
779 	rq->rx_nb_hold += nb_rx;
780 	if (unlikely(cq_idx == cq->ring.desc_count)) {
781 		cq_idx = 0;
782 		cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
783 	}
784 	cq->to_clean = cq_idx;
785 
786 	/* Step 4: Restock RQ with new mbufs */
787 	memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
788 	       sizeof(struct rte_mbuf *) * nb_rx);
789 	rq->num_free_mbufs -= nb_rx;
790 	while (nb_rx) {
791 		rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
792 		nb_rx--;
793 		rqd++;
794 		rxmb++;
795 	}
796 	if (rq->rx_nb_hold > rq->rx_free_thresh) {
797 		rq->posted_index = enic_ring_add(rq->ring.desc_count,
798 						 rq->posted_index,
799 						 rq->rx_nb_hold);
800 		rq->rx_nb_hold = 0;
801 		rte_wmb();
802 		iowrite32_relaxed(rq->posted_index,
803 				  &rq->ctrl->posted_index);
804 	}
805 
806 	return rx - rx_pkts;
807 }
808 
809 bool
enic_use_vector_rx_handler(struct rte_eth_dev * eth_dev)810 enic_use_vector_rx_handler(struct rte_eth_dev *eth_dev)
811 {
812 	struct enic *enic = pmd_priv(eth_dev);
813 
814 	/* User needs to request for the avx2 handler */
815 	if (!enic->enable_avx2_rx)
816 		return false;
817 	/* Do not support scatter Rx */
818 	if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
819 		return false;
820 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
821 			rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) {
822 		ENICPMD_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
823 		eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
824 		enic->use_noscatter_vec_rx_handler = 1;
825 		return true;
826 	}
827 	return false;
828 }
829