1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2008-2018 Cisco Systems, Inc. All rights reserved.
3 * Copyright 2007 Nuova Systems, Inc. All rights reserved.
4 */
5
6 #include <rte_mbuf.h>
7 #include <ethdev_driver.h>
8 #include <rte_vect.h>
9
10 #include "enic_compat.h"
11 #include "rq_enet_desc.h"
12 #include "enic.h"
13 #include "enic_rxtx_common.h"
14
15 #include <x86intrin.h>
16
17 static struct rte_mbuf *
rx_one(struct cq_enet_rq_desc * cqd,struct rte_mbuf * mb,struct enic * enic)18 rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
19 {
20 bool tnl;
21
22 *(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
23 mb->data_len = cqd->bytes_written_flags &
24 CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
25 mb->pkt_len = mb->data_len;
26 tnl = enic->overlay_offload && (cqd->completed_index_flags &
27 CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
28 mb->packet_type =
29 enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
30 enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
31 /* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
32 if (tnl) {
33 mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
34 RTE_PTYPE_L4_MASK);
35 }
36 return mb;
37 }
38
39 static uint16_t
enic_noscatter_vec_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)40 enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
41 uint16_t nb_pkts)
42 {
43 struct rte_mbuf **rx, **rxmb;
44 uint16_t cq_idx, nb_rx, max_rx;
45 struct cq_enet_rq_desc *cqd;
46 struct rq_enet_desc *rqd;
47 struct vnic_cq *cq;
48 struct vnic_rq *rq;
49 struct enic *enic;
50 uint8_t color;
51
52 rq = rx_queue;
53 enic = vnic_dev_priv(rq->vdev);
54 cq = &enic->cq[enic_cq_rq(enic, rq->index)];
55 cq_idx = cq->to_clean;
56
57 /*
58 * Fill up the reserve of free mbufs. Below, we restock the receive
59 * ring with these mbufs to avoid allocation failures.
60 */
61 if (rq->num_free_mbufs == 0) {
62 if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
63 ENIC_RX_BURST_MAX))
64 return 0;
65 rq->num_free_mbufs = ENIC_RX_BURST_MAX;
66 }
67 /* Receive until the end of the ring, at most. */
68 max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
69 max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
70
71 rxmb = rq->mbuf_ring + cq_idx;
72 color = cq->last_color;
73 cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
74 rx = rx_pkts;
75 if (max_rx == 0 ||
76 (cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
77 return 0;
78
79 /* Step 1: Process one packet to do aligned 256-bit load below */
80 if (cq_idx & 0x1) {
81 if (unlikely(cqd->bytes_written_flags &
82 CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
83 rte_pktmbuf_free(*rxmb++);
84 rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
85 } else {
86 *rx++ = rx_one(cqd, *rxmb++, enic);
87 }
88 cqd++;
89 max_rx--;
90 }
91
92 const __m256i mask =
93 _mm256_set_epi8(/* Second descriptor */
94 0xff, /* type_color */
95 (CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
96 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
97 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
98 CQ_ENET_RQ_DESC_FLAGS_TCP |
99 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
100 0, 0, /* checksum_fcoe */
101 0xff, 0xff, /* vlan */
102 0x3f, 0xff, /* bytes_written_flags */
103 0xff, 0xff, 0xff, 0xff, /* rss_hash */
104 0xff, 0xff, /* q_number_rss_type_flags */
105 0, 0, /* completed_index_flags */
106 /* First descriptor */
107 0xff, /* type_color */
108 (CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
109 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
110 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
111 CQ_ENET_RQ_DESC_FLAGS_TCP |
112 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
113 0, 0, /* checksum_fcoe */
114 0xff, 0xff, /* vlan */
115 0x3f, 0xff, /* bytes_written_flags */
116 0xff, 0xff, 0xff, 0xff, /* rss_hash */
117 0xff, 0xff, /* q_number_rss_type_flags */
118 0, 0 /* completed_index_flags */
119 );
120 const __m256i shuffle_mask =
121 _mm256_set_epi8(/* Second descriptor */
122 7, 6, 5, 4, /* rss = rss_hash */
123 11, 10, /* vlan_tci = vlan */
124 9, 8, /* data_len = bytes_written */
125 0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
126 0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
127 /* First descriptor */
128 7, 6, 5, 4, /* rss = rss_hash */
129 11, 10, /* vlan_tci = vlan */
130 9, 8, /* data_len = bytes_written */
131 0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
132 0x80, 0x80, 0x80, 0x80 /* packet_type = 0 */
133 );
134 /* Used to collect 8 flags from 8 desc into one register */
135 const __m256i flags_shuffle_mask =
136 _mm256_set_epi8(/* Second descriptor */
137 1, 3, 9, 14,
138 1, 3, 9, 14,
139 1, 3, 9, 14,
140 1, 3, 9, 14,
141 /* First descriptor */
142 1, 3, 9, 14,
143 1, 3, 9, 14,
144 1, 3, 9, 14,
145 /*
146 * Byte 3: upper byte of completed_index_flags
147 * bit 5 = fcoe (tunnel)
148 * Byte 2: upper byte of q_number_rss_type_flags
149 * bits 2,3,4,5 = rss type
150 * bit 6 = csum_not_calc
151 * Byte 1: upper byte of bytes_written_flags
152 * bit 6 = truncated
153 * bit 7 = vlan stripped
154 * Byte 0: flags
155 */
156 1, 3, 9, 14
157 );
158 /* Used to collect 8 VLAN IDs from 8 desc into one register */
159 const __m256i vlan_shuffle_mask =
160 _mm256_set_epi8(/* Second descriptor */
161 0x80, 0x80, 11, 10,
162 0x80, 0x80, 11, 10,
163 0x80, 0x80, 11, 10,
164 0x80, 0x80, 11, 10,
165 /* First descriptor */
166 0x80, 0x80, 11, 10,
167 0x80, 0x80, 11, 10,
168 0x80, 0x80, 11, 10,
169 0x80, 0x80, 11, 10);
170 /* RTE_MBUF_F_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
171 const __m256i rss_shuffle =
172 _mm256_set_epi8(/* second 128 bits */
173 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
174 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
175 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
176 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
177 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
178 0, /* rss_types = 0 */
179 /* first 128 bits */
180 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
181 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
182 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
183 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
184 RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
185 0 /* rss_types = 0 */);
186 /*
187 * VLAN offload flags.
188 * shuffle index:
189 * vlan_stripped => bit 0
190 * vlan_id == 0 => bit 1
191 */
192 const __m256i vlan_shuffle =
193 _mm256_set_epi32(0, 0, 0, 0,
194 RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
195 RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN);
196 /* Use the same shuffle index as vlan_shuffle */
197 const __m256i vlan_ptype_shuffle =
198 _mm256_set_epi32(0, 0, 0, 0,
199 RTE_PTYPE_L2_ETHER,
200 RTE_PTYPE_L2_ETHER,
201 RTE_PTYPE_L2_ETHER,
202 RTE_PTYPE_L2_ETHER_VLAN);
203 /*
204 * CKSUM flags. Shift right so they fit int 8-bit integers.
205 * shuffle index:
206 * ipv4_csum_ok => bit 3
207 * ip4 => bit 2
208 * tcp_or_udp => bit 1
209 * tcp_udp_csum_ok => bit 0
210 */
211 const __m256i csum_shuffle =
212 _mm256_set_epi8(/* second 128 bits */
213 /* 1111 ip4+ip4_ok+l4+l4_ok */
214 ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
215 /* 1110 ip4_ok+ip4+l4+!l4_ok */
216 ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
217 (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
218 (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
219 (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
220 (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1), /* 1010 l4+!l4_ok */
221 0, /* 1001 */
222 0, /* 1000 */
223 /* 0111 !ip4_ok+ip4+l4+l4_ok */
224 ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
225 /* 0110 !ip4_ok+ip4+l4+!l4_ok */
226 ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
227 (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1), /* 0101 !ip4_ok+ip4 */
228 (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1), /* 0100 !ip4_ok+ip4 */
229 (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
230 (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1), /* 0010 l4+!l4_ok */
231 0, /* 0001 */
232 0, /* 0000 */
233 /* first 128 bits */
234 ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
235 ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
236 (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
237 (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
238 (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
239 (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
240 0, 0,
241 ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
242 ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
243 (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
244 (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
245 (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
246 (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
247 0, 0);
248 /*
249 * Non-fragment PTYPEs.
250 * Shuffle 4-bit index:
251 * ip6 => bit 0
252 * ip4 => bit 1
253 * udp => bit 2
254 * tcp => bit 3
255 * bit
256 * 3 2 1 0
257 * -------
258 * 0 0 0 0 unknown
259 * 0 0 0 1 ip6 | nonfrag
260 * 0 0 1 0 ip4 | nonfrag
261 * 0 0 1 1 unknown
262 * 0 1 0 0 unknown
263 * 0 1 0 1 ip6 | udp
264 * 0 1 1 0 ip4 | udp
265 * 0 1 1 1 unknown
266 * 1 0 0 0 unknown
267 * 1 0 0 1 ip6 | tcp
268 * 1 0 1 0 ip4 | tcp
269 * 1 0 1 1 unknown
270 * 1 1 0 0 unknown
271 * 1 1 0 1 unknown
272 * 1 1 1 0 unknown
273 * 1 1 1 1 unknown
274 *
275 * PTYPEs do not fit in 8 bits, so shift right 4..
276 */
277 const __m256i nonfrag_ptype_shuffle =
278 _mm256_set_epi8(/* second 128 bits */
279 RTE_PTYPE_UNKNOWN,
280 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
281 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
282 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
283 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
284 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
285 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
286 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
287 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
288 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
289 RTE_PTYPE_L4_NONFRAG) >> 4,
290 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
291 RTE_PTYPE_L4_NONFRAG) >> 4,
292 RTE_PTYPE_UNKNOWN,
293 /* first 128 bits */
294 RTE_PTYPE_UNKNOWN,
295 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
296 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
297 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
298 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
299 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
300 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
301 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
302 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
303 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
304 RTE_PTYPE_L4_NONFRAG) >> 4,
305 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
306 RTE_PTYPE_L4_NONFRAG) >> 4,
307 RTE_PTYPE_UNKNOWN);
308 /* Fragment PTYPEs. Use the same shuffle index as above. */
309 const __m256i frag_ptype_shuffle =
310 _mm256_set_epi8(/* second 128 bits */
311 RTE_PTYPE_UNKNOWN,
312 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
313 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
314 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
315 RTE_PTYPE_L4_FRAG) >> 4,
316 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
317 RTE_PTYPE_L4_FRAG) >> 4,
318 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
319 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
320 RTE_PTYPE_L4_FRAG) >> 4,
321 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
322 RTE_PTYPE_L4_FRAG) >> 4,
323 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
324 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
325 RTE_PTYPE_L4_FRAG) >> 4,
326 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
327 RTE_PTYPE_L4_FRAG) >> 4,
328 RTE_PTYPE_UNKNOWN,
329 /* first 128 bits */
330 RTE_PTYPE_UNKNOWN,
331 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
332 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
333 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
334 RTE_PTYPE_L4_FRAG) >> 4,
335 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
336 RTE_PTYPE_L4_FRAG) >> 4,
337 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
338 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
339 RTE_PTYPE_L4_FRAG) >> 4,
340 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
341 RTE_PTYPE_L4_FRAG) >> 4,
342 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
343 (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
344 RTE_PTYPE_L4_FRAG) >> 4,
345 (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
346 RTE_PTYPE_L4_FRAG) >> 4,
347 RTE_PTYPE_UNKNOWN);
348 /*
349 * Tunnel PTYPEs. Use the same shuffle index as above.
350 * L4 types are not part of this table. They come from non-tunnel
351 * types above.
352 */
353 const __m256i tnl_l3_ptype_shuffle =
354 _mm256_set_epi8(/* second 128 bits */
355 RTE_PTYPE_UNKNOWN,
356 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
357 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
358 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
359 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
360 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
361 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
362 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
363 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
364 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
365 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
366 RTE_PTYPE_UNKNOWN,
367 /* first 128 bits */
368 RTE_PTYPE_UNKNOWN,
369 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
370 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
371 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
372 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
373 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
374 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
375 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
376 RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
377 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
378 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
379 RTE_PTYPE_UNKNOWN);
380
381 const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
382 0, enic->mbuf_initializer);
383
384 /*
385 * --- cq desc fields --- offset
386 * completed_index_flags - 0 use: fcoe
387 * q_number_rss_type_flags - 2 use: rss types, csum_not_calc
388 * rss_hash - 4 ==> mbuf.hash.rss
389 * bytes_written_flags - 8 ==> mbuf.pkt_len,data_len
390 * use: truncated, vlan_stripped
391 * vlan - 10 ==> mbuf.vlan_tci
392 * checksum_fcoe - 12 (unused)
393 * flags - 14 use: all bits
394 * type_color - 15 (unused)
395 *
396 * --- mbuf fields --- offset
397 * rearm_data ---- 16
398 * data_off - 0 (mbuf_init) -+
399 * refcnt - 2 (mbuf_init) |
400 * nb_segs - 4 (mbuf_init) | 16B 128b
401 * port - 6 (mbuf_init) |
402 * ol_flag - 8 (from cqd) -+
403 * rx_descriptor_fields1 ---- 32
404 * packet_type - 0 (from cqd) -+
405 * pkt_len - 4 (from cqd) |
406 * data_len - 8 (from cqd) | 16B 128b
407 * vlan_tci - 10 (from cqd) |
408 * rss - 12 (from cqd) -+
409 */
410
411 __m256i overlay_enabled =
412 _mm256_set1_epi32((uint32_t)enic->overlay_offload);
413
414 /* Step 2: Process 8 packets per loop using SIMD */
415 while (max_rx > 7 && (((cqd + 7)->type_color &
416 CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
417 /* Load 8 16B CQ descriptors */
418 __m256i cqd01 = _mm256_load_si256((void *)cqd);
419 __m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
420 __m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
421 __m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
422 /* Copy 8 mbuf pointers to rx_pkts */
423 _mm256_storeu_si256((void *)rx,
424 _mm256_loadu_si256((void *)rxmb));
425 _mm256_storeu_si256((void *)(rx + 4),
426 _mm256_loadu_si256((void *)(rxmb + 4)));
427
428 /*
429 * Collect 8 flags (each 32 bits) into one register.
430 * 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
431 */
432 __m256i flags01 =
433 _mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
434 /*
435 * Shuffle above produces 8 x 32-bit flags for 8 descriptors
436 * in this order: 0, 0, 0, 0, 1, 1, 1, 1
437 * The duplicates in each 128-bit lane simplifies blending
438 * below.
439 */
440 __m256i flags23 =
441 _mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
442 __m256i flags45 =
443 _mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
444 __m256i flags67 =
445 _mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
446 /* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
447 __m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
448 /* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
449 __m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
450 /* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
451 __m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
452 /*
453 * Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
454 * This order simplifies blend operations way below that
455 * produce 'rearm' data for each mbuf.
456 */
457 flags0_7 = _mm256_permute4x64_epi64(flags0_7,
458 (1 << 6) + (0 << 4) + (3 << 2) + 2);
459
460 /*
461 * Check truncated bits and bail out early on.
462 * 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
463 */
464 __m256i trunc =
465 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
466 trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
467 (1 << 6) + (0 << 4) + (3 << 2) + 2));
468 /* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
469 if (_mm256_extract_epi64(trunc, 0) ||
470 _mm256_extract_epi64(trunc, 1))
471 break;
472
473 /*
474 * Compute RTE_MBUF_F_RX_RSS_HASH.
475 * Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
476 * RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
477 * Everything else is zero.
478 */
479 __m256i rss_types =
480 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
481 /*
482 * RSS flags (RTE_MBUF_F_RX_RSS_HASH) are in
483 * byte 0, 4, 8, 12, 16, 20, 24, 28
484 * Everything else is zero.
485 */
486 __m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);
487
488 /*
489 * Compute CKSUM flags. First build the index and then
490 * use it to shuffle csum_shuffle.
491 * 20 instructions including const loads: 2.5 inst/desc
492 */
493 /*
494 * csum_not_calc (bit 22)
495 * csum_not_calc (0) => 0xffffffff
496 * csum_not_calc (1) => 0x0
497 */
498 const __m256i zero4 = _mm256_setzero_si256();
499 const __m256i mask22 = _mm256_set1_epi32(0x400000);
500 __m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
501 _mm256_and_si256(flags0_7, mask22));
502 /*
503 * (tcp|udp) && !fragment => bit 1
504 * tcp = bit 2, udp = bit 1, frag = bit 6
505 */
506 const __m256i mask1 = _mm256_set1_epi32(0x2);
507 __m256i tcp_udp =
508 _mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
509 _mm256_or_si256(flags0_7,
510 _mm256_srli_epi32(flags0_7, 1)));
511 tcp_udp = _mm256_and_si256(tcp_udp, mask1);
512 /* ipv4 (bit 5) => bit 2 */
513 const __m256i mask2 = _mm256_set1_epi32(0x4);
514 __m256i ipv4 = _mm256_and_si256(mask2,
515 _mm256_srli_epi32(flags0_7, 3));
516 /*
517 * ipv4_csum_ok (bit 3) => bit 3
518 * tcp_udp_csum_ok (bit 0) => bit 0
519 * 0x9
520 */
521 const __m256i mask0_3 = _mm256_set1_epi32(0x9);
522 __m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
523 csum_idx = _mm256_and_si256(csum_not_calc,
524 _mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
525 tcp_udp));
526 __m256i csum_flags =
527 _mm256_shuffle_epi8(csum_shuffle, csum_idx);
528 /* Shift left to restore CKSUM flags. See csum_shuffle. */
529 csum_flags = _mm256_slli_epi32(csum_flags, 1);
530 /* Combine csum flags and offload flags: 0.125 inst/desc */
531 rss_flags = _mm256_or_si256(rss_flags, csum_flags);
532
533 /*
534 * Collect 8 VLAN IDs and compute vlan_id != 0 on each.
535 * 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
536 * 1.25 inst/desc
537 */
538 __m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
539 __m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
540 __m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
541 __m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
542 __m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
543 __m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
544 /* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
545 __m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
546 /* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
547 vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
548 (1 << 6) + (0 << 4) + (3 << 2) + 2);
549 /*
550 * Compare 0 == vlan_id produces 0xffffffff (-1) if
551 * vlan 0 and 0 if vlan non-0. Then subtracting the
552 * result from 0 produces 0 - (-1) = 1 for vlan 0, and
553 * 0 - 0 = 0 for vlan non-0.
554 */
555 vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
556 /* vlan_id != 0 => 0, vlan_id == 0 => 1 */
557 vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);
558
559 /*
560 * Compute RTE_MBUF_F_RX_VLAN and RTE_MBUF_F_RX_VLAN_STRIPPED.
561 * Use 3 shifts, 1 or, 1 shuffle for 8 desc: 0.625 inst/desc
562 * VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
563 * Everything else is zero.
564 */
565 __m256i vlan_idx =
566 _mm256_or_si256(/* vlan_stripped => bit 0 */
567 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
568 16), 31),
569 /* (vlan_id == 0) => bit 1 */
570 _mm256_slli_epi32(vlan0_7, 1));
571 /*
572 * The index captures 4 cases.
573 * stripped, id = 0 ==> 11b = 3
574 * stripped, id != 0 ==> 01b = 1
575 * not strip, id == 0 ==> 10b = 2
576 * not strip, id != 0 ==> 00b = 0
577 */
578 __m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
579 vlan_idx);
580 /* Combine vlan and offload flags: 0.125 inst/desc */
581 rss_flags = _mm256_or_si256(rss_flags, vlan_flags);
582
583 /*
584 * Compute non-tunnel PTYPEs.
585 * 17 inst / 8 desc = 2.125 inst/desc
586 */
587 /* ETHER and ETHER_VLAN */
588 __m256i vlan_ptype =
589 _mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
590 vlan_idx);
591 /* Build the ptype index from flags */
592 tcp_udp = _mm256_slli_epi32(flags0_7, 29);
593 tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
594 __m256i ip4_ip6 =
595 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
596 __m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
597 __m256i frag_bit =
598 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
599 __m256i nonfrag_ptype =
600 _mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
601 __m256i frag_ptype =
602 _mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
603 /*
604 * Zero out the unwanted types and combine the remaining bits.
605 * The effect is same as selecting non-frag or frag types
606 * depending on the frag bit.
607 */
608 nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
609 _mm256_cmpeq_epi32(zero4, frag_bit));
610 frag_ptype = _mm256_and_si256(frag_ptype,
611 _mm256_cmpgt_epi32(frag_bit, zero4));
612 __m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
613 ptype = _mm256_slli_epi32(ptype, 4);
614 /*
615 * Compute tunnel PTYPEs.
616 * 15 inst / 8 desc = 1.875 inst/desc
617 */
618 __m256i tnl_l3_ptype =
619 _mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
620 tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
621 /*
622 * Shift non-tunnel L4 types to make them tunnel types.
623 * RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
624 */
625 __m256i tnl_l4_ptype =
626 _mm256_slli_epi32(_mm256_and_si256(ptype,
627 _mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
628 __m256i tnl_ptype =
629 _mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
630 tnl_ptype = _mm256_or_si256(tnl_ptype,
631 _mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
632 RTE_PTYPE_INNER_L2_ETHER));
633 /*
634 * Select non-tunnel or tunnel types by zeroing out the
635 * unwanted ones.
636 */
637 __m256i tnl_flags = _mm256_and_si256(overlay_enabled,
638 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
639 tnl_ptype = _mm256_and_si256(tnl_ptype,
640 _mm256_sub_epi32(zero4, tnl_flags));
641 ptype = _mm256_and_si256(ptype,
642 _mm256_cmpeq_epi32(zero4, tnl_flags));
643 /*
644 * Combine types and swap to have ptypes in the same order
645 * as desc.
646 * desc: 0 2 4 6 1 3 5 7
647 * 3 inst / 8 desc = 0.375 inst/desc
648 */
649 ptype = _mm256_or_si256(ptype, tnl_ptype);
650 ptype = _mm256_or_si256(ptype, vlan_ptype);
651 ptype = _mm256_permute4x64_epi64(ptype,
652 (1 << 6) + (0 << 4) + (3 << 2) + 2);
653
654 /*
655 * Mask packet length.
656 * Use 4 ands: 0.5 instructions/desc
657 */
658 cqd01 = _mm256_and_si256(cqd01, mask);
659 cqd23 = _mm256_and_si256(cqd23, mask);
660 cqd45 = _mm256_and_si256(cqd45, mask);
661 cqd67 = _mm256_and_si256(cqd67, mask);
662 /*
663 * Shuffle. Two 16B sets of the mbuf fields.
664 * packet_type, pkt_len, data_len, vlan_tci, rss
665 */
666 __m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
667 __m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
668 __m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
669 __m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);
670
671 /*
672 * Blend in ptypes
673 * 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
674 */
675 rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
676 rearm23 = _mm256_blend_epi32(rearm23,
677 _mm256_shuffle_epi32(ptype, 1), 0x11);
678 rearm45 = _mm256_blend_epi32(rearm45,
679 _mm256_shuffle_epi32(ptype, 2), 0x11);
680 rearm67 = _mm256_blend_epi32(rearm67,
681 _mm256_shuffle_epi32(ptype, 3), 0x11);
682
683 /*
684 * Move rss_flags into ol_flags in mbuf_init.
685 * Use 1 shift and 1 blend for each desc: 2 inst/desc
686 */
687 __m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
688 rss_flags, 0x44);
689 __m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
690 _mm256_slli_si256(rss_flags, 4), 0x44);
691 __m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
692 _mm256_slli_si256(rss_flags, 8), 0x44);
693 __m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
694 _mm256_srli_si256(rss_flags, 4), 0x44);
695
696 /*
697 * Build rearm, one per desc.
698 * 8 blends and 4 permutes: 1.5 inst/desc
699 */
700 __m256i rearm0 = _mm256_blend_epi32(rearm01,
701 mbuf_init0_1, 0xf0);
702 __m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
703 rearm01, 0xf0);
704 __m256i rearm2 = _mm256_blend_epi32(rearm23,
705 mbuf_init2_3, 0xf0);
706 __m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
707 rearm23, 0xf0);
708 /* Swap upper and lower 64 bits */
709 rearm0 = _mm256_permute4x64_epi64(rearm0,
710 (1 << 6) + (0 << 4) + (3 << 2) + 2);
711 rearm2 = _mm256_permute4x64_epi64(rearm2,
712 (1 << 6) + (0 << 4) + (3 << 2) + 2);
713 /* Second set of 4 descriptors */
714 __m256i rearm4 = _mm256_blend_epi32(rearm45,
715 mbuf_init4_5, 0xf0);
716 __m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
717 rearm45, 0xf0);
718 __m256i rearm6 = _mm256_blend_epi32(rearm67,
719 mbuf_init6_7, 0xf0);
720 __m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
721 rearm67, 0xf0);
722 rearm4 = _mm256_permute4x64_epi64(rearm4,
723 (1 << 6) + (0 << 4) + (3 << 2) + 2);
724 rearm6 = _mm256_permute4x64_epi64(rearm6,
725 (1 << 6) + (0 << 4) + (3 << 2) + 2);
726
727 /*
728 * Write out 32B of mbuf fields.
729 * data_off - off 0 (mbuf_init)
730 * refcnt - 2 (mbuf_init)
731 * nb_segs - 4 (mbuf_init)
732 * port - 6 (mbuf_init)
733 * ol_flag - 8 (from cqd)
734 * packet_type - 16 (from cqd)
735 * pkt_len - 20 (from cqd)
736 * data_len - 24 (from cqd)
737 * vlan_tci - 26 (from cqd)
738 * rss - 28 (from cqd)
739 */
740 _mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
741 _mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
742 _mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
743 _mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
744 _mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
745 _mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
746 _mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
747 _mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);
748
749 max_rx -= 8;
750 cqd += 8;
751 rx += 8;
752 rxmb += 8;
753 }
754
755 /*
756 * Step 3: Slow path to handle a small (<8) number of packets and
757 * occasional truncated packets.
758 */
759 while (max_rx && ((cqd->type_color &
760 CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
761 if (unlikely(cqd->bytes_written_flags &
762 CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
763 rte_pktmbuf_free(*rxmb++);
764 rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
765 } else {
766 *rx++ = rx_one(cqd, *rxmb++, enic);
767 }
768 cqd++;
769 max_rx--;
770 }
771
772 /* Number of descriptors visited */
773 nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
774 if (nb_rx == 0)
775 return 0;
776 rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
777 rxmb = rq->mbuf_ring + cq_idx;
778 cq_idx += nb_rx;
779 rq->rx_nb_hold += nb_rx;
780 if (unlikely(cq_idx == cq->ring.desc_count)) {
781 cq_idx = 0;
782 cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
783 }
784 cq->to_clean = cq_idx;
785
786 /* Step 4: Restock RQ with new mbufs */
787 memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
788 sizeof(struct rte_mbuf *) * nb_rx);
789 rq->num_free_mbufs -= nb_rx;
790 while (nb_rx) {
791 rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
792 nb_rx--;
793 rqd++;
794 rxmb++;
795 }
796 if (rq->rx_nb_hold > rq->rx_free_thresh) {
797 rq->posted_index = enic_ring_add(rq->ring.desc_count,
798 rq->posted_index,
799 rq->rx_nb_hold);
800 rq->rx_nb_hold = 0;
801 rte_wmb();
802 iowrite32_relaxed(rq->posted_index,
803 &rq->ctrl->posted_index);
804 }
805
806 return rx - rx_pkts;
807 }
808
809 bool
enic_use_vector_rx_handler(struct rte_eth_dev * eth_dev)810 enic_use_vector_rx_handler(struct rte_eth_dev *eth_dev)
811 {
812 struct enic *enic = pmd_priv(eth_dev);
813
814 /* User needs to request for the avx2 handler */
815 if (!enic->enable_avx2_rx)
816 return false;
817 /* Do not support scatter Rx */
818 if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
819 return false;
820 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
821 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) {
822 ENICPMD_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
823 eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
824 enic->use_noscatter_vec_rx_handler = 1;
825 return true;
826 }
827 return false;
828 }
829