xref: /netbsd-src/sys/arch/evbarm/viper/viper_machdep.c (revision 5fdf9d1befdde982def6f1a6a9cd016f1b31fcee)
1 /*	$NetBSD: viper_machdep.c,v 1.35 2024/02/20 23:36:01 andvar Exp $ */
2 
3 /*
4  * Startup routines for the Arcom Viper.  Below you can trace the
5  * impressive lineage ;)
6  *
7  * Modified for the Viper by Antti Kantee <pooka@netbsd.org>
8  */
9 
10 /*
11  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
12  * Written by Hiroyuki Bessho for Genetec Corporation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. The name of Genetec Corporation may not be used to endorse or
23  *    promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Machine dependent functions for kernel setup for
39  * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
40  * Based on iq80310_machhdep.c
41  */
42 /*
43  * Copyright (c) 2001 Wasabi Systems, Inc.
44  * All rights reserved.
45  *
46  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that the following conditions
50  * are met:
51  * 1. Redistributions of source code must retain the above copyright
52  *    notice, this list of conditions and the following disclaimer.
53  * 2. Redistributions in binary form must reproduce the above copyright
54  *    notice, this list of conditions and the following disclaimer in the
55  *    documentation and/or other materials provided with the distribution.
56  * 3. All advertising materials mentioning features or use of this software
57  *    must display the following acknowledgement:
58  *	This product includes software developed for the NetBSD Project by
59  *	Wasabi Systems, Inc.
60  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
61  *    or promote products derived from this software without specific prior
62  *    written permission.
63  *
64  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
66  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
67  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
68  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
69  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
70  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
71  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
72  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
73  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
74  * POSSIBILITY OF SUCH DAMAGE.
75  */
76 
77 /*
78  * Copyright (c) 1997,1998 Mark Brinicombe.
79  * Copyright (c) 1997,1998 Causality Limited.
80  * All rights reserved.
81  *
82  * Redistribution and use in source and binary forms, with or without
83  * modification, are permitted provided that the following conditions
84  * are met:
85  * 1. Redistributions of source code must retain the above copyright
86  *    notice, this list of conditions and the following disclaimer.
87  * 2. Redistributions in binary form must reproduce the above copyright
88  *    notice, this list of conditions and the following disclaimer in the
89  *    documentation and/or other materials provided with the distribution.
90  * 3. All advertising materials mentioning features or use of this software
91  *    must display the following acknowledgement:
92  *	This product includes software developed by Mark Brinicombe
93  *	for the NetBSD Project.
94  * 4. The name of the company nor the name of the author may be used to
95  *    endorse or promote products derived from this software without specific
96  *    prior written permission.
97  *
98  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
99  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
100  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
101  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
102  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
103  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
104  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108  * SUCH DAMAGE.
109  *
110  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
111  * boards using RedBoot firmware.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: viper_machdep.c,v 1.35 2024/02/20 23:36:01 andvar Exp $");
116 
117 #include "opt_arm_debug.h"
118 #include "opt_console.h"
119 #include "opt_ddb.h"
120 #include "opt_kgdb.h"
121 #include "opt_md.h"
122 #include "opt_com.h"
123 #include "lcd.h"
124 
125 #include <sys/param.h>
126 #include <sys/device.h>
127 #include <sys/systm.h>
128 #include <sys/kernel.h>
129 #include <sys/exec.h>
130 #include <sys/proc.h>
131 #include <sys/msgbuf.h>
132 #include <sys/reboot.h>
133 #include <sys/termios.h>
134 #include <sys/ksyms.h>
135 #include <sys/bus.h>
136 #include <sys/cpu.h>
137 
138 #include <uvm/uvm_extern.h>
139 
140 #include <sys/conf.h>
141 #include <dev/cons.h>
142 #include <dev/md.h>
143 #include <dev/ic/smc91cxxreg.h>
144 
145 #include <machine/db_machdep.h>
146 #include <ddb/db_sym.h>
147 #include <ddb/db_extern.h>
148 #ifdef KGDB
149 #include <sys/kgdb.h>
150 #endif
151 
152 #include <machine/bootconfig.h>
153 #include <arm/locore.h>
154 #include <arm/undefined.h>
155 
156 #include <arm/arm32/machdep.h>
157 
158 #include <arm/xscale/pxa2x0reg.h>
159 #include <arm/xscale/pxa2x0var.h>
160 #include <arm/xscale/pxa2x0_gpio.h>
161 #include <arm/sa11x0/sa1111_reg.h>
162 #include <evbarm/viper/viper_reg.h>
163 
164 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
165 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
166 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
167 
168 /*
169  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
170  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
171  */
172 #define KERNEL_VM_SIZE		0x0C000000
173 
174 BootConfig bootconfig;		/* Boot config storage */
175 char *boot_args = NULL;
176 char *boot_file = NULL;
177 
178 vaddr_t physical_start;
179 vaddr_t physical_freestart;
180 vaddr_t physical_freeend;
181 vaddr_t physical_end;
182 u_int free_pages;
183 
184 /*int debug_flags;*/
185 #ifndef PMAP_STATIC_L1S
186 int max_processes = 64;			/* Default number */
187 #endif	/* !PMAP_STATIC_L1S */
188 
189 /* Physical and virtual addresses for some global pages */
190 pv_addr_t minidataclean;
191 
192 paddr_t msgbufphys;
193 
194 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
195 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
196 #define	KERNEL_PT_KERNEL_NUM	4
197 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
198 				        /* Page tables for mapping kernel VM */
199 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
200 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
201 
202 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
203 
204 /* Prototypes */
205 
206 #if 0
207 void	process_kernel_args(char *);
208 #endif
209 
210 void	consinit(void);
211 void	kgdb_port_init(void);
212 void	change_clock(uint32_t v);
213 
214 bs_protos(bs_notimpl);
215 
216 #include "com.h"
217 #if NCOM > 0
218 #include <dev/ic/comreg.h>
219 #include <dev/ic/comvar.h>
220 #endif
221 
222 #ifndef CONSPEED
223 #define CONSPEED B115200	/* What RedBoot uses */
224 #endif
225 #ifndef CONMODE
226 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
227 #endif
228 
229 int comcnspeed = CONSPEED;
230 int comcnmode = CONMODE;
231 
232 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
233 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
234 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
235 
236 	{ -1 }
237 };
238 static struct pxa2x0_gpioconf *viper_gpioconf[] = {
239 	pxa25x_com_btuart_gpioconf,
240 	pxa25x_com_ffuart_gpioconf,
241 	pxa25x_com_stuart_gpioconf,
242 	boarddep_gpioconf,
243 	NULL
244 };
245 
246 /*
247  * void cpu_reboot(int howto, char *bootstr)
248  *
249  * Reboots the system
250  *
251  * Deal with any syncing, unmounting, dumping and shutdown hooks,
252  * then reset the CPU.
253  */
254 void
cpu_reboot(int howto,char * bootstr)255 cpu_reboot(int howto, char *bootstr)
256 {
257 #ifdef DIAGNOSTIC
258 	/* info */
259 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
260 #endif
261 
262 	/*
263 	 * If we are still cold then hit the air brakes
264 	 * and crash to earth fast
265 	 */
266 	if (cold) {
267 		doshutdownhooks();
268 		pmf_system_shutdown(boothowto);
269 		printf("The operating system has halted.\n");
270 		printf("Please press any key to reboot.\n\n");
271 		cngetc();
272 		printf("rebooting...\n");
273 		cpu_reset();
274 		/*NOTREACHED*/
275 	}
276 
277 	/* Disable console buffering */
278 /*	cnpollc(1);*/
279 
280 	/*
281 	 * If RB_NOSYNC was not specified sync the discs.
282 	 * Note: Unless cold is set to 1 here, syslogd will die during the
283 	 * unmount.  It looks like syslogd is getting woken up only to find
284 	 * that it cannot page part of the binary in as the filesystem has
285 	 * been unmounted.
286 	 */
287 	if (!(howto & RB_NOSYNC))
288 		bootsync();
289 
290 	/* Say NO to interrupts */
291 	splhigh();
292 
293 	/* Do a dump if requested. */
294 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
295 		dumpsys();
296 
297 	/* Run any shutdown hooks */
298 	doshutdownhooks();
299 
300 	pmf_system_shutdown(boothowto);
301 
302 	/* Make sure IRQ's are disabled */
303 	IRQdisable;
304 
305 	if (howto & RB_HALT) {
306 		printf("The operating system has halted.\n");
307 		printf("Please press any key to reboot.\n\n");
308 		cngetc();
309 	}
310 
311 	printf("rebooting...\n");
312 	cpu_reset();
313 	/*NOTREACHED*/
314 }
315 
316 /*
317  * Static device mappings. These peripheral registers are mapped at
318  * fixed virtual addresses very early in viper_start() so that we
319  * can use them while booting the kernel, and stay at the same address
320  * throughout whole kernel's life time.
321  *
322  * We use this table twice; once with bootstrap page table, and once
323  * with kernel's page table which we build up in initarm().
324  */
325 
326 static const struct pmap_devmap viper_devmap[] = {
327     {
328 	    VIPER_GPIO_VBASE,
329 	    PXA2X0_GPIO_BASE,
330 	    L1_S_SIZE,
331 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
332     },
333     {
334 	    VIPER_CLKMAN_VBASE,
335 	    PXA2X0_CLKMAN_BASE,
336 	    L1_S_SIZE,
337 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
338     },
339     {
340 	    VIPER_INTCTL_VBASE,
341 	    PXA2X0_INTCTL_BASE,
342 	    L1_S_SIZE,
343 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
344     },
345     {
346 	    VIPER_FFUART_VBASE,
347 	    PXA2X0_FFUART_BASE,
348 	    L1_S_SIZE,
349 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
350     },
351     {
352 	    VIPER_BTUART_VBASE,
353 	    PXA2X0_BTUART_BASE,
354 	    L1_S_SIZE,
355 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
356     },
357 
358     {0, 0, 0, 0,}
359 };
360 
361 #ifndef MEMSTART
362 #define MEMSTART 0xa0000000
363 #endif
364 #ifndef MEMSIZE
365 #define MEMSIZE 0x4000000
366 #endif
367 
368 /*
369  * vaddr_t initarm(...)
370  *
371  * Initial entry point on startup. This gets called before main() is
372  * entered.
373  * It should be responsible for setting up everything that must be
374  * in place when main is called.
375  * This includes
376  *   Taking a copy of the boot configuration structure.
377  *   Initialising the physical console so characters can be printed.
378  *   Setting up page tables for the kernel
379  *   Relocating the kernel to the bottom of physical memory
380  */
381 vaddr_t
initarm(void * arg)382 initarm(void *arg)
383 {
384 	int loop;
385 	int loop1;
386 	u_int l1pagetable;
387 
388 	/* Register devmap for devices we mapped in start */
389 	pmap_devmap_register(viper_devmap);
390 
391 	/* start 32.768 kHz OSC */
392 	ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2);
393 	/* Get ready for splfoo() */
394 	pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE);
395 
396 	/*
397 	 * Heads up ... Setup the CPU / MMU / TLB functions
398 	 */
399 	if (set_cpufuncs())
400 		panic("cpu not recognized!");
401 
402 #if 0
403 	/* Calibrate the delay loop. */
404 #endif
405 
406 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
407 	pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE);
408 	pxa2x0_gpio_config(viper_gpioconf);
409 
410 	/* turn on clock to UART block.
411 	   XXX: this should not be done here. */
412 	ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
413 	    ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN));
414 
415 	consinit();
416 #ifdef KGDB
417 	kgdb_port_init();
418 #endif
419 	/* Talk to the user */
420 	printf("\nNetBSD/evbarm (viper) booting ...\n");
421 
422 #if 0
423 	/*
424 	 * Examine the boot args string for options we need to know about
425 	 * now.
426 	 */
427 	process_kernel_args((char *)nwbootinfo.bt_args);
428 #endif
429 
430 	printf("initarm: Configuring system ...\n");
431 
432 	/* Fake bootconfig structure for the benefit of pmap.c */
433 	/* XXX must make the memory description h/w independent */
434 	bootconfig.dramblocks = 1;
435 	bootconfig.dram[0].address = MEMSTART;
436 	bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE;
437 
438 	/*
439 	 * Set up the variables that define the availability of
440 	 * physical memory.  For now, we're going to set
441 	 * physical_freestart to 0xa0200000 (where the kernel
442 	 * was loaded), and allocate the memory we need downwards.
443 	 * If we get too close to the page tables that RedBoot
444 	 * set up, we will panic.  We will update physical_freestart
445 	 * and physical_freeend later to reflect what pmap_bootstrap()
446 	 * wants to see.
447 	 *
448 	 * XXX pmap_bootstrap() needs an enema.
449 	 * (now that would be truly hardcore XXX)
450 	 */
451 	physical_start = bootconfig.dram[0].address;
452 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
453 
454 	physical_freestart = 0xa0009000UL;
455 	physical_freeend = 0xa0200000UL;
456 
457 	physmem = (physical_end - physical_start) / PAGE_SIZE;
458 
459 #ifdef VERBOSE_INIT_ARM
460 	/* Tell the user about the memory */
461 	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
462 	    physical_start, physical_end - 1);
463 #endif
464 
465 	/*
466 	 * Okay, the kernel starts 2MB in from the bottom of physical
467 	 * memory.  We are going to allocate our bootstrap pages downwards
468 	 * from there.
469 	 *
470 	 * We need to allocate some fixed page tables to get the kernel
471 	 * going.  We allocate one page directory and a number of page
472 	 * tables and store the physical addresses in the kernel_pt_table
473 	 * array.
474 	 *
475 	 * The kernel page directory must be on a 16K boundary.  The page
476 	 * tables must be on 4K boundaries.  What we do is allocate the
477 	 * page directory on the first 16K boundary that we encounter, and
478 	 * the page tables on 4K boundaries otherwise.  Since we allocate
479 	 * at least 3 L2 page tables, we are guaranteed to encounter at
480 	 * least one 16K aligned region.
481 	 */
482 
483 #ifdef VERBOSE_INIT_ARM
484 	printf("Allocating page tables\n");
485 #endif
486 
487 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
488 
489 #ifdef VERBOSE_INIT_ARM
490 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
491 	       physical_freestart, free_pages, free_pages);
492 #endif
493 
494 	/* Define a macro to simplify memory allocation */
495 #define	valloc_pages(var, np)				\
496 	alloc_pages((var).pv_pa, (np));			\
497 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
498 
499 #define alloc_pages(var, np)				\
500 	physical_freeend -= ((np) * PAGE_SIZE);		\
501 	if (physical_freeend < physical_freestart)	\
502 		panic("initarm: out of memory");	\
503 	(var) = physical_freeend;			\
504 	free_pages -= (np);				\
505 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
506 
507 	loop1 = 0;
508 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
509 		/* Are we 16KB aligned for an L1 ? */
510 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
511 		    && kernel_l1pt.pv_pa == 0) {
512 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
513 		} else {
514 			valloc_pages(kernel_pt_table[loop1],
515 			    L2_TABLE_SIZE / PAGE_SIZE);
516 			++loop1;
517 		}
518 	}
519 
520 	/* This should never be able to happen but better confirm that. */
521 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
522 		panic("initarm: Failed to align the kernel page directory");
523 
524 	/*
525 	 * Allocate a page for the system page mapped to V0x00000000
526 	 * This page will just contain the system vectors and can be
527 	 * shared by all processes.
528 	 */
529 	alloc_pages(systempage.pv_pa, 1);
530 
531 	/* Allocate stacks for all modes */
532 	valloc_pages(irqstack, IRQ_STACK_SIZE);
533 	valloc_pages(abtstack, ABT_STACK_SIZE);
534 	valloc_pages(undstack, UND_STACK_SIZE);
535 	valloc_pages(kernelstack, UPAGES);
536 
537 	/* Allocate enough pages for cleaning the Mini-Data cache. */
538 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
539 	valloc_pages(minidataclean, 1);
540 
541 #ifdef VERBOSE_INIT_ARM
542 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
543 	    irqstack.pv_va);
544 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
545 	    abtstack.pv_va);
546 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
547 	    undstack.pv_va);
548 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
549 	    kernelstack.pv_va);
550 #endif
551 
552 	/*
553 	 * XXX Defer this to later so that we can reclaim the memory
554 	 * XXX used by the RedBoot page tables.
555 	 */
556 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
557 
558 	/*
559 	 * Ok we have allocated physical pages for the primary kernel
560 	 * page tables
561 	 */
562 
563 #ifdef VERBOSE_INIT_ARM
564 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
565 #endif
566 
567 	/*
568 	 * Now we start construction of the L1 page table
569 	 * We start by mapping the L2 page tables into the L1.
570 	 * This means that we can replace L1 mappings later on if necessary
571 	 */
572 	l1pagetable = kernel_l1pt.pv_pa;
573 
574 	/* Map the L2 pages tables in the L1 page table */
575 	pmap_link_l2pt(l1pagetable, 0x00000000,
576 	    &kernel_pt_table[KERNEL_PT_SYS]);
577 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
578 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
579 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
580 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
581 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
582 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
583 
584 	/* update the top of the kernel VM */
585 	pmap_curmaxkvaddr =
586 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
587 
588 #ifdef VERBOSE_INIT_ARM
589 	printf("Mapping kernel\n");
590 #endif
591 
592 	/* Now we fill in the L2 pagetable for the kernel static code/data */
593 	{
594 		extern char etext[], _end[];
595 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
596 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
597 		u_int logical;
598 
599 		textsize = (textsize + PGOFSET) & ~PGOFSET;
600 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
601 
602 		logical = 0x00200000;	/* offset of kernel in RAM */
603 
604 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
605 		    physical_start + logical, textsize,
606 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
607 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
608 		    physical_start + logical, totalsize - textsize,
609 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
610 	}
611 
612 #ifdef VERBOSE_INIT_ARM
613 	printf("Constructing L2 page tables\n");
614 #endif
615 
616 	/* Map the stack pages */
617 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
618 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
619 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
620 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
621 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
622 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
623 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
624 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
625 
626 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
627 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
628 
629 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
630 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
631 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
632 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
633 	}
634 
635 	/* Map the Mini-Data cache clean area. */
636 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
637 	    minidataclean.pv_pa);
638 
639 	/* Map the vector page. */
640 #if 1
641 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
642 	 * cache-clean code there.  */
643 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
644 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
645 #else
646 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
647 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
648 #endif
649 
650 	/*
651 	 * map integrated peripherals at same address in l1pagetable
652 	 * so that we can continue to use console.
653 	 */
654 	pmap_devmap_bootstrap(l1pagetable, viper_devmap);
655 
656 	/*
657 	 * Give the XScale global cache clean code an appropriately
658 	 * sized chunk of unmapped VA space starting at 0xff000000
659 	 * (our device mappings end before this address).
660 	 */
661 	xscale_cache_clean_addr = 0xff000000U;
662 
663 	/*
664 	 * Now we have the real page tables in place so we can switch to them.
665 	 * Once this is done we will be running with the REAL kernel page
666 	 * tables.
667 	 */
668 
669 	/*
670 	 * Update the physical_freestart/physical_freeend/free_pages
671 	 * variables.
672 	 */
673 	{
674 		extern char _end[];
675 
676 		physical_freestart = physical_start +
677 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
678 		     KERNEL_BASE);
679 		physical_freeend = physical_end;
680 		free_pages =
681 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
682 	}
683 
684 	/* Switch tables */
685 #ifdef VERBOSE_INIT_ARM
686 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
687 	       physical_freestart, free_pages, free_pages);
688 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
689 #endif
690 
691 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
692 	cpu_setttb(kernel_l1pt.pv_pa, true);
693 	cpu_tlb_flushID();
694 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
695 
696 	/*
697 	 * Moved from cpu_startup() as data_abort_handler() references
698 	 * this during uvm init
699 	 */
700 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
701 
702 #ifdef VERBOSE_INIT_ARM
703 	printf("bootstrap done.\n");
704 #endif
705 
706 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
707 
708 	/*
709 	 * Pages were allocated during the secondary bootstrap for the
710 	 * stacks for different CPU modes.
711 	 * We must now set the r13 registers in the different CPU modes to
712 	 * point to these stacks.
713 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
714 	 * of the stack memory.
715 	 */
716 	printf("init subsystems: stacks ");
717 
718 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
719 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
720 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
721 
722 	/*
723 	 * Well we should set a data abort handler.
724 	 * Once things get going this will change as we will need a proper
725 	 * handler.
726 	 * Until then we will use a handler that just panics but tells us
727 	 * why.
728 	 * Initialisation of the vectors will just panic on a data abort.
729 	 * This just fills in a slightly better one.
730 	 */
731 	printf("vectors ");
732 	data_abort_handler_address = (u_int)data_abort_handler;
733 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
734 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
735 
736 	/* Initialise the undefined instruction handlers */
737 	printf("undefined ");
738 	undefined_init();
739 
740 	/* Load memory into UVM. */
741 	printf("page ");
742 	uvm_md_init();
743 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
744 	    atop(physical_freestart), atop(physical_freeend),
745 	    VM_FREELIST_DEFAULT);
746 
747 	/* Boot strap pmap telling it where managed kernel virtual memory is */
748 	printf("pmap ");
749 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
750 
751 #ifdef __HAVE_MEMORY_DISK__
752 	md_root_setconf(memory_disk, sizeof memory_disk);
753 #endif
754 
755 #ifdef KGDB
756 	if (boothowto & RB_KDB) {
757 		kgdb_debug_init = 1;
758 		kgdb_connect(1);
759 	}
760 #endif
761 
762 #ifdef DDB
763 	db_machine_init();
764 
765 	/* Firmware doesn't load symbols. */
766 	ddb_init(0, NULL, NULL);
767 
768 	if (boothowto & RB_KDB)
769 		Debugger();
770 #endif
771 
772 	/* We return the new stack pointer address */
773 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
774 }
775 
776 #if 0
777 void
778 process_kernel_args(char *args)
779 {
780 
781 	boothowto = 0;
782 
783 	/* Make a local copy of the bootargs */
784 	strncpy(bootargs, args, MAX_BOOT_STRING);
785 
786 	args = bootargs;
787 	boot_file = bootargs;
788 
789 	/* Skip the kernel image filename */
790 	while (*args != ' ' && *args != 0)
791 		++args;
792 
793 	if (*args != 0)
794 		*args++ = 0;
795 
796 	while (*args == ' ')
797 		++args;
798 
799 	boot_args = args;
800 
801 	printf("bootfile: %s\n", boot_file);
802 	printf("bootargs: %s\n", boot_args);
803 
804 	parse_mi_bootargs(boot_args);
805 }
806 #endif
807 
808 #ifdef KGDB
809 #ifndef KGDB_DEVNAME
810 #define KGDB_DEVNAME "ffuart"
811 #endif
812 const char kgdb_devname[] = KGDB_DEVNAME;
813 
814 #if (NCOM > 0)
815 #ifndef KGDB_DEVMODE
816 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
817 #endif
818 int comkgdbmode = KGDB_DEVMODE;
819 #endif /* NCOM */
820 
821 #endif /* KGDB */
822 
823 
824 void
consinit(void)825 consinit(void)
826 {
827 	static int consinit_called = 0;
828 	uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
829 #if 0
830 	char *console = CONSDEVNAME;
831 #endif
832 
833 	if (consinit_called != 0)
834 		return;
835 	consinit_called = 1;
836 
837 #if NCOM > 0
838 
839 #ifdef FFUARTCONSOLE
840 #ifdef KGDB
841 	if (0 == strcmp(kgdb_devname, "ffuart")) {
842 		/* port is reserved for kgdb */
843 	} else
844 #endif
845 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
846 		     comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
847 
848 #if 0
849 		/* XXX: can't call pxa2x0_clkman_config yet */
850 		pxa2x0_clkman_config(CKEN_FFUART, 1);
851 #else
852 		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
853 		    ckenreg|CKEN_FFUART);
854 #endif
855 
856 		return;
857 	}
858 
859 #endif /* FFUARTCONSOLE */
860 
861 #ifdef BTUARTCONSOLE
862 #ifdef KGDB
863 	if (0 == strcmp(kgdb_devname, "btuart")) {
864 		/* port is reserved for kgdb */
865 	} else
866 #endif
867 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
868 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
869 		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
870 		    ckenreg|CKEN_BTUART);
871 		return;
872 	}
873 #endif /* BTUARTCONSOLE */
874 
875 	/* no console, guess we're flying blind */
876 
877 #endif /* NCOM */
878 
879 }
880 
881 #ifdef KGDB
882 void
kgdb_port_init(void)883 kgdb_port_init(void)
884 {
885 #if (NCOM > 0) && defined(COM_PXA2X0)
886 	paddr_t paddr = 0;
887 	uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
888 
889 	if (0 == strcmp(kgdb_devname, "ffuart")) {
890 		paddr = PXA2X0_FFUART_BASE;
891 		ckenreg |= CKEN_FFUART;
892 	}
893 	else if (0 == strcmp(kgdb_devname, "btuart")) {
894 		paddr = PXA2X0_BTUART_BASE;
895 		ckenreg |= CKEN_BTUART;
896 	}
897 
898 	if (paddr &&
899 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
900 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
901 
902 		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
903 	}
904 #endif
905 }
906 #endif
907