xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/amdgpu_vega20_ppt.c (revision 2b73d18af7a98bc9907041875c671f63165f1d3e)
1 /*	$NetBSD: amdgpu_vega20_ppt.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2019 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vega20_ppt.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
28 
29 #include "pp_debug.h"
30 #include <linux/firmware.h>
31 #include "amdgpu.h"
32 #include "amdgpu_smu.h"
33 #include "smu_internal.h"
34 #include "atomfirmware.h"
35 #include "amdgpu_atomfirmware.h"
36 #include "smu_v11_0.h"
37 #include "smu11_driver_if.h"
38 #include "soc15_common.h"
39 #include "atom.h"
40 #include "power_state.h"
41 #include "vega20_ppt.h"
42 #include "vega20_pptable.h"
43 #include "vega20_ppsmc.h"
44 #include "nbio/nbio_7_4_sh_mask.h"
45 #include "asic_reg/thm/thm_11_0_2_offset.h"
46 #include "asic_reg/thm/thm_11_0_2_sh_mask.h"
47 
48 #include <linux/nbsd-namespace.h>
49 
50 #define smnPCIE_LC_SPEED_CNTL			0x11140290
51 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
52 
53 #define CTF_OFFSET_EDGE			5
54 #define CTF_OFFSET_HOTSPOT		5
55 #define CTF_OFFSET_HBM			5
56 
57 #define MSG_MAP(msg) \
58 	[SMU_MSG_##msg] = {1, PPSMC_MSG_##msg}
59 
60 #define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \
61 			 FEATURE_DPM_GFXCLK_MASK | \
62 			 FEATURE_DPM_UCLK_MASK | \
63 			 FEATURE_DPM_SOCCLK_MASK | \
64 			 FEATURE_DPM_UVD_MASK | \
65 			 FEATURE_DPM_VCE_MASK | \
66 			 FEATURE_DPM_MP0CLK_MASK | \
67 			 FEATURE_DPM_LINK_MASK | \
68 			 FEATURE_DPM_DCEFCLK_MASK)
69 
70 static struct smu_11_0_cmn2aisc_mapping vega20_message_map[SMU_MSG_MAX_COUNT] = {
71 	MSG_MAP(TestMessage),
72 	MSG_MAP(GetSmuVersion),
73 	MSG_MAP(GetDriverIfVersion),
74 	MSG_MAP(SetAllowedFeaturesMaskLow),
75 	MSG_MAP(SetAllowedFeaturesMaskHigh),
76 	MSG_MAP(EnableAllSmuFeatures),
77 	MSG_MAP(DisableAllSmuFeatures),
78 	MSG_MAP(EnableSmuFeaturesLow),
79 	MSG_MAP(EnableSmuFeaturesHigh),
80 	MSG_MAP(DisableSmuFeaturesLow),
81 	MSG_MAP(DisableSmuFeaturesHigh),
82 	MSG_MAP(GetEnabledSmuFeaturesLow),
83 	MSG_MAP(GetEnabledSmuFeaturesHigh),
84 	MSG_MAP(SetWorkloadMask),
85 	MSG_MAP(SetPptLimit),
86 	MSG_MAP(SetDriverDramAddrHigh),
87 	MSG_MAP(SetDriverDramAddrLow),
88 	MSG_MAP(SetToolsDramAddrHigh),
89 	MSG_MAP(SetToolsDramAddrLow),
90 	MSG_MAP(TransferTableSmu2Dram),
91 	MSG_MAP(TransferTableDram2Smu),
92 	MSG_MAP(UseDefaultPPTable),
93 	MSG_MAP(UseBackupPPTable),
94 	MSG_MAP(RunBtc),
95 	MSG_MAP(RequestI2CBus),
96 	MSG_MAP(ReleaseI2CBus),
97 	MSG_MAP(SetFloorSocVoltage),
98 	MSG_MAP(SoftReset),
99 	MSG_MAP(StartBacoMonitor),
100 	MSG_MAP(CancelBacoMonitor),
101 	MSG_MAP(EnterBaco),
102 	MSG_MAP(SetSoftMinByFreq),
103 	MSG_MAP(SetSoftMaxByFreq),
104 	MSG_MAP(SetHardMinByFreq),
105 	MSG_MAP(SetHardMaxByFreq),
106 	MSG_MAP(GetMinDpmFreq),
107 	MSG_MAP(GetMaxDpmFreq),
108 	MSG_MAP(GetDpmFreqByIndex),
109 	MSG_MAP(GetDpmClockFreq),
110 	MSG_MAP(GetSsVoltageByDpm),
111 	MSG_MAP(SetMemoryChannelConfig),
112 	MSG_MAP(SetGeminiMode),
113 	MSG_MAP(SetGeminiApertureHigh),
114 	MSG_MAP(SetGeminiApertureLow),
115 	MSG_MAP(SetMinLinkDpmByIndex),
116 	MSG_MAP(OverridePcieParameters),
117 	MSG_MAP(OverDriveSetPercentage),
118 	MSG_MAP(SetMinDeepSleepDcefclk),
119 	MSG_MAP(ReenableAcDcInterrupt),
120 	MSG_MAP(NotifyPowerSource),
121 	MSG_MAP(SetUclkFastSwitch),
122 	MSG_MAP(SetUclkDownHyst),
123 	MSG_MAP(GetCurrentRpm),
124 	MSG_MAP(SetVideoFps),
125 	MSG_MAP(SetTjMax),
126 	MSG_MAP(SetFanTemperatureTarget),
127 	MSG_MAP(PrepareMp1ForUnload),
128 	MSG_MAP(DramLogSetDramAddrHigh),
129 	MSG_MAP(DramLogSetDramAddrLow),
130 	MSG_MAP(DramLogSetDramSize),
131 	MSG_MAP(SetFanMaxRpm),
132 	MSG_MAP(SetFanMinPwm),
133 	MSG_MAP(ConfigureGfxDidt),
134 	MSG_MAP(NumOfDisplays),
135 	MSG_MAP(RemoveMargins),
136 	MSG_MAP(ReadSerialNumTop32),
137 	MSG_MAP(ReadSerialNumBottom32),
138 	MSG_MAP(SetSystemVirtualDramAddrHigh),
139 	MSG_MAP(SetSystemVirtualDramAddrLow),
140 	MSG_MAP(WaflTest),
141 	MSG_MAP(SetFclkGfxClkRatio),
142 	MSG_MAP(AllowGfxOff),
143 	MSG_MAP(DisallowGfxOff),
144 	MSG_MAP(GetPptLimit),
145 	MSG_MAP(GetDcModeMaxDpmFreq),
146 	MSG_MAP(GetDebugData),
147 	MSG_MAP(SetXgmiMode),
148 	MSG_MAP(RunAfllBtc),
149 	MSG_MAP(ExitBaco),
150 	MSG_MAP(PrepareMp1ForReset),
151 	MSG_MAP(PrepareMp1ForShutdown),
152 	MSG_MAP(SetMGpuFanBoostLimitRpm),
153 	MSG_MAP(GetAVFSVoltageByDpm),
154 	MSG_MAP(DFCstateControl),
155 };
156 
157 static struct smu_11_0_cmn2aisc_mapping vega20_clk_map[SMU_CLK_COUNT] = {
158 	CLK_MAP(GFXCLK, PPCLK_GFXCLK),
159 	CLK_MAP(VCLK, PPCLK_VCLK),
160 	CLK_MAP(DCLK, PPCLK_DCLK),
161 	CLK_MAP(ECLK, PPCLK_ECLK),
162 	CLK_MAP(SOCCLK, PPCLK_SOCCLK),
163 	CLK_MAP(UCLK, PPCLK_UCLK),
164 	CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
165 	CLK_MAP(DISPCLK, PPCLK_DISPCLK),
166 	CLK_MAP(PIXCLK, PPCLK_PIXCLK),
167 	CLK_MAP(PHYCLK, PPCLK_PHYCLK),
168 	CLK_MAP(FCLK, PPCLK_FCLK),
169 };
170 
171 static struct smu_11_0_cmn2aisc_mapping vega20_feature_mask_map[SMU_FEATURE_COUNT] = {
172 	FEA_MAP(DPM_PREFETCHER),
173 	FEA_MAP(DPM_GFXCLK),
174 	FEA_MAP(DPM_UCLK),
175 	FEA_MAP(DPM_SOCCLK),
176 	FEA_MAP(DPM_UVD),
177 	FEA_MAP(DPM_VCE),
178 	FEA_MAP(ULV),
179 	FEA_MAP(DPM_MP0CLK),
180 	FEA_MAP(DPM_LINK),
181 	FEA_MAP(DPM_DCEFCLK),
182 	FEA_MAP(DS_GFXCLK),
183 	FEA_MAP(DS_SOCCLK),
184 	FEA_MAP(DS_LCLK),
185 	FEA_MAP(PPT),
186 	FEA_MAP(TDC),
187 	FEA_MAP(THERMAL),
188 	FEA_MAP(GFX_PER_CU_CG),
189 	FEA_MAP(RM),
190 	FEA_MAP(DS_DCEFCLK),
191 	FEA_MAP(ACDC),
192 	FEA_MAP(VR0HOT),
193 	FEA_MAP(VR1HOT),
194 	FEA_MAP(FW_CTF),
195 	FEA_MAP(LED_DISPLAY),
196 	FEA_MAP(FAN_CONTROL),
197 	FEA_MAP(GFX_EDC),
198 	FEA_MAP(GFXOFF),
199 	FEA_MAP(CG),
200 	FEA_MAP(DPM_FCLK),
201 	FEA_MAP(DS_FCLK),
202 	FEA_MAP(DS_MP1CLK),
203 	FEA_MAP(DS_MP0CLK),
204 	FEA_MAP(XGMI),
205 };
206 
207 static struct smu_11_0_cmn2aisc_mapping vega20_table_map[SMU_TABLE_COUNT] = {
208 	TAB_MAP(PPTABLE),
209 	TAB_MAP(WATERMARKS),
210 	TAB_MAP(AVFS),
211 	TAB_MAP(AVFS_PSM_DEBUG),
212 	TAB_MAP(AVFS_FUSE_OVERRIDE),
213 	TAB_MAP(PMSTATUSLOG),
214 	TAB_MAP(SMU_METRICS),
215 	TAB_MAP(DRIVER_SMU_CONFIG),
216 	TAB_MAP(ACTIVITY_MONITOR_COEFF),
217 	TAB_MAP(OVERDRIVE),
218 };
219 
220 static struct smu_11_0_cmn2aisc_mapping vega20_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
221 	PWR_MAP(AC),
222 	PWR_MAP(DC),
223 };
224 
225 static struct smu_11_0_cmn2aisc_mapping vega20_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
226 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT,	WORKLOAD_DEFAULT_BIT),
227 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D,		WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
228 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING,		WORKLOAD_PPLIB_POWER_SAVING_BIT),
229 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO,		WORKLOAD_PPLIB_VIDEO_BIT),
230 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR,			WORKLOAD_PPLIB_VR_BIT),
231 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE,		WORKLOAD_PPLIB_COMPUTE_BIT),
232 	WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM,		WORKLOAD_PPLIB_CUSTOM_BIT),
233 };
234 
vega20_get_smu_table_index(struct smu_context * smc,uint32_t index)235 static int vega20_get_smu_table_index(struct smu_context *smc, uint32_t index)
236 {
237 	struct smu_11_0_cmn2aisc_mapping mapping;
238 
239 	if (index >= SMU_TABLE_COUNT)
240 		return -EINVAL;
241 
242 	mapping = vega20_table_map[index];
243 	if (!(mapping.valid_mapping)) {
244 		return -EINVAL;
245 	}
246 
247 	return mapping.map_to;
248 }
249 
vega20_get_pwr_src_index(struct smu_context * smc,uint32_t index)250 static int vega20_get_pwr_src_index(struct smu_context *smc, uint32_t index)
251 {
252 	struct smu_11_0_cmn2aisc_mapping mapping;
253 
254 	if (index >= SMU_POWER_SOURCE_COUNT)
255 		return -EINVAL;
256 
257 	mapping = vega20_pwr_src_map[index];
258 	if (!(mapping.valid_mapping)) {
259 		return -EINVAL;
260 	}
261 
262 	return mapping.map_to;
263 }
264 
vega20_get_smu_feature_index(struct smu_context * smc,uint32_t index)265 static int vega20_get_smu_feature_index(struct smu_context *smc, uint32_t index)
266 {
267 	struct smu_11_0_cmn2aisc_mapping mapping;
268 
269 	if (index >= SMU_FEATURE_COUNT)
270 		return -EINVAL;
271 
272 	mapping = vega20_feature_mask_map[index];
273 	if (!(mapping.valid_mapping)) {
274 		return -EINVAL;
275 	}
276 
277 	return mapping.map_to;
278 }
279 
vega20_get_smu_clk_index(struct smu_context * smc,uint32_t index)280 static int vega20_get_smu_clk_index(struct smu_context *smc, uint32_t index)
281 {
282 	struct smu_11_0_cmn2aisc_mapping mapping;
283 
284 	if (index >= SMU_CLK_COUNT)
285 		return -EINVAL;
286 
287 	mapping = vega20_clk_map[index];
288 	if (!(mapping.valid_mapping)) {
289 		return -EINVAL;
290 	}
291 
292 	return mapping.map_to;
293 }
294 
vega20_get_smu_msg_index(struct smu_context * smc,uint32_t index)295 static int vega20_get_smu_msg_index(struct smu_context *smc, uint32_t index)
296 {
297 	struct smu_11_0_cmn2aisc_mapping mapping;
298 
299 	if (index >= SMU_MSG_MAX_COUNT)
300 		return -EINVAL;
301 
302 	mapping = vega20_message_map[index];
303 	if (!(mapping.valid_mapping)) {
304 		return -EINVAL;
305 	}
306 
307 	return mapping.map_to;
308 }
309 
vega20_get_workload_type(struct smu_context * smu,enum PP_SMC_POWER_PROFILE profile)310 static int vega20_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile)
311 {
312 	struct smu_11_0_cmn2aisc_mapping mapping;
313 
314 	if (profile > PP_SMC_POWER_PROFILE_CUSTOM)
315 		return -EINVAL;
316 
317 	mapping = vega20_workload_map[profile];
318 	if (!(mapping.valid_mapping)) {
319 		return -EINVAL;
320 	}
321 
322 	return mapping.map_to;
323 }
324 
vega20_tables_init(struct smu_context * smu,struct smu_table * tables)325 static int vega20_tables_init(struct smu_context *smu, struct smu_table *tables)
326 {
327 	struct smu_table_context *smu_table = &smu->smu_table;
328 
329 	SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
330 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
331 	SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
332 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
333 	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
334 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
335 	SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
336 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
337 	SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
338 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
339 	SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
340 		       sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
341 	               AMDGPU_GEM_DOMAIN_VRAM);
342 
343 	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
344 	if (!smu_table->metrics_table)
345 		return -ENOMEM;
346 	smu_table->metrics_time = 0;
347 
348 	smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
349 	if (!smu_table->watermarks_table)
350 		return -ENOMEM;
351 
352 	return 0;
353 }
354 
vega20_allocate_dpm_context(struct smu_context * smu)355 static int vega20_allocate_dpm_context(struct smu_context *smu)
356 {
357 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
358 
359 	if (smu_dpm->dpm_context)
360 		return -EINVAL;
361 
362 	smu_dpm->dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
363 				       GFP_KERNEL);
364 	if (!smu_dpm->dpm_context)
365 		return -ENOMEM;
366 
367 	if (smu_dpm->golden_dpm_context)
368 		return -EINVAL;
369 
370 	smu_dpm->golden_dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
371 					      GFP_KERNEL);
372 	if (!smu_dpm->golden_dpm_context)
373 		return -ENOMEM;
374 
375 	smu_dpm->dpm_context_size = sizeof(struct vega20_dpm_table);
376 
377 	smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
378 				       GFP_KERNEL);
379 	if (!smu_dpm->dpm_current_power_state)
380 		return -ENOMEM;
381 
382 	smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
383 				       GFP_KERNEL);
384 	if (!smu_dpm->dpm_request_power_state)
385 		return -ENOMEM;
386 
387 	return 0;
388 }
389 
vega20_setup_od8_information(struct smu_context * smu)390 static int vega20_setup_od8_information(struct smu_context *smu)
391 {
392 	const ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
393 	struct smu_table_context *table_context = &smu->smu_table;
394 	struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings;
395 
396 	uint32_t od_feature_count, od_feature_array_size,
397 		 od_setting_count, od_setting_array_size;
398 
399 	if (!table_context->power_play_table)
400 		return -EINVAL;
401 
402 	powerplay_table = table_context->power_play_table;
403 
404 	if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) {
405 		/* Setup correct ODFeatureCount, and store ODFeatureArray from
406 		 * powerplay table to od_feature_capabilities */
407 		od_feature_count =
408 			(le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) >
409 			 ATOM_VEGA20_ODFEATURE_COUNT) ?
410 			ATOM_VEGA20_ODFEATURE_COUNT :
411 			le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount);
412 
413 		od_feature_array_size = sizeof(uint8_t) * od_feature_count;
414 
415 		if (od8_settings->od_feature_capabilities)
416 			return -EINVAL;
417 
418 		od8_settings->od_feature_capabilities = kmemdup(&powerplay_table->OverDrive8Table.ODFeatureCapabilities,
419 								 od_feature_array_size,
420 								 GFP_KERNEL);
421 		if (!od8_settings->od_feature_capabilities)
422 			return -ENOMEM;
423 
424 		/* Setup correct ODSettingCount, and store ODSettingArray from
425 		 * powerplay table to od_settings_max and od_setting_min */
426 		od_setting_count =
427 			(le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) >
428 			 ATOM_VEGA20_ODSETTING_COUNT) ?
429 			ATOM_VEGA20_ODSETTING_COUNT :
430 			le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount);
431 
432 		od_setting_array_size = sizeof(uint32_t) * od_setting_count;
433 
434 		if (od8_settings->od_settings_max)
435 			return -EINVAL;
436 
437 		od8_settings->od_settings_max = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMax,
438 							 od_setting_array_size,
439 							 GFP_KERNEL);
440 
441 		if (!od8_settings->od_settings_max) {
442 			kfree(od8_settings->od_feature_capabilities);
443 			od8_settings->od_feature_capabilities = NULL;
444 			return -ENOMEM;
445 		}
446 
447 		if (od8_settings->od_settings_min)
448 			return -EINVAL;
449 
450 		od8_settings->od_settings_min = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMin,
451 							 od_setting_array_size,
452 							 GFP_KERNEL);
453 
454 		if (!od8_settings->od_settings_min) {
455 			kfree(od8_settings->od_feature_capabilities);
456 			od8_settings->od_feature_capabilities = NULL;
457 			kfree(od8_settings->od_settings_max);
458 			od8_settings->od_settings_max = NULL;
459 			return -ENOMEM;
460 		}
461 	}
462 
463 	return 0;
464 }
465 
vega20_store_powerplay_table(struct smu_context * smu)466 static int vega20_store_powerplay_table(struct smu_context *smu)
467 {
468 	const ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
469 	struct smu_table_context *table_context = &smu->smu_table;
470 
471 	if (!table_context->power_play_table)
472 		return -EINVAL;
473 
474 	powerplay_table = table_context->power_play_table;
475 
476 	memcpy(table_context->driver_pptable, &powerplay_table->smcPPTable,
477 	       sizeof(PPTable_t));
478 
479 	table_context->thermal_controller_type = powerplay_table->ucThermalControllerType;
480 
481 	return 0;
482 }
483 
vega20_append_powerplay_table(struct smu_context * smu)484 static int vega20_append_powerplay_table(struct smu_context *smu)
485 {
486 	struct smu_table_context *table_context = &smu->smu_table;
487 	PPTable_t *smc_pptable = table_context->driver_pptable;
488 	struct atom_smc_dpm_info_v4_4 *smc_dpm_table;
489 	int index, i, ret;
490 
491 	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
492 					   smc_dpm_info);
493 
494 	ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL,
495 				      (uint8_t **)&smc_dpm_table);
496 	if (ret)
497 		return ret;
498 
499 	smc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx;
500 	smc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc;
501 
502 	smc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping;
503 	smc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping;
504 	smc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping;
505 	smc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping;
506 
507 	smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask;
508 	smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask;
509 	smc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent;
510 
511 	smc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent;
512 	smc_pptable->GfxOffset = smc_dpm_table->gfxoffset;
513 	smc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx;
514 
515 	smc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent;
516 	smc_pptable->SocOffset = smc_dpm_table->socoffset;
517 	smc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc;
518 
519 	smc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent;
520 	smc_pptable->Mem0Offset = smc_dpm_table->mem0offset;
521 	smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0;
522 
523 	smc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent;
524 	smc_pptable->Mem1Offset = smc_dpm_table->mem1offset;
525 	smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1;
526 
527 	smc_pptable->AcDcGpio = smc_dpm_table->acdcgpio;
528 	smc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity;
529 	smc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio;
530 	smc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity;
531 
532 	smc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio;
533 	smc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity;
534 	smc_pptable->Padding1 = smc_dpm_table->padding1;
535 	smc_pptable->Padding2 = smc_dpm_table->padding2;
536 
537 	smc_pptable->LedPin0 = smc_dpm_table->ledpin0;
538 	smc_pptable->LedPin1 = smc_dpm_table->ledpin1;
539 	smc_pptable->LedPin2 = smc_dpm_table->ledpin2;
540 
541 	smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled;
542 	smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent;
543 	smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq;
544 
545 	smc_pptable->UclkSpreadEnabled = 0;
546 	smc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent;
547 	smc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq;
548 
549 	smc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled;
550 	smc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent;
551 	smc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq;
552 
553 	smc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled;
554 	smc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent;
555 	smc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq;
556 
557 	for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) {
558 		smc_pptable->I2cControllers[i].Enabled =
559 			smc_dpm_table->i2ccontrollers[i].enabled;
560 		smc_pptable->I2cControllers[i].SlaveAddress =
561 			smc_dpm_table->i2ccontrollers[i].slaveaddress;
562 		smc_pptable->I2cControllers[i].ControllerPort =
563 			smc_dpm_table->i2ccontrollers[i].controllerport;
564 		smc_pptable->I2cControllers[i].ThermalThrottler =
565 			smc_dpm_table->i2ccontrollers[i].thermalthrottler;
566 		smc_pptable->I2cControllers[i].I2cProtocol =
567 			smc_dpm_table->i2ccontrollers[i].i2cprotocol;
568 		smc_pptable->I2cControllers[i].I2cSpeed =
569 			smc_dpm_table->i2ccontrollers[i].i2cspeed;
570 	}
571 
572 	return 0;
573 }
574 
vega20_check_powerplay_table(struct smu_context * smu)575 static int vega20_check_powerplay_table(struct smu_context *smu)
576 {
577 	const ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
578 	struct smu_table_context *table_context = &smu->smu_table;
579 
580 	powerplay_table = table_context->power_play_table;
581 
582 	if (powerplay_table->sHeader.format_revision < ATOM_VEGA20_TABLE_REVISION_VEGA20) {
583 		pr_err("Unsupported PPTable format!");
584 		return -EINVAL;
585 	}
586 
587 	if (!powerplay_table->sHeader.structuresize) {
588 		pr_err("Invalid PowerPlay Table!");
589 		return -EINVAL;
590 	}
591 
592 	return 0;
593 }
594 
vega20_run_btc_afll(struct smu_context * smu)595 static int vega20_run_btc_afll(struct smu_context *smu)
596 {
597 	return smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc);
598 }
599 
600 #define FEATURE_MASK(feature) (1ULL << feature)
601 static int
vega20_get_allowed_feature_mask(struct smu_context * smu,uint32_t * feature_mask,uint32_t num)602 vega20_get_allowed_feature_mask(struct smu_context *smu,
603 				  uint32_t *feature_mask, uint32_t num)
604 {
605 	if (num > 2)
606 		return -EINVAL;
607 
608 	memset(feature_mask, 0, sizeof(uint32_t) * num);
609 
610 	*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
611 				| FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT)
612 				| FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
613 				| FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT)
614 				| FEATURE_MASK(FEATURE_DPM_UVD_BIT)
615 				| FEATURE_MASK(FEATURE_DPM_VCE_BIT)
616 				| FEATURE_MASK(FEATURE_ULV_BIT)
617 				| FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
618 				| FEATURE_MASK(FEATURE_DPM_LINK_BIT)
619 				| FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT)
620 				| FEATURE_MASK(FEATURE_PPT_BIT)
621 				| FEATURE_MASK(FEATURE_TDC_BIT)
622 				| FEATURE_MASK(FEATURE_THERMAL_BIT)
623 				| FEATURE_MASK(FEATURE_GFX_PER_CU_CG_BIT)
624 				| FEATURE_MASK(FEATURE_RM_BIT)
625 				| FEATURE_MASK(FEATURE_ACDC_BIT)
626 				| FEATURE_MASK(FEATURE_VR0HOT_BIT)
627 				| FEATURE_MASK(FEATURE_VR1HOT_BIT)
628 				| FEATURE_MASK(FEATURE_FW_CTF_BIT)
629 				| FEATURE_MASK(FEATURE_LED_DISPLAY_BIT)
630 				| FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
631 				| FEATURE_MASK(FEATURE_GFX_EDC_BIT)
632 				| FEATURE_MASK(FEATURE_GFXOFF_BIT)
633 				| FEATURE_MASK(FEATURE_CG_BIT)
634 				| FEATURE_MASK(FEATURE_DPM_FCLK_BIT)
635 				| FEATURE_MASK(FEATURE_XGMI_BIT);
636 	return 0;
637 }
638 
639 static enum
vega20_get_current_power_state(struct smu_context * smu)640 amd_pm_state_type vega20_get_current_power_state(struct smu_context *smu)
641 {
642 	enum amd_pm_state_type pm_type;
643 	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
644 
645 	if (!smu_dpm_ctx->dpm_context ||
646 	    !smu_dpm_ctx->dpm_current_power_state)
647 		return -EINVAL;
648 
649 	switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
650 	case SMU_STATE_UI_LABEL_BATTERY:
651 		pm_type = POWER_STATE_TYPE_BATTERY;
652 		break;
653 	case SMU_STATE_UI_LABEL_BALLANCED:
654 		pm_type = POWER_STATE_TYPE_BALANCED;
655 		break;
656 	case SMU_STATE_UI_LABEL_PERFORMANCE:
657 		pm_type = POWER_STATE_TYPE_PERFORMANCE;
658 		break;
659 	default:
660 		if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
661 			pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
662 		else
663 			pm_type = POWER_STATE_TYPE_DEFAULT;
664 		break;
665 	}
666 
667 	return pm_type;
668 }
669 
670 static int
vega20_set_single_dpm_table(struct smu_context * smu,struct vega20_single_dpm_table * single_dpm_table,PPCLK_e clk_id)671 vega20_set_single_dpm_table(struct smu_context *smu,
672 			    struct vega20_single_dpm_table *single_dpm_table,
673 			    PPCLK_e clk_id)
674 {
675 	int ret = 0;
676 	uint32_t i, num_of_levels = 0, clk;
677 
678 	ret = smu_send_smc_msg_with_param(smu,
679 			SMU_MSG_GetDpmFreqByIndex,
680 			(clk_id << 16 | 0xFF));
681 	if (ret) {
682 		pr_err("[GetNumOfDpmLevel] failed to get dpm levels!");
683 		return ret;
684 	}
685 
686 	smu_read_smc_arg(smu, &num_of_levels);
687 	if (!num_of_levels) {
688 		pr_err("[GetNumOfDpmLevel] number of clk levels is invalid!");
689 		return -EINVAL;
690 	}
691 
692 	single_dpm_table->count = num_of_levels;
693 
694 	for (i = 0; i < num_of_levels; i++) {
695 		ret = smu_send_smc_msg_with_param(smu,
696 				SMU_MSG_GetDpmFreqByIndex,
697 				(clk_id << 16 | i));
698 		if (ret) {
699 			pr_err("[GetDpmFreqByIndex] failed to get dpm freq by index!");
700 			return ret;
701 		}
702 		smu_read_smc_arg(smu, &clk);
703 		if (!clk) {
704 			pr_err("[GetDpmFreqByIndex] clk value is invalid!");
705 			return -EINVAL;
706 		}
707 		single_dpm_table->dpm_levels[i].value = clk;
708 		single_dpm_table->dpm_levels[i].enabled = true;
709 	}
710 	return 0;
711 }
712 
vega20_init_single_dpm_state(struct vega20_dpm_state * dpm_state)713 static void vega20_init_single_dpm_state(struct vega20_dpm_state *dpm_state)
714 {
715 	dpm_state->soft_min_level = 0x0;
716 	dpm_state->soft_max_level = 0xffff;
717         dpm_state->hard_min_level = 0x0;
718         dpm_state->hard_max_level = 0xffff;
719 }
720 
vega20_set_default_dpm_table(struct smu_context * smu)721 static int vega20_set_default_dpm_table(struct smu_context *smu)
722 {
723 	int ret;
724 
725 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
726 	struct vega20_dpm_table *dpm_table = NULL;
727 	struct vega20_single_dpm_table *single_dpm_table;
728 
729 	dpm_table = smu_dpm->dpm_context;
730 
731 	/* socclk */
732 	single_dpm_table = &(dpm_table->soc_table);
733 
734 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
735 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
736 						  PPCLK_SOCCLK);
737 		if (ret) {
738 			pr_err("[SetupDefaultDpmTable] failed to get socclk dpm levels!");
739 			return ret;
740 		}
741 	} else {
742 		single_dpm_table->count = 1;
743 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
744 	}
745 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
746 
747 	/* gfxclk */
748 	single_dpm_table = &(dpm_table->gfx_table);
749 
750 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
751 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
752 						  PPCLK_GFXCLK);
753 		if (ret) {
754 			pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!");
755 			return ret;
756 		}
757 	} else {
758 		single_dpm_table->count = 1;
759 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
760 	}
761 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
762 
763 	/* memclk */
764 	single_dpm_table = &(dpm_table->mem_table);
765 
766 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
767 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
768 						  PPCLK_UCLK);
769 		if (ret) {
770 			pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!");
771 			return ret;
772 		}
773 	} else {
774 		single_dpm_table->count = 1;
775 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
776 	}
777 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
778 
779 	/* eclk */
780 	single_dpm_table = &(dpm_table->eclk_table);
781 
782 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) {
783 		ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_ECLK);
784 		if (ret) {
785 			pr_err("[SetupDefaultDpmTable] failed to get eclk dpm levels!");
786 			return ret;
787 		}
788 	} else {
789 		single_dpm_table->count = 1;
790 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.eclk / 100;
791 	}
792 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
793 
794 	/* vclk */
795 	single_dpm_table = &(dpm_table->vclk_table);
796 
797 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
798 		ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_VCLK);
799 		if (ret) {
800 			pr_err("[SetupDefaultDpmTable] failed to get vclk dpm levels!");
801 			return ret;
802 		}
803 	} else {
804 		single_dpm_table->count = 1;
805 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
806 	}
807 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
808 
809 	/* dclk */
810 	single_dpm_table = &(dpm_table->dclk_table);
811 
812 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
813 		ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCLK);
814 		if (ret) {
815 			pr_err("[SetupDefaultDpmTable] failed to get dclk dpm levels!");
816 			return ret;
817 		}
818 	} else {
819 		single_dpm_table->count = 1;
820 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
821 	}
822 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
823 
824 	/* dcefclk */
825 	single_dpm_table = &(dpm_table->dcef_table);
826 
827 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
828 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
829 						  PPCLK_DCEFCLK);
830 		if (ret) {
831 			pr_err("[SetupDefaultDpmTable] failed to get dcefclk dpm levels!");
832 			return ret;
833 		}
834 	} else {
835 		single_dpm_table->count = 1;
836 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
837 	}
838 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
839 
840 	/* pixclk */
841 	single_dpm_table = &(dpm_table->pixel_table);
842 
843 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
844 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
845 						  PPCLK_PIXCLK);
846 		if (ret) {
847 			pr_err("[SetupDefaultDpmTable] failed to get pixclk dpm levels!");
848 			return ret;
849 		}
850 	} else {
851 		single_dpm_table->count = 0;
852 	}
853 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
854 
855 	/* dispclk */
856 	single_dpm_table = &(dpm_table->display_table);
857 
858 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
859 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
860 						  PPCLK_DISPCLK);
861 		if (ret) {
862 			pr_err("[SetupDefaultDpmTable] failed to get dispclk dpm levels!");
863 			return ret;
864 		}
865 	} else {
866 		single_dpm_table->count = 0;
867 	}
868 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
869 
870 	/* phyclk */
871 	single_dpm_table = &(dpm_table->phy_table);
872 
873 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
874 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
875 						  PPCLK_PHYCLK);
876 		if (ret) {
877 			pr_err("[SetupDefaultDpmTable] failed to get phyclk dpm levels!");
878 			return ret;
879 		}
880 	} else {
881 		single_dpm_table->count = 0;
882 	}
883 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
884 
885 	/* fclk */
886 	single_dpm_table = &(dpm_table->fclk_table);
887 
888 	if (smu_feature_is_enabled(smu,FEATURE_DPM_FCLK_BIT)) {
889 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
890 						  PPCLK_FCLK);
891 		if (ret) {
892 			pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!");
893 			return ret;
894 		}
895 	} else {
896 		single_dpm_table->count = 0;
897 	}
898 	vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
899 
900 	memcpy(smu_dpm->golden_dpm_context, dpm_table,
901 	       sizeof(struct vega20_dpm_table));
902 
903 	return 0;
904 }
905 
vega20_populate_umd_state_clk(struct smu_context * smu)906 static int vega20_populate_umd_state_clk(struct smu_context *smu)
907 {
908 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
909 	struct vega20_dpm_table *dpm_table = NULL;
910 	struct vega20_single_dpm_table *gfx_table = NULL;
911 	struct vega20_single_dpm_table *mem_table = NULL;
912 
913 	dpm_table = smu_dpm->dpm_context;
914 	gfx_table = &(dpm_table->gfx_table);
915 	mem_table = &(dpm_table->mem_table);
916 
917 	smu->pstate_sclk = gfx_table->dpm_levels[0].value;
918 	smu->pstate_mclk = mem_table->dpm_levels[0].value;
919 
920 	if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
921 	    mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) {
922 		smu->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
923 		smu->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
924 	}
925 
926 	smu->pstate_sclk = smu->pstate_sclk * 100;
927 	smu->pstate_mclk = smu->pstate_mclk * 100;
928 
929 	return 0;
930 }
931 
vega20_get_clk_table(struct smu_context * smu,struct pp_clock_levels_with_latency * clocks,struct vega20_single_dpm_table * dpm_table)932 static int vega20_get_clk_table(struct smu_context *smu,
933 			struct pp_clock_levels_with_latency *clocks,
934 			struct vega20_single_dpm_table *dpm_table)
935 {
936 	int i, count;
937 
938 	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
939 	clocks->num_levels = count;
940 
941 	for (i = 0; i < count; i++) {
942 		clocks->data[i].clocks_in_khz =
943 			dpm_table->dpm_levels[i].value * 1000;
944 		clocks->data[i].latency_in_us = 0;
945 	}
946 
947 	return 0;
948 }
949 
vega20_print_clk_levels(struct smu_context * smu,enum smu_clk_type type,char * buf)950 static int vega20_print_clk_levels(struct smu_context *smu,
951 			enum smu_clk_type type, char *buf)
952 {
953 	int i, now, size = 0;
954 	int ret = 0;
955 	uint32_t gen_speed, lane_width;
956 	struct amdgpu_device *adev = smu->adev;
957 	struct pp_clock_levels_with_latency clocks;
958 	struct vega20_single_dpm_table *single_dpm_table;
959 	struct smu_table_context *table_context = &smu->smu_table;
960 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
961 	struct vega20_dpm_table *dpm_table = NULL;
962 	struct vega20_od8_settings *od8_settings =
963 		(struct vega20_od8_settings *)smu->od_settings;
964 	OverDriveTable_t *od_table =
965 		(OverDriveTable_t *)(table_context->overdrive_table);
966 	PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
967 
968 	dpm_table = smu_dpm->dpm_context;
969 
970 	switch (type) {
971 	case SMU_SCLK:
972 		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now);
973 		if (ret) {
974 			pr_err("Attempt to get current gfx clk Failed!");
975 			return ret;
976 		}
977 
978 		single_dpm_table = &(dpm_table->gfx_table);
979 		ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
980 		if (ret) {
981 			pr_err("Attempt to get gfx clk levels Failed!");
982 			return ret;
983 		}
984 
985 		for (i = 0; i < clocks.num_levels; i++)
986 			size += sprintf(buf + size, "%d: %uMhz %s\n", i,
987 					clocks.data[i].clocks_in_khz / 1000,
988 					(clocks.data[i].clocks_in_khz == now * 10)
989 					? "*" : "");
990 		break;
991 
992 	case SMU_MCLK:
993 		ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now);
994 		if (ret) {
995 			pr_err("Attempt to get current mclk Failed!");
996 			return ret;
997 		}
998 
999 		single_dpm_table = &(dpm_table->mem_table);
1000 		ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1001 		if (ret) {
1002 			pr_err("Attempt to get memory clk levels Failed!");
1003 			return ret;
1004 		}
1005 
1006 		for (i = 0; i < clocks.num_levels; i++)
1007 			size += sprintf(buf + size, "%d: %uMhz %s\n",
1008 				i, clocks.data[i].clocks_in_khz / 1000,
1009 				(clocks.data[i].clocks_in_khz == now * 10)
1010 				? "*" : "");
1011 		break;
1012 
1013 	case SMU_SOCCLK:
1014 		ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now);
1015 		if (ret) {
1016 			pr_err("Attempt to get current socclk Failed!");
1017 			return ret;
1018 		}
1019 
1020 		single_dpm_table = &(dpm_table->soc_table);
1021 		ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1022 		if (ret) {
1023 			pr_err("Attempt to get socclk levels Failed!");
1024 			return ret;
1025 		}
1026 
1027 		for (i = 0; i < clocks.num_levels; i++)
1028 			size += sprintf(buf + size, "%d: %uMhz %s\n",
1029 				i, clocks.data[i].clocks_in_khz / 1000,
1030 				(clocks.data[i].clocks_in_khz == now * 10)
1031 				? "*" : "");
1032 		break;
1033 
1034 	case SMU_FCLK:
1035 		ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now);
1036 		if (ret) {
1037 			pr_err("Attempt to get current fclk Failed!");
1038 			return ret;
1039 		}
1040 
1041 		single_dpm_table = &(dpm_table->fclk_table);
1042 		for (i = 0; i < single_dpm_table->count; i++)
1043 			size += sprintf(buf + size, "%d: %uMhz %s\n",
1044 				i, single_dpm_table->dpm_levels[i].value,
1045 				(single_dpm_table->dpm_levels[i].value == now / 100)
1046 				? "*" : "");
1047 		break;
1048 
1049 	case SMU_DCEFCLK:
1050 		ret = smu_get_current_clk_freq(smu, SMU_DCEFCLK, &now);
1051 		if (ret) {
1052 			pr_err("Attempt to get current dcefclk Failed!");
1053 			return ret;
1054 		}
1055 
1056 		single_dpm_table = &(dpm_table->dcef_table);
1057 		ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1058 		if (ret) {
1059 			pr_err("Attempt to get dcefclk levels Failed!");
1060 			return ret;
1061 		}
1062 
1063 		for (i = 0; i < clocks.num_levels; i++)
1064 			size += sprintf(buf + size, "%d: %uMhz %s\n",
1065 				i, clocks.data[i].clocks_in_khz / 1000,
1066 				(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
1067 		break;
1068 
1069 	case SMU_PCIE:
1070 		gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
1071 			     PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
1072 			>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
1073 		lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
1074 			      PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
1075 			>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
1076 		for (i = 0; i < NUM_LINK_LEVELS; i++)
1077 			size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
1078 					(pptable->PcieGenSpeed[i] == 0) ? "2.5GT/s," :
1079 					(pptable->PcieGenSpeed[i] == 1) ? "5.0GT/s," :
1080 					(pptable->PcieGenSpeed[i] == 2) ? "8.0GT/s," :
1081 					(pptable->PcieGenSpeed[i] == 3) ? "16.0GT/s," : "",
1082 					(pptable->PcieLaneCount[i] == 1) ? "x1" :
1083 					(pptable->PcieLaneCount[i] == 2) ? "x2" :
1084 					(pptable->PcieLaneCount[i] == 3) ? "x4" :
1085 					(pptable->PcieLaneCount[i] == 4) ? "x8" :
1086 					(pptable->PcieLaneCount[i] == 5) ? "x12" :
1087 					(pptable->PcieLaneCount[i] == 6) ? "x16" : "",
1088 					pptable->LclkFreq[i],
1089 					(gen_speed == pptable->PcieGenSpeed[i]) &&
1090 					(lane_width == pptable->PcieLaneCount[i]) ?
1091 					"*" : "");
1092 		break;
1093 
1094 	case SMU_OD_SCLK:
1095 		if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
1096 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
1097 			size = sprintf(buf, "%s:\n", "OD_SCLK");
1098 			size += sprintf(buf + size, "0: %10uMhz\n",
1099 					od_table->GfxclkFmin);
1100 			size += sprintf(buf + size, "1: %10uMhz\n",
1101 					od_table->GfxclkFmax);
1102 		}
1103 
1104 		break;
1105 
1106 	case SMU_OD_MCLK:
1107 		if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
1108 			size = sprintf(buf, "%s:\n", "OD_MCLK");
1109 			size += sprintf(buf + size, "1: %10uMhz\n",
1110 					 od_table->UclkFmax);
1111 		}
1112 
1113 		break;
1114 
1115 	case SMU_OD_VDDC_CURVE:
1116 		if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
1117 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
1118 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
1119 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
1120 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
1121 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
1122 			size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE");
1123 			size += sprintf(buf + size, "0: %10uMhz %10dmV\n",
1124 					od_table->GfxclkFreq1,
1125 					od_table->GfxclkVolt1 / VOLTAGE_SCALE);
1126 			size += sprintf(buf + size, "1: %10uMhz %10dmV\n",
1127 					od_table->GfxclkFreq2,
1128 					od_table->GfxclkVolt2 / VOLTAGE_SCALE);
1129 			size += sprintf(buf + size, "2: %10uMhz %10dmV\n",
1130 					od_table->GfxclkFreq3,
1131 					od_table->GfxclkVolt3 / VOLTAGE_SCALE);
1132 		}
1133 
1134 		break;
1135 
1136 	case SMU_OD_RANGE:
1137 		size = sprintf(buf, "%s:\n", "OD_RANGE");
1138 
1139 		if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
1140 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
1141 			size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
1142 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
1143 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
1144 		}
1145 
1146 		if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
1147 			single_dpm_table = &(dpm_table->mem_table);
1148 			ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1149 			if (ret) {
1150 				pr_err("Attempt to get memory clk levels Failed!");
1151 				return ret;
1152 			}
1153 
1154 			size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
1155 					clocks.data[0].clocks_in_khz / 1000,
1156 					od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
1157 		}
1158 
1159 		if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
1160 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
1161 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
1162 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
1163 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
1164 		    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
1165 			size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
1166 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].min_value,
1167 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].max_value);
1168 			size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
1169 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].min_value,
1170 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].max_value);
1171 			size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
1172 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].min_value,
1173 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].max_value);
1174 			size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
1175 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].min_value,
1176 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].max_value);
1177 			size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
1178 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].min_value,
1179 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].max_value);
1180 			size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
1181 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].min_value,
1182 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].max_value);
1183 		}
1184 
1185 		break;
1186 
1187 	default:
1188 		break;
1189 	}
1190 	return size;
1191 }
1192 
vega20_upload_dpm_level(struct smu_context * smu,bool max,uint32_t feature_mask)1193 static int vega20_upload_dpm_level(struct smu_context *smu, bool max,
1194 				   uint32_t feature_mask)
1195 {
1196 	struct vega20_dpm_table *dpm_table;
1197 	struct vega20_single_dpm_table *single_dpm_table;
1198 	uint32_t freq;
1199 	int ret = 0;
1200 
1201 	dpm_table = smu->smu_dpm.dpm_context;
1202 
1203 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
1204 	    (feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
1205 		single_dpm_table = &(dpm_table->gfx_table);
1206 		freq = max ? single_dpm_table->dpm_state.soft_max_level :
1207 			single_dpm_table->dpm_state.soft_min_level;
1208 		ret = smu_send_smc_msg_with_param(smu,
1209 			(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1210 			(PPCLK_GFXCLK << 16) | (freq & 0xffff));
1211 		if (ret) {
1212 			pr_err("Failed to set soft %s gfxclk !\n",
1213 						max ? "max" : "min");
1214 			return ret;
1215 		}
1216 	}
1217 
1218 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
1219 	    (feature_mask & FEATURE_DPM_UCLK_MASK)) {
1220 		single_dpm_table = &(dpm_table->mem_table);
1221 		freq = max ? single_dpm_table->dpm_state.soft_max_level :
1222 			single_dpm_table->dpm_state.soft_min_level;
1223 		ret = smu_send_smc_msg_with_param(smu,
1224 			(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1225 			(PPCLK_UCLK << 16) | (freq & 0xffff));
1226 		if (ret) {
1227 			pr_err("Failed to set soft %s memclk !\n",
1228 						max ? "max" : "min");
1229 			return ret;
1230 		}
1231 	}
1232 
1233 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
1234 	    (feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
1235 		single_dpm_table = &(dpm_table->soc_table);
1236 		freq = max ? single_dpm_table->dpm_state.soft_max_level :
1237 			single_dpm_table->dpm_state.soft_min_level;
1238 		ret = smu_send_smc_msg_with_param(smu,
1239 			(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1240 			(PPCLK_SOCCLK << 16) | (freq & 0xffff));
1241 		if (ret) {
1242 			pr_err("Failed to set soft %s socclk !\n",
1243 						max ? "max" : "min");
1244 			return ret;
1245 		}
1246 	}
1247 
1248 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT) &&
1249 	    (feature_mask & FEATURE_DPM_FCLK_MASK)) {
1250 		single_dpm_table = &(dpm_table->fclk_table);
1251 		freq = max ? single_dpm_table->dpm_state.soft_max_level :
1252 			single_dpm_table->dpm_state.soft_min_level;
1253 		ret = smu_send_smc_msg_with_param(smu,
1254 			(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1255 			(PPCLK_FCLK << 16) | (freq & 0xffff));
1256 		if (ret) {
1257 			pr_err("Failed to set soft %s fclk !\n",
1258 						max ? "max" : "min");
1259 			return ret;
1260 		}
1261 	}
1262 
1263 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
1264 	    (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) {
1265 		single_dpm_table = &(dpm_table->dcef_table);
1266 		freq = single_dpm_table->dpm_state.hard_min_level;
1267 		if (!max) {
1268 			ret = smu_send_smc_msg_with_param(smu,
1269 				SMU_MSG_SetHardMinByFreq,
1270 				(PPCLK_DCEFCLK << 16) | (freq & 0xffff));
1271 			if (ret) {
1272 				pr_err("Failed to set hard min dcefclk !\n");
1273 				return ret;
1274 			}
1275 		}
1276 	}
1277 
1278 	return ret;
1279 }
1280 
vega20_force_clk_levels(struct smu_context * smu,enum smu_clk_type clk_type,uint32_t mask)1281 static int vega20_force_clk_levels(struct smu_context *smu,
1282 			enum  smu_clk_type clk_type, uint32_t mask)
1283 {
1284 	struct vega20_dpm_table *dpm_table;
1285 	struct vega20_single_dpm_table *single_dpm_table;
1286 	uint32_t soft_min_level, soft_max_level, hard_min_level;
1287 	int ret = 0;
1288 
1289 	soft_min_level = mask ? (ffs(mask) - 1) : 0;
1290 	soft_max_level = mask ? (fls(mask) - 1) : 0;
1291 
1292 	dpm_table = smu->smu_dpm.dpm_context;
1293 
1294 	switch (clk_type) {
1295 	case SMU_SCLK:
1296 		single_dpm_table = &(dpm_table->gfx_table);
1297 
1298 		if (soft_max_level >= single_dpm_table->count) {
1299 			pr_err("Clock level specified %d is over max allowed %d\n",
1300 					soft_max_level, single_dpm_table->count - 1);
1301 			ret = -EINVAL;
1302 			break;
1303 		}
1304 
1305 		single_dpm_table->dpm_state.soft_min_level =
1306 			single_dpm_table->dpm_levels[soft_min_level].value;
1307 		single_dpm_table->dpm_state.soft_max_level =
1308 			single_dpm_table->dpm_levels[soft_max_level].value;
1309 
1310 		ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
1311 		if (ret) {
1312 			pr_err("Failed to upload boot level to lowest!\n");
1313 			break;
1314 		}
1315 
1316 		ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
1317 		if (ret)
1318 			pr_err("Failed to upload dpm max level to highest!\n");
1319 
1320 		break;
1321 
1322 	case SMU_MCLK:
1323 		single_dpm_table = &(dpm_table->mem_table);
1324 
1325 		if (soft_max_level >= single_dpm_table->count) {
1326 			pr_err("Clock level specified %d is over max allowed %d\n",
1327 					soft_max_level, single_dpm_table->count - 1);
1328 			ret = -EINVAL;
1329 			break;
1330 		}
1331 
1332 		single_dpm_table->dpm_state.soft_min_level =
1333 			single_dpm_table->dpm_levels[soft_min_level].value;
1334 		single_dpm_table->dpm_state.soft_max_level =
1335 			single_dpm_table->dpm_levels[soft_max_level].value;
1336 
1337 		ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_UCLK_MASK);
1338 		if (ret) {
1339 			pr_err("Failed to upload boot level to lowest!\n");
1340 			break;
1341 		}
1342 
1343 		ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_UCLK_MASK);
1344 		if (ret)
1345 			pr_err("Failed to upload dpm max level to highest!\n");
1346 
1347 		break;
1348 
1349 	case SMU_SOCCLK:
1350 		single_dpm_table = &(dpm_table->soc_table);
1351 
1352 		if (soft_max_level >= single_dpm_table->count) {
1353 			pr_err("Clock level specified %d is over max allowed %d\n",
1354 					soft_max_level, single_dpm_table->count - 1);
1355 			ret = -EINVAL;
1356 			break;
1357 		}
1358 
1359 		single_dpm_table->dpm_state.soft_min_level =
1360 			single_dpm_table->dpm_levels[soft_min_level].value;
1361 		single_dpm_table->dpm_state.soft_max_level =
1362 			single_dpm_table->dpm_levels[soft_max_level].value;
1363 
1364 		ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_SOCCLK_MASK);
1365 		if (ret) {
1366 			pr_err("Failed to upload boot level to lowest!\n");
1367 			break;
1368 		}
1369 
1370 		ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_SOCCLK_MASK);
1371 		if (ret)
1372 			pr_err("Failed to upload dpm max level to highest!\n");
1373 
1374 		break;
1375 
1376 	case SMU_FCLK:
1377 		single_dpm_table = &(dpm_table->fclk_table);
1378 
1379 		if (soft_max_level >= single_dpm_table->count) {
1380 			pr_err("Clock level specified %d is over max allowed %d\n",
1381 					soft_max_level, single_dpm_table->count - 1);
1382 			ret = -EINVAL;
1383 			break;
1384 		}
1385 
1386 		single_dpm_table->dpm_state.soft_min_level =
1387 			single_dpm_table->dpm_levels[soft_min_level].value;
1388 		single_dpm_table->dpm_state.soft_max_level =
1389 			single_dpm_table->dpm_levels[soft_max_level].value;
1390 
1391 		ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_FCLK_MASK);
1392 		if (ret) {
1393 			pr_err("Failed to upload boot level to lowest!\n");
1394 			break;
1395 		}
1396 
1397 		ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_FCLK_MASK);
1398 		if (ret)
1399 			pr_err("Failed to upload dpm max level to highest!\n");
1400 
1401 		break;
1402 
1403 	case SMU_DCEFCLK:
1404 		hard_min_level = soft_min_level;
1405 		single_dpm_table = &(dpm_table->dcef_table);
1406 
1407 		if (hard_min_level >= single_dpm_table->count) {
1408 			pr_err("Clock level specified %d is over max allowed %d\n",
1409 					hard_min_level, single_dpm_table->count - 1);
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 
1414 		single_dpm_table->dpm_state.hard_min_level =
1415 			single_dpm_table->dpm_levels[hard_min_level].value;
1416 
1417 		ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_DCEFCLK_MASK);
1418 		if (ret)
1419 			pr_err("Failed to upload boot level to lowest!\n");
1420 
1421 		break;
1422 
1423 	case SMU_PCIE:
1424 		if (soft_min_level >= NUM_LINK_LEVELS ||
1425 		    soft_max_level >= NUM_LINK_LEVELS) {
1426 			ret = -EINVAL;
1427 			break;
1428 		}
1429 
1430 		ret = smu_send_smc_msg_with_param(smu,
1431 				SMU_MSG_SetMinLinkDpmByIndex, soft_min_level);
1432 		if (ret)
1433 			pr_err("Failed to set min link dpm level!\n");
1434 
1435 		break;
1436 
1437 	default:
1438 		break;
1439 	}
1440 
1441 	return ret;
1442 }
1443 
vega20_get_clock_by_type_with_latency(struct smu_context * smu,enum smu_clk_type clk_type,struct pp_clock_levels_with_latency * clocks)1444 static int vega20_get_clock_by_type_with_latency(struct smu_context *smu,
1445 						 enum smu_clk_type clk_type,
1446 						 struct pp_clock_levels_with_latency *clocks)
1447 {
1448 	int ret;
1449 	struct vega20_single_dpm_table *single_dpm_table;
1450 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
1451 	struct vega20_dpm_table *dpm_table = NULL;
1452 
1453 	dpm_table = smu_dpm->dpm_context;
1454 
1455 	switch (clk_type) {
1456 	case SMU_GFXCLK:
1457 		single_dpm_table = &(dpm_table->gfx_table);
1458 		ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1459 		break;
1460 	case SMU_MCLK:
1461 		single_dpm_table = &(dpm_table->mem_table);
1462 		ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1463 		break;
1464 	case SMU_DCEFCLK:
1465 		single_dpm_table = &(dpm_table->dcef_table);
1466 		ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1467 		break;
1468 	case SMU_SOCCLK:
1469 		single_dpm_table = &(dpm_table->soc_table);
1470 		ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1471 		break;
1472 	default:
1473 		ret = -EINVAL;
1474 	}
1475 
1476 	return ret;
1477 }
1478 
vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context * smu,uint32_t * voltage,uint32_t freq)1479 static int vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu,
1480 						     uint32_t *voltage,
1481 						     uint32_t freq)
1482 {
1483 	int ret;
1484 
1485 	ret = smu_send_smc_msg_with_param(smu,
1486 			SMU_MSG_GetAVFSVoltageByDpm,
1487 			((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq));
1488 	if (ret) {
1489 		pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!");
1490 		return ret;
1491 	}
1492 
1493 	smu_read_smc_arg(smu, voltage);
1494 	*voltage = *voltage / VOLTAGE_SCALE;
1495 
1496 	return 0;
1497 }
1498 
vega20_set_default_od8_setttings(struct smu_context * smu)1499 static int vega20_set_default_od8_setttings(struct smu_context *smu)
1500 {
1501 	struct smu_table_context *table_context = &smu->smu_table;
1502 	OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table);
1503 	struct vega20_od8_settings *od8_settings = NULL;
1504 	PPTable_t *smc_pptable = table_context->driver_pptable;
1505 	int i, ret;
1506 
1507 	if (smu->od_settings)
1508 		return -EINVAL;
1509 
1510 	od8_settings = kzalloc(sizeof(struct vega20_od8_settings), GFP_KERNEL);
1511 
1512 	if (!od8_settings)
1513 		return -ENOMEM;
1514 
1515 	smu->od_settings = (void *)od8_settings;
1516 
1517 	ret = vega20_setup_od8_information(smu);
1518 	if (ret) {
1519 		pr_err("Retrieve board OD limits failed!\n");
1520 		return ret;
1521 	}
1522 
1523 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1524 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] &&
1525 		    od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 &&
1526 		    od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 &&
1527 		    (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >=
1528 		     od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) {
1529 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
1530 				OD8_GFXCLK_LIMITS;
1531 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
1532 				OD8_GFXCLK_LIMITS;
1533 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
1534 				od_table->GfxclkFmin;
1535 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
1536 				od_table->GfxclkFmax;
1537 		}
1538 
1539 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] &&
1540 		    (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >=
1541 		     smc_pptable->MinVoltageGfx / VOLTAGE_SCALE) &&
1542 		    (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <=
1543 		     smc_pptable->MaxVoltageGfx / VOLTAGE_SCALE) &&
1544 		    (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] <=
1545 		     od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3])) {
1546 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
1547 				OD8_GFXCLK_CURVE;
1548 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
1549 				OD8_GFXCLK_CURVE;
1550 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
1551 				OD8_GFXCLK_CURVE;
1552 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
1553 				OD8_GFXCLK_CURVE;
1554 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
1555 				OD8_GFXCLK_CURVE;
1556 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
1557 				OD8_GFXCLK_CURVE;
1558 
1559 			od_table->GfxclkFreq1 = od_table->GfxclkFmin;
1560 			od_table->GfxclkFreq2 = (od_table->GfxclkFmin + od_table->GfxclkFmax) / 2;
1561 			od_table->GfxclkFreq3 = od_table->GfxclkFmax;
1562 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
1563 				od_table->GfxclkFreq1;
1564 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
1565 				od_table->GfxclkFreq2;
1566 			od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
1567 				od_table->GfxclkFreq3;
1568 
1569 			ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1570 				&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value,
1571 				od_table->GfxclkFreq1);
1572 			if (ret)
1573 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0;
1574 			od_table->GfxclkVolt1 =
1575 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value
1576 				* VOLTAGE_SCALE;
1577 			ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1578 				&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value,
1579 				od_table->GfxclkFreq2);
1580 			if (ret)
1581 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0;
1582 			od_table->GfxclkVolt2 =
1583 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value
1584 				* VOLTAGE_SCALE;
1585 			ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1586 				&od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value,
1587 				od_table->GfxclkFreq3);
1588 			if (ret)
1589 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0;
1590 			od_table->GfxclkVolt3 =
1591 				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value
1592 				* VOLTAGE_SCALE;
1593 		}
1594 	}
1595 
1596 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1597 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] &&
1598 		    od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 &&
1599 		    od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 &&
1600 		    (od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] >=
1601 		     od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX])) {
1602 			od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id =
1603 				OD8_UCLK_MAX;
1604 			od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
1605 				od_table->UclkFmax;
1606 		}
1607 	}
1608 
1609 	if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] &&
1610 	    od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
1611 	    od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100 &&
1612 	    od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
1613 	    od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100) {
1614 		od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id =
1615 			OD8_POWER_LIMIT;
1616 		od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
1617 			od_table->OverDrivePct;
1618 	}
1619 
1620 	if (smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) {
1621 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] &&
1622 		    od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
1623 		    od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
1624 		    (od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >=
1625 		     od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) {
1626 			od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
1627 				OD8_ACOUSTIC_LIMIT_SCLK;
1628 			od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
1629 				od_table->FanMaximumRpm;
1630 		}
1631 
1632 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] &&
1633 		    od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
1634 		    od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
1635 		    (od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >=
1636 		     od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) {
1637 			od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
1638 				OD8_FAN_SPEED_MIN;
1639 			od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
1640 				od_table->FanMinimumPwm * smc_pptable->FanMaximumRpm / 100;
1641 		}
1642 	}
1643 
1644 	if (smu_feature_is_enabled(smu, SMU_FEATURE_THERMAL_BIT)) {
1645 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] &&
1646 		    od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
1647 		    od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
1648 		    (od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >=
1649 		     od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) {
1650 			od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
1651 				OD8_TEMPERATURE_FAN;
1652 			od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
1653 				od_table->FanTargetTemperature;
1654 		}
1655 
1656 		if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] &&
1657 		    od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
1658 		    od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
1659 		    (od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >=
1660 		     od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) {
1661 			od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
1662 				OD8_TEMPERATURE_SYSTEM;
1663 			od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
1664 				od_table->MaxOpTemp;
1665 		}
1666 	}
1667 
1668 	for (i = 0; i < OD8_SETTING_COUNT; i++) {
1669 		if (od8_settings->od8_settings_array[i].feature_id) {
1670 			od8_settings->od8_settings_array[i].min_value =
1671 				od8_settings->od_settings_min[i];
1672 			od8_settings->od8_settings_array[i].max_value =
1673 				od8_settings->od_settings_max[i];
1674 			od8_settings->od8_settings_array[i].current_value =
1675 				od8_settings->od8_settings_array[i].default_value;
1676 		} else {
1677 			od8_settings->od8_settings_array[i].min_value = 0;
1678 			od8_settings->od8_settings_array[i].max_value = 0;
1679 			od8_settings->od8_settings_array[i].current_value = 0;
1680 		}
1681 	}
1682 
1683 	return 0;
1684 }
1685 
vega20_get_metrics_table(struct smu_context * smu,SmuMetrics_t * metrics_table)1686 static int vega20_get_metrics_table(struct smu_context *smu,
1687 				    SmuMetrics_t *metrics_table)
1688 {
1689 	struct smu_table_context *smu_table= &smu->smu_table;
1690 	int ret = 0;
1691 
1692 	mutex_lock(&smu->metrics_lock);
1693 	if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + HZ / 1000)) {
1694 		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
1695 				(void *)smu_table->metrics_table, false);
1696 		if (ret) {
1697 			pr_info("Failed to export SMU metrics table!\n");
1698 			mutex_unlock(&smu->metrics_lock);
1699 			return ret;
1700 		}
1701 		smu_table->metrics_time = jiffies;
1702 	}
1703 
1704 	memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
1705 	mutex_unlock(&smu->metrics_lock);
1706 
1707 	return ret;
1708 }
1709 
vega20_set_default_od_settings(struct smu_context * smu,bool initialize)1710 static int vega20_set_default_od_settings(struct smu_context *smu,
1711 					  bool initialize)
1712 {
1713 	struct smu_table_context *table_context = &smu->smu_table;
1714 	int ret;
1715 
1716 	ret = smu_v11_0_set_default_od_settings(smu, initialize, sizeof(OverDriveTable_t));
1717 	if (ret)
1718 		return ret;
1719 
1720 	if (initialize) {
1721 		ret = vega20_set_default_od8_setttings(smu);
1722 		if (ret)
1723 			return ret;
1724 	}
1725 
1726 	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
1727 			       table_context->overdrive_table, true);
1728 	if (ret) {
1729 		pr_err("Failed to import over drive table!\n");
1730 		return ret;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
vega20_get_od_percentage(struct smu_context * smu,enum smu_clk_type clk_type)1736 static int vega20_get_od_percentage(struct smu_context *smu,
1737 				    enum smu_clk_type clk_type)
1738 {
1739 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
1740 	struct vega20_dpm_table *dpm_table = NULL;
1741 	struct vega20_dpm_table *golden_table = NULL;
1742 	struct vega20_single_dpm_table *single_dpm_table;
1743 	struct vega20_single_dpm_table *golden_dpm_table;
1744 	int value, golden_value;
1745 
1746 	dpm_table = smu_dpm->dpm_context;
1747 	golden_table = smu_dpm->golden_dpm_context;
1748 
1749 	switch (clk_type) {
1750 	case SMU_OD_SCLK:
1751 		single_dpm_table = &(dpm_table->gfx_table);
1752 		golden_dpm_table = &(golden_table->gfx_table);
1753 		break;
1754 	case SMU_OD_MCLK:
1755 		single_dpm_table = &(dpm_table->mem_table);
1756 		golden_dpm_table = &(golden_table->mem_table);
1757 		break;
1758 	default:
1759 		return -EINVAL;
1760 		break;
1761 	}
1762 
1763 	value = single_dpm_table->dpm_levels[single_dpm_table->count - 1].value;
1764 	golden_value = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
1765 
1766 	value -= golden_value;
1767 	value = DIV_ROUND_UP(value * 100, golden_value);
1768 
1769 	return value;
1770 }
1771 
vega20_get_power_profile_mode(struct smu_context * smu,char * buf)1772 static int vega20_get_power_profile_mode(struct smu_context *smu, char *buf)
1773 {
1774 	DpmActivityMonitorCoeffInt_t activity_monitor;
1775 	uint32_t i, size = 0;
1776 	int16_t workload_type = 0;
1777 	static const char *profile_name[] = {
1778 					"BOOTUP_DEFAULT",
1779 					"3D_FULL_SCREEN",
1780 					"POWER_SAVING",
1781 					"VIDEO",
1782 					"VR",
1783 					"COMPUTE",
1784 					"CUSTOM"};
1785 	static const char *title[] = {
1786 			"PROFILE_INDEX(NAME)",
1787 			"CLOCK_TYPE(NAME)",
1788 			"FPS",
1789 			"UseRlcBusy",
1790 			"MinActiveFreqType",
1791 			"MinActiveFreq",
1792 			"BoosterFreqType",
1793 			"BoosterFreq",
1794 			"PD_Data_limit_c",
1795 			"PD_Data_error_coeff",
1796 			"PD_Data_error_rate_coeff"};
1797 	int result = 0;
1798 
1799 	if (!smu->pm_enabled || !buf)
1800 		return -EINVAL;
1801 
1802 	size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
1803 			title[0], title[1], title[2], title[3], title[4], title[5],
1804 			title[6], title[7], title[8], title[9], title[10]);
1805 
1806 	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
1807 		/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
1808 		workload_type = smu_workload_get_type(smu, i);
1809 		if (workload_type < 0)
1810 			return -EINVAL;
1811 
1812 		result = smu_update_table(smu,
1813 					  SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
1814 					  (void *)(&activity_monitor), false);
1815 		if (result) {
1816 			pr_err("[%s] Failed to get activity monitor!", __func__);
1817 			return result;
1818 		}
1819 
1820 		size += sprintf(buf + size, "%2d %14s%s:\n",
1821 			i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
1822 
1823 		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1824 			" ",
1825 			0,
1826 			"GFXCLK",
1827 			activity_monitor.Gfx_FPS,
1828 			activity_monitor.Gfx_UseRlcBusy,
1829 			activity_monitor.Gfx_MinActiveFreqType,
1830 			activity_monitor.Gfx_MinActiveFreq,
1831 			activity_monitor.Gfx_BoosterFreqType,
1832 			activity_monitor.Gfx_BoosterFreq,
1833 			activity_monitor.Gfx_PD_Data_limit_c,
1834 			activity_monitor.Gfx_PD_Data_error_coeff,
1835 			activity_monitor.Gfx_PD_Data_error_rate_coeff);
1836 
1837 		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1838 			" ",
1839 			1,
1840 			"SOCCLK",
1841 			activity_monitor.Soc_FPS,
1842 			activity_monitor.Soc_UseRlcBusy,
1843 			activity_monitor.Soc_MinActiveFreqType,
1844 			activity_monitor.Soc_MinActiveFreq,
1845 			activity_monitor.Soc_BoosterFreqType,
1846 			activity_monitor.Soc_BoosterFreq,
1847 			activity_monitor.Soc_PD_Data_limit_c,
1848 			activity_monitor.Soc_PD_Data_error_coeff,
1849 			activity_monitor.Soc_PD_Data_error_rate_coeff);
1850 
1851 		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1852 			" ",
1853 			2,
1854 			"UCLK",
1855 			activity_monitor.Mem_FPS,
1856 			activity_monitor.Mem_UseRlcBusy,
1857 			activity_monitor.Mem_MinActiveFreqType,
1858 			activity_monitor.Mem_MinActiveFreq,
1859 			activity_monitor.Mem_BoosterFreqType,
1860 			activity_monitor.Mem_BoosterFreq,
1861 			activity_monitor.Mem_PD_Data_limit_c,
1862 			activity_monitor.Mem_PD_Data_error_coeff,
1863 			activity_monitor.Mem_PD_Data_error_rate_coeff);
1864 
1865 		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1866 			" ",
1867 			3,
1868 			"FCLK",
1869 			activity_monitor.Fclk_FPS,
1870 			activity_monitor.Fclk_UseRlcBusy,
1871 			activity_monitor.Fclk_MinActiveFreqType,
1872 			activity_monitor.Fclk_MinActiveFreq,
1873 			activity_monitor.Fclk_BoosterFreqType,
1874 			activity_monitor.Fclk_BoosterFreq,
1875 			activity_monitor.Fclk_PD_Data_limit_c,
1876 			activity_monitor.Fclk_PD_Data_error_coeff,
1877 			activity_monitor.Fclk_PD_Data_error_rate_coeff);
1878 	}
1879 
1880 	return size;
1881 }
1882 
vega20_set_power_profile_mode(struct smu_context * smu,long * input,uint32_t size)1883 static int vega20_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
1884 {
1885 	DpmActivityMonitorCoeffInt_t activity_monitor;
1886 	int workload_type = 0, ret = 0;
1887 
1888 	smu->power_profile_mode = input[size];
1889 
1890 	if (!smu->pm_enabled)
1891 		return ret;
1892 	if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
1893 		pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
1894 		return -EINVAL;
1895 	}
1896 
1897 	if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
1898 		ret = smu_update_table(smu,
1899 				       SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
1900 				       (void *)(&activity_monitor), false);
1901 		if (ret) {
1902 			pr_err("[%s] Failed to get activity monitor!", __func__);
1903 			return ret;
1904 		}
1905 
1906 		switch (input[0]) {
1907 		case 0: /* Gfxclk */
1908 			activity_monitor.Gfx_FPS = input[1];
1909 			activity_monitor.Gfx_UseRlcBusy = input[2];
1910 			activity_monitor.Gfx_MinActiveFreqType = input[3];
1911 			activity_monitor.Gfx_MinActiveFreq = input[4];
1912 			activity_monitor.Gfx_BoosterFreqType = input[5];
1913 			activity_monitor.Gfx_BoosterFreq = input[6];
1914 			activity_monitor.Gfx_PD_Data_limit_c = input[7];
1915 			activity_monitor.Gfx_PD_Data_error_coeff = input[8];
1916 			activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
1917 			break;
1918 		case 1: /* Socclk */
1919 			activity_monitor.Soc_FPS = input[1];
1920 			activity_monitor.Soc_UseRlcBusy = input[2];
1921 			activity_monitor.Soc_MinActiveFreqType = input[3];
1922 			activity_monitor.Soc_MinActiveFreq = input[4];
1923 			activity_monitor.Soc_BoosterFreqType = input[5];
1924 			activity_monitor.Soc_BoosterFreq = input[6];
1925 			activity_monitor.Soc_PD_Data_limit_c = input[7];
1926 			activity_monitor.Soc_PD_Data_error_coeff = input[8];
1927 			activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
1928 			break;
1929 		case 2: /* Uclk */
1930 			activity_monitor.Mem_FPS = input[1];
1931 			activity_monitor.Mem_UseRlcBusy = input[2];
1932 			activity_monitor.Mem_MinActiveFreqType = input[3];
1933 			activity_monitor.Mem_MinActiveFreq = input[4];
1934 			activity_monitor.Mem_BoosterFreqType = input[5];
1935 			activity_monitor.Mem_BoosterFreq = input[6];
1936 			activity_monitor.Mem_PD_Data_limit_c = input[7];
1937 			activity_monitor.Mem_PD_Data_error_coeff = input[8];
1938 			activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
1939 			break;
1940 		case 3: /* Fclk */
1941 			activity_monitor.Fclk_FPS = input[1];
1942 			activity_monitor.Fclk_UseRlcBusy = input[2];
1943 			activity_monitor.Fclk_MinActiveFreqType = input[3];
1944 			activity_monitor.Fclk_MinActiveFreq = input[4];
1945 			activity_monitor.Fclk_BoosterFreqType = input[5];
1946 			activity_monitor.Fclk_BoosterFreq = input[6];
1947 			activity_monitor.Fclk_PD_Data_limit_c = input[7];
1948 			activity_monitor.Fclk_PD_Data_error_coeff = input[8];
1949 			activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
1950 			break;
1951 		}
1952 
1953 		ret = smu_update_table(smu,
1954 				       SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
1955 				       (void *)(&activity_monitor), true);
1956 		if (ret) {
1957 			pr_err("[%s] Failed to set activity monitor!", __func__);
1958 			return ret;
1959 		}
1960 	}
1961 
1962 	/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
1963 	workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
1964 	if (workload_type < 0)
1965 		return -EINVAL;
1966 	smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1967 				    1 << workload_type);
1968 
1969 	return ret;
1970 }
1971 
1972 static int
vega20_get_profiling_clk_mask(struct smu_context * smu,enum amd_dpm_forced_level level,uint32_t * sclk_mask,uint32_t * mclk_mask,uint32_t * soc_mask)1973 vega20_get_profiling_clk_mask(struct smu_context *smu,
1974 			      enum amd_dpm_forced_level level,
1975 			      uint32_t *sclk_mask,
1976 			      uint32_t *mclk_mask,
1977 			      uint32_t *soc_mask)
1978 {
1979 	struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
1980 	struct vega20_single_dpm_table *gfx_dpm_table;
1981 	struct vega20_single_dpm_table *mem_dpm_table;
1982 	struct vega20_single_dpm_table *soc_dpm_table;
1983 
1984 	if (!smu->smu_dpm.dpm_context)
1985 		return -EINVAL;
1986 
1987 	gfx_dpm_table = &dpm_table->gfx_table;
1988 	mem_dpm_table = &dpm_table->mem_table;
1989 	soc_dpm_table = &dpm_table->soc_table;
1990 
1991 	*sclk_mask = 0;
1992 	*mclk_mask = 0;
1993 	*soc_mask  = 0;
1994 
1995 	if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
1996 	    mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL &&
1997 	    soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) {
1998 		*sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL;
1999 		*mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL;
2000 		*soc_mask  = VEGA20_UMD_PSTATE_SOCCLK_LEVEL;
2001 	}
2002 
2003 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
2004 		*sclk_mask = 0;
2005 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
2006 		*mclk_mask = 0;
2007 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2008 		*sclk_mask = gfx_dpm_table->count - 1;
2009 		*mclk_mask = mem_dpm_table->count - 1;
2010 		*soc_mask  = soc_dpm_table->count - 1;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static int
vega20_set_uclk_to_highest_dpm_level(struct smu_context * smu,struct vega20_single_dpm_table * dpm_table)2017 vega20_set_uclk_to_highest_dpm_level(struct smu_context *smu,
2018 				     struct vega20_single_dpm_table *dpm_table)
2019 {
2020 	int ret = 0;
2021 	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
2022 	if (!smu_dpm_ctx->dpm_context)
2023 		return -EINVAL;
2024 
2025 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
2026 		if (dpm_table->count <= 0) {
2027 			pr_err("[%s] Dpm table has no entry!", __func__);
2028 				return -EINVAL;
2029 		}
2030 
2031 		if (dpm_table->count > NUM_UCLK_DPM_LEVELS) {
2032 			pr_err("[%s] Dpm table has too many entries!", __func__);
2033 				return -EINVAL;
2034 		}
2035 
2036 		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2037 		ret = smu_send_smc_msg_with_param(smu,
2038 				SMU_MSG_SetHardMinByFreq,
2039 				(PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level);
2040 		if (ret) {
2041 			pr_err("[%s] Set hard min uclk failed!", __func__);
2042 				return ret;
2043 		}
2044 	}
2045 
2046 	return ret;
2047 }
2048 
vega20_pre_display_config_changed(struct smu_context * smu)2049 static int vega20_pre_display_config_changed(struct smu_context *smu)
2050 {
2051 	int ret = 0;
2052 	struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
2053 
2054 	if (!smu->smu_dpm.dpm_context)
2055 		return -EINVAL;
2056 
2057 	smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
2058 	ret = vega20_set_uclk_to_highest_dpm_level(smu,
2059 						   &dpm_table->mem_table);
2060 	if (ret)
2061 		pr_err("Failed to set uclk to highest dpm level");
2062 	return ret;
2063 }
2064 
vega20_display_config_changed(struct smu_context * smu)2065 static int vega20_display_config_changed(struct smu_context *smu)
2066 {
2067 	int ret = 0;
2068 
2069 	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
2070 	    !(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
2071 		ret = smu_write_watermarks_table(smu);
2072 		if (ret) {
2073 			pr_err("Failed to update WMTABLE!");
2074 			return ret;
2075 		}
2076 		smu->watermarks_bitmap |= WATERMARKS_LOADED;
2077 	}
2078 
2079 	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
2080 	    smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
2081 	    smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
2082 		smu_send_smc_msg_with_param(smu,
2083 					    SMU_MSG_NumOfDisplays,
2084 					    smu->display_config->num_display);
2085 	}
2086 
2087 	return ret;
2088 }
2089 
vega20_apply_clocks_adjust_rules(struct smu_context * smu)2090 static int vega20_apply_clocks_adjust_rules(struct smu_context *smu)
2091 {
2092 	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
2093 	struct vega20_dpm_table *dpm_ctx = (struct vega20_dpm_table *)(smu_dpm_ctx->dpm_context);
2094 	struct vega20_single_dpm_table *dpm_table;
2095 	bool vblank_too_short = false;
2096 	bool disable_mclk_switching;
2097 	uint32_t i, latency;
2098 
2099 	disable_mclk_switching = ((1 < smu->display_config->num_display) &&
2100 				  !smu->display_config->multi_monitor_in_sync) || vblank_too_short;
2101 	latency = smu->display_config->dce_tolerable_mclk_in_active_latency;
2102 
2103 	/* gfxclk */
2104 	dpm_table = &(dpm_ctx->gfx_table);
2105 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2106 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2107 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2108 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2109 
2110 		if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) {
2111 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
2112 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
2113 		}
2114 
2115 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
2116 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2117 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
2118 		}
2119 
2120 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2121 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2122 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2123 		}
2124 
2125 	/* memclk */
2126 	dpm_table = &(dpm_ctx->mem_table);
2127 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2128 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2129 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2130 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2131 
2132 		if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) {
2133 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
2134 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
2135 		}
2136 
2137 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
2138 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2139 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
2140 		}
2141 
2142 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2143 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2144 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2145 		}
2146 
2147 	/* honour DAL's UCLK Hardmin */
2148 	if (dpm_table->dpm_state.hard_min_level < (smu->display_config->min_mem_set_clock / 100))
2149 		dpm_table->dpm_state.hard_min_level = smu->display_config->min_mem_set_clock / 100;
2150 
2151 	/* Hardmin is dependent on displayconfig */
2152 	if (disable_mclk_switching) {
2153 		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2154 		for (i = 0; i < smu_dpm_ctx->mclk_latency_table->count - 1; i++) {
2155 			if (smu_dpm_ctx->mclk_latency_table->entries[i].latency <= latency) {
2156 				if (dpm_table->dpm_levels[i].value >= (smu->display_config->min_mem_set_clock / 100)) {
2157 					dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value;
2158 					break;
2159 				}
2160 			}
2161 		}
2162 	}
2163 
2164 	if (smu->display_config->nb_pstate_switch_disable)
2165 		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2166 
2167 	/* vclk */
2168 	dpm_table = &(dpm_ctx->vclk_table);
2169 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2170 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2171 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2172 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2173 
2174 		if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
2175 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2176 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2177 		}
2178 
2179 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2180 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2181 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2182 		}
2183 
2184 	/* dclk */
2185 	dpm_table = &(dpm_ctx->dclk_table);
2186 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2187 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2188 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2189 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2190 
2191 		if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
2192 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2193 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2194 		}
2195 
2196 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2197 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2198 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2199 		}
2200 
2201 	/* socclk */
2202 	dpm_table = &(dpm_ctx->soc_table);
2203 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2204 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2205 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2206 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2207 
2208 		if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) {
2209 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
2210 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
2211 		}
2212 
2213 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2214 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2215 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2216 		}
2217 
2218 	/* eclk */
2219 	dpm_table = &(dpm_ctx->eclk_table);
2220 	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2221 	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2222 	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2223 	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2224 
2225 		if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) {
2226 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
2227 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
2228 		}
2229 
2230 		if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2231 			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2232 			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2233 		}
2234 	return 0;
2235 }
2236 
2237 static int
vega20_notify_smc_display_config(struct smu_context * smu)2238 vega20_notify_smc_display_config(struct smu_context *smu)
2239 {
2240 	struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
2241 	struct vega20_single_dpm_table *memtable = &dpm_table->mem_table;
2242 	struct smu_clocks min_clocks = {0};
2243 	struct pp_display_clock_request clock_req;
2244 	int ret = 0;
2245 
2246 	min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
2247 	min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
2248 	min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
2249 
2250 	if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
2251 		clock_req.clock_type = amd_pp_dcef_clock;
2252 		clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
2253 		if (!smu_v11_0_display_clock_voltage_request(smu, &clock_req)) {
2254 			if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
2255 				ret = smu_send_smc_msg_with_param(smu,
2256 								  SMU_MSG_SetMinDeepSleepDcefclk,
2257 								  min_clocks.dcef_clock_in_sr/100);
2258 				if (ret) {
2259 					pr_err("Attempt to set divider for DCEFCLK Failed!");
2260 					return ret;
2261 				}
2262 			}
2263 		} else {
2264 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
2265 		}
2266 	}
2267 
2268 	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
2269 		memtable->dpm_state.hard_min_level = min_clocks.memory_clock/100;
2270 		ret = smu_send_smc_msg_with_param(smu,
2271 						  SMU_MSG_SetHardMinByFreq,
2272 						  (PPCLK_UCLK << 16) | memtable->dpm_state.hard_min_level);
2273 		if (ret) {
2274 			pr_err("[%s] Set hard min uclk failed!", __func__);
2275 			return ret;
2276 		}
2277 	}
2278 
2279 	return 0;
2280 }
2281 
vega20_find_lowest_dpm_level(struct vega20_single_dpm_table * table)2282 static uint32_t vega20_find_lowest_dpm_level(struct vega20_single_dpm_table *table)
2283 {
2284 	uint32_t i;
2285 
2286 	for (i = 0; i < table->count; i++) {
2287 		if (table->dpm_levels[i].enabled)
2288 			break;
2289 	}
2290 	if (i >= table->count) {
2291 		i = 0;
2292 		table->dpm_levels[i].enabled = true;
2293 	}
2294 
2295 	return i;
2296 }
2297 
vega20_find_highest_dpm_level(struct vega20_single_dpm_table * table)2298 static uint32_t vega20_find_highest_dpm_level(struct vega20_single_dpm_table *table)
2299 {
2300 	int i = 0;
2301 
2302 	if (!table) {
2303 		pr_err("[%s] DPM Table does not exist!", __func__);
2304 		return 0;
2305 	}
2306 	if (table->count <= 0) {
2307 		pr_err("[%s] DPM Table has no entry!", __func__);
2308 		return 0;
2309 	}
2310 	if (table->count > MAX_REGULAR_DPM_NUMBER) {
2311 		pr_err("[%s] DPM Table has too many entries!", __func__);
2312 		return MAX_REGULAR_DPM_NUMBER - 1;
2313 	}
2314 
2315 	for (i = table->count - 1; i >= 0; i--) {
2316 		if (table->dpm_levels[i].enabled)
2317 			break;
2318 	}
2319 	if (i < 0) {
2320 		i = 0;
2321 		table->dpm_levels[i].enabled = true;
2322 	}
2323 
2324 	return i;
2325 }
2326 
vega20_force_dpm_limit_value(struct smu_context * smu,bool highest)2327 static int vega20_force_dpm_limit_value(struct smu_context *smu, bool highest)
2328 {
2329 	uint32_t soft_level;
2330 	int ret = 0;
2331 	struct vega20_dpm_table *dpm_table =
2332 		(struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
2333 
2334 	if (highest)
2335 		soft_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
2336 	else
2337 		soft_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
2338 
2339 	dpm_table->gfx_table.dpm_state.soft_min_level =
2340 		dpm_table->gfx_table.dpm_state.soft_max_level =
2341 		dpm_table->gfx_table.dpm_levels[soft_level].value;
2342 
2343 	if (highest)
2344 		soft_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
2345 	else
2346 		soft_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
2347 
2348 	dpm_table->mem_table.dpm_state.soft_min_level =
2349 		dpm_table->mem_table.dpm_state.soft_max_level =
2350 		dpm_table->mem_table.dpm_levels[soft_level].value;
2351 
2352 	if (highest)
2353 		soft_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
2354 	else
2355 		soft_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
2356 
2357 	dpm_table->soc_table.dpm_state.soft_min_level =
2358 		dpm_table->soc_table.dpm_state.soft_max_level =
2359 		dpm_table->soc_table.dpm_levels[soft_level].value;
2360 
2361 	ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
2362 	if (ret) {
2363 		pr_err("Failed to upload boot level to %s!\n",
2364 				highest ? "highest" : "lowest");
2365 		return ret;
2366 	}
2367 
2368 	ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
2369 	if (ret) {
2370 		pr_err("Failed to upload dpm max level to %s!\n!",
2371 				highest ? "highest" : "lowest");
2372 		return ret;
2373 	}
2374 
2375 	return ret;
2376 }
2377 
vega20_unforce_dpm_levels(struct smu_context * smu)2378 static int vega20_unforce_dpm_levels(struct smu_context *smu)
2379 {
2380 	uint32_t soft_min_level, soft_max_level;
2381 	int ret = 0;
2382 	struct vega20_dpm_table *dpm_table =
2383 		(struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
2384 
2385 	soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
2386 	soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
2387 	dpm_table->gfx_table.dpm_state.soft_min_level =
2388 		dpm_table->gfx_table.dpm_levels[soft_min_level].value;
2389 	dpm_table->gfx_table.dpm_state.soft_max_level =
2390 		dpm_table->gfx_table.dpm_levels[soft_max_level].value;
2391 
2392 	soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
2393 	soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
2394 	dpm_table->mem_table.dpm_state.soft_min_level =
2395 		dpm_table->gfx_table.dpm_levels[soft_min_level].value;
2396 	dpm_table->mem_table.dpm_state.soft_max_level =
2397 		dpm_table->gfx_table.dpm_levels[soft_max_level].value;
2398 
2399 	soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
2400 	soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
2401 	dpm_table->soc_table.dpm_state.soft_min_level =
2402 		dpm_table->soc_table.dpm_levels[soft_min_level].value;
2403 	dpm_table->soc_table.dpm_state.soft_max_level =
2404 		dpm_table->soc_table.dpm_levels[soft_max_level].value;
2405 
2406 	ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
2407 	if (ret) {
2408 		pr_err("Failed to upload DPM Bootup Levels!");
2409 		return ret;
2410 	}
2411 
2412 	ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
2413 	if (ret) {
2414 		pr_err("Failed to upload DPM Max Levels!");
2415 		return ret;
2416 	}
2417 
2418 	return ret;
2419 }
2420 
vega20_update_specified_od8_value(struct smu_context * smu,uint32_t index,uint32_t value)2421 static int vega20_update_specified_od8_value(struct smu_context *smu,
2422 					     uint32_t index,
2423 					     uint32_t value)
2424 {
2425 	struct smu_table_context *table_context = &smu->smu_table;
2426 	OverDriveTable_t *od_table =
2427 		(OverDriveTable_t *)(table_context->overdrive_table);
2428 	struct vega20_od8_settings *od8_settings =
2429 		(struct vega20_od8_settings *)smu->od_settings;
2430 
2431 	switch (index) {
2432 	case OD8_SETTING_GFXCLK_FMIN:
2433 		od_table->GfxclkFmin = (uint16_t)value;
2434 		break;
2435 
2436 	case OD8_SETTING_GFXCLK_FMAX:
2437 		if (value < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].min_value ||
2438 		    value > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value)
2439 			return -EINVAL;
2440 		od_table->GfxclkFmax = (uint16_t)value;
2441 		break;
2442 
2443 	case OD8_SETTING_GFXCLK_FREQ1:
2444 		od_table->GfxclkFreq1 = (uint16_t)value;
2445 		break;
2446 
2447 	case OD8_SETTING_GFXCLK_VOLTAGE1:
2448 		od_table->GfxclkVolt1 = (uint16_t)value;
2449 		break;
2450 
2451 	case OD8_SETTING_GFXCLK_FREQ2:
2452 		od_table->GfxclkFreq2 = (uint16_t)value;
2453 		break;
2454 
2455 	case OD8_SETTING_GFXCLK_VOLTAGE2:
2456 		od_table->GfxclkVolt2 = (uint16_t)value;
2457 		break;
2458 
2459 	case OD8_SETTING_GFXCLK_FREQ3:
2460 		od_table->GfxclkFreq3 = (uint16_t)value;
2461 		break;
2462 
2463 	case OD8_SETTING_GFXCLK_VOLTAGE3:
2464 		od_table->GfxclkVolt3 = (uint16_t)value;
2465 		break;
2466 
2467 	case OD8_SETTING_UCLK_FMAX:
2468 		if (value < od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].min_value ||
2469 		    value > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value)
2470 			return -EINVAL;
2471 		od_table->UclkFmax = (uint16_t)value;
2472 		break;
2473 
2474 	case OD8_SETTING_POWER_PERCENTAGE:
2475 		od_table->OverDrivePct = (int16_t)value;
2476 		break;
2477 
2478 	case OD8_SETTING_FAN_ACOUSTIC_LIMIT:
2479 		od_table->FanMaximumRpm = (uint16_t)value;
2480 		break;
2481 
2482 	case OD8_SETTING_FAN_MIN_SPEED:
2483 		od_table->FanMinimumPwm = (uint16_t)value;
2484 		break;
2485 
2486 	case OD8_SETTING_FAN_TARGET_TEMP:
2487 		od_table->FanTargetTemperature = (uint16_t)value;
2488 		break;
2489 
2490 	case OD8_SETTING_OPERATING_TEMP_MAX:
2491 		od_table->MaxOpTemp = (uint16_t)value;
2492 		break;
2493 	}
2494 
2495 	return 0;
2496 }
2497 
vega20_update_od8_settings(struct smu_context * smu,uint32_t index,uint32_t value)2498 static int vega20_update_od8_settings(struct smu_context *smu,
2499 				      uint32_t index,
2500 				      uint32_t value)
2501 {
2502 	struct smu_table_context *table_context = &smu->smu_table;
2503 	int ret;
2504 
2505 	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
2506 			       table_context->overdrive_table, false);
2507 	if (ret) {
2508 		pr_err("Failed to export over drive table!\n");
2509 		return ret;
2510 	}
2511 
2512 	ret = vega20_update_specified_od8_value(smu, index, value);
2513 	if (ret)
2514 		return ret;
2515 
2516 	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
2517 			       table_context->overdrive_table, true);
2518 	if (ret) {
2519 		pr_err("Failed to import over drive table!\n");
2520 		return ret;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
vega20_set_od_percentage(struct smu_context * smu,enum smu_clk_type clk_type,uint32_t value)2526 static int vega20_set_od_percentage(struct smu_context *smu,
2527 				    enum smu_clk_type clk_type,
2528 				    uint32_t value)
2529 {
2530 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
2531 	struct vega20_dpm_table *dpm_table = NULL;
2532 	struct vega20_dpm_table *golden_table = NULL;
2533 	struct vega20_single_dpm_table *single_dpm_table;
2534 	struct vega20_single_dpm_table *golden_dpm_table;
2535 	uint32_t od_clk, index;
2536 	int ret = 0;
2537 	int feature_enabled;
2538 	PPCLK_e clk_id;
2539 
2540 	dpm_table = smu_dpm->dpm_context;
2541 	golden_table = smu_dpm->golden_dpm_context;
2542 
2543 	switch (clk_type) {
2544 	case SMU_OD_SCLK:
2545 		single_dpm_table = &(dpm_table->gfx_table);
2546 		golden_dpm_table = &(golden_table->gfx_table);
2547 		feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT);
2548 		clk_id = PPCLK_GFXCLK;
2549 		index = OD8_SETTING_GFXCLK_FMAX;
2550 		break;
2551 	case SMU_OD_MCLK:
2552 		single_dpm_table = &(dpm_table->mem_table);
2553 		golden_dpm_table = &(golden_table->mem_table);
2554 		feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT);
2555 		clk_id = PPCLK_UCLK;
2556 		index = OD8_SETTING_UCLK_FMAX;
2557 		break;
2558 	default:
2559 		ret = -EINVAL;
2560 		break;
2561 	}
2562 
2563 	if (ret)
2564 		goto set_od_failed;
2565 
2566 	od_clk = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value * value;
2567 	od_clk /= 100;
2568 	od_clk += golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
2569 
2570 	ret = vega20_update_od8_settings(smu, index, od_clk);
2571 	if (ret) {
2572 		pr_err("[Setoverdrive] failed to set od clk!\n");
2573 		goto set_od_failed;
2574 	}
2575 
2576 	if (feature_enabled) {
2577 		ret = vega20_set_single_dpm_table(smu, single_dpm_table,
2578 						  clk_id);
2579 		if (ret) {
2580 			pr_err("[Setoverdrive] failed to refresh dpm table!\n");
2581 			goto set_od_failed;
2582 		}
2583 	} else {
2584 		single_dpm_table->count = 1;
2585 		single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
2586 	}
2587 
2588 	ret = smu_handle_task(smu, smu_dpm->dpm_level,
2589 			      AMD_PP_TASK_READJUST_POWER_STATE,
2590 			      false);
2591 
2592 set_od_failed:
2593 	return ret;
2594 }
2595 
vega20_odn_edit_dpm_table(struct smu_context * smu,enum PP_OD_DPM_TABLE_COMMAND type,long * input,uint32_t size)2596 static int vega20_odn_edit_dpm_table(struct smu_context *smu,
2597 				     enum PP_OD_DPM_TABLE_COMMAND type,
2598 				     long *input, uint32_t size)
2599 {
2600 	struct smu_table_context *table_context = &smu->smu_table;
2601 	OverDriveTable_t *od_table =
2602 		(OverDriveTable_t *)(table_context->overdrive_table);
2603 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
2604 	struct vega20_dpm_table *dpm_table = NULL;
2605 	struct vega20_single_dpm_table *single_dpm_table;
2606 	struct vega20_od8_settings *od8_settings =
2607 		(struct vega20_od8_settings *)smu->od_settings;
2608 	struct pp_clock_levels_with_latency clocks;
2609 	int32_t input_index, input_clk, input_vol, i;
2610 	int od8_id;
2611 	int ret = 0;
2612 
2613 	dpm_table = smu_dpm->dpm_context;
2614 
2615 	if (!input) {
2616 		pr_warn("NULL user input for clock and voltage\n");
2617 		return -EINVAL;
2618 	}
2619 
2620 	switch (type) {
2621 	case PP_OD_EDIT_SCLK_VDDC_TABLE:
2622 		if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
2623 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id)) {
2624 			pr_info("Sclk min/max frequency overdrive not supported\n");
2625 			return -EOPNOTSUPP;
2626 		}
2627 
2628 		for (i = 0; i < size; i += 2) {
2629 			if (i + 2 > size) {
2630 				pr_info("invalid number of input parameters %d\n", size);
2631 				return -EINVAL;
2632 			}
2633 
2634 			input_index = input[i];
2635 			input_clk = input[i + 1];
2636 
2637 			if (input_index != 0 && input_index != 1) {
2638 				pr_info("Invalid index %d\n", input_index);
2639 				pr_info("Support min/max sclk frequency settingonly which index by 0/1\n");
2640 				return -EINVAL;
2641 			}
2642 
2643 			if (input_clk < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value ||
2644 			    input_clk > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) {
2645 				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2646 					input_clk,
2647 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
2648 					od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
2649 				return -EINVAL;
2650 			}
2651 
2652 			if (input_index == 0 && od_table->GfxclkFmin != input_clk) {
2653 				od_table->GfxclkFmin = input_clk;
2654 				od8_settings->od_gfxclk_update = true;
2655 			} else if (input_index == 1 && od_table->GfxclkFmax != input_clk) {
2656 				od_table->GfxclkFmax = input_clk;
2657 				od8_settings->od_gfxclk_update = true;
2658 			}
2659 		}
2660 
2661 		break;
2662 
2663 	case PP_OD_EDIT_MCLK_VDDC_TABLE:
2664 		if (!od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
2665 			pr_info("Mclk max frequency overdrive not supported\n");
2666 			return -EOPNOTSUPP;
2667 		}
2668 
2669 		single_dpm_table = &(dpm_table->mem_table);
2670 		ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
2671 		if (ret) {
2672 			pr_err("Attempt to get memory clk levels Failed!");
2673 			return ret;
2674 		}
2675 
2676 		for (i = 0; i < size; i += 2) {
2677 			if (i + 2 > size) {
2678 				pr_info("invalid number of input parameters %d\n",
2679 					 size);
2680 				return -EINVAL;
2681 			}
2682 
2683 			input_index = input[i];
2684 			input_clk = input[i + 1];
2685 
2686 			if (input_index != 1) {
2687 				pr_info("Invalid index %d\n", input_index);
2688 				pr_info("Support max Mclk frequency setting only which index by 1\n");
2689 				return -EINVAL;
2690 			}
2691 
2692 			if (input_clk < clocks.data[0].clocks_in_khz / 1000 ||
2693 			    input_clk > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) {
2694 				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2695 					input_clk,
2696 					clocks.data[0].clocks_in_khz / 1000,
2697 					od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
2698 				return -EINVAL;
2699 			}
2700 
2701 			if (input_index == 1 && od_table->UclkFmax != input_clk) {
2702 				od8_settings->od_gfxclk_update = true;
2703 				od_table->UclkFmax = input_clk;
2704 			}
2705 		}
2706 
2707 		break;
2708 
2709 	case PP_OD_EDIT_VDDC_CURVE:
2710 		if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
2711 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
2712 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
2713 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
2714 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
2715 		      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) {
2716 			pr_info("Voltage curve calibrate not supported\n");
2717 			return -EOPNOTSUPP;
2718 		}
2719 
2720 		for (i = 0; i < size; i += 3) {
2721 			if (i + 3 > size) {
2722 				pr_info("invalid number of input parameters %d\n",
2723 					size);
2724 				return -EINVAL;
2725 			}
2726 
2727 			input_index = input[i];
2728 			input_clk = input[i + 1];
2729 			input_vol = input[i + 2];
2730 
2731 			if (input_index > 2) {
2732 				pr_info("Setting for point %d is not supported\n",
2733 					input_index + 1);
2734 				pr_info("Three supported points index by 0, 1, 2\n");
2735 				return -EINVAL;
2736 			}
2737 
2738 			od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index;
2739 			if (input_clk < od8_settings->od8_settings_array[od8_id].min_value ||
2740 			    input_clk > od8_settings->od8_settings_array[od8_id].max_value) {
2741 				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2742 					input_clk,
2743 					od8_settings->od8_settings_array[od8_id].min_value,
2744 					od8_settings->od8_settings_array[od8_id].max_value);
2745 				return -EINVAL;
2746 			}
2747 
2748 			od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index;
2749 			if (input_vol < od8_settings->od8_settings_array[od8_id].min_value ||
2750 			    input_vol > od8_settings->od8_settings_array[od8_id].max_value) {
2751 				pr_info("clock voltage %d is not within allowed range [%d- %d]\n",
2752 					input_vol,
2753 					od8_settings->od8_settings_array[od8_id].min_value,
2754 					od8_settings->od8_settings_array[od8_id].max_value);
2755 				return -EINVAL;
2756 			}
2757 
2758 			switch (input_index) {
2759 			case 0:
2760 				od_table->GfxclkFreq1 = input_clk;
2761 				od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE;
2762 				break;
2763 			case 1:
2764 				od_table->GfxclkFreq2 = input_clk;
2765 				od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE;
2766 				break;
2767 			case 2:
2768 				od_table->GfxclkFreq3 = input_clk;
2769 				od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE;
2770 				break;
2771 			}
2772 		}
2773 
2774 		break;
2775 
2776 	case PP_OD_RESTORE_DEFAULT_TABLE:
2777 		if (!(table_context->overdrive_table && table_context->boot_overdrive_table)) {
2778 			pr_err("Overdrive table was not initialized!\n");
2779 			return -EINVAL;
2780 		}
2781 		memcpy(table_context->overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t));
2782 		break;
2783 
2784 	case PP_OD_COMMIT_DPM_TABLE:
2785 		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
2786 		if (ret) {
2787 			pr_err("Failed to import over drive table!\n");
2788 			return ret;
2789 		}
2790 
2791 		/* retrieve updated gfxclk table */
2792 		if (od8_settings->od_gfxclk_update) {
2793 			od8_settings->od_gfxclk_update = false;
2794 			single_dpm_table = &(dpm_table->gfx_table);
2795 
2796 			if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
2797 				ret = vega20_set_single_dpm_table(smu, single_dpm_table,
2798 								  PPCLK_GFXCLK);
2799 				if (ret) {
2800 					pr_err("[Setoverdrive] failed to refresh dpm table!\n");
2801 					return ret;
2802 				}
2803 			} else {
2804 				single_dpm_table->count = 1;
2805 				single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
2806 			}
2807 		}
2808 
2809 		break;
2810 
2811 	default:
2812 		return -EINVAL;
2813 	}
2814 
2815 	if (type == PP_OD_COMMIT_DPM_TABLE) {
2816 		ret = smu_handle_task(smu, smu_dpm->dpm_level,
2817 				      AMD_PP_TASK_READJUST_POWER_STATE,
2818 				      false);
2819 	}
2820 
2821 	return ret;
2822 }
2823 
vega20_dpm_set_uvd_enable(struct smu_context * smu,bool enable)2824 static int vega20_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
2825 {
2826 	if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_UVD_BIT))
2827 		return 0;
2828 
2829 	if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT))
2830 		return 0;
2831 
2832 	return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_UVD_BIT, enable);
2833 }
2834 
vega20_dpm_set_vce_enable(struct smu_context * smu,bool enable)2835 static int vega20_dpm_set_vce_enable(struct smu_context *smu, bool enable)
2836 {
2837 	if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_VCE_BIT))
2838 		return 0;
2839 
2840 	if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT))
2841 		return 0;
2842 
2843 	return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_VCE_BIT, enable);
2844 }
2845 
vega20_is_dpm_running(struct smu_context * smu)2846 static bool vega20_is_dpm_running(struct smu_context *smu)
2847 {
2848 	int ret __unused = 0;
2849 	uint32_t feature_mask[2];
2850 	unsigned long feature_enabled;
2851 	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
2852 	feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
2853 			   ((uint64_t)feature_mask[1] << 32));
2854 	return !!(feature_enabled & SMC_DPM_FEATURE);
2855 }
2856 
vega20_set_thermal_fan_table(struct smu_context * smu)2857 static int vega20_set_thermal_fan_table(struct smu_context *smu)
2858 {
2859 	int ret;
2860 	struct smu_table_context *table_context = &smu->smu_table;
2861 	PPTable_t *pptable = table_context->driver_pptable;
2862 
2863 	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget,
2864 			(uint32_t)pptable->FanTargetTemperature);
2865 
2866 	return ret;
2867 }
2868 
vega20_get_fan_speed_rpm(struct smu_context * smu,uint32_t * speed)2869 static int vega20_get_fan_speed_rpm(struct smu_context *smu,
2870 				    uint32_t *speed)
2871 {
2872 	int ret;
2873 
2874 	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);
2875 
2876 	if (ret) {
2877 		pr_err("Attempt to get current RPM from SMC Failed!\n");
2878 		return ret;
2879 	}
2880 
2881 	smu_read_smc_arg(smu, speed);
2882 
2883 	return 0;
2884 }
2885 
vega20_get_fan_speed_percent(struct smu_context * smu,uint32_t * speed)2886 static int vega20_get_fan_speed_percent(struct smu_context *smu,
2887 					uint32_t *speed)
2888 {
2889 	int ret = 0;
2890 	uint32_t current_rpm = 0, percent = 0;
2891 	PPTable_t *pptable = smu->smu_table.driver_pptable;
2892 
2893 	ret = vega20_get_fan_speed_rpm(smu, &current_rpm);
2894 	if (ret)
2895 		return ret;
2896 
2897 	percent = current_rpm * 100 / pptable->FanMaximumRpm;
2898 	*speed = percent > 100 ? 100 : percent;
2899 
2900 	return 0;
2901 }
2902 
vega20_get_gpu_power(struct smu_context * smu,uint32_t * value)2903 static int vega20_get_gpu_power(struct smu_context *smu, uint32_t *value)
2904 {
2905 	uint32_t smu_version;
2906 	int ret = 0;
2907 	SmuMetrics_t metrics;
2908 
2909 	if (!value)
2910 		return -EINVAL;
2911 
2912 	ret = vega20_get_metrics_table(smu, &metrics);
2913 	if (ret)
2914 		return ret;
2915 
2916 	ret = smu_get_smc_version(smu, NULL, &smu_version);
2917 	if (ret)
2918 		return ret;
2919 
2920 	/* For the 40.46 release, they changed the value name */
2921 	if (smu_version == 0x282e00)
2922 		*value = metrics.AverageSocketPower << 8;
2923 	else
2924 		*value = metrics.CurrSocketPower << 8;
2925 
2926 	return 0;
2927 }
2928 
vega20_get_current_activity_percent(struct smu_context * smu,enum amd_pp_sensors sensor,uint32_t * value)2929 static int vega20_get_current_activity_percent(struct smu_context *smu,
2930 					       enum amd_pp_sensors sensor,
2931 					       uint32_t *value)
2932 {
2933 	int ret = 0;
2934 	SmuMetrics_t metrics;
2935 
2936 	if (!value)
2937 		return -EINVAL;
2938 
2939 	ret = vega20_get_metrics_table(smu, &metrics);
2940 	if (ret)
2941 		return ret;
2942 
2943 	switch (sensor) {
2944 	case AMDGPU_PP_SENSOR_GPU_LOAD:
2945 		*value = metrics.AverageGfxActivity;
2946 		break;
2947 	case AMDGPU_PP_SENSOR_MEM_LOAD:
2948 		*value = metrics.AverageUclkActivity;
2949 		break;
2950 	default:
2951 		pr_err("Invalid sensor for retrieving clock activity\n");
2952 		return -EINVAL;
2953 	}
2954 
2955 	return 0;
2956 }
2957 
vega20_thermal_get_temperature(struct smu_context * smu,enum amd_pp_sensors sensor,uint32_t * value)2958 static int vega20_thermal_get_temperature(struct smu_context *smu,
2959 					     enum amd_pp_sensors sensor,
2960 					     uint32_t *value)
2961 {
2962 	struct amdgpu_device *adev = smu->adev;
2963 	SmuMetrics_t metrics;
2964 	uint32_t temp = 0;
2965 	int ret = 0;
2966 
2967 	if (!value)
2968 		return -EINVAL;
2969 
2970 	ret = vega20_get_metrics_table(smu, &metrics);
2971 	if (ret)
2972 		return ret;
2973 
2974 	switch (sensor) {
2975 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
2976 		temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
2977 		temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
2978 				CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
2979 
2980 		temp = temp & 0x1ff;
2981 		temp *= SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
2982 
2983 		*value = temp;
2984 		break;
2985 	case AMDGPU_PP_SENSOR_EDGE_TEMP:
2986 		*value = metrics.TemperatureEdge *
2987 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
2988 		break;
2989 	case AMDGPU_PP_SENSOR_MEM_TEMP:
2990 		*value = metrics.TemperatureHBM *
2991 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
2992 		break;
2993 	default:
2994 		pr_err("Invalid sensor for retrieving temp\n");
2995 		return -EINVAL;
2996 	}
2997 
2998 	return 0;
2999 }
vega20_read_sensor(struct smu_context * smu,enum amd_pp_sensors sensor,void * data,uint32_t * size)3000 static int vega20_read_sensor(struct smu_context *smu,
3001 				 enum amd_pp_sensors sensor,
3002 				 void *data, uint32_t *size)
3003 {
3004 	int ret = 0;
3005 	struct smu_table_context *table_context = &smu->smu_table;
3006 	PPTable_t *pptable = table_context->driver_pptable;
3007 
3008 	if(!data || !size)
3009 		return -EINVAL;
3010 
3011 	mutex_lock(&smu->sensor_lock);
3012 	switch (sensor) {
3013 	case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
3014 		*(uint32_t *)data = pptable->FanMaximumRpm;
3015 		*size = 4;
3016 		break;
3017 	case AMDGPU_PP_SENSOR_MEM_LOAD:
3018 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3019 		ret = vega20_get_current_activity_percent(smu,
3020 						sensor,
3021 						(uint32_t *)data);
3022 		*size = 4;
3023 		break;
3024 	case AMDGPU_PP_SENSOR_GPU_POWER:
3025 		ret = vega20_get_gpu_power(smu, (uint32_t *)data);
3026 		*size = 4;
3027 		break;
3028 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3029 	case AMDGPU_PP_SENSOR_EDGE_TEMP:
3030 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3031 		ret = vega20_thermal_get_temperature(smu, sensor, (uint32_t *)data);
3032 		*size = 4;
3033 		break;
3034 	default:
3035 		ret = smu_v11_0_read_sensor(smu, sensor, data, size);
3036 	}
3037 	mutex_unlock(&smu->sensor_lock);
3038 
3039 	return ret;
3040 }
3041 
vega20_set_watermarks_table(struct smu_context * smu,void * watermarks,struct dm_pp_wm_sets_with_clock_ranges_soc15 * clock_ranges)3042 static int vega20_set_watermarks_table(struct smu_context *smu,
3043 				       void *watermarks, struct
3044 				       dm_pp_wm_sets_with_clock_ranges_soc15
3045 				       *clock_ranges)
3046 {
3047 	int i;
3048 	Watermarks_t *table = watermarks;
3049 
3050 	if (!table || !clock_ranges)
3051 		return -EINVAL;
3052 
3053 	if (clock_ranges->num_wm_dmif_sets > 4 ||
3054 	    clock_ranges->num_wm_mcif_sets > 4)
3055 		return -EINVAL;
3056 
3057 	for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
3058 		table->WatermarkRow[1][i].MinClock =
3059 			cpu_to_le16((uint16_t)
3060 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
3061 			1000));
3062 		table->WatermarkRow[1][i].MaxClock =
3063 			cpu_to_le16((uint16_t)
3064 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
3065 			1000));
3066 		table->WatermarkRow[1][i].MinUclk =
3067 			cpu_to_le16((uint16_t)
3068 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
3069 			1000));
3070 		table->WatermarkRow[1][i].MaxUclk =
3071 			cpu_to_le16((uint16_t)
3072 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
3073 			1000));
3074 		table->WatermarkRow[1][i].WmSetting = (uint8_t)
3075 				clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
3076 	}
3077 
3078 	for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
3079 		table->WatermarkRow[0][i].MinClock =
3080 			cpu_to_le16((uint16_t)
3081 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
3082 			1000));
3083 		table->WatermarkRow[0][i].MaxClock =
3084 			cpu_to_le16((uint16_t)
3085 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
3086 			1000));
3087 		table->WatermarkRow[0][i].MinUclk =
3088 			cpu_to_le16((uint16_t)
3089 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
3090 			1000));
3091 		table->WatermarkRow[0][i].MaxUclk =
3092 			cpu_to_le16((uint16_t)
3093 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
3094 			1000));
3095 		table->WatermarkRow[0][i].WmSetting = (uint8_t)
3096 				clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
vega20_get_thermal_temperature_range(struct smu_context * smu,struct smu_temperature_range * range)3102 static int vega20_get_thermal_temperature_range(struct smu_context *smu,
3103 						struct smu_temperature_range *range)
3104 {
3105 	struct smu_table_context *table_context = &smu->smu_table;
3106 	const ATOM_Vega20_POWERPLAYTABLE *powerplay_table = table_context->power_play_table;
3107 	PPTable_t *pptable = smu->smu_table.driver_pptable;
3108 
3109 	if (!range || !powerplay_table)
3110 		return -EINVAL;
3111 
3112 	range->max = powerplay_table->usSoftwareShutdownTemp *
3113 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3114 	range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
3115 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3116 	range->hotspot_crit_max = pptable->ThotspotLimit *
3117 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3118 	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
3119 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3120 	range->mem_crit_max = pptable->ThbmLimit *
3121 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3122 	range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM) *
3123 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3124 
3125 
3126 	return 0;
3127 }
3128 
vega20_set_df_cstate(struct smu_context * smu,enum pp_df_cstate state)3129 static int vega20_set_df_cstate(struct smu_context *smu,
3130 				enum pp_df_cstate state)
3131 {
3132 	uint32_t smu_version;
3133 	int ret;
3134 
3135 	ret = smu_get_smc_version(smu, NULL, &smu_version);
3136 	if (ret) {
3137 		pr_err("Failed to get smu version!\n");
3138 		return ret;
3139 	}
3140 
3141 	/* PPSMC_MSG_DFCstateControl is supported with 40.50 and later fws */
3142 	if (smu_version < 0x283200) {
3143 		pr_err("Df cstate control is supported with 40.50 and later SMC fw!\n");
3144 		return -EINVAL;
3145 	}
3146 
3147 	return smu_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state);
3148 }
3149 
vega20_update_pcie_parameters(struct smu_context * smu,uint32_t pcie_gen_cap,uint32_t pcie_width_cap)3150 static int vega20_update_pcie_parameters(struct smu_context *smu,
3151 				     uint32_t pcie_gen_cap,
3152 				     uint32_t pcie_width_cap)
3153 {
3154 	PPTable_t *pptable = smu->smu_table.driver_pptable;
3155 	int ret, i;
3156 	uint32_t smu_pcie_arg;
3157 
3158 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
3159 		smu_pcie_arg = (i << 16) |
3160 			((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ? (pptable->PcieGenSpeed[i] << 8) :
3161 				(pcie_gen_cap << 8)) | ((pptable->PcieLaneCount[i] <= pcie_width_cap) ?
3162 					pptable->PcieLaneCount[i] : pcie_width_cap);
3163 		ret = smu_send_smc_msg_with_param(smu,
3164 					  SMU_MSG_OverridePcieParameters,
3165 					  smu_pcie_arg);
3166 	}
3167 
3168 	return ret;
3169 }
3170 
3171 
3172 static const struct pptable_funcs vega20_ppt_funcs = {
3173 	.tables_init = vega20_tables_init,
3174 	.alloc_dpm_context = vega20_allocate_dpm_context,
3175 	.store_powerplay_table = vega20_store_powerplay_table,
3176 	.check_powerplay_table = vega20_check_powerplay_table,
3177 	.append_powerplay_table = vega20_append_powerplay_table,
3178 	.get_smu_msg_index = vega20_get_smu_msg_index,
3179 	.get_smu_clk_index = vega20_get_smu_clk_index,
3180 	.get_smu_feature_index = vega20_get_smu_feature_index,
3181 	.get_smu_table_index = vega20_get_smu_table_index,
3182 	.get_smu_power_index = vega20_get_pwr_src_index,
3183 	.get_workload_type = vega20_get_workload_type,
3184 	.run_btc = vega20_run_btc_afll,
3185 	.get_allowed_feature_mask = vega20_get_allowed_feature_mask,
3186 	.get_current_power_state = vega20_get_current_power_state,
3187 	.set_default_dpm_table = vega20_set_default_dpm_table,
3188 	.set_power_state = NULL,
3189 	.populate_umd_state_clk = vega20_populate_umd_state_clk,
3190 	.print_clk_levels = vega20_print_clk_levels,
3191 	.force_clk_levels = vega20_force_clk_levels,
3192 	.get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency,
3193 	.get_od_percentage = vega20_get_od_percentage,
3194 	.get_power_profile_mode = vega20_get_power_profile_mode,
3195 	.set_power_profile_mode = vega20_set_power_profile_mode,
3196 	.set_performance_level = smu_v11_0_set_performance_level,
3197 	.set_od_percentage = vega20_set_od_percentage,
3198 	.set_default_od_settings = vega20_set_default_od_settings,
3199 	.od_edit_dpm_table = vega20_odn_edit_dpm_table,
3200 	.dpm_set_uvd_enable = vega20_dpm_set_uvd_enable,
3201 	.dpm_set_vce_enable = vega20_dpm_set_vce_enable,
3202 	.read_sensor = vega20_read_sensor,
3203 	.pre_display_config_changed = vega20_pre_display_config_changed,
3204 	.display_config_changed = vega20_display_config_changed,
3205 	.apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules,
3206 	.notify_smc_display_config = vega20_notify_smc_display_config,
3207 	.force_dpm_limit_value = vega20_force_dpm_limit_value,
3208 	.unforce_dpm_levels = vega20_unforce_dpm_levels,
3209 	.get_profiling_clk_mask = vega20_get_profiling_clk_mask,
3210 	.is_dpm_running = vega20_is_dpm_running,
3211 	.set_thermal_fan_table = vega20_set_thermal_fan_table,
3212 	.get_fan_speed_percent = vega20_get_fan_speed_percent,
3213 	.get_fan_speed_rpm = vega20_get_fan_speed_rpm,
3214 	.set_watermarks_table = vega20_set_watermarks_table,
3215 	.get_thermal_temperature_range = vega20_get_thermal_temperature_range,
3216 	.set_df_cstate = vega20_set_df_cstate,
3217 	.update_pcie_parameters = vega20_update_pcie_parameters,
3218 	.init_microcode = smu_v11_0_init_microcode,
3219 	.load_microcode = smu_v11_0_load_microcode,
3220 	.init_smc_tables = smu_v11_0_init_smc_tables,
3221 	.fini_smc_tables = smu_v11_0_fini_smc_tables,
3222 	.init_power = smu_v11_0_init_power,
3223 	.fini_power = smu_v11_0_fini_power,
3224 	.check_fw_status = smu_v11_0_check_fw_status,
3225 	.setup_pptable = smu_v11_0_setup_pptable,
3226 	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
3227 	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
3228 	.check_pptable = smu_v11_0_check_pptable,
3229 	.parse_pptable = smu_v11_0_parse_pptable,
3230 	.populate_smc_tables = smu_v11_0_populate_smc_pptable,
3231 	.check_fw_version = smu_v11_0_check_fw_version,
3232 	.write_pptable = smu_v11_0_write_pptable,
3233 	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
3234 	.set_driver_table_location = smu_v11_0_set_driver_table_location,
3235 	.set_tool_table_location = smu_v11_0_set_tool_table_location,
3236 	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
3237 	.system_features_control = smu_v11_0_system_features_control,
3238 	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
3239 	.read_smc_arg = smu_v11_0_read_arg,
3240 	.init_display_count = smu_v11_0_init_display_count,
3241 	.set_allowed_mask = smu_v11_0_set_allowed_mask,
3242 	.get_enabled_mask = smu_v11_0_get_enabled_mask,
3243 	.notify_display_change = smu_v11_0_notify_display_change,
3244 	.set_power_limit = smu_v11_0_set_power_limit,
3245 	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
3246 	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
3247 	.start_thermal_control = smu_v11_0_start_thermal_control,
3248 	.stop_thermal_control = smu_v11_0_stop_thermal_control,
3249 	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
3250 	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
3251 	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
3252 	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
3253 	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
3254 	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
3255 	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
3256 	.gfx_off_control = smu_v11_0_gfx_off_control,
3257 	.register_irq_handler = smu_v11_0_register_irq_handler,
3258 	.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
3259 	.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
3260 	.baco_is_support= smu_v11_0_baco_is_support,
3261 	.baco_get_state = smu_v11_0_baco_get_state,
3262 	.baco_set_state = smu_v11_0_baco_set_state,
3263 	.baco_enter = smu_v11_0_baco_enter,
3264 	.baco_exit = smu_v11_0_baco_exit,
3265 	.get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq,
3266 	.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
3267 	.override_pcie_parameters = smu_v11_0_override_pcie_parameters,
3268 };
3269 
vega20_set_ppt_funcs(struct smu_context * smu)3270 void vega20_set_ppt_funcs(struct smu_context *smu)
3271 {
3272 	smu->ppt_funcs = &vega20_ppt_funcs;
3273 }
3274