xref: /netbsd-src/crypto/external/bsd/openssl.old/dist/crypto/x509v3/v3_addr.c (revision 4724848cf0da353df257f730694b7882798e5daf)
1 /*
2  * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * Implementation of RFC 3779 section 2.2.
12  */
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18 
19 #include "internal/cryptlib.h"
20 #include <openssl/conf.h>
21 #include <openssl/asn1.h>
22 #include <openssl/asn1t.h>
23 #include <openssl/buffer.h>
24 #include <openssl/x509v3.h>
25 #include "crypto/x509.h"
26 #include "ext_dat.h"
27 
28 #ifndef OPENSSL_NO_RFC3779
29 
30 /*
31  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
32  */
33 
34 ASN1_SEQUENCE(IPAddressRange) = {
35   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
36   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
37 } ASN1_SEQUENCE_END(IPAddressRange)
38 
39 ASN1_CHOICE(IPAddressOrRange) = {
40   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
41   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
42 } ASN1_CHOICE_END(IPAddressOrRange)
43 
44 ASN1_CHOICE(IPAddressChoice) = {
45   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
46   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
47 } ASN1_CHOICE_END(IPAddressChoice)
48 
49 ASN1_SEQUENCE(IPAddressFamily) = {
50   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
51   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
52 } ASN1_SEQUENCE_END(IPAddressFamily)
53 
54 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
55   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
56                         IPAddrBlocks, IPAddressFamily)
57 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
58 
59 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
61 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
62 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
63 
64 /*
65  * How much buffer space do we need for a raw address?
66  */
67 #define ADDR_RAW_BUF_LEN        16
68 
69 /*
70  * What's the address length associated with this AFI?
71  */
72 static int length_from_afi(const unsigned afi)
73 {
74     switch (afi) {
75     case IANA_AFI_IPV4:
76         return 4;
77     case IANA_AFI_IPV6:
78         return 16;
79     default:
80         return 0;
81     }
82 }
83 
84 /*
85  * Extract the AFI from an IPAddressFamily.
86  */
X509v3_addr_get_afi(const IPAddressFamily * f)87 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
88 {
89     if (f == NULL
90             || f->addressFamily == NULL
91             || f->addressFamily->data == NULL
92             || f->addressFamily->length < 2)
93         return 0;
94     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
95 }
96 
97 /*
98  * Expand the bitstring form of an address into a raw byte array.
99  * At the moment this is coded for simplicity, not speed.
100  */
addr_expand(unsigned char * addr,const ASN1_BIT_STRING * bs,const int length,const unsigned char fill)101 static int addr_expand(unsigned char *addr,
102                        const ASN1_BIT_STRING *bs,
103                        const int length, const unsigned char fill)
104 {
105     if (bs->length < 0 || bs->length > length)
106         return 0;
107     if (bs->length > 0) {
108         memcpy(addr, bs->data, bs->length);
109         if ((bs->flags & 7) != 0) {
110             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
111             if (fill == 0)
112                 addr[bs->length - 1] &= ~mask;
113             else
114                 addr[bs->length - 1] |= mask;
115         }
116     }
117     memset(addr + bs->length, fill, length - bs->length);
118     return 1;
119 }
120 
121 /*
122  * Extract the prefix length from a bitstring.
123  */
124 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
125 
126 /*
127  * i2r handler for one address bitstring.
128  */
i2r_address(BIO * out,const unsigned afi,const unsigned char fill,const ASN1_BIT_STRING * bs)129 static int i2r_address(BIO *out,
130                        const unsigned afi,
131                        const unsigned char fill, const ASN1_BIT_STRING *bs)
132 {
133     unsigned char addr[ADDR_RAW_BUF_LEN];
134     int i, n;
135 
136     if (bs->length < 0)
137         return 0;
138     switch (afi) {
139     case IANA_AFI_IPV4:
140         if (!addr_expand(addr, bs, 4, fill))
141             return 0;
142         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
143         break;
144     case IANA_AFI_IPV6:
145         if (!addr_expand(addr, bs, 16, fill))
146             return 0;
147         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
148              n -= 2) ;
149         for (i = 0; i < n; i += 2)
150             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
151                        (i < 14 ? ":" : ""));
152         if (i < 16)
153             BIO_puts(out, ":");
154         if (i == 0)
155             BIO_puts(out, ":");
156         break;
157     default:
158         for (i = 0; i < bs->length; i++)
159             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
160         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
161         break;
162     }
163     return 1;
164 }
165 
166 /*
167  * i2r handler for a sequence of addresses and ranges.
168  */
i2r_IPAddressOrRanges(BIO * out,const int indent,const IPAddressOrRanges * aors,const unsigned afi)169 static int i2r_IPAddressOrRanges(BIO *out,
170                                  const int indent,
171                                  const IPAddressOrRanges *aors,
172                                  const unsigned afi)
173 {
174     int i;
175     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
176         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
177         BIO_printf(out, "%*s", indent, "");
178         switch (aor->type) {
179         case IPAddressOrRange_addressPrefix:
180             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
181                 return 0;
182             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
183             continue;
184         case IPAddressOrRange_addressRange:
185             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
186                 return 0;
187             BIO_puts(out, "-");
188             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
189                 return 0;
190             BIO_puts(out, "\n");
191             continue;
192         }
193     }
194     return 1;
195 }
196 
197 /*
198  * i2r handler for an IPAddrBlocks extension.
199  */
i2r_IPAddrBlocks(const X509V3_EXT_METHOD * method,void * ext,BIO * out,int indent)200 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
201                             void *ext, BIO *out, int indent)
202 {
203     const IPAddrBlocks *addr = ext;
204     int i;
205     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
206         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
207         const unsigned int afi = X509v3_addr_get_afi(f);
208         switch (afi) {
209         case IANA_AFI_IPV4:
210             BIO_printf(out, "%*sIPv4", indent, "");
211             break;
212         case IANA_AFI_IPV6:
213             BIO_printf(out, "%*sIPv6", indent, "");
214             break;
215         default:
216             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
217             break;
218         }
219         if (f->addressFamily->length > 2) {
220             switch (f->addressFamily->data[2]) {
221             case 1:
222                 BIO_puts(out, " (Unicast)");
223                 break;
224             case 2:
225                 BIO_puts(out, " (Multicast)");
226                 break;
227             case 3:
228                 BIO_puts(out, " (Unicast/Multicast)");
229                 break;
230             case 4:
231                 BIO_puts(out, " (MPLS)");
232                 break;
233             case 64:
234                 BIO_puts(out, " (Tunnel)");
235                 break;
236             case 65:
237                 BIO_puts(out, " (VPLS)");
238                 break;
239             case 66:
240                 BIO_puts(out, " (BGP MDT)");
241                 break;
242             case 128:
243                 BIO_puts(out, " (MPLS-labeled VPN)");
244                 break;
245             default:
246                 BIO_printf(out, " (Unknown SAFI %u)",
247                            (unsigned)f->addressFamily->data[2]);
248                 break;
249             }
250         }
251         switch (f->ipAddressChoice->type) {
252         case IPAddressChoice_inherit:
253             BIO_puts(out, ": inherit\n");
254             break;
255         case IPAddressChoice_addressesOrRanges:
256             BIO_puts(out, ":\n");
257             if (!i2r_IPAddressOrRanges(out,
258                                        indent + 2,
259                                        f->ipAddressChoice->
260                                        u.addressesOrRanges, afi))
261                 return 0;
262             break;
263         }
264     }
265     return 1;
266 }
267 
268 /*
269  * Sort comparison function for a sequence of IPAddressOrRange
270  * elements.
271  *
272  * There's no sane answer we can give if addr_expand() fails, and an
273  * assertion failure on externally supplied data is seriously uncool,
274  * so we just arbitrarily declare that if given invalid inputs this
275  * function returns -1.  If this messes up your preferred sort order
276  * for garbage input, tough noogies.
277  */
IPAddressOrRange_cmp(const IPAddressOrRange * a,const IPAddressOrRange * b,const int length)278 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
279                                 const IPAddressOrRange *b, const int length)
280 {
281     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
282     int prefixlen_a = 0, prefixlen_b = 0;
283     int r;
284 
285     switch (a->type) {
286     case IPAddressOrRange_addressPrefix:
287         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
288             return -1;
289         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
290         break;
291     case IPAddressOrRange_addressRange:
292         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
293             return -1;
294         prefixlen_a = length * 8;
295         break;
296     }
297 
298     switch (b->type) {
299     case IPAddressOrRange_addressPrefix:
300         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
301             return -1;
302         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
303         break;
304     case IPAddressOrRange_addressRange:
305         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
306             return -1;
307         prefixlen_b = length * 8;
308         break;
309     }
310 
311     if ((r = memcmp(addr_a, addr_b, length)) != 0)
312         return r;
313     else
314         return prefixlen_a - prefixlen_b;
315 }
316 
317 /*
318  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
319  * comparison routines are only allowed two arguments.
320  */
v4IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)321 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
322                                   const IPAddressOrRange *const *b)
323 {
324     return IPAddressOrRange_cmp(*a, *b, 4);
325 }
326 
327 /*
328  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
329  * comparison routines are only allowed two arguments.
330  */
v6IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)331 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
332                                   const IPAddressOrRange *const *b)
333 {
334     return IPAddressOrRange_cmp(*a, *b, 16);
335 }
336 
337 /*
338  * Calculate whether a range collapses to a prefix.
339  * See last paragraph of RFC 3779 2.2.3.7.
340  */
range_should_be_prefix(const unsigned char * min,const unsigned char * max,const int length)341 static int range_should_be_prefix(const unsigned char *min,
342                                   const unsigned char *max, const int length)
343 {
344     unsigned char mask;
345     int i, j;
346 
347     /*
348      * It is the responsibility of the caller to confirm min <= max. We don't
349      * use ossl_assert() here since we have no way of signalling an error from
350      * this function - so we just use a plain assert instead.
351      */
352     assert(memcmp(min, max, length) <= 0);
353 
354     for (i = 0; i < length && min[i] == max[i]; i++) ;
355     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
356     if (i < j)
357         return -1;
358     if (i > j)
359         return i * 8;
360     mask = min[i] ^ max[i];
361     switch (mask) {
362     case 0x01:
363         j = 7;
364         break;
365     case 0x03:
366         j = 6;
367         break;
368     case 0x07:
369         j = 5;
370         break;
371     case 0x0F:
372         j = 4;
373         break;
374     case 0x1F:
375         j = 3;
376         break;
377     case 0x3F:
378         j = 2;
379         break;
380     case 0x7F:
381         j = 1;
382         break;
383     default:
384         return -1;
385     }
386     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
387         return -1;
388     else
389         return i * 8 + j;
390 }
391 
392 /*
393  * Construct a prefix.
394  */
make_addressPrefix(IPAddressOrRange ** result,unsigned char * addr,const int prefixlen,const int afilen)395 static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
396                               const int prefixlen, const int afilen)
397 {
398     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
399     IPAddressOrRange *aor = IPAddressOrRange_new();
400 
401     if (prefixlen < 0 || prefixlen > (afilen * 8))
402         return 0;
403     if (aor == NULL)
404         return 0;
405     aor->type = IPAddressOrRange_addressPrefix;
406     if (aor->u.addressPrefix == NULL &&
407         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
408         goto err;
409     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
410         goto err;
411     aor->u.addressPrefix->flags &= ~7;
412     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
413     if (bitlen > 0) {
414         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
415         aor->u.addressPrefix->flags |= 8 - bitlen;
416     }
417 
418     *result = aor;
419     return 1;
420 
421  err:
422     IPAddressOrRange_free(aor);
423     return 0;
424 }
425 
426 /*
427  * Construct a range.  If it can be expressed as a prefix,
428  * return a prefix instead.  Doing this here simplifies
429  * the rest of the code considerably.
430  */
make_addressRange(IPAddressOrRange ** result,unsigned char * min,unsigned char * max,const int length)431 static int make_addressRange(IPAddressOrRange **result,
432                              unsigned char *min,
433                              unsigned char *max, const int length)
434 {
435     IPAddressOrRange *aor;
436     int i, prefixlen;
437 
438     if (memcmp(min, max, length) > 0)
439         return 0;
440 
441     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
442         return make_addressPrefix(result, min, prefixlen, length);
443 
444     if ((aor = IPAddressOrRange_new()) == NULL)
445         return 0;
446     aor->type = IPAddressOrRange_addressRange;
447     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
448         goto err;
449     if (aor->u.addressRange->min == NULL &&
450         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
451         goto err;
452     if (aor->u.addressRange->max == NULL &&
453         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
454         goto err;
455 
456     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
457     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
458         goto err;
459     aor->u.addressRange->min->flags &= ~7;
460     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
461     if (i > 0) {
462         unsigned char b = min[i - 1];
463         int j = 1;
464         while ((b & (0xFFU >> j)) != 0)
465             ++j;
466         aor->u.addressRange->min->flags |= 8 - j;
467     }
468 
469     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
470     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
471         goto err;
472     aor->u.addressRange->max->flags &= ~7;
473     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
474     if (i > 0) {
475         unsigned char b = max[i - 1];
476         int j = 1;
477         while ((b & (0xFFU >> j)) != (0xFFU >> j))
478             ++j;
479         aor->u.addressRange->max->flags |= 8 - j;
480     }
481 
482     *result = aor;
483     return 1;
484 
485  err:
486     IPAddressOrRange_free(aor);
487     return 0;
488 }
489 
490 /*
491  * Construct a new address family or find an existing one.
492  */
make_IPAddressFamily(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)493 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
494                                              const unsigned afi,
495                                              const unsigned *safi)
496 {
497     IPAddressFamily *f;
498     unsigned char key[3];
499     int keylen;
500     int i;
501 
502     key[0] = (afi >> 8) & 0xFF;
503     key[1] = afi & 0xFF;
504     if (safi != NULL) {
505         key[2] = *safi & 0xFF;
506         keylen = 3;
507     } else {
508         keylen = 2;
509     }
510 
511     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
512         f = sk_IPAddressFamily_value(addr, i);
513         if (f->addressFamily->length == keylen &&
514             !memcmp(f->addressFamily->data, key, keylen))
515             return f;
516     }
517 
518     if ((f = IPAddressFamily_new()) == NULL)
519         goto err;
520     if (f->ipAddressChoice == NULL &&
521         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
522         goto err;
523     if (f->addressFamily == NULL &&
524         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
525         goto err;
526     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
527         goto err;
528     if (!sk_IPAddressFamily_push(addr, f))
529         goto err;
530 
531     return f;
532 
533  err:
534     IPAddressFamily_free(f);
535     return NULL;
536 }
537 
538 /*
539  * Add an inheritance element.
540  */
X509v3_addr_add_inherit(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)541 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
542                             const unsigned afi, const unsigned *safi)
543 {
544     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
545     if (f == NULL ||
546         f->ipAddressChoice == NULL ||
547         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
548          f->ipAddressChoice->u.addressesOrRanges != NULL))
549         return 0;
550     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
551         f->ipAddressChoice->u.inherit != NULL)
552         return 1;
553     if (f->ipAddressChoice->u.inherit == NULL &&
554         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
555         return 0;
556     f->ipAddressChoice->type = IPAddressChoice_inherit;
557     return 1;
558 }
559 
560 /*
561  * Construct an IPAddressOrRange sequence, or return an existing one.
562  */
make_prefix_or_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)563 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
564                                                const unsigned afi,
565                                                const unsigned *safi)
566 {
567     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
568     IPAddressOrRanges *aors = NULL;
569 
570     if (f == NULL ||
571         f->ipAddressChoice == NULL ||
572         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
573          f->ipAddressChoice->u.inherit != NULL))
574         return NULL;
575     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
576         aors = f->ipAddressChoice->u.addressesOrRanges;
577     if (aors != NULL)
578         return aors;
579     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
580         return NULL;
581     switch (afi) {
582     case IANA_AFI_IPV4:
583         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
584         break;
585     case IANA_AFI_IPV6:
586         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
587         break;
588     }
589     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
590     f->ipAddressChoice->u.addressesOrRanges = aors;
591     return aors;
592 }
593 
594 /*
595  * Add a prefix.
596  */
X509v3_addr_add_prefix(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * a,const int prefixlen)597 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
598                            const unsigned afi,
599                            const unsigned *safi,
600                            unsigned char *a, const int prefixlen)
601 {
602     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
603     IPAddressOrRange *aor;
604 
605     if (aors == NULL
606             || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
607         return 0;
608     if (sk_IPAddressOrRange_push(aors, aor))
609         return 1;
610     IPAddressOrRange_free(aor);
611     return 0;
612 }
613 
614 /*
615  * Add a range.
616  */
X509v3_addr_add_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * min,unsigned char * max)617 int X509v3_addr_add_range(IPAddrBlocks *addr,
618                           const unsigned afi,
619                           const unsigned *safi,
620                           unsigned char *min, unsigned char *max)
621 {
622     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
623     IPAddressOrRange *aor;
624     int length = length_from_afi(afi);
625     if (aors == NULL)
626         return 0;
627     if (!make_addressRange(&aor, min, max, length))
628         return 0;
629     if (sk_IPAddressOrRange_push(aors, aor))
630         return 1;
631     IPAddressOrRange_free(aor);
632     return 0;
633 }
634 
635 /*
636  * Extract min and max values from an IPAddressOrRange.
637  */
extract_min_max(IPAddressOrRange * aor,unsigned char * min,unsigned char * max,int length)638 static int extract_min_max(IPAddressOrRange *aor,
639                            unsigned char *min, unsigned char *max, int length)
640 {
641     if (aor == NULL || min == NULL || max == NULL)
642         return 0;
643     switch (aor->type) {
644     case IPAddressOrRange_addressPrefix:
645         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
646                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
647     case IPAddressOrRange_addressRange:
648         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
649                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
650     }
651     return 0;
652 }
653 
654 /*
655  * Public wrapper for extract_min_max().
656  */
X509v3_addr_get_range(IPAddressOrRange * aor,const unsigned afi,unsigned char * min,unsigned char * max,const int length)657 int X509v3_addr_get_range(IPAddressOrRange *aor,
658                           const unsigned afi,
659                           unsigned char *min,
660                           unsigned char *max, const int length)
661 {
662     int afi_length = length_from_afi(afi);
663     if (aor == NULL || min == NULL || max == NULL ||
664         afi_length == 0 || length < afi_length ||
665         (aor->type != IPAddressOrRange_addressPrefix &&
666          aor->type != IPAddressOrRange_addressRange) ||
667         !extract_min_max(aor, min, max, afi_length))
668         return 0;
669 
670     return afi_length;
671 }
672 
673 /*
674  * Sort comparison function for a sequence of IPAddressFamily.
675  *
676  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
677  * the ordering: I can read it as meaning that IPv6 without a SAFI
678  * comes before IPv4 with a SAFI, which seems pretty weird.  The
679  * examples in appendix B suggest that the author intended the
680  * null-SAFI rule to apply only within a single AFI, which is what I
681  * would have expected and is what the following code implements.
682  */
IPAddressFamily_cmp(const IPAddressFamily * const * a_,const IPAddressFamily * const * b_)683 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
684                                const IPAddressFamily *const *b_)
685 {
686     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
687     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
688     int len = ((a->length <= b->length) ? a->length : b->length);
689     int cmp = memcmp(a->data, b->data, len);
690     return cmp ? cmp : a->length - b->length;
691 }
692 
693 /*
694  * Check whether an IPAddrBLocks is in canonical form.
695  */
X509v3_addr_is_canonical(IPAddrBlocks * addr)696 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
697 {
698     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
699     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
700     IPAddressOrRanges *aors;
701     int i, j, k;
702 
703     /*
704      * Empty extension is canonical.
705      */
706     if (addr == NULL)
707         return 1;
708 
709     /*
710      * Check whether the top-level list is in order.
711      */
712     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
713         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
714         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
715         if (IPAddressFamily_cmp(&a, &b) >= 0)
716             return 0;
717     }
718 
719     /*
720      * Top level's ok, now check each address family.
721      */
722     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
723         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
724         int length = length_from_afi(X509v3_addr_get_afi(f));
725 
726         /*
727          * Inheritance is canonical.  Anything other than inheritance or
728          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
729          */
730         if (f == NULL || f->ipAddressChoice == NULL)
731             return 0;
732         switch (f->ipAddressChoice->type) {
733         case IPAddressChoice_inherit:
734             continue;
735         case IPAddressChoice_addressesOrRanges:
736             break;
737         default:
738             return 0;
739         }
740 
741         /*
742          * It's an IPAddressOrRanges sequence, check it.
743          */
744         aors = f->ipAddressChoice->u.addressesOrRanges;
745         if (sk_IPAddressOrRange_num(aors) == 0)
746             return 0;
747         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
748             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
749             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
750 
751             if (!extract_min_max(a, a_min, a_max, length) ||
752                 !extract_min_max(b, b_min, b_max, length))
753                 return 0;
754 
755             /*
756              * Punt misordered list, overlapping start, or inverted range.
757              */
758             if (memcmp(a_min, b_min, length) >= 0 ||
759                 memcmp(a_min, a_max, length) > 0 ||
760                 memcmp(b_min, b_max, length) > 0)
761                 return 0;
762 
763             /*
764              * Punt if adjacent or overlapping.  Check for adjacency by
765              * subtracting one from b_min first.
766              */
767             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
768             if (memcmp(a_max, b_min, length) >= 0)
769                 return 0;
770 
771             /*
772              * Check for range that should be expressed as a prefix.
773              */
774             if (a->type == IPAddressOrRange_addressRange &&
775                 range_should_be_prefix(a_min, a_max, length) >= 0)
776                 return 0;
777         }
778 
779         /*
780          * Check range to see if it's inverted or should be a
781          * prefix.
782          */
783         j = sk_IPAddressOrRange_num(aors) - 1;
784         {
785             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
786             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
787                 if (!extract_min_max(a, a_min, a_max, length))
788                     return 0;
789                 if (memcmp(a_min, a_max, length) > 0 ||
790                     range_should_be_prefix(a_min, a_max, length) >= 0)
791                     return 0;
792             }
793         }
794     }
795 
796     /*
797      * If we made it through all that, we're happy.
798      */
799     return 1;
800 }
801 
802 /*
803  * Whack an IPAddressOrRanges into canonical form.
804  */
IPAddressOrRanges_canonize(IPAddressOrRanges * aors,const unsigned afi)805 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
806                                       const unsigned afi)
807 {
808     int i, j, length = length_from_afi(afi);
809 
810     /*
811      * Sort the IPAddressOrRanges sequence.
812      */
813     sk_IPAddressOrRange_sort(aors);
814 
815     /*
816      * Clean up representation issues, punt on duplicates or overlaps.
817      */
818     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
819         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
820         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
821         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
822         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
823 
824         if (!extract_min_max(a, a_min, a_max, length) ||
825             !extract_min_max(b, b_min, b_max, length))
826             return 0;
827 
828         /*
829          * Punt inverted ranges.
830          */
831         if (memcmp(a_min, a_max, length) > 0 ||
832             memcmp(b_min, b_max, length) > 0)
833             return 0;
834 
835         /*
836          * Punt overlaps.
837          */
838         if (memcmp(a_max, b_min, length) >= 0)
839             return 0;
840 
841         /*
842          * Merge if a and b are adjacent.  We check for
843          * adjacency by subtracting one from b_min first.
844          */
845         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
846         if (memcmp(a_max, b_min, length) == 0) {
847             IPAddressOrRange *merged;
848             if (!make_addressRange(&merged, a_min, b_max, length))
849                 return 0;
850             (void)sk_IPAddressOrRange_set(aors, i, merged);
851             (void)sk_IPAddressOrRange_delete(aors, i + 1);
852             IPAddressOrRange_free(a);
853             IPAddressOrRange_free(b);
854             --i;
855             continue;
856         }
857     }
858 
859     /*
860      * Check for inverted final range.
861      */
862     j = sk_IPAddressOrRange_num(aors) - 1;
863     {
864         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
865         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
866             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
867             if (!extract_min_max(a, a_min, a_max, length))
868                 return 0;
869             if (memcmp(a_min, a_max, length) > 0)
870                 return 0;
871         }
872     }
873 
874     return 1;
875 }
876 
877 /*
878  * Whack an IPAddrBlocks extension into canonical form.
879  */
X509v3_addr_canonize(IPAddrBlocks * addr)880 int X509v3_addr_canonize(IPAddrBlocks *addr)
881 {
882     int i;
883     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
884         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
885         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
886             !IPAddressOrRanges_canonize(f->ipAddressChoice->
887                                         u.addressesOrRanges,
888                                         X509v3_addr_get_afi(f)))
889             return 0;
890     }
891     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
892     sk_IPAddressFamily_sort(addr);
893     if (!ossl_assert(X509v3_addr_is_canonical(addr)))
894         return 0;
895     return 1;
896 }
897 
898 /*
899  * v2i handler for the IPAddrBlocks extension.
900  */
v2i_IPAddrBlocks(const struct v3_ext_method * method,struct v3_ext_ctx * ctx,STACK_OF (CONF_VALUE)* values)901 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
902                               struct v3_ext_ctx *ctx,
903                               STACK_OF(CONF_VALUE) *values)
904 {
905     static const char v4addr_chars[] = "0123456789.";
906     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
907     IPAddrBlocks *addr = NULL;
908     char *s = NULL, *t;
909     int i;
910 
911     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
912         X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
913         return NULL;
914     }
915 
916     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
917         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
918         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
919         unsigned afi, *safi = NULL, safi_;
920         const char *addr_chars = NULL;
921         int prefixlen, i1, i2, delim, length;
922 
923         if (!name_cmp(val->name, "IPv4")) {
924             afi = IANA_AFI_IPV4;
925         } else if (!name_cmp(val->name, "IPv6")) {
926             afi = IANA_AFI_IPV6;
927         } else if (!name_cmp(val->name, "IPv4-SAFI")) {
928             afi = IANA_AFI_IPV4;
929             safi = &safi_;
930         } else if (!name_cmp(val->name, "IPv6-SAFI")) {
931             afi = IANA_AFI_IPV6;
932             safi = &safi_;
933         } else {
934             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
935                       X509V3_R_EXTENSION_NAME_ERROR);
936             X509V3_conf_err(val);
937             goto err;
938         }
939 
940         switch (afi) {
941         case IANA_AFI_IPV4:
942             addr_chars = v4addr_chars;
943             break;
944         case IANA_AFI_IPV6:
945             addr_chars = v6addr_chars;
946             break;
947         }
948 
949         length = length_from_afi(afi);
950 
951         /*
952          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
953          * the other input values.
954          */
955         if (safi != NULL) {
956             *safi = strtoul(val->value, &t, 0);
957             t += strspn(t, " \t");
958             if (*safi > 0xFF || *t++ != ':') {
959                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
960                 X509V3_conf_err(val);
961                 goto err;
962             }
963             t += strspn(t, " \t");
964             s = OPENSSL_strdup(t);
965         } else {
966             s = OPENSSL_strdup(val->value);
967         }
968         if (s == NULL) {
969             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
970             goto err;
971         }
972 
973         /*
974          * Check for inheritance.  Not worth additional complexity to
975          * optimize this (seldom-used) case.
976          */
977         if (strcmp(s, "inherit") == 0) {
978             if (!X509v3_addr_add_inherit(addr, afi, safi)) {
979                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
980                           X509V3_R_INVALID_INHERITANCE);
981                 X509V3_conf_err(val);
982                 goto err;
983             }
984             OPENSSL_free(s);
985             s = NULL;
986             continue;
987         }
988 
989         i1 = strspn(s, addr_chars);
990         i2 = i1 + strspn(s + i1, " \t");
991         delim = s[i2++];
992         s[i1] = '\0';
993 
994         if (a2i_ipadd(min, s) != length) {
995             X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
996             X509V3_conf_err(val);
997             goto err;
998         }
999 
1000         switch (delim) {
1001         case '/':
1002             prefixlen = (int)strtoul(s + i2, &t, 10);
1003             if (t == s + i2
1004                     || *t != '\0'
1005                     || prefixlen > (length * 8)
1006                     || prefixlen < 0) {
1007                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1008                           X509V3_R_EXTENSION_VALUE_ERROR);
1009                 X509V3_conf_err(val);
1010                 goto err;
1011             }
1012             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1013                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1014                 goto err;
1015             }
1016             break;
1017         case '-':
1018             i1 = i2 + strspn(s + i2, " \t");
1019             i2 = i1 + strspn(s + i1, addr_chars);
1020             if (i1 == i2 || s[i2] != '\0') {
1021                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1022                           X509V3_R_EXTENSION_VALUE_ERROR);
1023                 X509V3_conf_err(val);
1024                 goto err;
1025             }
1026             if (a2i_ipadd(max, s + i1) != length) {
1027                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1028                           X509V3_R_INVALID_IPADDRESS);
1029                 X509V3_conf_err(val);
1030                 goto err;
1031             }
1032             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1033                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034                           X509V3_R_EXTENSION_VALUE_ERROR);
1035                 X509V3_conf_err(val);
1036                 goto err;
1037             }
1038             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1039                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040                 goto err;
1041             }
1042             break;
1043         case '\0':
1044             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1045                 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1046                 goto err;
1047             }
1048             break;
1049         default:
1050             X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1051                       X509V3_R_EXTENSION_VALUE_ERROR);
1052             X509V3_conf_err(val);
1053             goto err;
1054         }
1055 
1056         OPENSSL_free(s);
1057         s = NULL;
1058     }
1059 
1060     /*
1061      * Canonize the result, then we're done.
1062      */
1063     if (!X509v3_addr_canonize(addr))
1064         goto err;
1065     return addr;
1066 
1067  err:
1068     OPENSSL_free(s);
1069     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1070     return NULL;
1071 }
1072 
1073 /*
1074  * OpenSSL dispatch
1075  */
1076 const X509V3_EXT_METHOD v3_addr = {
1077     NID_sbgp_ipAddrBlock,       /* nid */
1078     0,                          /* flags */
1079     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1080     0, 0, 0, 0,                 /* old functions, ignored */
1081     0,                          /* i2s */
1082     0,                          /* s2i */
1083     0,                          /* i2v */
1084     v2i_IPAddrBlocks,           /* v2i */
1085     i2r_IPAddrBlocks,           /* i2r */
1086     0,                          /* r2i */
1087     NULL                        /* extension-specific data */
1088 };
1089 
1090 /*
1091  * Figure out whether extension sues inheritance.
1092  */
X509v3_addr_inherits(IPAddrBlocks * addr)1093 int X509v3_addr_inherits(IPAddrBlocks *addr)
1094 {
1095     int i;
1096     if (addr == NULL)
1097         return 0;
1098     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1099         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1100         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1101             return 1;
1102     }
1103     return 0;
1104 }
1105 
1106 /*
1107  * Figure out whether parent contains child.
1108  */
addr_contains(IPAddressOrRanges * parent,IPAddressOrRanges * child,int length)1109 static int addr_contains(IPAddressOrRanges *parent,
1110                          IPAddressOrRanges *child, int length)
1111 {
1112     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1113     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1114     int p, c;
1115 
1116     if (child == NULL || parent == child)
1117         return 1;
1118     if (parent == NULL)
1119         return 0;
1120 
1121     p = 0;
1122     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1123         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1124                              c_min, c_max, length))
1125             return -1;
1126         for (;; p++) {
1127             if (p >= sk_IPAddressOrRange_num(parent))
1128                 return 0;
1129             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1130                                  p_min, p_max, length))
1131                 return 0;
1132             if (memcmp(p_max, c_max, length) < 0)
1133                 continue;
1134             if (memcmp(p_min, c_min, length) > 0)
1135                 return 0;
1136             break;
1137         }
1138     }
1139 
1140     return 1;
1141 }
1142 
1143 /*
1144  * Test whether a is a subset of b.
1145  */
X509v3_addr_subset(IPAddrBlocks * a,IPAddrBlocks * b)1146 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1147 {
1148     int i;
1149     if (a == NULL || a == b)
1150         return 1;
1151     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1152         return 0;
1153     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1154     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1155         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1156         int j = sk_IPAddressFamily_find(b, fa);
1157         IPAddressFamily *fb;
1158         fb = sk_IPAddressFamily_value(b, j);
1159         if (fb == NULL)
1160             return 0;
1161         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1162                            fa->ipAddressChoice->u.addressesOrRanges,
1163                            length_from_afi(X509v3_addr_get_afi(fb))))
1164             return 0;
1165     }
1166     return 1;
1167 }
1168 
1169 /*
1170  * Validation error handling via callback.
1171  */
1172 #define validation_err(_err_)           \
1173   do {                                  \
1174     if (ctx != NULL) {                  \
1175       ctx->error = _err_;               \
1176       ctx->error_depth = i;             \
1177       ctx->current_cert = x;            \
1178       ret = ctx->verify_cb(0, ctx);     \
1179     } else {                            \
1180       ret = 0;                          \
1181     }                                   \
1182     if (!ret)                           \
1183       goto done;                        \
1184   } while (0)
1185 
1186 /*
1187  * Core code for RFC 3779 2.3 path validation.
1188  *
1189  * Returns 1 for success, 0 on error.
1190  *
1191  * When returning 0, ctx->error MUST be set to an appropriate value other than
1192  * X509_V_OK.
1193  */
addr_validate_path_internal(X509_STORE_CTX * ctx,STACK_OF (X509)* chain,IPAddrBlocks * ext)1194 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1195                                        STACK_OF(X509) *chain,
1196                                        IPAddrBlocks *ext)
1197 {
1198     IPAddrBlocks *child = NULL;
1199     int i, j, ret = 1;
1200     X509 *x;
1201 
1202     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1203             || !ossl_assert(ctx != NULL || ext != NULL)
1204             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1205         if (ctx != NULL)
1206             ctx->error = X509_V_ERR_UNSPECIFIED;
1207         return 0;
1208     }
1209 
1210     /*
1211      * Figure out where to start.  If we don't have an extension to
1212      * check, we're done.  Otherwise, check canonical form and
1213      * set up for walking up the chain.
1214      */
1215     if (ext != NULL) {
1216         i = -1;
1217         x = NULL;
1218     } else {
1219         i = 0;
1220         x = sk_X509_value(chain, i);
1221         if ((ext = x->rfc3779_addr) == NULL)
1222             goto done;
1223     }
1224     if (!X509v3_addr_is_canonical(ext))
1225         validation_err(X509_V_ERR_INVALID_EXTENSION);
1226     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1227     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1228         X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1229                   ERR_R_MALLOC_FAILURE);
1230         if (ctx != NULL)
1231             ctx->error = X509_V_ERR_OUT_OF_MEM;
1232         ret = 0;
1233         goto done;
1234     }
1235 
1236     /*
1237      * Now walk up the chain.  No cert may list resources that its
1238      * parent doesn't list.
1239      */
1240     for (i++; i < sk_X509_num(chain); i++) {
1241         x = sk_X509_value(chain, i);
1242         if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1243             validation_err(X509_V_ERR_INVALID_EXTENSION);
1244         if (x->rfc3779_addr == NULL) {
1245             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1246                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1247                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1248                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1249                     break;
1250                 }
1251             }
1252             continue;
1253         }
1254         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1255                                               IPAddressFamily_cmp);
1256         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1257             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1258             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1259             IPAddressFamily *fp =
1260                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1261             if (fp == NULL) {
1262                 if (fc->ipAddressChoice->type ==
1263                     IPAddressChoice_addressesOrRanges) {
1264                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1265                     break;
1266                 }
1267                 continue;
1268             }
1269             if (fp->ipAddressChoice->type ==
1270                 IPAddressChoice_addressesOrRanges) {
1271                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1272                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1273                                      fc->ipAddressChoice->u.addressesOrRanges,
1274                                      length_from_afi(X509v3_addr_get_afi(fc))))
1275                     sk_IPAddressFamily_set(child, j, fp);
1276                 else
1277                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1278             }
1279         }
1280     }
1281 
1282     /*
1283      * Trust anchor can't inherit.
1284      */
1285     if (x->rfc3779_addr != NULL) {
1286         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1287             IPAddressFamily *fp =
1288                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1289             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1290                 && sk_IPAddressFamily_find(child, fp) >= 0)
1291                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1292         }
1293     }
1294 
1295  done:
1296     sk_IPAddressFamily_free(child);
1297     return ret;
1298 }
1299 
1300 #undef validation_err
1301 
1302 /*
1303  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1304  */
X509v3_addr_validate_path(X509_STORE_CTX * ctx)1305 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1306 {
1307     if (ctx->chain == NULL
1308             || sk_X509_num(ctx->chain) == 0
1309             || ctx->verify_cb == NULL) {
1310         ctx->error = X509_V_ERR_UNSPECIFIED;
1311         return 0;
1312     }
1313     return addr_validate_path_internal(ctx, ctx->chain, NULL);
1314 }
1315 
1316 /*
1317  * RFC 3779 2.3 path validation of an extension.
1318  * Test whether chain covers extension.
1319  */
X509v3_addr_validate_resource_set(STACK_OF (X509)* chain,IPAddrBlocks * ext,int allow_inheritance)1320 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1321                                   IPAddrBlocks *ext, int allow_inheritance)
1322 {
1323     if (ext == NULL)
1324         return 1;
1325     if (chain == NULL || sk_X509_num(chain) == 0)
1326         return 0;
1327     if (!allow_inheritance && X509v3_addr_inherits(ext))
1328         return 0;
1329     return addr_validate_path_internal(NULL, chain, ext);
1330 }
1331 
1332 #endif                          /* OPENSSL_NO_RFC3779 */
1333