1 /*
2 * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * Implementation of RFC 3779 section 2.2.
12 */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18
19 #include "internal/cryptlib.h"
20 #include <openssl/conf.h>
21 #include <openssl/asn1.h>
22 #include <openssl/asn1t.h>
23 #include <openssl/buffer.h>
24 #include <openssl/x509v3.h>
25 #include "crypto/x509.h"
26 #include "ext_dat.h"
27
28 #ifndef OPENSSL_NO_RFC3779
29
30 /*
31 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
32 */
33
34 ASN1_SEQUENCE(IPAddressRange) = {
35 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
36 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
37 } ASN1_SEQUENCE_END(IPAddressRange)
38
39 ASN1_CHOICE(IPAddressOrRange) = {
40 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
41 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
42 } ASN1_CHOICE_END(IPAddressOrRange)
43
44 ASN1_CHOICE(IPAddressChoice) = {
45 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
46 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
47 } ASN1_CHOICE_END(IPAddressChoice)
48
49 ASN1_SEQUENCE(IPAddressFamily) = {
50 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
51 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
52 } ASN1_SEQUENCE_END(IPAddressFamily)
53
54 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
55 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
56 IPAddrBlocks, IPAddressFamily)
57 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
58
59 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
61 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
62 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
63
64 /*
65 * How much buffer space do we need for a raw address?
66 */
67 #define ADDR_RAW_BUF_LEN 16
68
69 /*
70 * What's the address length associated with this AFI?
71 */
72 static int length_from_afi(const unsigned afi)
73 {
74 switch (afi) {
75 case IANA_AFI_IPV4:
76 return 4;
77 case IANA_AFI_IPV6:
78 return 16;
79 default:
80 return 0;
81 }
82 }
83
84 /*
85 * Extract the AFI from an IPAddressFamily.
86 */
X509v3_addr_get_afi(const IPAddressFamily * f)87 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
88 {
89 if (f == NULL
90 || f->addressFamily == NULL
91 || f->addressFamily->data == NULL
92 || f->addressFamily->length < 2)
93 return 0;
94 return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
95 }
96
97 /*
98 * Expand the bitstring form of an address into a raw byte array.
99 * At the moment this is coded for simplicity, not speed.
100 */
addr_expand(unsigned char * addr,const ASN1_BIT_STRING * bs,const int length,const unsigned char fill)101 static int addr_expand(unsigned char *addr,
102 const ASN1_BIT_STRING *bs,
103 const int length, const unsigned char fill)
104 {
105 if (bs->length < 0 || bs->length > length)
106 return 0;
107 if (bs->length > 0) {
108 memcpy(addr, bs->data, bs->length);
109 if ((bs->flags & 7) != 0) {
110 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
111 if (fill == 0)
112 addr[bs->length - 1] &= ~mask;
113 else
114 addr[bs->length - 1] |= mask;
115 }
116 }
117 memset(addr + bs->length, fill, length - bs->length);
118 return 1;
119 }
120
121 /*
122 * Extract the prefix length from a bitstring.
123 */
124 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
125
126 /*
127 * i2r handler for one address bitstring.
128 */
i2r_address(BIO * out,const unsigned afi,const unsigned char fill,const ASN1_BIT_STRING * bs)129 static int i2r_address(BIO *out,
130 const unsigned afi,
131 const unsigned char fill, const ASN1_BIT_STRING *bs)
132 {
133 unsigned char addr[ADDR_RAW_BUF_LEN];
134 int i, n;
135
136 if (bs->length < 0)
137 return 0;
138 switch (afi) {
139 case IANA_AFI_IPV4:
140 if (!addr_expand(addr, bs, 4, fill))
141 return 0;
142 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
143 break;
144 case IANA_AFI_IPV6:
145 if (!addr_expand(addr, bs, 16, fill))
146 return 0;
147 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
148 n -= 2) ;
149 for (i = 0; i < n; i += 2)
150 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
151 (i < 14 ? ":" : ""));
152 if (i < 16)
153 BIO_puts(out, ":");
154 if (i == 0)
155 BIO_puts(out, ":");
156 break;
157 default:
158 for (i = 0; i < bs->length; i++)
159 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
160 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
161 break;
162 }
163 return 1;
164 }
165
166 /*
167 * i2r handler for a sequence of addresses and ranges.
168 */
i2r_IPAddressOrRanges(BIO * out,const int indent,const IPAddressOrRanges * aors,const unsigned afi)169 static int i2r_IPAddressOrRanges(BIO *out,
170 const int indent,
171 const IPAddressOrRanges *aors,
172 const unsigned afi)
173 {
174 int i;
175 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
176 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
177 BIO_printf(out, "%*s", indent, "");
178 switch (aor->type) {
179 case IPAddressOrRange_addressPrefix:
180 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
181 return 0;
182 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
183 continue;
184 case IPAddressOrRange_addressRange:
185 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
186 return 0;
187 BIO_puts(out, "-");
188 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
189 return 0;
190 BIO_puts(out, "\n");
191 continue;
192 }
193 }
194 return 1;
195 }
196
197 /*
198 * i2r handler for an IPAddrBlocks extension.
199 */
i2r_IPAddrBlocks(const X509V3_EXT_METHOD * method,void * ext,BIO * out,int indent)200 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
201 void *ext, BIO *out, int indent)
202 {
203 const IPAddrBlocks *addr = ext;
204 int i;
205 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
206 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
207 const unsigned int afi = X509v3_addr_get_afi(f);
208 switch (afi) {
209 case IANA_AFI_IPV4:
210 BIO_printf(out, "%*sIPv4", indent, "");
211 break;
212 case IANA_AFI_IPV6:
213 BIO_printf(out, "%*sIPv6", indent, "");
214 break;
215 default:
216 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
217 break;
218 }
219 if (f->addressFamily->length > 2) {
220 switch (f->addressFamily->data[2]) {
221 case 1:
222 BIO_puts(out, " (Unicast)");
223 break;
224 case 2:
225 BIO_puts(out, " (Multicast)");
226 break;
227 case 3:
228 BIO_puts(out, " (Unicast/Multicast)");
229 break;
230 case 4:
231 BIO_puts(out, " (MPLS)");
232 break;
233 case 64:
234 BIO_puts(out, " (Tunnel)");
235 break;
236 case 65:
237 BIO_puts(out, " (VPLS)");
238 break;
239 case 66:
240 BIO_puts(out, " (BGP MDT)");
241 break;
242 case 128:
243 BIO_puts(out, " (MPLS-labeled VPN)");
244 break;
245 default:
246 BIO_printf(out, " (Unknown SAFI %u)",
247 (unsigned)f->addressFamily->data[2]);
248 break;
249 }
250 }
251 switch (f->ipAddressChoice->type) {
252 case IPAddressChoice_inherit:
253 BIO_puts(out, ": inherit\n");
254 break;
255 case IPAddressChoice_addressesOrRanges:
256 BIO_puts(out, ":\n");
257 if (!i2r_IPAddressOrRanges(out,
258 indent + 2,
259 f->ipAddressChoice->
260 u.addressesOrRanges, afi))
261 return 0;
262 break;
263 }
264 }
265 return 1;
266 }
267
268 /*
269 * Sort comparison function for a sequence of IPAddressOrRange
270 * elements.
271 *
272 * There's no sane answer we can give if addr_expand() fails, and an
273 * assertion failure on externally supplied data is seriously uncool,
274 * so we just arbitrarily declare that if given invalid inputs this
275 * function returns -1. If this messes up your preferred sort order
276 * for garbage input, tough noogies.
277 */
IPAddressOrRange_cmp(const IPAddressOrRange * a,const IPAddressOrRange * b,const int length)278 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
279 const IPAddressOrRange *b, const int length)
280 {
281 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
282 int prefixlen_a = 0, prefixlen_b = 0;
283 int r;
284
285 switch (a->type) {
286 case IPAddressOrRange_addressPrefix:
287 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
288 return -1;
289 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
290 break;
291 case IPAddressOrRange_addressRange:
292 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
293 return -1;
294 prefixlen_a = length * 8;
295 break;
296 }
297
298 switch (b->type) {
299 case IPAddressOrRange_addressPrefix:
300 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
301 return -1;
302 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
303 break;
304 case IPAddressOrRange_addressRange:
305 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
306 return -1;
307 prefixlen_b = length * 8;
308 break;
309 }
310
311 if ((r = memcmp(addr_a, addr_b, length)) != 0)
312 return r;
313 else
314 return prefixlen_a - prefixlen_b;
315 }
316
317 /*
318 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
319 * comparison routines are only allowed two arguments.
320 */
v4IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)321 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
322 const IPAddressOrRange *const *b)
323 {
324 return IPAddressOrRange_cmp(*a, *b, 4);
325 }
326
327 /*
328 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
329 * comparison routines are only allowed two arguments.
330 */
v6IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)331 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
332 const IPAddressOrRange *const *b)
333 {
334 return IPAddressOrRange_cmp(*a, *b, 16);
335 }
336
337 /*
338 * Calculate whether a range collapses to a prefix.
339 * See last paragraph of RFC 3779 2.2.3.7.
340 */
range_should_be_prefix(const unsigned char * min,const unsigned char * max,const int length)341 static int range_should_be_prefix(const unsigned char *min,
342 const unsigned char *max, const int length)
343 {
344 unsigned char mask;
345 int i, j;
346
347 /*
348 * It is the responsibility of the caller to confirm min <= max. We don't
349 * use ossl_assert() here since we have no way of signalling an error from
350 * this function - so we just use a plain assert instead.
351 */
352 assert(memcmp(min, max, length) <= 0);
353
354 for (i = 0; i < length && min[i] == max[i]; i++) ;
355 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
356 if (i < j)
357 return -1;
358 if (i > j)
359 return i * 8;
360 mask = min[i] ^ max[i];
361 switch (mask) {
362 case 0x01:
363 j = 7;
364 break;
365 case 0x03:
366 j = 6;
367 break;
368 case 0x07:
369 j = 5;
370 break;
371 case 0x0F:
372 j = 4;
373 break;
374 case 0x1F:
375 j = 3;
376 break;
377 case 0x3F:
378 j = 2;
379 break;
380 case 0x7F:
381 j = 1;
382 break;
383 default:
384 return -1;
385 }
386 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
387 return -1;
388 else
389 return i * 8 + j;
390 }
391
392 /*
393 * Construct a prefix.
394 */
make_addressPrefix(IPAddressOrRange ** result,unsigned char * addr,const int prefixlen,const int afilen)395 static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
396 const int prefixlen, const int afilen)
397 {
398 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
399 IPAddressOrRange *aor = IPAddressOrRange_new();
400
401 if (prefixlen < 0 || prefixlen > (afilen * 8))
402 return 0;
403 if (aor == NULL)
404 return 0;
405 aor->type = IPAddressOrRange_addressPrefix;
406 if (aor->u.addressPrefix == NULL &&
407 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
408 goto err;
409 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
410 goto err;
411 aor->u.addressPrefix->flags &= ~7;
412 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
413 if (bitlen > 0) {
414 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
415 aor->u.addressPrefix->flags |= 8 - bitlen;
416 }
417
418 *result = aor;
419 return 1;
420
421 err:
422 IPAddressOrRange_free(aor);
423 return 0;
424 }
425
426 /*
427 * Construct a range. If it can be expressed as a prefix,
428 * return a prefix instead. Doing this here simplifies
429 * the rest of the code considerably.
430 */
make_addressRange(IPAddressOrRange ** result,unsigned char * min,unsigned char * max,const int length)431 static int make_addressRange(IPAddressOrRange **result,
432 unsigned char *min,
433 unsigned char *max, const int length)
434 {
435 IPAddressOrRange *aor;
436 int i, prefixlen;
437
438 if (memcmp(min, max, length) > 0)
439 return 0;
440
441 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
442 return make_addressPrefix(result, min, prefixlen, length);
443
444 if ((aor = IPAddressOrRange_new()) == NULL)
445 return 0;
446 aor->type = IPAddressOrRange_addressRange;
447 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
448 goto err;
449 if (aor->u.addressRange->min == NULL &&
450 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
451 goto err;
452 if (aor->u.addressRange->max == NULL &&
453 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
454 goto err;
455
456 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
457 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
458 goto err;
459 aor->u.addressRange->min->flags &= ~7;
460 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
461 if (i > 0) {
462 unsigned char b = min[i - 1];
463 int j = 1;
464 while ((b & (0xFFU >> j)) != 0)
465 ++j;
466 aor->u.addressRange->min->flags |= 8 - j;
467 }
468
469 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
470 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
471 goto err;
472 aor->u.addressRange->max->flags &= ~7;
473 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
474 if (i > 0) {
475 unsigned char b = max[i - 1];
476 int j = 1;
477 while ((b & (0xFFU >> j)) != (0xFFU >> j))
478 ++j;
479 aor->u.addressRange->max->flags |= 8 - j;
480 }
481
482 *result = aor;
483 return 1;
484
485 err:
486 IPAddressOrRange_free(aor);
487 return 0;
488 }
489
490 /*
491 * Construct a new address family or find an existing one.
492 */
make_IPAddressFamily(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)493 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
494 const unsigned afi,
495 const unsigned *safi)
496 {
497 IPAddressFamily *f;
498 unsigned char key[3];
499 int keylen;
500 int i;
501
502 key[0] = (afi >> 8) & 0xFF;
503 key[1] = afi & 0xFF;
504 if (safi != NULL) {
505 key[2] = *safi & 0xFF;
506 keylen = 3;
507 } else {
508 keylen = 2;
509 }
510
511 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
512 f = sk_IPAddressFamily_value(addr, i);
513 if (f->addressFamily->length == keylen &&
514 !memcmp(f->addressFamily->data, key, keylen))
515 return f;
516 }
517
518 if ((f = IPAddressFamily_new()) == NULL)
519 goto err;
520 if (f->ipAddressChoice == NULL &&
521 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
522 goto err;
523 if (f->addressFamily == NULL &&
524 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
525 goto err;
526 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
527 goto err;
528 if (!sk_IPAddressFamily_push(addr, f))
529 goto err;
530
531 return f;
532
533 err:
534 IPAddressFamily_free(f);
535 return NULL;
536 }
537
538 /*
539 * Add an inheritance element.
540 */
X509v3_addr_add_inherit(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)541 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
542 const unsigned afi, const unsigned *safi)
543 {
544 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
545 if (f == NULL ||
546 f->ipAddressChoice == NULL ||
547 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
548 f->ipAddressChoice->u.addressesOrRanges != NULL))
549 return 0;
550 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
551 f->ipAddressChoice->u.inherit != NULL)
552 return 1;
553 if (f->ipAddressChoice->u.inherit == NULL &&
554 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
555 return 0;
556 f->ipAddressChoice->type = IPAddressChoice_inherit;
557 return 1;
558 }
559
560 /*
561 * Construct an IPAddressOrRange sequence, or return an existing one.
562 */
make_prefix_or_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)563 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
564 const unsigned afi,
565 const unsigned *safi)
566 {
567 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
568 IPAddressOrRanges *aors = NULL;
569
570 if (f == NULL ||
571 f->ipAddressChoice == NULL ||
572 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
573 f->ipAddressChoice->u.inherit != NULL))
574 return NULL;
575 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
576 aors = f->ipAddressChoice->u.addressesOrRanges;
577 if (aors != NULL)
578 return aors;
579 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
580 return NULL;
581 switch (afi) {
582 case IANA_AFI_IPV4:
583 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
584 break;
585 case IANA_AFI_IPV6:
586 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
587 break;
588 }
589 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
590 f->ipAddressChoice->u.addressesOrRanges = aors;
591 return aors;
592 }
593
594 /*
595 * Add a prefix.
596 */
X509v3_addr_add_prefix(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * a,const int prefixlen)597 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
598 const unsigned afi,
599 const unsigned *safi,
600 unsigned char *a, const int prefixlen)
601 {
602 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
603 IPAddressOrRange *aor;
604
605 if (aors == NULL
606 || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
607 return 0;
608 if (sk_IPAddressOrRange_push(aors, aor))
609 return 1;
610 IPAddressOrRange_free(aor);
611 return 0;
612 }
613
614 /*
615 * Add a range.
616 */
X509v3_addr_add_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * min,unsigned char * max)617 int X509v3_addr_add_range(IPAddrBlocks *addr,
618 const unsigned afi,
619 const unsigned *safi,
620 unsigned char *min, unsigned char *max)
621 {
622 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
623 IPAddressOrRange *aor;
624 int length = length_from_afi(afi);
625 if (aors == NULL)
626 return 0;
627 if (!make_addressRange(&aor, min, max, length))
628 return 0;
629 if (sk_IPAddressOrRange_push(aors, aor))
630 return 1;
631 IPAddressOrRange_free(aor);
632 return 0;
633 }
634
635 /*
636 * Extract min and max values from an IPAddressOrRange.
637 */
extract_min_max(IPAddressOrRange * aor,unsigned char * min,unsigned char * max,int length)638 static int extract_min_max(IPAddressOrRange *aor,
639 unsigned char *min, unsigned char *max, int length)
640 {
641 if (aor == NULL || min == NULL || max == NULL)
642 return 0;
643 switch (aor->type) {
644 case IPAddressOrRange_addressPrefix:
645 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
646 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
647 case IPAddressOrRange_addressRange:
648 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
649 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
650 }
651 return 0;
652 }
653
654 /*
655 * Public wrapper for extract_min_max().
656 */
X509v3_addr_get_range(IPAddressOrRange * aor,const unsigned afi,unsigned char * min,unsigned char * max,const int length)657 int X509v3_addr_get_range(IPAddressOrRange *aor,
658 const unsigned afi,
659 unsigned char *min,
660 unsigned char *max, const int length)
661 {
662 int afi_length = length_from_afi(afi);
663 if (aor == NULL || min == NULL || max == NULL ||
664 afi_length == 0 || length < afi_length ||
665 (aor->type != IPAddressOrRange_addressPrefix &&
666 aor->type != IPAddressOrRange_addressRange) ||
667 !extract_min_max(aor, min, max, afi_length))
668 return 0;
669
670 return afi_length;
671 }
672
673 /*
674 * Sort comparison function for a sequence of IPAddressFamily.
675 *
676 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
677 * the ordering: I can read it as meaning that IPv6 without a SAFI
678 * comes before IPv4 with a SAFI, which seems pretty weird. The
679 * examples in appendix B suggest that the author intended the
680 * null-SAFI rule to apply only within a single AFI, which is what I
681 * would have expected and is what the following code implements.
682 */
IPAddressFamily_cmp(const IPAddressFamily * const * a_,const IPAddressFamily * const * b_)683 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
684 const IPAddressFamily *const *b_)
685 {
686 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
687 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
688 int len = ((a->length <= b->length) ? a->length : b->length);
689 int cmp = memcmp(a->data, b->data, len);
690 return cmp ? cmp : a->length - b->length;
691 }
692
693 /*
694 * Check whether an IPAddrBLocks is in canonical form.
695 */
X509v3_addr_is_canonical(IPAddrBlocks * addr)696 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
697 {
698 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
699 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
700 IPAddressOrRanges *aors;
701 int i, j, k;
702
703 /*
704 * Empty extension is canonical.
705 */
706 if (addr == NULL)
707 return 1;
708
709 /*
710 * Check whether the top-level list is in order.
711 */
712 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
713 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
714 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
715 if (IPAddressFamily_cmp(&a, &b) >= 0)
716 return 0;
717 }
718
719 /*
720 * Top level's ok, now check each address family.
721 */
722 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
723 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
724 int length = length_from_afi(X509v3_addr_get_afi(f));
725
726 /*
727 * Inheritance is canonical. Anything other than inheritance or
728 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
729 */
730 if (f == NULL || f->ipAddressChoice == NULL)
731 return 0;
732 switch (f->ipAddressChoice->type) {
733 case IPAddressChoice_inherit:
734 continue;
735 case IPAddressChoice_addressesOrRanges:
736 break;
737 default:
738 return 0;
739 }
740
741 /*
742 * It's an IPAddressOrRanges sequence, check it.
743 */
744 aors = f->ipAddressChoice->u.addressesOrRanges;
745 if (sk_IPAddressOrRange_num(aors) == 0)
746 return 0;
747 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
748 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
749 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
750
751 if (!extract_min_max(a, a_min, a_max, length) ||
752 !extract_min_max(b, b_min, b_max, length))
753 return 0;
754
755 /*
756 * Punt misordered list, overlapping start, or inverted range.
757 */
758 if (memcmp(a_min, b_min, length) >= 0 ||
759 memcmp(a_min, a_max, length) > 0 ||
760 memcmp(b_min, b_max, length) > 0)
761 return 0;
762
763 /*
764 * Punt if adjacent or overlapping. Check for adjacency by
765 * subtracting one from b_min first.
766 */
767 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
768 if (memcmp(a_max, b_min, length) >= 0)
769 return 0;
770
771 /*
772 * Check for range that should be expressed as a prefix.
773 */
774 if (a->type == IPAddressOrRange_addressRange &&
775 range_should_be_prefix(a_min, a_max, length) >= 0)
776 return 0;
777 }
778
779 /*
780 * Check range to see if it's inverted or should be a
781 * prefix.
782 */
783 j = sk_IPAddressOrRange_num(aors) - 1;
784 {
785 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
786 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
787 if (!extract_min_max(a, a_min, a_max, length))
788 return 0;
789 if (memcmp(a_min, a_max, length) > 0 ||
790 range_should_be_prefix(a_min, a_max, length) >= 0)
791 return 0;
792 }
793 }
794 }
795
796 /*
797 * If we made it through all that, we're happy.
798 */
799 return 1;
800 }
801
802 /*
803 * Whack an IPAddressOrRanges into canonical form.
804 */
IPAddressOrRanges_canonize(IPAddressOrRanges * aors,const unsigned afi)805 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
806 const unsigned afi)
807 {
808 int i, j, length = length_from_afi(afi);
809
810 /*
811 * Sort the IPAddressOrRanges sequence.
812 */
813 sk_IPAddressOrRange_sort(aors);
814
815 /*
816 * Clean up representation issues, punt on duplicates or overlaps.
817 */
818 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
819 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
820 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
821 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
822 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
823
824 if (!extract_min_max(a, a_min, a_max, length) ||
825 !extract_min_max(b, b_min, b_max, length))
826 return 0;
827
828 /*
829 * Punt inverted ranges.
830 */
831 if (memcmp(a_min, a_max, length) > 0 ||
832 memcmp(b_min, b_max, length) > 0)
833 return 0;
834
835 /*
836 * Punt overlaps.
837 */
838 if (memcmp(a_max, b_min, length) >= 0)
839 return 0;
840
841 /*
842 * Merge if a and b are adjacent. We check for
843 * adjacency by subtracting one from b_min first.
844 */
845 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
846 if (memcmp(a_max, b_min, length) == 0) {
847 IPAddressOrRange *merged;
848 if (!make_addressRange(&merged, a_min, b_max, length))
849 return 0;
850 (void)sk_IPAddressOrRange_set(aors, i, merged);
851 (void)sk_IPAddressOrRange_delete(aors, i + 1);
852 IPAddressOrRange_free(a);
853 IPAddressOrRange_free(b);
854 --i;
855 continue;
856 }
857 }
858
859 /*
860 * Check for inverted final range.
861 */
862 j = sk_IPAddressOrRange_num(aors) - 1;
863 {
864 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
865 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
866 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
867 if (!extract_min_max(a, a_min, a_max, length))
868 return 0;
869 if (memcmp(a_min, a_max, length) > 0)
870 return 0;
871 }
872 }
873
874 return 1;
875 }
876
877 /*
878 * Whack an IPAddrBlocks extension into canonical form.
879 */
X509v3_addr_canonize(IPAddrBlocks * addr)880 int X509v3_addr_canonize(IPAddrBlocks *addr)
881 {
882 int i;
883 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
884 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
885 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
886 !IPAddressOrRanges_canonize(f->ipAddressChoice->
887 u.addressesOrRanges,
888 X509v3_addr_get_afi(f)))
889 return 0;
890 }
891 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
892 sk_IPAddressFamily_sort(addr);
893 if (!ossl_assert(X509v3_addr_is_canonical(addr)))
894 return 0;
895 return 1;
896 }
897
898 /*
899 * v2i handler for the IPAddrBlocks extension.
900 */
v2i_IPAddrBlocks(const struct v3_ext_method * method,struct v3_ext_ctx * ctx,STACK_OF (CONF_VALUE)* values)901 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
902 struct v3_ext_ctx *ctx,
903 STACK_OF(CONF_VALUE) *values)
904 {
905 static const char v4addr_chars[] = "0123456789.";
906 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
907 IPAddrBlocks *addr = NULL;
908 char *s = NULL, *t;
909 int i;
910
911 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
912 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
913 return NULL;
914 }
915
916 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
917 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
918 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
919 unsigned afi, *safi = NULL, safi_;
920 const char *addr_chars = NULL;
921 int prefixlen, i1, i2, delim, length;
922
923 if (!name_cmp(val->name, "IPv4")) {
924 afi = IANA_AFI_IPV4;
925 } else if (!name_cmp(val->name, "IPv6")) {
926 afi = IANA_AFI_IPV6;
927 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
928 afi = IANA_AFI_IPV4;
929 safi = &safi_;
930 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
931 afi = IANA_AFI_IPV6;
932 safi = &safi_;
933 } else {
934 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
935 X509V3_R_EXTENSION_NAME_ERROR);
936 X509V3_conf_err(val);
937 goto err;
938 }
939
940 switch (afi) {
941 case IANA_AFI_IPV4:
942 addr_chars = v4addr_chars;
943 break;
944 case IANA_AFI_IPV6:
945 addr_chars = v6addr_chars;
946 break;
947 }
948
949 length = length_from_afi(afi);
950
951 /*
952 * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
953 * the other input values.
954 */
955 if (safi != NULL) {
956 *safi = strtoul(val->value, &t, 0);
957 t += strspn(t, " \t");
958 if (*safi > 0xFF || *t++ != ':') {
959 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
960 X509V3_conf_err(val);
961 goto err;
962 }
963 t += strspn(t, " \t");
964 s = OPENSSL_strdup(t);
965 } else {
966 s = OPENSSL_strdup(val->value);
967 }
968 if (s == NULL) {
969 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
970 goto err;
971 }
972
973 /*
974 * Check for inheritance. Not worth additional complexity to
975 * optimize this (seldom-used) case.
976 */
977 if (strcmp(s, "inherit") == 0) {
978 if (!X509v3_addr_add_inherit(addr, afi, safi)) {
979 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
980 X509V3_R_INVALID_INHERITANCE);
981 X509V3_conf_err(val);
982 goto err;
983 }
984 OPENSSL_free(s);
985 s = NULL;
986 continue;
987 }
988
989 i1 = strspn(s, addr_chars);
990 i2 = i1 + strspn(s + i1, " \t");
991 delim = s[i2++];
992 s[i1] = '\0';
993
994 if (a2i_ipadd(min, s) != length) {
995 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
996 X509V3_conf_err(val);
997 goto err;
998 }
999
1000 switch (delim) {
1001 case '/':
1002 prefixlen = (int)strtoul(s + i2, &t, 10);
1003 if (t == s + i2
1004 || *t != '\0'
1005 || prefixlen > (length * 8)
1006 || prefixlen < 0) {
1007 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1008 X509V3_R_EXTENSION_VALUE_ERROR);
1009 X509V3_conf_err(val);
1010 goto err;
1011 }
1012 if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1013 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1014 goto err;
1015 }
1016 break;
1017 case '-':
1018 i1 = i2 + strspn(s + i2, " \t");
1019 i2 = i1 + strspn(s + i1, addr_chars);
1020 if (i1 == i2 || s[i2] != '\0') {
1021 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1022 X509V3_R_EXTENSION_VALUE_ERROR);
1023 X509V3_conf_err(val);
1024 goto err;
1025 }
1026 if (a2i_ipadd(max, s + i1) != length) {
1027 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1028 X509V3_R_INVALID_IPADDRESS);
1029 X509V3_conf_err(val);
1030 goto err;
1031 }
1032 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1033 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034 X509V3_R_EXTENSION_VALUE_ERROR);
1035 X509V3_conf_err(val);
1036 goto err;
1037 }
1038 if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1039 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040 goto err;
1041 }
1042 break;
1043 case '\0':
1044 if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1045 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1046 goto err;
1047 }
1048 break;
1049 default:
1050 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1051 X509V3_R_EXTENSION_VALUE_ERROR);
1052 X509V3_conf_err(val);
1053 goto err;
1054 }
1055
1056 OPENSSL_free(s);
1057 s = NULL;
1058 }
1059
1060 /*
1061 * Canonize the result, then we're done.
1062 */
1063 if (!X509v3_addr_canonize(addr))
1064 goto err;
1065 return addr;
1066
1067 err:
1068 OPENSSL_free(s);
1069 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1070 return NULL;
1071 }
1072
1073 /*
1074 * OpenSSL dispatch
1075 */
1076 const X509V3_EXT_METHOD v3_addr = {
1077 NID_sbgp_ipAddrBlock, /* nid */
1078 0, /* flags */
1079 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1080 0, 0, 0, 0, /* old functions, ignored */
1081 0, /* i2s */
1082 0, /* s2i */
1083 0, /* i2v */
1084 v2i_IPAddrBlocks, /* v2i */
1085 i2r_IPAddrBlocks, /* i2r */
1086 0, /* r2i */
1087 NULL /* extension-specific data */
1088 };
1089
1090 /*
1091 * Figure out whether extension sues inheritance.
1092 */
X509v3_addr_inherits(IPAddrBlocks * addr)1093 int X509v3_addr_inherits(IPAddrBlocks *addr)
1094 {
1095 int i;
1096 if (addr == NULL)
1097 return 0;
1098 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1099 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1100 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1101 return 1;
1102 }
1103 return 0;
1104 }
1105
1106 /*
1107 * Figure out whether parent contains child.
1108 */
addr_contains(IPAddressOrRanges * parent,IPAddressOrRanges * child,int length)1109 static int addr_contains(IPAddressOrRanges *parent,
1110 IPAddressOrRanges *child, int length)
1111 {
1112 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1113 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1114 int p, c;
1115
1116 if (child == NULL || parent == child)
1117 return 1;
1118 if (parent == NULL)
1119 return 0;
1120
1121 p = 0;
1122 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1123 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1124 c_min, c_max, length))
1125 return -1;
1126 for (;; p++) {
1127 if (p >= sk_IPAddressOrRange_num(parent))
1128 return 0;
1129 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1130 p_min, p_max, length))
1131 return 0;
1132 if (memcmp(p_max, c_max, length) < 0)
1133 continue;
1134 if (memcmp(p_min, c_min, length) > 0)
1135 return 0;
1136 break;
1137 }
1138 }
1139
1140 return 1;
1141 }
1142
1143 /*
1144 * Test whether a is a subset of b.
1145 */
X509v3_addr_subset(IPAddrBlocks * a,IPAddrBlocks * b)1146 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1147 {
1148 int i;
1149 if (a == NULL || a == b)
1150 return 1;
1151 if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1152 return 0;
1153 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1154 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1155 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1156 int j = sk_IPAddressFamily_find(b, fa);
1157 IPAddressFamily *fb;
1158 fb = sk_IPAddressFamily_value(b, j);
1159 if (fb == NULL)
1160 return 0;
1161 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1162 fa->ipAddressChoice->u.addressesOrRanges,
1163 length_from_afi(X509v3_addr_get_afi(fb))))
1164 return 0;
1165 }
1166 return 1;
1167 }
1168
1169 /*
1170 * Validation error handling via callback.
1171 */
1172 #define validation_err(_err_) \
1173 do { \
1174 if (ctx != NULL) { \
1175 ctx->error = _err_; \
1176 ctx->error_depth = i; \
1177 ctx->current_cert = x; \
1178 ret = ctx->verify_cb(0, ctx); \
1179 } else { \
1180 ret = 0; \
1181 } \
1182 if (!ret) \
1183 goto done; \
1184 } while (0)
1185
1186 /*
1187 * Core code for RFC 3779 2.3 path validation.
1188 *
1189 * Returns 1 for success, 0 on error.
1190 *
1191 * When returning 0, ctx->error MUST be set to an appropriate value other than
1192 * X509_V_OK.
1193 */
addr_validate_path_internal(X509_STORE_CTX * ctx,STACK_OF (X509)* chain,IPAddrBlocks * ext)1194 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1195 STACK_OF(X509) *chain,
1196 IPAddrBlocks *ext)
1197 {
1198 IPAddrBlocks *child = NULL;
1199 int i, j, ret = 1;
1200 X509 *x;
1201
1202 if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1203 || !ossl_assert(ctx != NULL || ext != NULL)
1204 || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1205 if (ctx != NULL)
1206 ctx->error = X509_V_ERR_UNSPECIFIED;
1207 return 0;
1208 }
1209
1210 /*
1211 * Figure out where to start. If we don't have an extension to
1212 * check, we're done. Otherwise, check canonical form and
1213 * set up for walking up the chain.
1214 */
1215 if (ext != NULL) {
1216 i = -1;
1217 x = NULL;
1218 } else {
1219 i = 0;
1220 x = sk_X509_value(chain, i);
1221 if ((ext = x->rfc3779_addr) == NULL)
1222 goto done;
1223 }
1224 if (!X509v3_addr_is_canonical(ext))
1225 validation_err(X509_V_ERR_INVALID_EXTENSION);
1226 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1227 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1228 X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1229 ERR_R_MALLOC_FAILURE);
1230 if (ctx != NULL)
1231 ctx->error = X509_V_ERR_OUT_OF_MEM;
1232 ret = 0;
1233 goto done;
1234 }
1235
1236 /*
1237 * Now walk up the chain. No cert may list resources that its
1238 * parent doesn't list.
1239 */
1240 for (i++; i < sk_X509_num(chain); i++) {
1241 x = sk_X509_value(chain, i);
1242 if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1243 validation_err(X509_V_ERR_INVALID_EXTENSION);
1244 if (x->rfc3779_addr == NULL) {
1245 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1246 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1247 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1248 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1249 break;
1250 }
1251 }
1252 continue;
1253 }
1254 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1255 IPAddressFamily_cmp);
1256 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1257 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1258 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1259 IPAddressFamily *fp =
1260 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1261 if (fp == NULL) {
1262 if (fc->ipAddressChoice->type ==
1263 IPAddressChoice_addressesOrRanges) {
1264 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1265 break;
1266 }
1267 continue;
1268 }
1269 if (fp->ipAddressChoice->type ==
1270 IPAddressChoice_addressesOrRanges) {
1271 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1272 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1273 fc->ipAddressChoice->u.addressesOrRanges,
1274 length_from_afi(X509v3_addr_get_afi(fc))))
1275 sk_IPAddressFamily_set(child, j, fp);
1276 else
1277 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1278 }
1279 }
1280 }
1281
1282 /*
1283 * Trust anchor can't inherit.
1284 */
1285 if (x->rfc3779_addr != NULL) {
1286 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1287 IPAddressFamily *fp =
1288 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1289 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1290 && sk_IPAddressFamily_find(child, fp) >= 0)
1291 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1292 }
1293 }
1294
1295 done:
1296 sk_IPAddressFamily_free(child);
1297 return ret;
1298 }
1299
1300 #undef validation_err
1301
1302 /*
1303 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1304 */
X509v3_addr_validate_path(X509_STORE_CTX * ctx)1305 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1306 {
1307 if (ctx->chain == NULL
1308 || sk_X509_num(ctx->chain) == 0
1309 || ctx->verify_cb == NULL) {
1310 ctx->error = X509_V_ERR_UNSPECIFIED;
1311 return 0;
1312 }
1313 return addr_validate_path_internal(ctx, ctx->chain, NULL);
1314 }
1315
1316 /*
1317 * RFC 3779 2.3 path validation of an extension.
1318 * Test whether chain covers extension.
1319 */
X509v3_addr_validate_resource_set(STACK_OF (X509)* chain,IPAddrBlocks * ext,int allow_inheritance)1320 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1321 IPAddrBlocks *ext, int allow_inheritance)
1322 {
1323 if (ext == NULL)
1324 return 1;
1325 if (chain == NULL || sk_X509_num(chain) == 0)
1326 return 0;
1327 if (!allow_inheritance && X509v3_addr_inherits(ext))
1328 return 0;
1329 return addr_validate_path_internal(NULL, chain, ext);
1330 }
1331
1332 #endif /* OPENSSL_NO_RFC3779 */
1333