1 // SPDX-License-Identifier: 0BSD
2
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file util.c
6 /// \brief Miscellaneous utility functions
7 //
8 // Author: Lasse Collin
9 //
10 ///////////////////////////////////////////////////////////////////////////////
11
12 #include "private.h"
13 #include <stdarg.h>
14
15
16 /// Buffers for uint64_to_str() and uint64_to_nicestr()
17 static char bufs[4][128];
18
19
20 // Thousand separator support in uint64_to_str() and uint64_to_nicestr():
21 //
22 // DJGPP 2.05 added support for thousands separators but it's broken
23 // at least under WinXP with Finnish locale that uses a non-breaking space
24 // as the thousands separator. Workaround by disabling thousands separators
25 // for DJGPP builds.
26 //
27 // MSVC doesn't support thousand separators.
28 #if defined(__DJGPP__) || defined(_MSC_VER)
29 # define FORMAT_THOUSAND_SEP(prefix, suffix) prefix suffix
30 # define check_thousand_sep(slot) do { } while (0)
31 #else
32 # define FORMAT_THOUSAND_SEP(prefix, suffix) ((thousand == WORKS) \
33 ? prefix "'" suffix \
34 : prefix suffix)
35
36 static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
37
38 /// Check if thousands separator is supported. Run-time checking is easiest
39 /// because it seems to be sometimes lacking even on a POSIXish system.
40 /// Note that trying to use thousands separators when snprintf() doesn't
41 /// support them results in undefined behavior. This just has happened to
42 /// work well enough in practice.
43 ///
44 /// This must be called before using the FORMAT_THOUSAND_SEP macro.
45 static void
check_thousand_sep(uint32_t slot)46 check_thousand_sep(uint32_t slot)
47 {
48 if (thousand == UNKNOWN) {
49 bufs[slot][0] = '\0';
50 snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
51 thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
52 }
53
54 return;
55 }
56 #endif
57
58
59 extern void *
xrealloc(void * ptr,size_t size)60 xrealloc(void *ptr, size_t size)
61 {
62 assert(size > 0);
63
64 // Save ptr so that we can free it if realloc fails.
65 // The point is that message_fatal ends up calling stdio functions
66 // which in some libc implementations might allocate memory from
67 // the heap. Freeing ptr improves the chances that there's free
68 // memory for stdio functions if they need it.
69 void *p = ptr;
70 ptr = realloc(ptr, size);
71
72 if (ptr == NULL) {
73 const int saved_errno = errno;
74 free(p);
75 message_fatal("%s", strerror(saved_errno));
76 }
77
78 return ptr;
79 }
80
81
82 extern char *
xstrdup(const char * src)83 xstrdup(const char *src)
84 {
85 assert(src != NULL);
86 const size_t size = strlen(src) + 1;
87 char *dest = xmalloc(size);
88 return memcpy(dest, src, size);
89 }
90
91
92 extern uint64_t
str_to_uint64(const char * name,const char * value,uint64_t min,uint64_t max)93 str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
94 {
95 uint64_t result = 0;
96
97 // Skip blanks.
98 while (*value == ' ' || *value == '\t')
99 ++value;
100
101 // Accept special value "max". Supporting "min" doesn't seem useful.
102 if (strcmp(value, "max") == 0)
103 return max;
104
105 if (*value < '0' || *value > '9')
106 message_fatal(_("%s: Value is not a non-negative "
107 "decimal integer"), value);
108
109 do {
110 // Don't overflow.
111 if (result > UINT64_MAX / 10)
112 goto error;
113
114 result *= 10;
115
116 // Another overflow check
117 const uint32_t add = (uint32_t)(*value - '0');
118 if (UINT64_MAX - add < result)
119 goto error;
120
121 result += add;
122 ++value;
123 } while (*value >= '0' && *value <= '9');
124
125 if (*value != '\0') {
126 // Look for suffix. Originally this supported both base-2
127 // and base-10, but since there seems to be little need
128 // for base-10 in this program, treat everything as base-2
129 // and also be more relaxed about the case of the first
130 // letter of the suffix.
131 uint64_t multiplier = 0;
132 if (*value == 'k' || *value == 'K')
133 multiplier = UINT64_C(1) << 10;
134 else if (*value == 'm' || *value == 'M')
135 multiplier = UINT64_C(1) << 20;
136 else if (*value == 'g' || *value == 'G')
137 multiplier = UINT64_C(1) << 30;
138
139 ++value;
140
141 // Allow also e.g. Ki, KiB, and KB.
142 if (*value != '\0' && strcmp(value, "i") != 0
143 && strcmp(value, "iB") != 0
144 && strcmp(value, "B") != 0)
145 multiplier = 0;
146
147 if (multiplier == 0) {
148 message(V_ERROR, _("%s: Invalid multiplier suffix"),
149 value - 1);
150 message_fatal(_("Valid suffixes are 'KiB' (2^10), "
151 "'MiB' (2^20), and 'GiB' (2^30)."));
152 }
153
154 // Don't overflow here either.
155 if (result > UINT64_MAX / multiplier)
156 goto error;
157
158 result *= multiplier;
159 }
160
161 if (result < min || result > max)
162 goto error;
163
164 return result;
165
166 error:
167 message_fatal(_("Value of the option '%s' must be in the range "
168 "[%" PRIu64 ", %" PRIu64 "]"),
169 name, min, max);
170 }
171
172
173 extern uint64_t
round_up_to_mib(uint64_t n)174 round_up_to_mib(uint64_t n)
175 {
176 return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
177 }
178
179
180 extern const char *
uint64_to_str(uint64_t value,uint32_t slot)181 uint64_to_str(uint64_t value, uint32_t slot)
182 {
183 assert(slot < ARRAY_SIZE(bufs));
184
185 check_thousand_sep(slot);
186
187 snprintf(bufs[slot], sizeof(bufs[slot]),
188 FORMAT_THOUSAND_SEP("%", PRIu64), value);
189
190 return bufs[slot];
191 }
192
193
194 extern const char *
uint64_to_nicestr(uint64_t value,enum nicestr_unit unit_min,enum nicestr_unit unit_max,bool always_also_bytes,uint32_t slot)195 uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
196 enum nicestr_unit unit_max, bool always_also_bytes,
197 uint32_t slot)
198 {
199 assert(unit_min <= unit_max);
200 assert(unit_max <= NICESTR_TIB);
201 assert(slot < ARRAY_SIZE(bufs));
202
203 check_thousand_sep(slot);
204
205 enum nicestr_unit unit = NICESTR_B;
206 char *pos = bufs[slot];
207 size_t left = sizeof(bufs[slot]);
208
209 if ((unit_min == NICESTR_B && value < 10000)
210 || unit_max == NICESTR_B) {
211 // The value is shown as bytes.
212 my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", "u"),
213 (unsigned int)value);
214 } else {
215 // Scale the value to a nicer unit. Unless unit_min and
216 // unit_max limit us, we will show at most five significant
217 // digits with one decimal place.
218 double d = (double)(value);
219 do {
220 d /= 1024.0;
221 ++unit;
222 } while (unit < unit_min || (d > 9999.9 && unit < unit_max));
223
224 my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", ".1f"), d);
225 }
226
227 static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
228 my_snprintf(&pos, &left, " %s", suffix[unit]);
229
230 if (always_also_bytes && value >= 10000)
231 snprintf(pos, left, FORMAT_THOUSAND_SEP(" (%", PRIu64 " B)"),
232 value);
233
234 return bufs[slot];
235 }
236
237
238 extern void
my_snprintf(char ** pos,size_t * left,const char * fmt,...)239 my_snprintf(char **pos, size_t *left, const char *fmt, ...)
240 {
241 va_list ap;
242 va_start(ap, fmt);
243 const int len = vsnprintf(*pos, *left, fmt, ap);
244 va_end(ap);
245
246 // If an error occurred, we want the caller to think that the whole
247 // buffer was used. This way no more data will be written to the
248 // buffer. We don't need better error handling here, although it
249 // is possible that the result looks garbage on the terminal if
250 // e.g. an UTF-8 character gets split. That shouldn't (easily)
251 // happen though, because the buffers used have some extra room.
252 if (len < 0 || (size_t)(len) >= *left) {
253 *left = 0;
254 } else {
255 *pos += len;
256 *left -= (size_t)(len);
257 }
258
259 return;
260 }
261
262
263 extern bool
is_tty(int fd)264 is_tty(int fd)
265 {
266 #if defined(_WIN32) && !defined(__CYGWIN__)
267 // There is no need to check if handle == INVALID_HANDLE_VALUE
268 // because it will return false anyway when used in GetConsoleMode().
269 // The resulting HANDLE is owned by the file descriptor.
270 // The HANDLE must not be closed here.
271 intptr_t handle = _get_osfhandle(fd);
272 DWORD mode;
273
274 // GetConsoleMode() is an easy way to tell if the HANDLE is a
275 // console or not. We do not care about the value of mode since we
276 // do not plan to use any further Windows console functions.
277 return GetConsoleMode((HANDLE)handle, &mode);
278 #else
279 return isatty(fd);
280 #endif
281 }
282
283
284 extern bool
is_tty_stdin(void)285 is_tty_stdin(void)
286 {
287 const bool ret = is_tty(STDIN_FILENO);
288
289 if (ret)
290 message_error(_("Compressed data cannot be read from "
291 "a terminal"));
292
293 return ret;
294 }
295
296
297 extern bool
is_tty_stdout(void)298 is_tty_stdout(void)
299 {
300 const bool ret = is_tty(STDOUT_FILENO);
301
302 if (ret)
303 message_error(_("Compressed data cannot be written to "
304 "a terminal"));
305
306 return ret;
307 }
308