1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
32 */
33
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/ksynch.h>
37 #include <sys/param.h>
38 #include <sys/time.h>
39 #include <sys/systm.h>
40 #include <sys/sysmacros.h>
41 #include <sys/resource.h>
42 #include <sys/signal.h>
43 #include <sys/cred.h>
44 #include <sys/user.h>
45 #include <sys/buf.h>
46 #include <sys/vfs.h>
47 #include <sys/vfs_opreg.h>
48 #include <sys/vnode.h>
49 #include <sys/proc.h>
50 #include <sys/disp.h>
51 #include <sys/file.h>
52 #include <sys/fcntl.h>
53 #include <sys/flock.h>
54 #include <sys/atomic.h>
55 #include <sys/kmem.h>
56 #include <sys/uio.h>
57 #include <sys/dnlc.h>
58 #include <sys/conf.h>
59 #include <sys/mman.h>
60 #include <sys/pathname.h>
61 #include <sys/debug.h>
62 #include <sys/vmsystm.h>
63 #include <sys/cmn_err.h>
64 #include <sys/filio.h>
65 #include <sys/policy.h>
66
67 #include <sys/fs/ufs_fs.h>
68 #include <sys/fs/ufs_lockfs.h>
69 #include <sys/fs/ufs_filio.h>
70 #include <sys/fs/ufs_inode.h>
71 #include <sys/fs/ufs_fsdir.h>
72 #include <sys/fs/ufs_quota.h>
73 #include <sys/fs/ufs_log.h>
74 #include <sys/fs/ufs_snap.h>
75 #include <sys/fs/ufs_trans.h>
76 #include <sys/fs/ufs_panic.h>
77 #include <sys/fs/ufs_bio.h>
78 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
79 #include <sys/errno.h>
80 #include <sys/fssnap_if.h>
81 #include <sys/unistd.h>
82 #include <sys/sunddi.h>
83
84 #include <sys/filio.h> /* _FIOIO */
85
86 #include <vm/hat.h>
87 #include <vm/page.h>
88 #include <vm/pvn.h>
89 #include <vm/as.h>
90 #include <vm/seg.h>
91 #include <vm/seg_map.h>
92 #include <vm/seg_vn.h>
93 #include <vm/seg_kmem.h>
94 #include <vm/rm.h>
95 #include <sys/swap.h>
96
97 #include <fs/fs_subr.h>
98
99 #include <sys/fs/decomp.h>
100
101 static struct instats ins;
102
103 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
104 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
105 caddr_t, struct page **, size_t, enum seg_rw, int);
106 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
107 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
108 caller_context_t *);
109 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
110 struct caller_context *);
111 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
112 struct caller_context *);
113 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
114 int *, caller_context_t *);
115 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
116 caller_context_t *);
117 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
118 caller_context_t *);
119 static int ufs_access(struct vnode *, int, int, struct cred *,
120 caller_context_t *);
121 static int ufs_lookup(struct vnode *, char *, struct vnode **,
122 struct pathname *, int, struct vnode *, struct cred *,
123 caller_context_t *, int *, pathname_t *);
124 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
125 int, struct vnode **, struct cred *, int,
126 caller_context_t *, vsecattr_t *);
127 static int ufs_remove(struct vnode *, char *, struct cred *,
128 caller_context_t *, int);
129 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
130 caller_context_t *, int);
131 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
132 struct cred *, caller_context_t *, int);
133 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
134 struct cred *, caller_context_t *, int, vsecattr_t *);
135 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
136 caller_context_t *, int);
137 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
138 caller_context_t *, int);
139 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
140 struct cred *, caller_context_t *, int);
141 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
142 caller_context_t *);
143 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
144 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
145 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
146 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
147 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
148 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
149 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
150 struct flk_callback *, struct cred *,
151 caller_context_t *);
152 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
153 cred_t *, caller_context_t *);
154 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
155 struct page **, size_t, struct seg *, caddr_t,
156 enum seg_rw, struct cred *, caller_context_t *);
157 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
158 caller_context_t *);
159 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
160 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
161 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
162 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
164 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
165 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
166 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
167 caller_context_t *);
168 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
169 caller_context_t *);
170 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
171 caller_context_t *);
172 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
173 struct cred *, caller_context_t *);
174 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
175 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
176 daddr32_t *, int, int);
177 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
178 caller_context_t *);
179 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
180 caller_context_t *);
181 static int ufs_priv_access(void *, int, struct cred *);
182 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
183 struct vnode **);
184 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
185
186 /*
187 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
188 *
189 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
190 */
191 struct vnodeops *ufs_vnodeops;
192
193 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
194 const fs_operation_def_t ufs_vnodeops_template[] = {
195 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
196 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
197 VOPNAME_READ, { .vop_read = ufs_read },
198 VOPNAME_WRITE, { .vop_write = ufs_write },
199 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
200 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
201 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
202 VOPNAME_ACCESS, { .vop_access = ufs_access },
203 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
204 VOPNAME_CREATE, { .vop_create = ufs_create },
205 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
206 VOPNAME_LINK, { .vop_link = ufs_link },
207 VOPNAME_RENAME, { .vop_rename = ufs_rename },
208 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
209 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
210 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
211 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
212 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
213 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
214 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
215 VOPNAME_FID, { .vop_fid = ufs_fid },
216 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
217 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
218 VOPNAME_SEEK, { .vop_seek = ufs_seek },
219 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
220 VOPNAME_SPACE, { .vop_space = ufs_space },
221 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
222 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
223 VOPNAME_MAP, { .vop_map = ufs_map },
224 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
225 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
226 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
227 VOPNAME_DUMP, { .vop_dump = ufs_dump },
228 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
229 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
230 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
231 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
232 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
233 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
234 NULL, NULL
235 };
236
237 #define MAX_BACKFILE_COUNT 9999
238
239 /*
240 * Created by ufs_dumpctl() to store a file's disk block info into memory.
241 * Used by ufs_dump() to dump data to disk directly.
242 */
243 struct dump {
244 struct inode *ip; /* the file we contain */
245 daddr_t fsbs; /* number of blocks stored */
246 struct timeval32 time; /* time stamp for the struct */
247 daddr32_t dblk[1]; /* place holder for block info */
248 };
249
250 static struct dump *dump_info = NULL;
251
252 /*
253 * Previously there was no special action required for ordinary files.
254 * (Devices are handled through the device file system.)
255 * Now we support Large Files and Large File API requires open to
256 * fail if file is large.
257 * We could take care to prevent data corruption
258 * by doing an atomic check of size and truncate if file is opened with
259 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
260 * layers. So taking care of truncation here is a change in the existing
261 * semantics of VOP_OPEN and therefore we chose not to implement any thing
262 * here. The check for the size of the file > 2GB is being done at the
263 * vfs layer in routine vn_open().
264 */
265
266 /* ARGSUSED */
267 static int
ufs_open(struct vnode ** vpp,int flag,struct cred * cr,caller_context_t * ct)268 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
269 {
270 return (0);
271 }
272
273 /*ARGSUSED*/
274 static int
ufs_close(struct vnode * vp,int flag,int count,offset_t offset,struct cred * cr,caller_context_t * ct)275 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
276 struct cred *cr, caller_context_t *ct)
277 {
278 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
279 cleanshares(vp, ttoproc(curthread)->p_pid);
280
281 /*
282 * Push partially filled cluster at last close.
283 * ``last close'' is approximated because the dnlc
284 * may have a hold on the vnode.
285 * Checking for VBAD here will also act as a forced umount check.
286 */
287 if (vp->v_count <= 2 && vp->v_type != VBAD) {
288 struct inode *ip = VTOI(vp);
289 if (ip->i_delaylen) {
290 ins.in_poc.value.ul++;
291 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
292 B_ASYNC | B_FREE, cr);
293 ip->i_delaylen = 0;
294 }
295 }
296
297 return (0);
298 }
299
300 /*ARGSUSED*/
301 static int
ufs_read(struct vnode * vp,struct uio * uiop,int ioflag,struct cred * cr,struct caller_context * ct)302 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
303 struct caller_context *ct)
304 {
305 struct inode *ip = VTOI(vp);
306 struct ufsvfs *ufsvfsp;
307 struct ulockfs *ulp = NULL;
308 int error = 0;
309 int intrans = 0;
310
311 ASSERT(RW_READ_HELD(&ip->i_rwlock));
312
313 /*
314 * Mandatory locking needs to be done before ufs_lockfs_begin()
315 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
316 */
317 if (MANDLOCK(vp, ip->i_mode)) {
318 /*
319 * ufs_getattr ends up being called by chklock
320 */
321 error = chklock(vp, FREAD, uiop->uio_loffset,
322 uiop->uio_resid, uiop->uio_fmode, ct);
323 if (error)
324 goto out;
325 }
326
327 ufsvfsp = ip->i_ufsvfs;
328 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
329 if (error)
330 goto out;
331
332 /*
333 * In the case that a directory is opened for reading as a file
334 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
335 * The locking order had to be changed to avoid a deadlock with
336 * an update taking place on that directory at the same time.
337 */
338 if ((ip->i_mode & IFMT) == IFDIR) {
339
340 rw_enter(&ip->i_contents, RW_READER);
341 error = rdip(ip, uiop, ioflag, cr);
342 rw_exit(&ip->i_contents);
343
344 if (error) {
345 if (ulp)
346 ufs_lockfs_end(ulp);
347 goto out;
348 }
349
350 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
351 TRANS_ISTRANS(ufsvfsp)) {
352 rw_exit(&ip->i_rwlock);
353 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
354 error);
355 ASSERT(!error);
356 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
357 TOP_READ_SIZE);
358 rw_enter(&ip->i_rwlock, RW_READER);
359 }
360 } else {
361 /*
362 * Only transact reads to files opened for sync-read and
363 * sync-write on a file system that is not write locked.
364 *
365 * The ``not write locked'' check prevents problems with
366 * enabling/disabling logging on a busy file system. E.g.,
367 * logging exists at the beginning of the read but does not
368 * at the end.
369 *
370 */
371 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
372 TRANS_ISTRANS(ufsvfsp)) {
373 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
374 error);
375 ASSERT(!error);
376 intrans = 1;
377 }
378
379 rw_enter(&ip->i_contents, RW_READER);
380 error = rdip(ip, uiop, ioflag, cr);
381 rw_exit(&ip->i_contents);
382
383 if (intrans) {
384 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
385 TOP_READ_SIZE);
386 }
387 }
388
389 if (ulp) {
390 ufs_lockfs_end(ulp);
391 }
392 out:
393
394 return (error);
395 }
396
397 extern int ufs_HW; /* high water mark */
398 extern int ufs_LW; /* low water mark */
399 int ufs_WRITES = 1; /* XXX - enable/disable */
400 int ufs_throttles = 0; /* throttling count */
401 int ufs_allow_shared_writes = 1; /* directio shared writes */
402
403 static int
ufs_check_rewrite(struct inode * ip,struct uio * uiop,int ioflag)404 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
405 {
406 int shared_write;
407
408 /*
409 * If the FDSYNC flag is set then ignore the global
410 * ufs_allow_shared_writes in this case.
411 */
412 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
413
414 /*
415 * Filter to determine if this request is suitable as a
416 * concurrent rewrite. This write must not allocate blocks
417 * by extending the file or filling in holes. No use trying
418 * through FSYNC descriptors as the inode will be synchronously
419 * updated after the write. The uio structure has not yet been
420 * checked for sanity, so assume nothing.
421 */
422 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
423 (uiop->uio_loffset >= (offset_t)0) &&
424 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
425 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
426 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
427 shared_write);
428 }
429
430 /*ARGSUSED*/
431 static int
ufs_write(struct vnode * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)432 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
433 caller_context_t *ct)
434 {
435 struct inode *ip = VTOI(vp);
436 struct ufsvfs *ufsvfsp;
437 struct ulockfs *ulp;
438 int retry = 1;
439 int error, resv, resid = 0;
440 int directio_status;
441 int exclusive;
442 int rewriteflg;
443 long start_resid = uiop->uio_resid;
444
445 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
446
447 retry_mandlock:
448 /*
449 * Mandatory locking needs to be done before ufs_lockfs_begin()
450 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
451 * Check for forced unmounts normally done in ufs_lockfs_begin().
452 */
453 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
454 error = EIO;
455 goto out;
456 }
457 if (MANDLOCK(vp, ip->i_mode)) {
458
459 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
460
461 /*
462 * ufs_getattr ends up being called by chklock
463 */
464 error = chklock(vp, FWRITE, uiop->uio_loffset,
465 uiop->uio_resid, uiop->uio_fmode, ct);
466 if (error)
467 goto out;
468 }
469
470 /* i_rwlock can change in chklock */
471 exclusive = rw_write_held(&ip->i_rwlock);
472 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
473
474 /*
475 * Check for fast-path special case of directio re-writes.
476 */
477 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
478 !exclusive && rewriteflg) {
479
480 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
481 if (error)
482 goto out;
483
484 rw_enter(&ip->i_contents, RW_READER);
485 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
486 &directio_status);
487 if (directio_status == DIRECTIO_SUCCESS) {
488 uint_t i_flag_save;
489
490 if (start_resid != uiop->uio_resid)
491 error = 0;
492 /*
493 * Special treatment of access times for re-writes.
494 * If IMOD is not already set, then convert it
495 * to IMODACC for this operation. This defers
496 * entering a delta into the log until the inode
497 * is flushed. This mimics what is done for read
498 * operations and inode access time.
499 */
500 mutex_enter(&ip->i_tlock);
501 i_flag_save = ip->i_flag;
502 ip->i_flag |= IUPD | ICHG;
503 ip->i_seq++;
504 ITIMES_NOLOCK(ip);
505 if ((i_flag_save & IMOD) == 0) {
506 ip->i_flag &= ~IMOD;
507 ip->i_flag |= IMODACC;
508 }
509 mutex_exit(&ip->i_tlock);
510 rw_exit(&ip->i_contents);
511 if (ulp)
512 ufs_lockfs_end(ulp);
513 goto out;
514 }
515 rw_exit(&ip->i_contents);
516 if (ulp)
517 ufs_lockfs_end(ulp);
518 }
519
520 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
521 rw_exit(&ip->i_rwlock);
522 rw_enter(&ip->i_rwlock, RW_WRITER);
523 /*
524 * Mandatory locking could have been enabled
525 * after dropping the i_rwlock.
526 */
527 if (MANDLOCK(vp, ip->i_mode))
528 goto retry_mandlock;
529 }
530
531 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
532 if (error)
533 goto out;
534
535 /*
536 * Amount of log space needed for this write
537 */
538 if (!rewriteflg || !(ioflag & FDSYNC))
539 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
540
541 /*
542 * Throttle writes.
543 */
544 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
545 mutex_enter(&ip->i_tlock);
546 while (ip->i_writes > ufs_HW) {
547 ufs_throttles++;
548 cv_wait(&ip->i_wrcv, &ip->i_tlock);
549 }
550 mutex_exit(&ip->i_tlock);
551 }
552
553 /*
554 * Enter Transaction
555 *
556 * If the write is a rewrite there is no need to open a transaction
557 * if the FDSYNC flag is set and not the FSYNC. In this case just
558 * set the IMODACC flag to modify do the update at a later time
559 * thus avoiding the overhead of the logging transaction that is
560 * not required.
561 */
562 if (ioflag & (FSYNC|FDSYNC)) {
563 if (ulp) {
564 if (rewriteflg) {
565 uint_t i_flag_save;
566
567 rw_enter(&ip->i_contents, RW_READER);
568 mutex_enter(&ip->i_tlock);
569 i_flag_save = ip->i_flag;
570 ip->i_flag |= IUPD | ICHG;
571 ip->i_seq++;
572 ITIMES_NOLOCK(ip);
573 if ((i_flag_save & IMOD) == 0) {
574 ip->i_flag &= ~IMOD;
575 ip->i_flag |= IMODACC;
576 }
577 mutex_exit(&ip->i_tlock);
578 rw_exit(&ip->i_contents);
579 } else {
580 int terr = 0;
581 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
582 terr);
583 ASSERT(!terr);
584 }
585 }
586 } else {
587 if (ulp)
588 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
589 }
590
591 /*
592 * Write the file
593 */
594 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
595 rw_enter(&ip->i_contents, RW_WRITER);
596 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
597 /*
598 * In append mode start at end of file.
599 */
600 uiop->uio_loffset = ip->i_size;
601 }
602
603 /*
604 * Mild optimisation, don't call ufs_trans_write() unless we have to
605 * Also, suppress file system full messages if we will retry.
606 */
607 if (retry)
608 ip->i_flag |= IQUIET;
609 if (resid) {
610 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
611 } else {
612 error = wrip(ip, uiop, ioflag, cr);
613 }
614 ip->i_flag &= ~IQUIET;
615
616 rw_exit(&ip->i_contents);
617 rw_exit(&ufsvfsp->vfs_dqrwlock);
618
619 /*
620 * Leave Transaction
621 */
622 if (ulp) {
623 if (ioflag & (FSYNC|FDSYNC)) {
624 if (!rewriteflg) {
625 int terr = 0;
626
627 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
628 resv);
629 if (error == 0)
630 error = terr;
631 }
632 } else {
633 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
634 }
635 ufs_lockfs_end(ulp);
636 }
637 out:
638 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
639 /*
640 * Any blocks tied up in pending deletes?
641 */
642 ufs_delete_drain_wait(ufsvfsp, 1);
643 retry = 0;
644 goto retry_mandlock;
645 }
646
647 if (error == ENOSPC && (start_resid != uiop->uio_resid))
648 error = 0;
649
650 return (error);
651 }
652
653 /*
654 * Don't cache write blocks to files with the sticky bit set.
655 * Used to keep swap files from blowing the page cache on a server.
656 */
657 int stickyhack = 1;
658
659 /*
660 * Free behind hacks. The pager is busted.
661 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
662 * or B_FREE_IF_TIGHT_ON_MEMORY.
663 */
664 int freebehind = 1;
665 int smallfile = 0;
666 u_offset_t smallfile64 = 32 * 1024;
667
668 /*
669 * While we should, in most cases, cache the pages for write, we
670 * may also want to cache the pages for read as long as they are
671 * frequently re-usable.
672 *
673 * If cache_read_ahead = 1, the pages for read will go to the tail
674 * of the cache list when they are released, otherwise go to the head.
675 */
676 int cache_read_ahead = 0;
677
678 /*
679 * Freebehind exists so that as we read large files sequentially we
680 * don't consume most of memory with pages from a few files. It takes
681 * longer to re-read from disk multiple small files as it does reading
682 * one large one sequentially. As system memory grows customers need
683 * to retain bigger chunks of files in memory. The advent of the
684 * cachelist opens up of the possibility freeing pages to the head or
685 * tail of the list.
686 *
687 * Not freeing a page is a bet that the page will be read again before
688 * it's segmap slot is needed for something else. If we loose the bet,
689 * it means some other thread is burdened with the page free we did
690 * not do. If we win we save a free and reclaim.
691 *
692 * Freeing it at the tail vs the head of cachelist is a bet that the
693 * page will survive until the next read. It's also saying that this
694 * page is more likely to be re-used than a page freed some time ago
695 * and never reclaimed.
696 *
697 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
698 *
699 * 0 < offset < smallfile1 : pages are not freed.
700 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
701 * smallfile2 < offset : pages freed to head of cachelist.
702 *
703 * The range is computed at most once per second and depends on
704 * freemem and ncpus_online. Both parameters are bounded to be
705 * >= smallfile && >= smallfile64.
706 *
707 * smallfile1 = (free memory / ncpu) / 1000
708 * smallfile2 = (free memory / ncpu) / 10
709 *
710 * A few examples values:
711 *
712 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
713 * ncpus_online = 4 ncpus_online = 64
714 * ------------------ ----------------------- -----------------------
715 * 1G [256K; 25M] [32K; 1.5M]
716 * 10G [2.5M; 250M] [156K; 15M]
717 * 100G [25M; 2.5G] [1.5M; 150M]
718 *
719 */
720
721 #define SMALLFILE1_D 1000
722 #define SMALLFILE2_D 10
723 static u_offset_t smallfile1 = 32 * 1024;
724 static u_offset_t smallfile2 = 32 * 1024;
725 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
726 uint_t smallfile1_d = SMALLFILE1_D;
727 uint_t smallfile2_d = SMALLFILE2_D;
728
729 /*
730 * wrip does the real work of write requests for ufs.
731 */
732 int
wrip(struct inode * ip,struct uio * uio,int ioflag,struct cred * cr)733 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
734 {
735 rlim64_t limit = uio->uio_llimit;
736 u_offset_t off;
737 u_offset_t old_i_size;
738 struct fs *fs;
739 struct vnode *vp;
740 struct ufsvfs *ufsvfsp;
741 caddr_t base;
742 long start_resid = uio->uio_resid; /* save starting resid */
743 long premove_resid; /* resid before uiomove() */
744 uint_t flags;
745 int newpage;
746 int iupdat_flag, directio_status;
747 int n, on, mapon;
748 int error, pagecreate;
749 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
750 int32_t iblocks;
751 int new_iblocks;
752
753 /*
754 * ip->i_size is incremented before the uiomove
755 * is done on a write. If the move fails (bad user
756 * address) reset ip->i_size.
757 * The better way would be to increment ip->i_size
758 * only if the uiomove succeeds.
759 */
760 int i_size_changed = 0;
761 o_mode_t type;
762 int i_seq_needed = 0;
763
764 vp = ITOV(ip);
765
766 /*
767 * check for forced unmount - should not happen as
768 * the request passed the lockfs checks.
769 */
770 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
771 return (EIO);
772
773 fs = ip->i_fs;
774
775 ASSERT(RW_WRITE_HELD(&ip->i_contents));
776
777 /* check for valid filetype */
778 type = ip->i_mode & IFMT;
779 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
780 (type != IFLNK) && (type != IFSHAD)) {
781 return (EIO);
782 }
783
784 /*
785 * the actual limit of UFS file size
786 * is UFS_MAXOFFSET_T
787 */
788 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
789 limit = MAXOFFSET_T;
790
791 if (uio->uio_loffset >= limit) {
792 proc_t *p = ttoproc(curthread);
793
794 mutex_enter(&p->p_lock);
795 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
796 p, RCA_UNSAFE_SIGINFO);
797 mutex_exit(&p->p_lock);
798 return (EFBIG);
799 }
800
801 /*
802 * if largefiles are disallowed, the limit is
803 * the pre-largefiles value of 2GB
804 */
805 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
806 limit = MIN(UFS_MAXOFFSET_T, limit);
807 else
808 limit = MIN(MAXOFF32_T, limit);
809
810 if (uio->uio_loffset < (offset_t)0) {
811 return (EINVAL);
812 }
813 if (uio->uio_resid == 0) {
814 return (0);
815 }
816
817 if (uio->uio_loffset >= limit)
818 return (EFBIG);
819
820 ip->i_flag |= INOACC; /* don't update ref time in getpage */
821
822 if (ioflag & (FSYNC|FDSYNC)) {
823 ip->i_flag |= ISYNC;
824 iupdat_flag = 1;
825 }
826 /*
827 * Try to go direct
828 */
829 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
830 uio->uio_llimit = limit;
831 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
832 &directio_status);
833 /*
834 * If ufs_directio wrote to the file or set the flags,
835 * we need to update i_seq, but it may be deferred.
836 */
837 if (start_resid != uio->uio_resid ||
838 (ip->i_flag & (ICHG|IUPD))) {
839 i_seq_needed = 1;
840 ip->i_flag |= ISEQ;
841 }
842 if (directio_status == DIRECTIO_SUCCESS)
843 goto out;
844 }
845
846 /*
847 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
848 *
849 * o shadow inodes: vfs_dqrwlock is not held at all
850 * o quota updates: vfs_dqrwlock is read or write held
851 * o other updates: vfs_dqrwlock is read held
852 *
853 * The first case is the only one where we do not hold
854 * vfs_dqrwlock at all while entering wrip().
855 * We must make sure not to downgrade/drop vfs_dqrwlock if we
856 * have it as writer, i.e. if we are updating the quota inode.
857 * There is no potential deadlock scenario in this case as
858 * ufs_getpage() takes care of this and avoids reacquiring
859 * vfs_dqrwlock in that case.
860 *
861 * This check is done here since the above conditions do not change
862 * and we possibly loop below, so save a few cycles.
863 */
864 if ((type == IFSHAD) ||
865 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
866 do_dqrwlock = 0;
867 } else {
868 do_dqrwlock = 1;
869 }
870
871 /*
872 * Large Files: We cast MAXBMASK to offset_t
873 * inorder to mask out the higher bits. Since offset_t
874 * is a signed value, the high order bit set in MAXBMASK
875 * value makes it do the right thing by having all bits 1
876 * in the higher word. May be removed for _SOLARIS64_.
877 */
878
879 fs = ip->i_fs;
880 do {
881 u_offset_t uoff = uio->uio_loffset;
882 off = uoff & (offset_t)MAXBMASK;
883 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
884 on = (int)blkoff(fs, uoff);
885 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
886 new_iblocks = 1;
887
888 if (type == IFREG && uoff + n >= limit) {
889 if (uoff >= limit) {
890 error = EFBIG;
891 goto out;
892 }
893 /*
894 * since uoff + n >= limit,
895 * therefore n >= limit - uoff, and n is an int
896 * so it is safe to cast it to an int
897 */
898 n = (int)(limit - (rlim64_t)uoff);
899 }
900 if (uoff + n > ip->i_size) {
901 /*
902 * We are extending the length of the file.
903 * bmap is used so that we are sure that
904 * if we need to allocate new blocks, that it
905 * is done here before we up the file size.
906 */
907 error = bmap_write(ip, uoff, (int)(on + n),
908 mapon == 0, NULL, cr);
909 /*
910 * bmap_write never drops i_contents so if
911 * the flags are set it changed the file.
912 */
913 if (ip->i_flag & (ICHG|IUPD)) {
914 i_seq_needed = 1;
915 ip->i_flag |= ISEQ;
916 }
917 if (error)
918 break;
919 /*
920 * There is a window of vulnerability here.
921 * The sequence of operations: allocate file
922 * system blocks, uiomove the data into pages,
923 * and then update the size of the file in the
924 * inode, must happen atomically. However, due
925 * to current locking constraints, this can not
926 * be done.
927 */
928 ASSERT(ip->i_writer == NULL);
929 ip->i_writer = curthread;
930 i_size_changed = 1;
931 /*
932 * If we are writing from the beginning of
933 * the mapping, we can just create the
934 * pages without having to read them.
935 */
936 pagecreate = (mapon == 0);
937 } else if (n == MAXBSIZE) {
938 /*
939 * Going to do a whole mappings worth,
940 * so we can just create the pages w/o
941 * having to read them in. But before
942 * we do that, we need to make sure any
943 * needed blocks are allocated first.
944 */
945 iblocks = ip->i_blocks;
946 error = bmap_write(ip, uoff, (int)(on + n),
947 BI_ALLOC_ONLY, NULL, cr);
948 /*
949 * bmap_write never drops i_contents so if
950 * the flags are set it changed the file.
951 */
952 if (ip->i_flag & (ICHG|IUPD)) {
953 i_seq_needed = 1;
954 ip->i_flag |= ISEQ;
955 }
956 if (error)
957 break;
958 pagecreate = 1;
959 /*
960 * check if the new created page needed the
961 * allocation of new disk blocks.
962 */
963 if (iblocks == ip->i_blocks)
964 new_iblocks = 0; /* no new blocks allocated */
965 } else {
966 pagecreate = 0;
967 /*
968 * In sync mode flush the indirect blocks which
969 * may have been allocated and not written on
970 * disk. In above cases bmap_write will allocate
971 * in sync mode.
972 */
973 if (ioflag & (FSYNC|FDSYNC)) {
974 error = ufs_indirblk_sync(ip, uoff);
975 if (error)
976 break;
977 }
978 }
979
980 /*
981 * At this point we can enter ufs_getpage() in one
982 * of two ways:
983 * 1) segmap_getmapflt() calls ufs_getpage() when the
984 * forcefault parameter is true (pagecreate == 0)
985 * 2) uiomove() causes a page fault.
986 *
987 * We have to drop the contents lock to prevent the VM
988 * system from trying to reacquire it in ufs_getpage()
989 * should the uiomove cause a pagefault.
990 *
991 * We have to drop the reader vfs_dqrwlock here as well.
992 */
993 rw_exit(&ip->i_contents);
994 if (do_dqrwlock) {
995 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
996 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
997 rw_exit(&ufsvfsp->vfs_dqrwlock);
998 }
999
1000 newpage = 0;
1001 premove_resid = uio->uio_resid;
1002
1003 /*
1004 * Touch the page and fault it in if it is not in core
1005 * before segmap_getmapflt or vpm_data_copy can lock it.
1006 * This is to avoid the deadlock if the buffer is mapped
1007 * to the same file through mmap which we want to write.
1008 */
1009 uio_prefaultpages((long)n, uio);
1010
1011 if (vpm_enable) {
1012 /*
1013 * Copy data. If new pages are created, part of
1014 * the page that is not written will be initizliazed
1015 * with zeros.
1016 */
1017 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1018 uio, !pagecreate, &newpage, 0, S_WRITE);
1019 } else {
1020
1021 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1022 (uint_t)n, !pagecreate, S_WRITE);
1023
1024 /*
1025 * segmap_pagecreate() returns 1 if it calls
1026 * page_create_va() to allocate any pages.
1027 */
1028
1029 if (pagecreate)
1030 newpage = segmap_pagecreate(segkmap, base,
1031 (size_t)n, 0);
1032
1033 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1034 }
1035
1036 /*
1037 * If "newpage" is set, then a new page was created and it
1038 * does not contain valid data, so it needs to be initialized
1039 * at this point.
1040 * Otherwise the page contains old data, which was overwritten
1041 * partially or as a whole in uiomove.
1042 * If there is only one iovec structure within uio, then
1043 * on error uiomove will not be able to update uio->uio_loffset
1044 * and we would zero the whole page here!
1045 *
1046 * If uiomove fails because of an error, the old valid data
1047 * is kept instead of filling the rest of the page with zero's.
1048 */
1049 if (!vpm_enable && newpage &&
1050 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1051 /*
1052 * We created pages w/o initializing them completely,
1053 * thus we need to zero the part that wasn't set up.
1054 * This happens on most EOF write cases and if
1055 * we had some sort of error during the uiomove.
1056 */
1057 int nzero, nmoved;
1058
1059 nmoved = (int)(uio->uio_loffset - (off + mapon));
1060 ASSERT(nmoved >= 0 && nmoved <= n);
1061 nzero = roundup(on + n, PAGESIZE) - nmoved;
1062 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1063 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1064 }
1065
1066 /*
1067 * Unlock the pages allocated by page_create_va()
1068 * in segmap_pagecreate()
1069 */
1070 if (!vpm_enable && newpage)
1071 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1072
1073 /*
1074 * If the size of the file changed, then update the
1075 * size field in the inode now. This can't be done
1076 * before the call to segmap_pageunlock or there is
1077 * a potential deadlock with callers to ufs_putpage().
1078 * They will be holding i_contents and trying to lock
1079 * a page, while this thread is holding a page locked
1080 * and trying to acquire i_contents.
1081 */
1082 if (i_size_changed) {
1083 rw_enter(&ip->i_contents, RW_WRITER);
1084 old_i_size = ip->i_size;
1085 UFS_SET_ISIZE(uoff + n, ip);
1086 TRANS_INODE(ufsvfsp, ip);
1087 /*
1088 * file has grown larger than 2GB. Set flag
1089 * in superblock to indicate this, if it
1090 * is not already set.
1091 */
1092 if ((ip->i_size > MAXOFF32_T) &&
1093 !(fs->fs_flags & FSLARGEFILES)) {
1094 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1095 mutex_enter(&ufsvfsp->vfs_lock);
1096 fs->fs_flags |= FSLARGEFILES;
1097 ufs_sbwrite(ufsvfsp);
1098 mutex_exit(&ufsvfsp->vfs_lock);
1099 }
1100 mutex_enter(&ip->i_tlock);
1101 ip->i_writer = NULL;
1102 cv_broadcast(&ip->i_wrcv);
1103 mutex_exit(&ip->i_tlock);
1104 rw_exit(&ip->i_contents);
1105 }
1106
1107 if (error) {
1108 /*
1109 * If we failed on a write, we may have already
1110 * allocated file blocks as well as pages. It's
1111 * hard to undo the block allocation, but we must
1112 * be sure to invalidate any pages that may have
1113 * been allocated.
1114 *
1115 * If the page was created without initialization
1116 * then we must check if it should be possible
1117 * to destroy the new page and to keep the old data
1118 * on the disk.
1119 *
1120 * It is possible to destroy the page without
1121 * having to write back its contents only when
1122 * - the size of the file keeps unchanged
1123 * - bmap_write() did not allocate new disk blocks
1124 * it is possible to create big files using "seek" and
1125 * write to the end of the file. A "write" to a
1126 * position before the end of the file would not
1127 * change the size of the file but it would allocate
1128 * new disk blocks.
1129 * - uiomove intended to overwrite the whole page.
1130 * - a new page was created (newpage == 1).
1131 */
1132
1133 if (i_size_changed == 0 && new_iblocks == 0 &&
1134 newpage) {
1135
1136 /* unwind what uiomove eventually last did */
1137 uio->uio_resid = premove_resid;
1138
1139 /*
1140 * destroy the page, do not write ambiguous
1141 * data to the disk.
1142 */
1143 flags = SM_DESTROY;
1144 } else {
1145 /*
1146 * write the page back to the disk, if dirty,
1147 * and remove the page from the cache.
1148 */
1149 flags = SM_INVAL;
1150 }
1151
1152 if (vpm_enable) {
1153 /*
1154 * Flush pages.
1155 */
1156 (void) vpm_sync_pages(vp, off, n, flags);
1157 } else {
1158 (void) segmap_release(segkmap, base, flags);
1159 }
1160 } else {
1161 flags = 0;
1162 /*
1163 * Force write back for synchronous write cases.
1164 */
1165 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1166 /*
1167 * If the sticky bit is set but the
1168 * execute bit is not set, we do a
1169 * synchronous write back and free
1170 * the page when done. We set up swap
1171 * files to be handled this way to
1172 * prevent servers from keeping around
1173 * the client's swap pages too long.
1174 * XXX - there ought to be a better way.
1175 */
1176 if (IS_SWAPVP(vp)) {
1177 flags = SM_WRITE | SM_FREE |
1178 SM_DONTNEED;
1179 iupdat_flag = 0;
1180 } else {
1181 flags = SM_WRITE;
1182 }
1183 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1184 /*
1185 * Have written a whole block.
1186 * Start an asynchronous write and
1187 * mark the buffer to indicate that
1188 * it won't be needed again soon.
1189 */
1190 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1191 }
1192 if (vpm_enable) {
1193 /*
1194 * Flush pages.
1195 */
1196 error = vpm_sync_pages(vp, off, n, flags);
1197 } else {
1198 error = segmap_release(segkmap, base, flags);
1199 }
1200 /*
1201 * If the operation failed and is synchronous,
1202 * then we need to unwind what uiomove() last
1203 * did so we can potentially return an error to
1204 * the caller. If this write operation was
1205 * done in two pieces and the first succeeded,
1206 * then we won't return an error for the second
1207 * piece that failed. However, we only want to
1208 * return a resid value that reflects what was
1209 * really done.
1210 *
1211 * Failures for non-synchronous operations can
1212 * be ignored since the page subsystem will
1213 * retry the operation until it succeeds or the
1214 * file system is unmounted.
1215 */
1216 if (error) {
1217 if ((ioflag & (FSYNC | FDSYNC)) ||
1218 type == IFDIR) {
1219 uio->uio_resid = premove_resid;
1220 } else {
1221 error = 0;
1222 }
1223 }
1224 }
1225
1226 /*
1227 * Re-acquire contents lock.
1228 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1229 */
1230 if (do_dqrwlock)
1231 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1232 rw_enter(&ip->i_contents, RW_WRITER);
1233
1234 /*
1235 * If the uiomove() failed or if a synchronous
1236 * page push failed, fix up i_size.
1237 */
1238 if (error) {
1239 if (i_size_changed) {
1240 /*
1241 * The uiomove failed, and we
1242 * allocated blocks,so get rid
1243 * of them.
1244 */
1245 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1246 }
1247 } else {
1248 /*
1249 * XXX - Can this be out of the loop?
1250 */
1251 ip->i_flag |= IUPD | ICHG;
1252 /*
1253 * Only do one increase of i_seq for multiple
1254 * pieces. Because we drop locks, record
1255 * the fact that we changed the timestamp and
1256 * are deferring the increase in case another thread
1257 * pushes our timestamp update.
1258 */
1259 i_seq_needed = 1;
1260 ip->i_flag |= ISEQ;
1261 if (i_size_changed)
1262 ip->i_flag |= IATTCHG;
1263 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1264 (IEXEC >> 6))) != 0 &&
1265 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1266 secpolicy_vnode_setid_retain(cr,
1267 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1268 /*
1269 * Clear Set-UID & Set-GID bits on
1270 * successful write if not privileged
1271 * and at least one of the execute bits
1272 * is set. If we always clear Set-GID,
1273 * mandatory file and record locking is
1274 * unuseable.
1275 */
1276 ip->i_mode &= ~(ISUID | ISGID);
1277 }
1278 }
1279 /*
1280 * In the case the FDSYNC flag is set and this is a
1281 * "rewrite" we won't log a delta.
1282 * The FSYNC flag overrides all cases.
1283 */
1284 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1285 TRANS_INODE(ufsvfsp, ip);
1286 }
1287 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1288
1289 out:
1290 /*
1291 * Make sure i_seq is increased at least once per write
1292 */
1293 if (i_seq_needed) {
1294 ip->i_seq++;
1295 ip->i_flag &= ~ISEQ; /* no longer deferred */
1296 }
1297
1298 /*
1299 * Inode is updated according to this table -
1300 *
1301 * FSYNC FDSYNC(posix.4)
1302 * --------------------------
1303 * always@ IATTCHG|IBDWRITE
1304 *
1305 * @ - If we are doing synchronous write the only time we should
1306 * not be sync'ing the ip here is if we have the stickyhack
1307 * activated, the file is marked with the sticky bit and
1308 * no exec bit, the file length has not been changed and
1309 * no new blocks have been allocated during this write.
1310 */
1311
1312 if ((ip->i_flag & ISYNC) != 0) {
1313 /*
1314 * we have eliminated nosync
1315 */
1316 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1317 ((ioflag & FSYNC) && iupdat_flag)) {
1318 ufs_iupdat(ip, 1);
1319 }
1320 }
1321
1322 /*
1323 * If we've already done a partial-write, terminate
1324 * the write but return no error unless the error is ENOSPC
1325 * because the caller can detect this and free resources and
1326 * try again.
1327 */
1328 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1329 error = 0;
1330
1331 ip->i_flag &= ~(INOACC | ISYNC);
1332 ITIMES_NOLOCK(ip);
1333 return (error);
1334 }
1335
1336 /*
1337 * rdip does the real work of read requests for ufs.
1338 */
1339 int
rdip(struct inode * ip,struct uio * uio,int ioflag,cred_t * cr)1340 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1341 {
1342 u_offset_t off;
1343 caddr_t base;
1344 struct fs *fs;
1345 struct ufsvfs *ufsvfsp;
1346 struct vnode *vp;
1347 long oresid = uio->uio_resid;
1348 u_offset_t n, on, mapon;
1349 int error = 0;
1350 int doupdate = 1;
1351 uint_t flags;
1352 int dofree, directio_status;
1353 krw_t rwtype;
1354 o_mode_t type;
1355 clock_t now;
1356
1357 vp = ITOV(ip);
1358
1359 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1360
1361 ufsvfsp = ip->i_ufsvfs;
1362
1363 if (ufsvfsp == NULL)
1364 return (EIO);
1365
1366 fs = ufsvfsp->vfs_fs;
1367
1368 /* check for valid filetype */
1369 type = ip->i_mode & IFMT;
1370 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1371 (type != IFLNK) && (type != IFSHAD)) {
1372 return (EIO);
1373 }
1374
1375 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1376 error = 0;
1377 goto out;
1378 }
1379 if (uio->uio_loffset < (offset_t)0) {
1380 return (EINVAL);
1381 }
1382 if (uio->uio_resid == 0) {
1383 return (0);
1384 }
1385
1386 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1387 (!ufsvfsp->vfs_noatime)) {
1388 mutex_enter(&ip->i_tlock);
1389 ip->i_flag |= IACC;
1390 mutex_exit(&ip->i_tlock);
1391 }
1392 /*
1393 * Try to go direct
1394 */
1395 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1396 error = ufs_directio_read(ip, uio, cr, &directio_status);
1397 if (directio_status == DIRECTIO_SUCCESS)
1398 goto out;
1399 }
1400
1401 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1402
1403 do {
1404 offset_t diff;
1405 u_offset_t uoff = uio->uio_loffset;
1406 off = uoff & (offset_t)MAXBMASK;
1407 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1408 on = (u_offset_t)blkoff(fs, uoff);
1409 n = MIN((u_offset_t)fs->fs_bsize - on,
1410 (u_offset_t)uio->uio_resid);
1411
1412 diff = ip->i_size - uoff;
1413
1414 if (diff <= (offset_t)0) {
1415 error = 0;
1416 goto out;
1417 }
1418 if (diff < (offset_t)n)
1419 n = (int)diff;
1420
1421 /*
1422 * We update smallfile2 and smallfile1 at most every second.
1423 */
1424 now = ddi_get_lbolt();
1425 if (now >= smallfile_update) {
1426 uint64_t percpufreeb;
1427 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1428 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1429 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1430 smallfile1 = percpufreeb / smallfile1_d;
1431 smallfile2 = percpufreeb / smallfile2_d;
1432 smallfile1 = MAX(smallfile1, smallfile);
1433 smallfile1 = MAX(smallfile1, smallfile64);
1434 smallfile2 = MAX(smallfile1, smallfile2);
1435 smallfile_update = now + hz;
1436 }
1437
1438 dofree = freebehind &&
1439 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1440
1441 /*
1442 * At this point we can enter ufs_getpage() in one of two
1443 * ways:
1444 * 1) segmap_getmapflt() calls ufs_getpage() when the
1445 * forcefault parameter is true (value of 1 is passed)
1446 * 2) uiomove() causes a page fault.
1447 *
1448 * We cannot hold onto an i_contents reader lock without
1449 * risking deadlock in ufs_getpage() so drop a reader lock.
1450 * The ufs_getpage() dolock logic already allows for a
1451 * thread holding i_contents as writer to work properly
1452 * so we keep a writer lock.
1453 */
1454 if (rwtype == RW_READER)
1455 rw_exit(&ip->i_contents);
1456
1457 if (vpm_enable) {
1458 /*
1459 * Copy data.
1460 */
1461 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1462 uio, 1, NULL, 0, S_READ);
1463 } else {
1464 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1465 (uint_t)n, 1, S_READ);
1466 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1467 }
1468
1469 flags = 0;
1470 if (!error) {
1471 /*
1472 * If reading sequential we won't need this
1473 * buffer again soon. For offsets in range
1474 * [smallfile1, smallfile2] release the pages
1475 * at the tail of the cache list, larger
1476 * offsets are released at the head.
1477 */
1478 if (dofree) {
1479 flags = SM_FREE | SM_ASYNC;
1480 if ((cache_read_ahead == 0) &&
1481 (off > smallfile2))
1482 flags |= SM_DONTNEED;
1483 }
1484 /*
1485 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1486 * we want to make sure that the page which has
1487 * been read, is written on disk if it is dirty.
1488 * And corresponding indirect blocks should also
1489 * be flushed out.
1490 */
1491 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1492 flags &= ~SM_ASYNC;
1493 flags |= SM_WRITE;
1494 }
1495 if (vpm_enable) {
1496 error = vpm_sync_pages(vp, off, n, flags);
1497 } else {
1498 error = segmap_release(segkmap, base, flags);
1499 }
1500 } else {
1501 if (vpm_enable) {
1502 (void) vpm_sync_pages(vp, off, n, flags);
1503 } else {
1504 (void) segmap_release(segkmap, base, flags);
1505 }
1506 }
1507
1508 if (rwtype == RW_READER)
1509 rw_enter(&ip->i_contents, rwtype);
1510 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1511 out:
1512 /*
1513 * Inode is updated according to this table if FRSYNC is set.
1514 *
1515 * FSYNC FDSYNC(posix.4)
1516 * --------------------------
1517 * always IATTCHG|IBDWRITE
1518 */
1519 /*
1520 * The inode is not updated if we're logging and the inode is a
1521 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1522 */
1523 if (ioflag & FRSYNC) {
1524 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1525 doupdate = 0;
1526 }
1527 if (doupdate) {
1528 if ((ioflag & FSYNC) ||
1529 ((ioflag & FDSYNC) &&
1530 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1531 ufs_iupdat(ip, 1);
1532 }
1533 }
1534 }
1535 /*
1536 * If we've already done a partial read, terminate
1537 * the read but return no error.
1538 */
1539 if (oresid != uio->uio_resid)
1540 error = 0;
1541 ITIMES(ip);
1542
1543 return (error);
1544 }
1545
1546 /* ARGSUSED */
1547 static int
ufs_ioctl(struct vnode * vp,int cmd,intptr_t arg,int flag,struct cred * cr,int * rvalp,caller_context_t * ct)1548 ufs_ioctl(
1549 struct vnode *vp,
1550 int cmd,
1551 intptr_t arg,
1552 int flag,
1553 struct cred *cr,
1554 int *rvalp,
1555 caller_context_t *ct)
1556 {
1557 struct lockfs lockfs, lockfs_out;
1558 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1559 char *comment, *original_comment;
1560 struct fs *fs;
1561 struct ulockfs *ulp;
1562 offset_t off;
1563 extern int maxphys;
1564 int error;
1565 int issync;
1566 int trans_size;
1567
1568
1569 /*
1570 * forcibly unmounted
1571 */
1572 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1573 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1574 return (EIO);
1575 fs = ufsvfsp->vfs_fs;
1576
1577 if (cmd == Q_QUOTACTL) {
1578 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1579 if (error)
1580 return (error);
1581
1582 if (ulp) {
1583 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1584 TOP_SETQUOTA_SIZE(fs));
1585 }
1586
1587 error = quotactl(vp, arg, flag, cr);
1588
1589 if (ulp) {
1590 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1591 TOP_SETQUOTA_SIZE(fs));
1592 ufs_lockfs_end(ulp);
1593 }
1594 return (error);
1595 }
1596
1597 switch (cmd) {
1598 case _FIOLFS:
1599 /*
1600 * file system locking
1601 */
1602 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1603 return (EPERM);
1604
1605 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1606 if (copyin((caddr_t)arg, &lockfs,
1607 sizeof (struct lockfs)))
1608 return (EFAULT);
1609 }
1610 #ifdef _SYSCALL32_IMPL
1611 else {
1612 struct lockfs32 lockfs32;
1613 /* Translate ILP32 lockfs to LP64 lockfs */
1614 if (copyin((caddr_t)arg, &lockfs32,
1615 sizeof (struct lockfs32)))
1616 return (EFAULT);
1617 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1618 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1619 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1620 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1621 lockfs.lf_comment =
1622 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1623 }
1624 #endif /* _SYSCALL32_IMPL */
1625
1626 if (lockfs.lf_comlen) {
1627 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1628 return (ENAMETOOLONG);
1629 comment =
1630 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1631 if (copyin(lockfs.lf_comment, comment,
1632 lockfs.lf_comlen)) {
1633 kmem_free(comment, lockfs.lf_comlen);
1634 return (EFAULT);
1635 }
1636 original_comment = lockfs.lf_comment;
1637 lockfs.lf_comment = comment;
1638 }
1639 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1640 lockfs.lf_comment = original_comment;
1641
1642 if ((flag & DATAMODEL_MASK) ==
1643 DATAMODEL_NATIVE) {
1644 (void) copyout(&lockfs, (caddr_t)arg,
1645 sizeof (struct lockfs));
1646 }
1647 #ifdef _SYSCALL32_IMPL
1648 else {
1649 struct lockfs32 lockfs32;
1650 /* Translate LP64 to ILP32 lockfs */
1651 lockfs32.lf_lock =
1652 (uint32_t)lockfs.lf_lock;
1653 lockfs32.lf_flags =
1654 (uint32_t)lockfs.lf_flags;
1655 lockfs32.lf_key =
1656 (uint32_t)lockfs.lf_key;
1657 lockfs32.lf_comlen =
1658 (uint32_t)lockfs.lf_comlen;
1659 lockfs32.lf_comment =
1660 (uint32_t)(uintptr_t)
1661 lockfs.lf_comment;
1662 (void) copyout(&lockfs32, (caddr_t)arg,
1663 sizeof (struct lockfs32));
1664 }
1665 #endif /* _SYSCALL32_IMPL */
1666
1667 } else {
1668 if (lockfs.lf_comlen)
1669 kmem_free(comment, lockfs.lf_comlen);
1670 }
1671 return (error);
1672
1673 case _FIOLFSS:
1674 /*
1675 * get file system locking status
1676 */
1677
1678 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1679 if (copyin((caddr_t)arg, &lockfs,
1680 sizeof (struct lockfs)))
1681 return (EFAULT);
1682 }
1683 #ifdef _SYSCALL32_IMPL
1684 else {
1685 struct lockfs32 lockfs32;
1686 /* Translate ILP32 lockfs to LP64 lockfs */
1687 if (copyin((caddr_t)arg, &lockfs32,
1688 sizeof (struct lockfs32)))
1689 return (EFAULT);
1690 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1691 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1692 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1693 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1694 lockfs.lf_comment =
1695 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1696 }
1697 #endif /* _SYSCALL32_IMPL */
1698
1699 if (error = ufs_fiolfss(vp, &lockfs_out))
1700 return (error);
1701 lockfs.lf_lock = lockfs_out.lf_lock;
1702 lockfs.lf_key = lockfs_out.lf_key;
1703 lockfs.lf_flags = lockfs_out.lf_flags;
1704 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1705 lockfs_out.lf_comlen);
1706
1707 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1708 if (copyout(&lockfs, (caddr_t)arg,
1709 sizeof (struct lockfs)))
1710 return (EFAULT);
1711 }
1712 #ifdef _SYSCALL32_IMPL
1713 else {
1714 /* Translate LP64 to ILP32 lockfs */
1715 struct lockfs32 lockfs32;
1716 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1717 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1718 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1719 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1720 lockfs32.lf_comment =
1721 (uint32_t)(uintptr_t)lockfs.lf_comment;
1722 if (copyout(&lockfs32, (caddr_t)arg,
1723 sizeof (struct lockfs32)))
1724 return (EFAULT);
1725 }
1726 #endif /* _SYSCALL32_IMPL */
1727
1728 if (lockfs.lf_comlen &&
1729 lockfs.lf_comment && lockfs_out.lf_comment)
1730 if (copyout(lockfs_out.lf_comment,
1731 lockfs.lf_comment, lockfs.lf_comlen))
1732 return (EFAULT);
1733 return (0);
1734
1735 case _FIOSATIME:
1736 /*
1737 * set access time
1738 */
1739
1740 /*
1741 * if mounted w/o atime, return quietly.
1742 * I briefly thought about returning ENOSYS, but
1743 * figured that most apps would consider this fatal
1744 * but the idea is to make this as seamless as poss.
1745 */
1746 if (ufsvfsp->vfs_noatime)
1747 return (0);
1748
1749 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1750 ULOCKFS_SETATTR_MASK);
1751 if (error)
1752 return (error);
1753
1754 if (ulp) {
1755 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1756 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1757 TOP_SETATTR, trans_size);
1758 }
1759
1760 error = ufs_fiosatime(vp, (struct timeval *)arg,
1761 flag, cr);
1762
1763 if (ulp) {
1764 TRANS_END_CSYNC(ufsvfsp, error, issync,
1765 TOP_SETATTR, trans_size);
1766 ufs_lockfs_end(ulp);
1767 }
1768 return (error);
1769
1770 case _FIOSDIO:
1771 /*
1772 * set delayed-io
1773 */
1774 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1775
1776 case _FIOGDIO:
1777 /*
1778 * get delayed-io
1779 */
1780 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1781
1782 case _FIOIO:
1783 /*
1784 * inode open
1785 */
1786 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1787 ULOCKFS_VGET_MASK);
1788 if (error)
1789 return (error);
1790
1791 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1792
1793 if (ulp) {
1794 ufs_lockfs_end(ulp);
1795 }
1796 return (error);
1797
1798 case _FIOFFS:
1799 /*
1800 * file system flush (push w/invalidate)
1801 */
1802 if ((caddr_t)arg != NULL)
1803 return (EINVAL);
1804 return (ufs_fioffs(vp, NULL, cr));
1805
1806 case _FIOISBUSY:
1807 /*
1808 * Contract-private interface for Legato
1809 * Purge this vnode from the DNLC and decide
1810 * if this vnode is busy (*arg == 1) or not
1811 * (*arg == 0)
1812 */
1813 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1814 return (EPERM);
1815 error = ufs_fioisbusy(vp, (int *)arg, cr);
1816 return (error);
1817
1818 case _FIODIRECTIO:
1819 return (ufs_fiodirectio(vp, (int)arg, cr));
1820
1821 case _FIOTUNE:
1822 /*
1823 * Tune the file system (aka setting fs attributes)
1824 */
1825 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1826 ULOCKFS_SETATTR_MASK);
1827 if (error)
1828 return (error);
1829
1830 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1831
1832 if (ulp)
1833 ufs_lockfs_end(ulp);
1834 return (error);
1835
1836 case _FIOLOGENABLE:
1837 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1838 return (EPERM);
1839 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1840
1841 case _FIOLOGDISABLE:
1842 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1843 return (EPERM);
1844 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1845
1846 case _FIOISLOG:
1847 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1848
1849 case _FIOSNAPSHOTCREATE_MULTI:
1850 {
1851 struct fiosnapcreate_multi fc, *fcp;
1852 size_t fcm_size;
1853
1854 if (copyin((void *)arg, &fc, sizeof (fc)))
1855 return (EFAULT);
1856 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1857 return (EINVAL);
1858 fcm_size = sizeof (struct fiosnapcreate_multi) +
1859 (fc.backfilecount - 1) * sizeof (int);
1860 fcp = (struct fiosnapcreate_multi *)
1861 kmem_alloc(fcm_size, KM_SLEEP);
1862 if (copyin((void *)arg, fcp, fcm_size)) {
1863 kmem_free(fcp, fcm_size);
1864 return (EFAULT);
1865 }
1866 error = ufs_snap_create(vp, fcp, cr);
1867 /*
1868 * Do copyout even if there is an error because
1869 * the details of error is stored in fcp.
1870 */
1871 if (copyout(fcp, (void *)arg, fcm_size))
1872 error = EFAULT;
1873 kmem_free(fcp, fcm_size);
1874 return (error);
1875 }
1876
1877 case _FIOSNAPSHOTDELETE:
1878 {
1879 struct fiosnapdelete fc;
1880
1881 if (copyin((void *)arg, &fc, sizeof (fc)))
1882 return (EFAULT);
1883 error = ufs_snap_delete(vp, &fc, cr);
1884 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1885 error = EFAULT;
1886 return (error);
1887 }
1888
1889 case _FIOGETSUPERBLOCK:
1890 if (copyout(fs, (void *)arg, SBSIZE))
1891 return (EFAULT);
1892 return (0);
1893
1894 case _FIOGETMAXPHYS:
1895 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1896 return (EFAULT);
1897 return (0);
1898
1899 /*
1900 * The following 3 ioctls are for TSufs support
1901 * although could potentially be used elsewhere
1902 */
1903 case _FIO_SET_LUFS_DEBUG:
1904 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1905 return (EPERM);
1906 lufs_debug = (uint32_t)arg;
1907 return (0);
1908
1909 case _FIO_SET_LUFS_ERROR:
1910 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1911 return (EPERM);
1912 TRANS_SETERROR(ufsvfsp);
1913 return (0);
1914
1915 case _FIO_GET_TOP_STATS:
1916 {
1917 fio_lufs_stats_t *ls;
1918 ml_unit_t *ul = ufsvfsp->vfs_log;
1919
1920 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1921 ls->ls_debug = ul->un_debug; /* return debug value */
1922 /* Copy stucture if statistics are being kept */
1923 if (ul->un_logmap->mtm_tops) {
1924 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1925 }
1926 error = 0;
1927 if (copyout(ls, (void *)arg, sizeof (*ls)))
1928 error = EFAULT;
1929 kmem_free(ls, sizeof (*ls));
1930 return (error);
1931 }
1932
1933 case _FIO_SEEK_DATA:
1934 case _FIO_SEEK_HOLE:
1935 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1936 return (EFAULT);
1937 /* offset paramater is in/out */
1938 error = ufs_fio_holey(vp, cmd, &off);
1939 if (error)
1940 return (error);
1941 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1942 return (EFAULT);
1943 return (0);
1944
1945 case _FIO_COMPRESSED:
1946 {
1947 /*
1948 * This is a project private ufs ioctl() to mark
1949 * the inode as that belonging to a compressed
1950 * file. This is used to mark individual
1951 * compressed files in a miniroot archive.
1952 * The files compressed in this manner are
1953 * automatically decompressed by the dcfs filesystem
1954 * (via an interception in ufs_lookup - see decompvp())
1955 * which is layered on top of ufs on a system running
1956 * from the archive. See uts/common/fs/dcfs for details.
1957 * This ioctl only marks the file as compressed - the
1958 * actual compression is done by fiocompress (a
1959 * userland utility) which invokes this ioctl().
1960 */
1961 struct inode *ip = VTOI(vp);
1962
1963 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1964 ULOCKFS_SETATTR_MASK);
1965 if (error)
1966 return (error);
1967
1968 if (ulp) {
1969 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1970 TOP_IUPDAT_SIZE(ip));
1971 }
1972
1973 error = ufs_mark_compressed(vp);
1974
1975 if (ulp) {
1976 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1977 TOP_IUPDAT_SIZE(ip));
1978 ufs_lockfs_end(ulp);
1979 }
1980
1981 return (error);
1982
1983 }
1984
1985 default:
1986 return (ENOTTY);
1987 }
1988 }
1989
1990
1991 /* ARGSUSED */
1992 static int
ufs_getattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1993 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1994 struct cred *cr, caller_context_t *ct)
1995 {
1996 struct inode *ip = VTOI(vp);
1997 struct ufsvfs *ufsvfsp;
1998 int err;
1999
2000 if (vap->va_mask == AT_SIZE) {
2001 /*
2002 * for performance, if only the size is requested don't bother
2003 * with anything else.
2004 */
2005 UFS_GET_ISIZE(&vap->va_size, ip);
2006 return (0);
2007 }
2008
2009 /*
2010 * inlined lockfs checks
2011 */
2012 ufsvfsp = ip->i_ufsvfs;
2013 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2014 err = EIO;
2015 goto out;
2016 }
2017
2018 rw_enter(&ip->i_contents, RW_READER);
2019 /*
2020 * Return all the attributes. This should be refined so
2021 * that it only returns what's asked for.
2022 */
2023
2024 /*
2025 * Copy from inode table.
2026 */
2027 vap->va_type = vp->v_type;
2028 vap->va_mode = ip->i_mode & MODEMASK;
2029 /*
2030 * If there is an ACL and there is a mask entry, then do the
2031 * extra work that completes the equivalent of an acltomode(3)
2032 * call. According to POSIX P1003.1e, the acl mask should be
2033 * returned in the group permissions field.
2034 *
2035 * - start with the original permission and mode bits (from above)
2036 * - clear the group owner bits
2037 * - add in the mask bits.
2038 */
2039 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2040 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2041 vap->va_mode |=
2042 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2043 }
2044 vap->va_uid = ip->i_uid;
2045 vap->va_gid = ip->i_gid;
2046 vap->va_fsid = ip->i_dev;
2047 vap->va_nodeid = (ino64_t)ip->i_number;
2048 vap->va_nlink = ip->i_nlink;
2049 vap->va_size = ip->i_size;
2050 if (vp->v_type == VCHR || vp->v_type == VBLK)
2051 vap->va_rdev = ip->i_rdev;
2052 else
2053 vap->va_rdev = 0; /* not a b/c spec. */
2054 mutex_enter(&ip->i_tlock);
2055 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2056 vap->va_seq = ip->i_seq;
2057 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2058 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2059 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2060 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2061 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2062 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2063 mutex_exit(&ip->i_tlock);
2064
2065 switch (ip->i_mode & IFMT) {
2066
2067 case IFBLK:
2068 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2069 break;
2070
2071 case IFCHR:
2072 vap->va_blksize = MAXBSIZE;
2073 break;
2074
2075 default:
2076 vap->va_blksize = ip->i_fs->fs_bsize;
2077 break;
2078 }
2079 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2080 rw_exit(&ip->i_contents);
2081 err = 0;
2082
2083 out:
2084 return (err);
2085 }
2086
2087 /*
2088 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2089 * The i_contents lock is already held by the caller and we need to
2090 * declare the inode as 'void *' argument.
2091 */
2092 static int
ufs_priv_access(void * vip,int mode,struct cred * cr)2093 ufs_priv_access(void *vip, int mode, struct cred *cr)
2094 {
2095 struct inode *ip = vip;
2096
2097 return (ufs_iaccess(ip, mode, cr, 0));
2098 }
2099
2100 /*ARGSUSED4*/
2101 static int
ufs_setattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)2102 ufs_setattr(
2103 struct vnode *vp,
2104 struct vattr *vap,
2105 int flags,
2106 struct cred *cr,
2107 caller_context_t *ct)
2108 {
2109 struct inode *ip = VTOI(vp);
2110 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2111 struct fs *fs;
2112 struct ulockfs *ulp;
2113 char *errmsg1;
2114 char *errmsg2;
2115 long blocks;
2116 long int mask = vap->va_mask;
2117 size_t len1, len2;
2118 int issync;
2119 int trans_size;
2120 int dotrans;
2121 int dorwlock;
2122 int error;
2123 int owner_change;
2124 int dodqlock;
2125 timestruc_t now;
2126 vattr_t oldva;
2127 int retry = 1;
2128 int indeadlock;
2129
2130 /*
2131 * Cannot set these attributes.
2132 */
2133 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2134 return (EINVAL);
2135
2136 /*
2137 * check for forced unmount
2138 */
2139 if (ufsvfsp == NULL)
2140 return (EIO);
2141
2142 fs = ufsvfsp->vfs_fs;
2143 if (fs->fs_ronly != 0)
2144 return (EROFS);
2145
2146 again:
2147 errmsg1 = NULL;
2148 errmsg2 = NULL;
2149 dotrans = 0;
2150 dorwlock = 0;
2151 dodqlock = 0;
2152
2153 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2154 if (error)
2155 goto out;
2156
2157 /*
2158 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2159 * This follows the protocol for read()/write().
2160 */
2161 if (vp->v_type != VDIR) {
2162 /*
2163 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2164 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2165 * possible, retries the operation.
2166 */
2167 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2168 if (indeadlock) {
2169 if (ulp)
2170 ufs_lockfs_end(ulp);
2171 goto again;
2172 }
2173 dorwlock = 1;
2174 }
2175
2176 /*
2177 * Truncate file. Must have write permission and not be a directory.
2178 */
2179 if (mask & AT_SIZE) {
2180 rw_enter(&ip->i_contents, RW_WRITER);
2181 if (vp->v_type == VDIR) {
2182 error = EISDIR;
2183 goto update_inode;
2184 }
2185 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2186 goto update_inode;
2187
2188 rw_exit(&ip->i_contents);
2189 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2190 if (error) {
2191 rw_enter(&ip->i_contents, RW_WRITER);
2192 goto update_inode;
2193 }
2194 }
2195
2196 if (ulp) {
2197 trans_size = (int)TOP_SETATTR_SIZE(ip);
2198 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2199 ++dotrans;
2200 }
2201
2202 /*
2203 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2204 * This follows the protocol established by
2205 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2206 */
2207 if (vp->v_type == VDIR) {
2208 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2209 retry_dir);
2210 if (indeadlock)
2211 goto again;
2212 dorwlock = 1;
2213 }
2214
2215 /*
2216 * Grab quota lock if we are changing the file's owner.
2217 */
2218 if (mask & AT_UID) {
2219 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2220 dodqlock = 1;
2221 }
2222 rw_enter(&ip->i_contents, RW_WRITER);
2223
2224 oldva.va_mode = ip->i_mode;
2225 oldva.va_uid = ip->i_uid;
2226 oldva.va_gid = ip->i_gid;
2227
2228 vap->va_mask &= ~AT_SIZE;
2229
2230 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2231 ufs_priv_access, ip);
2232 if (error)
2233 goto update_inode;
2234
2235 mask = vap->va_mask;
2236
2237 /*
2238 * Change file access modes.
2239 */
2240 if (mask & AT_MODE) {
2241 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2242 TRANS_INODE(ufsvfsp, ip);
2243 ip->i_flag |= ICHG;
2244 if (stickyhack) {
2245 mutex_enter(&vp->v_lock);
2246 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2247 vp->v_flag |= VSWAPLIKE;
2248 else
2249 vp->v_flag &= ~VSWAPLIKE;
2250 mutex_exit(&vp->v_lock);
2251 }
2252 }
2253 if (mask & (AT_UID|AT_GID)) {
2254 if (mask & AT_UID) {
2255 /*
2256 * Don't change ownership of the quota inode.
2257 */
2258 if (ufsvfsp->vfs_qinod == ip) {
2259 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2260 error = EINVAL;
2261 goto update_inode;
2262 }
2263
2264 /*
2265 * No real ownership change.
2266 */
2267 if (ip->i_uid == vap->va_uid) {
2268 blocks = 0;
2269 owner_change = 0;
2270 }
2271 /*
2272 * Remove the blocks and the file, from the old user's
2273 * quota.
2274 */
2275 else {
2276 blocks = ip->i_blocks;
2277 owner_change = 1;
2278
2279 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2280 (char **)NULL, (size_t *)NULL);
2281 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2282 (uid_t)ip->i_uid, /* force */ 1, cr,
2283 (char **)NULL, (size_t *)NULL);
2284 dqrele(ip->i_dquot);
2285 }
2286
2287 ip->i_uid = vap->va_uid;
2288
2289 /*
2290 * There is a real ownership change.
2291 */
2292 if (owner_change) {
2293 /*
2294 * Add the blocks and the file to the new
2295 * user's quota.
2296 */
2297 ip->i_dquot = getinoquota(ip);
2298 (void) chkdq(ip, blocks, /* force */ 1, cr,
2299 &errmsg1, &len1);
2300 (void) chkiq(ufsvfsp, /* change */ 1,
2301 (struct inode *)NULL, (uid_t)ip->i_uid,
2302 /* force */ 1, cr, &errmsg2, &len2);
2303 }
2304 }
2305 if (mask & AT_GID) {
2306 ip->i_gid = vap->va_gid;
2307 }
2308 TRANS_INODE(ufsvfsp, ip);
2309 ip->i_flag |= ICHG;
2310 }
2311 /*
2312 * Change file access or modified times.
2313 */
2314 if (mask & (AT_ATIME|AT_MTIME)) {
2315 /* Check that the time value is within ufs range */
2316 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2317 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2318 error = EOVERFLOW;
2319 goto update_inode;
2320 }
2321
2322 /*
2323 * if the "noaccess" mount option is set and only atime
2324 * update is requested, do nothing. No error is returned.
2325 */
2326 if ((ufsvfsp->vfs_noatime) &&
2327 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2328 goto skip_atime;
2329
2330 if (mask & AT_ATIME) {
2331 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2332 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2333 ip->i_flag &= ~IACC;
2334 }
2335 if (mask & AT_MTIME) {
2336 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2337 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2338 gethrestime(&now);
2339 if (now.tv_sec > TIME32_MAX) {
2340 /*
2341 * In 2038, ctime sticks forever..
2342 */
2343 ip->i_ctime.tv_sec = TIME32_MAX;
2344 ip->i_ctime.tv_usec = 0;
2345 } else {
2346 ip->i_ctime.tv_sec = now.tv_sec;
2347 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2348 }
2349 ip->i_flag &= ~(IUPD|ICHG);
2350 ip->i_flag |= IMODTIME;
2351 }
2352 TRANS_INODE(ufsvfsp, ip);
2353 ip->i_flag |= IMOD;
2354 }
2355
2356 skip_atime:
2357 /*
2358 * The presence of a shadow inode may indicate an ACL, but does
2359 * not imply an ACL. Future FSD types should be handled here too
2360 * and check for the presence of the attribute-specific data
2361 * before referencing it.
2362 */
2363 if (ip->i_shadow) {
2364 /*
2365 * XXX if ufs_iupdat is changed to sandbagged write fix
2366 * ufs_acl_setattr to push ip to keep acls consistent
2367 *
2368 * Suppress out of inodes messages if we will retry.
2369 */
2370 if (retry)
2371 ip->i_flag |= IQUIET;
2372 error = ufs_acl_setattr(ip, vap, cr);
2373 ip->i_flag &= ~IQUIET;
2374 }
2375
2376 update_inode:
2377 /*
2378 * Setattr always increases the sequence number
2379 */
2380 ip->i_seq++;
2381
2382 /*
2383 * if nfsd and not logging; push synchronously
2384 */
2385 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2386 ufs_iupdat(ip, 1);
2387 } else {
2388 ITIMES_NOLOCK(ip);
2389 }
2390
2391 rw_exit(&ip->i_contents);
2392 if (dodqlock) {
2393 rw_exit(&ufsvfsp->vfs_dqrwlock);
2394 }
2395 if (dorwlock)
2396 rw_exit(&ip->i_rwlock);
2397
2398 if (ulp) {
2399 if (dotrans) {
2400 int terr = 0;
2401 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2402 trans_size);
2403 if (error == 0)
2404 error = terr;
2405 }
2406 ufs_lockfs_end(ulp);
2407 }
2408 out:
2409 /*
2410 * If out of inodes or blocks, see if we can free something
2411 * up from the delete queue.
2412 */
2413 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2414 ufs_delete_drain_wait(ufsvfsp, 1);
2415 retry = 0;
2416 if (errmsg1 != NULL)
2417 kmem_free(errmsg1, len1);
2418 if (errmsg2 != NULL)
2419 kmem_free(errmsg2, len2);
2420 goto again;
2421 }
2422 if (errmsg1 != NULL) {
2423 uprintf(errmsg1);
2424 kmem_free(errmsg1, len1);
2425 }
2426 if (errmsg2 != NULL) {
2427 uprintf(errmsg2);
2428 kmem_free(errmsg2, len2);
2429 }
2430 return (error);
2431 }
2432
2433 /*ARGSUSED*/
2434 static int
ufs_access(struct vnode * vp,int mode,int flags,struct cred * cr,caller_context_t * ct)2435 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2436 caller_context_t *ct)
2437 {
2438 struct inode *ip = VTOI(vp);
2439
2440 if (ip->i_ufsvfs == NULL)
2441 return (EIO);
2442
2443 /*
2444 * The ufs_iaccess function wants to be called with
2445 * mode bits expressed as "ufs specific" bits.
2446 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2447 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2448 * But since they're the same we just pass the vnode mode
2449 * bit but just verify that assumption at compile time.
2450 */
2451 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2452 #error "ufs_access needs to map Vmodes to Imodes"
2453 #endif
2454 return (ufs_iaccess(ip, mode, cr, 1));
2455 }
2456
2457 /* ARGSUSED */
2458 static int
ufs_readlink(struct vnode * vp,struct uio * uiop,struct cred * cr,caller_context_t * ct)2459 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2460 caller_context_t *ct)
2461 {
2462 struct inode *ip = VTOI(vp);
2463 struct ufsvfs *ufsvfsp;
2464 struct ulockfs *ulp;
2465 int error;
2466 int fastsymlink;
2467
2468 if (vp->v_type != VLNK) {
2469 error = EINVAL;
2470 goto nolockout;
2471 }
2472
2473 /*
2474 * If the symbolic link is empty there is nothing to read.
2475 * Fast-track these empty symbolic links
2476 */
2477 if (ip->i_size == 0) {
2478 error = 0;
2479 goto nolockout;
2480 }
2481
2482 ufsvfsp = ip->i_ufsvfs;
2483 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2484 if (error)
2485 goto nolockout;
2486 /*
2487 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2488 */
2489 again:
2490 fastsymlink = 0;
2491 if (ip->i_flag & IFASTSYMLNK) {
2492 rw_enter(&ip->i_rwlock, RW_READER);
2493 rw_enter(&ip->i_contents, RW_READER);
2494 if (ip->i_flag & IFASTSYMLNK) {
2495 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2496 (ip->i_fs->fs_ronly == 0) &&
2497 (!ufsvfsp->vfs_noatime)) {
2498 mutex_enter(&ip->i_tlock);
2499 ip->i_flag |= IACC;
2500 mutex_exit(&ip->i_tlock);
2501 }
2502 error = uiomove((caddr_t)&ip->i_db[1],
2503 MIN(ip->i_size, uiop->uio_resid),
2504 UIO_READ, uiop);
2505 ITIMES(ip);
2506 ++fastsymlink;
2507 }
2508 rw_exit(&ip->i_contents);
2509 rw_exit(&ip->i_rwlock);
2510 }
2511 if (!fastsymlink) {
2512 ssize_t size; /* number of bytes read */
2513 caddr_t basep; /* pointer to input data */
2514 ino_t ino;
2515 long igen;
2516 struct uio tuio; /* temp uio struct */
2517 struct uio *tuiop;
2518 iovec_t tiov; /* temp iovec struct */
2519 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2520 int tflag = 0; /* flag to indicate temp vars used */
2521
2522 ino = ip->i_number;
2523 igen = ip->i_gen;
2524 size = uiop->uio_resid;
2525 basep = uiop->uio_iov->iov_base;
2526 tuiop = uiop;
2527
2528 rw_enter(&ip->i_rwlock, RW_WRITER);
2529 rw_enter(&ip->i_contents, RW_WRITER);
2530 if (ip->i_flag & IFASTSYMLNK) {
2531 rw_exit(&ip->i_contents);
2532 rw_exit(&ip->i_rwlock);
2533 goto again;
2534 }
2535
2536 /* can this be a fast symlink and is it a user buffer? */
2537 if (ip->i_size <= FSL_SIZE &&
2538 (uiop->uio_segflg == UIO_USERSPACE ||
2539 uiop->uio_segflg == UIO_USERISPACE)) {
2540
2541 bzero(&tuio, sizeof (struct uio));
2542 /*
2543 * setup a kernel buffer to read link into. this
2544 * is to fix a race condition where the user buffer
2545 * got corrupted before copying it into the inode.
2546 */
2547 size = ip->i_size;
2548 tiov.iov_len = size;
2549 tiov.iov_base = kbuf;
2550 tuio.uio_iov = &tiov;
2551 tuio.uio_iovcnt = 1;
2552 tuio.uio_offset = uiop->uio_offset;
2553 tuio.uio_segflg = UIO_SYSSPACE;
2554 tuio.uio_fmode = uiop->uio_fmode;
2555 tuio.uio_extflg = uiop->uio_extflg;
2556 tuio.uio_limit = uiop->uio_limit;
2557 tuio.uio_resid = size;
2558
2559 basep = tuio.uio_iov->iov_base;
2560 tuiop = &tuio;
2561 tflag = 1;
2562 }
2563
2564 error = rdip(ip, tuiop, 0, cr);
2565 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2566 rw_exit(&ip->i_contents);
2567 rw_exit(&ip->i_rwlock);
2568 goto out;
2569 }
2570
2571 if (tflag == 0)
2572 size -= uiop->uio_resid;
2573
2574 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2575 ip->i_size == size) || (tflag == 1 &&
2576 tuio.uio_resid == 0)) {
2577 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2578 if (error == 0) {
2579 ip->i_flag |= IFASTSYMLNK;
2580 /*
2581 * free page
2582 */
2583 (void) VOP_PUTPAGE(ITOV(ip),
2584 (offset_t)0, PAGESIZE,
2585 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2586 cr, ct);
2587 } else {
2588 int i;
2589 /* error, clear garbage left behind */
2590 for (i = 1; i < NDADDR; i++)
2591 ip->i_db[i] = 0;
2592 for (i = 0; i < NIADDR; i++)
2593 ip->i_ib[i] = 0;
2594 }
2595 }
2596 if (tflag == 1) {
2597 /* now, copy it into the user buffer */
2598 error = uiomove((caddr_t)kbuf,
2599 MIN(size, uiop->uio_resid),
2600 UIO_READ, uiop);
2601 }
2602 rw_exit(&ip->i_contents);
2603 rw_exit(&ip->i_rwlock);
2604 }
2605 out:
2606 if (ulp) {
2607 ufs_lockfs_end(ulp);
2608 }
2609 nolockout:
2610 return (error);
2611 }
2612
2613 /* ARGSUSED */
2614 static int
ufs_fsync(struct vnode * vp,int syncflag,struct cred * cr,caller_context_t * ct)2615 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
2616 caller_context_t *ct)
2617 {
2618 struct inode *ip = VTOI(vp);
2619 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2620 struct ulockfs *ulp;
2621 int error;
2622
2623 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2624 if (error)
2625 return (error);
2626
2627 if (TRANS_ISTRANS(ufsvfsp)) {
2628 /*
2629 * First push out any data pages
2630 */
2631 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2632 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2633 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2634 0, CRED(), ct);
2635 if (error)
2636 goto out;
2637 }
2638
2639 /*
2640 * Delta any delayed inode times updates
2641 * and push inode to log.
2642 * All other inode deltas will have already been delta'd
2643 * and will be pushed during the commit.
2644 */
2645 if (!(syncflag & FDSYNC) &&
2646 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2647 if (ulp) {
2648 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2649 TOP_SYNCIP_SIZE);
2650 }
2651 rw_enter(&ip->i_contents, RW_READER);
2652 mutex_enter(&ip->i_tlock);
2653 ip->i_flag &= ~IMODTIME;
2654 mutex_exit(&ip->i_tlock);
2655 ufs_iupdat(ip, I_SYNC);
2656 rw_exit(&ip->i_contents);
2657 if (ulp) {
2658 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2659 TOP_SYNCIP_SIZE);
2660 }
2661 }
2662
2663 /*
2664 * Commit the Moby transaction
2665 *
2666 * Deltas have already been made so we just need to
2667 * commit them with a synchronous transaction.
2668 * TRANS_BEGIN_SYNC() will return an error
2669 * if there are no deltas to commit, for an
2670 * empty transaction.
2671 */
2672 if (ulp) {
2673 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2674 error);
2675 if (error) {
2676 error = 0; /* commit wasn't needed */
2677 goto out;
2678 }
2679 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2680 TOP_COMMIT_SIZE);
2681 }
2682 } else { /* not logging */
2683 if (!(IS_SWAPVP(vp)))
2684 if (syncflag & FNODSYNC) {
2685 /* Just update the inode only */
2686 TRANS_IUPDAT(ip, 1);
2687 error = 0;
2688 } else if (syncflag & FDSYNC)
2689 /* Do data-synchronous writes */
2690 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2691 else
2692 /* Do synchronous writes */
2693 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2694
2695 rw_enter(&ip->i_contents, RW_WRITER);
2696 if (!error)
2697 error = ufs_sync_indir(ip);
2698 rw_exit(&ip->i_contents);
2699 }
2700 out:
2701 if (ulp) {
2702 ufs_lockfs_end(ulp);
2703 }
2704 return (error);
2705 }
2706
2707 /*ARGSUSED*/
2708 static void
ufs_inactive(struct vnode * vp,struct cred * cr,caller_context_t * ct)2709 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2710 {
2711 ufs_iinactive(VTOI(vp));
2712 }
2713
2714 /*
2715 * Unix file system operations having to do with directory manipulation.
2716 */
2717 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2718 /* ARGSUSED */
2719 static int
ufs_lookup(struct vnode * dvp,char * nm,struct vnode ** vpp,struct pathname * pnp,int flags,struct vnode * rdir,struct cred * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)2720 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2721 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2722 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2723 {
2724 struct inode *ip;
2725 struct inode *sip;
2726 struct inode *xip;
2727 struct ufsvfs *ufsvfsp;
2728 struct ulockfs *ulp;
2729 struct vnode *vp;
2730 int error;
2731
2732 /*
2733 * Check flags for type of lookup (regular file or attribute file)
2734 */
2735
2736 ip = VTOI(dvp);
2737
2738 if (flags & LOOKUP_XATTR) {
2739
2740 /*
2741 * If not mounted with XATTR support then return EINVAL
2742 */
2743
2744 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2745 return (EINVAL);
2746 /*
2747 * We don't allow recursive attributes...
2748 * Maybe someday we will.
2749 */
2750 if ((ip->i_cflags & IXATTR)) {
2751 return (EINVAL);
2752 }
2753
2754 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2755 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2756 if (error) {
2757 *vpp = NULL;
2758 goto out;
2759 }
2760
2761 vp = ITOV(sip);
2762 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2763 }
2764
2765 /*
2766 * Check accessibility of directory.
2767 */
2768 if (vp == DNLC_NO_VNODE) {
2769 VN_RELE(vp);
2770 error = ENOENT;
2771 goto out;
2772 }
2773 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2774 VN_RELE(vp);
2775 goto out;
2776 }
2777
2778 *vpp = vp;
2779 return (0);
2780 }
2781
2782 /*
2783 * Check for a null component, which we should treat as
2784 * looking at dvp from within it's parent, so we don't
2785 * need a call to ufs_iaccess(), as it has already been
2786 * done.
2787 */
2788 if (nm[0] == 0) {
2789 VN_HOLD(dvp);
2790 error = 0;
2791 *vpp = dvp;
2792 goto out;
2793 }
2794
2795 /*
2796 * Check for "." ie itself. this is a quick check and
2797 * avoids adding "." into the dnlc (which have been seen
2798 * to occupy >10% of the cache).
2799 */
2800 if ((nm[0] == '.') && (nm[1] == 0)) {
2801 /*
2802 * Don't return without checking accessibility
2803 * of the directory. We only need the lock if
2804 * we are going to return it.
2805 */
2806 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2807 VN_HOLD(dvp);
2808 *vpp = dvp;
2809 }
2810 goto out;
2811 }
2812
2813 /*
2814 * Fast path: Check the directory name lookup cache.
2815 */
2816 if (vp = dnlc_lookup(dvp, nm)) {
2817 /*
2818 * Check accessibility of directory.
2819 */
2820 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2821 VN_RELE(vp);
2822 goto out;
2823 }
2824 if (vp == DNLC_NO_VNODE) {
2825 VN_RELE(vp);
2826 error = ENOENT;
2827 goto out;
2828 }
2829 xip = VTOI(vp);
2830 ulp = NULL;
2831 goto fastpath;
2832 }
2833
2834 /*
2835 * Keep the idle queue from getting too long by
2836 * idling two inodes before attempting to allocate another.
2837 * This operation must be performed before entering
2838 * lockfs or a transaction.
2839 */
2840 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2841 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2842 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2843 ufs_idle_some(ufs_lookup_idle_count);
2844 }
2845
2846 retry_lookup:
2847 /*
2848 * Check accessibility of directory.
2849 */
2850 if (error = ufs_diraccess(ip, IEXEC, cr))
2851 goto out;
2852
2853 ufsvfsp = ip->i_ufsvfs;
2854 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2855 if (error)
2856 goto out;
2857
2858 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2859
2860 fastpath:
2861 if (error == 0) {
2862 ip = xip;
2863 *vpp = ITOV(ip);
2864
2865 /*
2866 * If vnode is a device return special vnode instead.
2867 */
2868 if (IS_DEVVP(*vpp)) {
2869 struct vnode *newvp;
2870
2871 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2872 cr);
2873 VN_RELE(*vpp);
2874 if (newvp == NULL)
2875 error = ENOSYS;
2876 else
2877 *vpp = newvp;
2878 } else if (ip->i_cflags & ICOMPRESS) {
2879 struct vnode *newvp;
2880
2881 /*
2882 * Compressed file, substitute dcfs vnode
2883 */
2884 newvp = decompvp(*vpp, cr, ct);
2885 VN_RELE(*vpp);
2886 if (newvp == NULL)
2887 error = ENOSYS;
2888 else
2889 *vpp = newvp;
2890 }
2891 }
2892 if (ulp) {
2893 ufs_lockfs_end(ulp);
2894 }
2895
2896 if (error == EAGAIN)
2897 goto retry_lookup;
2898
2899 out:
2900 return (error);
2901 }
2902
2903 /*ARGSUSED*/
2904 static int
ufs_create(struct vnode * dvp,char * name,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,struct cred * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)2905 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2906 int mode, struct vnode **vpp, struct cred *cr, int flag,
2907 caller_context_t *ct, vsecattr_t *vsecp)
2908 {
2909 struct inode *ip;
2910 struct inode *xip;
2911 struct inode *dip;
2912 struct vnode *xvp;
2913 struct ufsvfs *ufsvfsp;
2914 struct ulockfs *ulp;
2915 int error;
2916 int issync;
2917 int truncflag;
2918 int trans_size;
2919 int noentry;
2920 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2921 int retry = 1;
2922 int indeadlock;
2923
2924 again:
2925 ip = VTOI(dvp);
2926 ufsvfsp = ip->i_ufsvfs;
2927 truncflag = 0;
2928
2929 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2930 if (error)
2931 goto out;
2932
2933 if (ulp) {
2934 trans_size = (int)TOP_CREATE_SIZE(ip);
2935 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2936 }
2937
2938 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2939 vap->va_mode &= ~VSVTX;
2940
2941 if (*name == '\0') {
2942 /*
2943 * Null component name refers to the directory itself.
2944 */
2945 VN_HOLD(dvp);
2946 /*
2947 * Even though this is an error case, we need to grab the
2948 * quota lock since the error handling code below is common.
2949 */
2950 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2951 rw_enter(&ip->i_contents, RW_WRITER);
2952 error = EEXIST;
2953 } else {
2954 xip = NULL;
2955 noentry = 0;
2956 /*
2957 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2958 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2959 * possible, retries the operation.
2960 */
2961 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2962 retry_dir);
2963 if (indeadlock)
2964 goto again;
2965
2966 xvp = dnlc_lookup(dvp, name);
2967 if (xvp == DNLC_NO_VNODE) {
2968 noentry = 1;
2969 VN_RELE(xvp);
2970 xvp = NULL;
2971 }
2972 if (xvp) {
2973 rw_exit(&ip->i_rwlock);
2974 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2975 VN_RELE(xvp);
2976 } else {
2977 error = EEXIST;
2978 xip = VTOI(xvp);
2979 }
2980 } else {
2981 /*
2982 * Suppress file system full message if we will retry
2983 */
2984 error = ufs_direnter_cm(ip, name, DE_CREATE,
2985 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2986 if (error == EAGAIN) {
2987 if (ulp) {
2988 TRANS_END_CSYNC(ufsvfsp, error, issync,
2989 TOP_CREATE, trans_size);
2990 ufs_lockfs_end(ulp);
2991 }
2992 goto again;
2993 }
2994 rw_exit(&ip->i_rwlock);
2995 }
2996 ip = xip;
2997 if (ip != NULL) {
2998 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2999 rw_enter(&ip->i_contents, RW_WRITER);
3000 }
3001 }
3002
3003 /*
3004 * If the file already exists and this is a non-exclusive create,
3005 * check permissions and allow access for non-directories.
3006 * Read-only create of an existing directory is also allowed.
3007 * We fail an exclusive create of anything which already exists.
3008 */
3009 if (error == EEXIST) {
3010 dip = VTOI(dvp);
3011 if (excl == NONEXCL) {
3012 if ((((ip->i_mode & IFMT) == IFDIR) ||
3013 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3014 (mode & IWRITE))
3015 error = EISDIR;
3016 else if (mode)
3017 error = ufs_iaccess(ip, mode, cr, 0);
3018 else
3019 error = 0;
3020 }
3021 if (error) {
3022 rw_exit(&ip->i_contents);
3023 rw_exit(&ufsvfsp->vfs_dqrwlock);
3024 VN_RELE(ITOV(ip));
3025 goto unlock;
3026 }
3027 /*
3028 * If the error EEXIST was set, then i_seq can not
3029 * have been updated. The sequence number interface
3030 * is defined such that a non-error VOP_CREATE must
3031 * increase the dir va_seq it by at least one. If we
3032 * have cleared the error, increase i_seq. Note that
3033 * we are increasing the dir i_seq and in rare cases
3034 * ip may actually be from the dvp, so we already have
3035 * the locks and it will not be subject to truncation.
3036 * In case we have to update i_seq of the parent
3037 * directory dip, we have to defer it till we have
3038 * released our locks on ip due to lock ordering requirements.
3039 */
3040 if (ip != dip)
3041 defer_dip_seq_update = 1;
3042 else
3043 ip->i_seq++;
3044
3045 if (((ip->i_mode & IFMT) == IFREG) &&
3046 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3047 /*
3048 * Truncate regular files, if requested by caller.
3049 * Grab i_rwlock to make sure no one else is
3050 * currently writing to the file (we promised
3051 * bmap we would do this).
3052 * Must get the locks in the correct order.
3053 */
3054 if (ip->i_size == 0) {
3055 ip->i_flag |= ICHG | IUPD;
3056 ip->i_seq++;
3057 TRANS_INODE(ufsvfsp, ip);
3058 } else {
3059 /*
3060 * Large Files: Why this check here?
3061 * Though we do it in vn_create() we really
3062 * want to guarantee that we do not destroy
3063 * Large file data by atomically checking
3064 * the size while holding the contents
3065 * lock.
3066 */
3067 if (flag && !(flag & FOFFMAX) &&
3068 ((ip->i_mode & IFMT) == IFREG) &&
3069 (ip->i_size > (offset_t)MAXOFF32_T)) {
3070 rw_exit(&ip->i_contents);
3071 rw_exit(&ufsvfsp->vfs_dqrwlock);
3072 error = EOVERFLOW;
3073 goto unlock;
3074 }
3075 if (TRANS_ISTRANS(ufsvfsp))
3076 truncflag++;
3077 else {
3078 rw_exit(&ip->i_contents);
3079 rw_exit(&ufsvfsp->vfs_dqrwlock);
3080 ufs_tryirwlock_trans(&ip->i_rwlock,
3081 RW_WRITER, TOP_CREATE,
3082 retry_file);
3083 if (indeadlock) {
3084 VN_RELE(ITOV(ip));
3085 goto again;
3086 }
3087 rw_enter(&ufsvfsp->vfs_dqrwlock,
3088 RW_READER);
3089 rw_enter(&ip->i_contents, RW_WRITER);
3090 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3091 cr);
3092 rw_exit(&ip->i_rwlock);
3093 }
3094
3095 }
3096 if (error == 0) {
3097 vnevent_create(ITOV(ip), ct);
3098 }
3099 }
3100 }
3101
3102 if (error) {
3103 if (ip != NULL) {
3104 rw_exit(&ufsvfsp->vfs_dqrwlock);
3105 rw_exit(&ip->i_contents);
3106 }
3107 goto unlock;
3108 }
3109
3110 *vpp = ITOV(ip);
3111 ITIMES(ip);
3112 rw_exit(&ip->i_contents);
3113 rw_exit(&ufsvfsp->vfs_dqrwlock);
3114
3115 /*
3116 * If vnode is a device return special vnode instead.
3117 */
3118 if (!error && IS_DEVVP(*vpp)) {
3119 struct vnode *newvp;
3120
3121 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3122 VN_RELE(*vpp);
3123 if (newvp == NULL) {
3124 error = ENOSYS;
3125 goto unlock;
3126 }
3127 truncflag = 0;
3128 *vpp = newvp;
3129 }
3130 unlock:
3131
3132 /*
3133 * Do the deferred update of the parent directory's sequence
3134 * number now.
3135 */
3136 if (defer_dip_seq_update == 1) {
3137 rw_enter(&dip->i_contents, RW_READER);
3138 mutex_enter(&dip->i_tlock);
3139 dip->i_seq++;
3140 mutex_exit(&dip->i_tlock);
3141 rw_exit(&dip->i_contents);
3142 }
3143
3144 if (ulp) {
3145 int terr = 0;
3146
3147 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3148 trans_size);
3149
3150 /*
3151 * If we haven't had a more interesting failure
3152 * already, then anything that might've happened
3153 * here should be reported.
3154 */
3155 if (error == 0)
3156 error = terr;
3157 }
3158
3159 if (!error && truncflag) {
3160 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3161 if (indeadlock) {
3162 if (ulp)
3163 ufs_lockfs_end(ulp);
3164 VN_RELE(ITOV(ip));
3165 goto again;
3166 }
3167 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3168 rw_exit(&ip->i_rwlock);
3169 }
3170
3171 if (ulp)
3172 ufs_lockfs_end(ulp);
3173
3174 /*
3175 * If no inodes available, try to free one up out of the
3176 * pending delete queue.
3177 */
3178 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3179 ufs_delete_drain_wait(ufsvfsp, 1);
3180 retry = 0;
3181 goto again;
3182 }
3183
3184 out:
3185 return (error);
3186 }
3187
3188 extern int ufs_idle_max;
3189 /*ARGSUSED*/
3190 static int
ufs_remove(struct vnode * vp,char * nm,struct cred * cr,caller_context_t * ct,int flags)3191 ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
3192 caller_context_t *ct, int flags)
3193 {
3194 struct inode *ip = VTOI(vp);
3195 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3196 struct ulockfs *ulp;
3197 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3198 int indeadlock;
3199 int error;
3200 int issync;
3201 int trans_size;
3202
3203 /*
3204 * don't let the delete queue get too long
3205 */
3206 if (ufsvfsp == NULL) {
3207 error = EIO;
3208 goto out;
3209 }
3210 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3211 ufs_delete_drain(vp->v_vfsp, 1, 1);
3212
3213 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3214 if (rmvp != NULL) {
3215 /* Only send the event if there were no errors */
3216 if (error == 0)
3217 vnevent_remove(rmvp, vp, nm, ct);
3218 VN_RELE(rmvp);
3219 }
3220
3221 retry_remove:
3222 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3223 if (error)
3224 goto out;
3225
3226 if (ulp)
3227 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3228 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3229
3230 /*
3231 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3232 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3233 * possible, retries the operation.
3234 */
3235 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3236 if (indeadlock)
3237 goto retry_remove;
3238 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3239 DR_REMOVE, cr);
3240 rw_exit(&ip->i_rwlock);
3241
3242 if (ulp) {
3243 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3244 ufs_lockfs_end(ulp);
3245 }
3246
3247 out:
3248 return (error);
3249 }
3250
3251 /*
3252 * Link a file or a directory. Only privileged processes are allowed to
3253 * make links to directories.
3254 */
3255 /*ARGSUSED*/
3256 static int
ufs_link(struct vnode * tdvp,struct vnode * svp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3257 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3258 caller_context_t *ct, int flags)
3259 {
3260 struct inode *sip;
3261 struct inode *tdp = VTOI(tdvp);
3262 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3263 struct ulockfs *ulp;
3264 struct vnode *realvp;
3265 int error;
3266 int issync;
3267 int trans_size;
3268 int isdev;
3269 int indeadlock;
3270
3271 retry_link:
3272 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3273 if (error)
3274 goto out;
3275
3276 if (ulp)
3277 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3278 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3279
3280 if (VOP_REALVP(svp, &realvp, ct) == 0)
3281 svp = realvp;
3282
3283 /*
3284 * Make sure link for extended attributes is valid
3285 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3286 *
3287 * Make certain we don't attempt to look at a device node as
3288 * a ufs inode.
3289 */
3290
3291 isdev = IS_DEVVP(svp);
3292 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3293 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3294 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3295 ((tdp->i_mode & IFMT) == IFDIR))) {
3296 error = EINVAL;
3297 goto unlock;
3298 }
3299
3300 sip = VTOI(svp);
3301 if ((svp->v_type == VDIR &&
3302 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3303 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3304 error = EPERM;
3305 goto unlock;
3306 }
3307
3308 /*
3309 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3310 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3311 * possible, retries the operation.
3312 */
3313 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3314 if (indeadlock)
3315 goto retry_link;
3316 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3317 sip, cr);
3318 rw_exit(&tdp->i_rwlock);
3319
3320 unlock:
3321 if (ulp) {
3322 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3323 ufs_lockfs_end(ulp);
3324 }
3325
3326 if (!error) {
3327 vnevent_link(svp, ct);
3328 }
3329 out:
3330 return (error);
3331 }
3332
3333 uint64_t ufs_rename_retry_cnt;
3334 uint64_t ufs_rename_upgrade_retry_cnt;
3335 uint64_t ufs_rename_dircheck_retry_cnt;
3336 clock_t ufs_rename_backoff_delay = 1;
3337
3338 /*
3339 * Rename a file or directory.
3340 * We are given the vnode and entry string of the source and the
3341 * vnode and entry string of the place we want to move the source
3342 * to (the target). The essential operation is:
3343 * unlink(target);
3344 * link(source, target);
3345 * unlink(source);
3346 * but "atomically". Can't do full commit without saving state in
3347 * the inode on disk, which isn't feasible at this time. Best we
3348 * can do is always guarantee that the TARGET exists.
3349 */
3350
3351 /*ARGSUSED*/
3352 static int
ufs_rename(struct vnode * sdvp,char * snm,struct vnode * tdvp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3353 ufs_rename(
3354 struct vnode *sdvp, /* old (source) parent vnode */
3355 char *snm, /* old (source) entry name */
3356 struct vnode *tdvp, /* new (target) parent vnode */
3357 char *tnm, /* new (target) entry name */
3358 struct cred *cr,
3359 caller_context_t *ct,
3360 int flags)
3361 {
3362 struct inode *sip = NULL; /* source inode */
3363 struct inode *ip = NULL; /* check inode */
3364 struct inode *sdp; /* old (source) parent inode */
3365 struct inode *tdp; /* new (target) parent inode */
3366 struct vnode *svp = NULL; /* source vnode */
3367 struct vnode *tvp = NULL; /* target vnode, if it exists */
3368 struct vnode *realvp;
3369 struct ufsvfs *ufsvfsp;
3370 struct ulockfs *ulp;
3371 struct ufs_slot slot;
3372 timestruc_t now;
3373 int error;
3374 int issync;
3375 int trans_size;
3376 krwlock_t *first_lock;
3377 krwlock_t *second_lock;
3378 krwlock_t *reverse_lock;
3379 int serr, terr;
3380
3381 sdp = VTOI(sdvp);
3382 slot.fbp = NULL;
3383 ufsvfsp = sdp->i_ufsvfs;
3384
3385 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3386 tdvp = realvp;
3387
3388 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3389 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3390
3391 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3392 if (tvp != NULL)
3393 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3394
3395 /*
3396 * Notify the target directory of the rename event
3397 * if source and target directories are not the same.
3398 */
3399 if (sdvp != tdvp)
3400 vnevent_rename_dest_dir(tdvp, ct);
3401
3402 if (svp != NULL)
3403 vnevent_rename_src(svp, sdvp, snm, ct);
3404 }
3405
3406 if (tvp != NULL)
3407 VN_RELE(tvp);
3408
3409 if (svp != NULL)
3410 VN_RELE(svp);
3411
3412 retry_rename:
3413 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3414 if (error)
3415 goto out;
3416
3417 if (ulp)
3418 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3419 trans_size = (int)TOP_RENAME_SIZE(sdp));
3420
3421 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3422 tdvp = realvp;
3423
3424 tdp = VTOI(tdvp);
3425
3426 /*
3427 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3428 */
3429 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3430 error = EINVAL;
3431 goto unlock;
3432 }
3433
3434 /*
3435 * Check accessibility of directory.
3436 */
3437 if (error = ufs_diraccess(sdp, IEXEC, cr))
3438 goto unlock;
3439
3440 /*
3441 * Look up inode of file we're supposed to rename.
3442 */
3443 gethrestime(&now);
3444 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3445 if (error == EAGAIN) {
3446 if (ulp) {
3447 TRANS_END_CSYNC(ufsvfsp, error, issync,
3448 TOP_RENAME, trans_size);
3449 ufs_lockfs_end(ulp);
3450 }
3451 goto retry_rename;
3452 }
3453
3454 goto unlock;
3455 }
3456
3457 /*
3458 * Lock both the source and target directories (they may be
3459 * the same) to provide the atomicity semantics that was
3460 * previously provided by the per file system vfs_rename_lock
3461 *
3462 * with vfs_rename_lock removed to allow simultaneous renames
3463 * within a file system, ufs_dircheckpath can deadlock while
3464 * traversing back to ensure that source is not a parent directory
3465 * of target parent directory. This is because we get into
3466 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3467 * If the tdp and sdp of the simultaneous renames happen to be
3468 * in the path of each other, it can lead to a deadlock. This
3469 * can be avoided by getting the locks as RW_READER here and then
3470 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3471 *
3472 * We hold the target directory's i_rwlock after calling
3473 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3474 * VOP_RWLOCK is explicitly called by the filesystem independent code
3475 * before calling the file system operation. In these cases the order
3476 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3477 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3478 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3479 * synchronizing object which might lead to a deadlock. So we use
3480 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3481 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3482 * operation.
3483 */
3484 retry:
3485 first_lock = &tdp->i_rwlock;
3486 second_lock = &sdp->i_rwlock;
3487 retry_firstlock:
3488 if (!rw_tryenter(first_lock, RW_READER)) {
3489 /*
3490 * We didn't get the lock. Check if the SLOCK is set in the
3491 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3492 * and wait for SLOCK to be cleared.
3493 */
3494
3495 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3496 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3497 trans_size);
3498 ufs_lockfs_end(ulp);
3499 goto retry_rename;
3500
3501 } else {
3502 /*
3503 * SLOCK isn't set so this is a genuine synchronization
3504 * case. Let's try again after giving them a breather.
3505 */
3506 delay(RETRY_LOCK_DELAY);
3507 goto retry_firstlock;
3508 }
3509 }
3510 /*
3511 * Need to check if the tdp and sdp are same !!!
3512 */
3513 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3514 /*
3515 * We didn't get the lock. Check if the SLOCK is set in the
3516 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3517 * and wait for SLOCK to be cleared.
3518 */
3519
3520 rw_exit(first_lock);
3521 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3522 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3523 trans_size);
3524 ufs_lockfs_end(ulp);
3525 goto retry_rename;
3526
3527 } else {
3528 /*
3529 * So we couldn't get the second level peer lock *and*
3530 * the SLOCK bit isn't set. Too bad we can be
3531 * contentding with someone wanting these locks otherway
3532 * round. Reverse the locks in case there is a heavy
3533 * contention for the second level lock.
3534 */
3535 reverse_lock = first_lock;
3536 first_lock = second_lock;
3537 second_lock = reverse_lock;
3538 ufs_rename_retry_cnt++;
3539 goto retry_firstlock;
3540 }
3541 }
3542
3543 if (sip == tdp) {
3544 error = EINVAL;
3545 goto errout;
3546 }
3547 /*
3548 * Make sure we can delete the source entry. This requires
3549 * write permission on the containing directory.
3550 * Check for sticky directories.
3551 */
3552 rw_enter(&sdp->i_contents, RW_READER);
3553 rw_enter(&sip->i_contents, RW_READER);
3554 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3555 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3556 rw_exit(&sip->i_contents);
3557 rw_exit(&sdp->i_contents);
3558 goto errout;
3559 }
3560
3561 /*
3562 * If this is a rename of a directory and the parent is
3563 * different (".." must be changed), then the source
3564 * directory must not be in the directory hierarchy
3565 * above the target, as this would orphan everything
3566 * below the source directory. Also the user must have
3567 * write permission in the source so as to be able to
3568 * change "..".
3569 */
3570 if ((((sip->i_mode & IFMT) == IFDIR) ||
3571 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3572 ino_t inum;
3573
3574 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3575 rw_exit(&sip->i_contents);
3576 rw_exit(&sdp->i_contents);
3577 goto errout;
3578 }
3579 inum = sip->i_number;
3580 rw_exit(&sip->i_contents);
3581 rw_exit(&sdp->i_contents);
3582 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3583 /*
3584 * If we got EAGAIN ufs_dircheckpath detected a
3585 * potential deadlock and backed out. We need
3586 * to retry the operation since sdp and tdp have
3587 * to be released to avoid the deadlock.
3588 */
3589 if (error == EAGAIN) {
3590 rw_exit(&tdp->i_rwlock);
3591 if (tdp != sdp)
3592 rw_exit(&sdp->i_rwlock);
3593 delay(ufs_rename_backoff_delay);
3594 ufs_rename_dircheck_retry_cnt++;
3595 goto retry;
3596 }
3597 goto errout;
3598 }
3599 } else {
3600 rw_exit(&sip->i_contents);
3601 rw_exit(&sdp->i_contents);
3602 }
3603
3604
3605 /*
3606 * Check for renaming '.' or '..' or alias of '.'
3607 */
3608 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3609 error = EINVAL;
3610 goto errout;
3611 }
3612
3613 /*
3614 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3615 * tries to traverse back the file tree with both tdp and sdp held
3616 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3617 * as RW_READERS till ufs_dircheckpath is done.
3618 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3619 * to RW_WRITER.
3620 */
3621 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3622 /*
3623 * The upgrade failed. We got to give away the lock
3624 * as to avoid deadlocking with someone else who is
3625 * waiting for writer lock. With the lock gone, we
3626 * cannot be sure the checks done above will hold
3627 * good when we eventually get them back as writer.
3628 * So if we can't upgrade we drop the locks and retry
3629 * everything again.
3630 */
3631 rw_exit(&tdp->i_rwlock);
3632 if (tdp != sdp)
3633 rw_exit(&sdp->i_rwlock);
3634 delay(ufs_rename_backoff_delay);
3635 ufs_rename_upgrade_retry_cnt++;
3636 goto retry;
3637 }
3638 if (tdp != sdp) {
3639 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3640 /*
3641 * The upgrade failed. We got to give away the lock
3642 * as to avoid deadlocking with someone else who is
3643 * waiting for writer lock. With the lock gone, we
3644 * cannot be sure the checks done above will hold
3645 * good when we eventually get them back as writer.
3646 * So if we can't upgrade we drop the locks and retry
3647 * everything again.
3648 */
3649 rw_exit(&tdp->i_rwlock);
3650 rw_exit(&sdp->i_rwlock);
3651 delay(ufs_rename_backoff_delay);
3652 ufs_rename_upgrade_retry_cnt++;
3653 goto retry;
3654 }
3655 }
3656
3657 /*
3658 * Now that all the locks are held check to make sure another thread
3659 * didn't slip in and take out the sip.
3660 */
3661 slot.status = NONE;
3662 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3663 sip->i_ctime.tv_sec > now.tv_sec) {
3664 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3665 rw_enter(&sdp->i_contents, RW_WRITER);
3666 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3667 &ip, cr, 0);
3668 rw_exit(&sdp->i_contents);
3669 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3670 if (error) {
3671 goto errout;
3672 }
3673 if (ip == NULL) {
3674 error = ENOENT;
3675 goto errout;
3676 } else {
3677 /*
3678 * If the inode was found need to drop the v_count
3679 * so as not to keep the filesystem from being
3680 * unmounted at a later time.
3681 */
3682 VN_RELE(ITOV(ip));
3683 }
3684
3685 /*
3686 * Release the slot.fbp that has the page mapped and
3687 * locked SE_SHARED, and could be used in in
3688 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3689 * on said page.
3690 */
3691 if (slot.fbp) {
3692 fbrelse(slot.fbp, S_OTHER);
3693 slot.fbp = NULL;
3694 }
3695 }
3696
3697 /*
3698 * Link source to the target.
3699 */
3700 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3701 /*
3702 * ESAME isn't really an error; it indicates that the
3703 * operation should not be done because the source and target
3704 * are the same file, but that no error should be reported.
3705 */
3706 if (error == ESAME)
3707 error = 0;
3708 goto errout;
3709 }
3710
3711 /*
3712 * Unlink the source.
3713 * Remove the source entry. ufs_dirremove() checks that the entry
3714 * still reflects sip, and returns an error if it doesn't.
3715 * If the entry has changed just forget about it. Release
3716 * the source inode.
3717 */
3718 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3719 DR_RENAME, cr)) == ENOENT)
3720 error = 0;
3721
3722 errout:
3723 if (slot.fbp)
3724 fbrelse(slot.fbp, S_OTHER);
3725
3726 rw_exit(&tdp->i_rwlock);
3727 if (sdp != tdp) {
3728 rw_exit(&sdp->i_rwlock);
3729 }
3730
3731 VN_RELE(ITOV(sip));
3732
3733 unlock:
3734 if (ulp) {
3735 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3736 ufs_lockfs_end(ulp);
3737 }
3738
3739 out:
3740 return (error);
3741 }
3742
3743 /*ARGSUSED*/
3744 static int
ufs_mkdir(struct vnode * dvp,char * dirname,struct vattr * vap,struct vnode ** vpp,struct cred * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3745 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3746 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3747 vsecattr_t *vsecp)
3748 {
3749 struct inode *ip;
3750 struct inode *xip;
3751 struct ufsvfs *ufsvfsp;
3752 struct ulockfs *ulp;
3753 int error;
3754 int issync;
3755 int trans_size;
3756 int indeadlock;
3757 int retry = 1;
3758
3759 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3760
3761 /*
3762 * Can't make directory in attr hidden dir
3763 */
3764 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3765 return (EINVAL);
3766
3767 again:
3768 ip = VTOI(dvp);
3769 ufsvfsp = ip->i_ufsvfs;
3770 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3771 if (error)
3772 goto out;
3773 if (ulp)
3774 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3775 trans_size = (int)TOP_MKDIR_SIZE(ip));
3776
3777 /*
3778 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3779 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3780 * possible, retries the operation.
3781 */
3782 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3783 if (indeadlock)
3784 goto again;
3785
3786 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3787 (retry ? IQUIET : 0));
3788 if (error == EAGAIN) {
3789 if (ulp) {
3790 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3791 trans_size);
3792 ufs_lockfs_end(ulp);
3793 }
3794 goto again;
3795 }
3796
3797 rw_exit(&ip->i_rwlock);
3798 if (error == 0) {
3799 ip = xip;
3800 *vpp = ITOV(ip);
3801 } else if (error == EEXIST)
3802 VN_RELE(ITOV(xip));
3803
3804 if (ulp) {
3805 int terr = 0;
3806 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3807 ufs_lockfs_end(ulp);
3808 if (error == 0)
3809 error = terr;
3810 }
3811 out:
3812 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3813 ufs_delete_drain_wait(ufsvfsp, 1);
3814 retry = 0;
3815 goto again;
3816 }
3817
3818 return (error);
3819 }
3820
3821 /*ARGSUSED*/
3822 static int
ufs_rmdir(struct vnode * vp,char * nm,struct vnode * cdir,struct cred * cr,caller_context_t * ct,int flags)3823 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3824 caller_context_t *ct, int flags)
3825 {
3826 struct inode *ip = VTOI(vp);
3827 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3828 struct ulockfs *ulp;
3829 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3830 int error;
3831 int issync;
3832 int trans_size;
3833 int indeadlock;
3834
3835 /*
3836 * don't let the delete queue get too long
3837 */
3838 if (ufsvfsp == NULL) {
3839 error = EIO;
3840 goto out;
3841 }
3842 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3843 ufs_delete_drain(vp->v_vfsp, 1, 1);
3844
3845 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3846 if (rmvp != NULL) {
3847 /* Only send the event if there were no errors */
3848 if (error == 0)
3849 vnevent_rmdir(rmvp, vp, nm, ct);
3850 VN_RELE(rmvp);
3851 }
3852
3853 retry_rmdir:
3854 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3855 if (error)
3856 goto out;
3857
3858 if (ulp)
3859 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3860 trans_size = TOP_RMDIR_SIZE);
3861
3862 /*
3863 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3864 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3865 * possible, retries the operation.
3866 */
3867 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3868 if (indeadlock)
3869 goto retry_rmdir;
3870 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3871
3872 rw_exit(&ip->i_rwlock);
3873
3874 if (ulp) {
3875 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3876 trans_size);
3877 ufs_lockfs_end(ulp);
3878 }
3879
3880 out:
3881 return (error);
3882 }
3883
3884 /* ARGSUSED */
3885 static int
ufs_readdir(struct vnode * vp,struct uio * uiop,struct cred * cr,int * eofp,caller_context_t * ct,int flags)3886 ufs_readdir(
3887 struct vnode *vp,
3888 struct uio *uiop,
3889 struct cred *cr,
3890 int *eofp,
3891 caller_context_t *ct,
3892 int flags)
3893 {
3894 struct iovec *iovp;
3895 struct inode *ip;
3896 struct direct *idp;
3897 struct dirent64 *odp;
3898 struct fbuf *fbp;
3899 struct ufsvfs *ufsvfsp;
3900 struct ulockfs *ulp;
3901 caddr_t outbuf;
3902 size_t bufsize;
3903 uint_t offset;
3904 uint_t bytes_wanted, total_bytes_wanted;
3905 int incount = 0;
3906 int outcount = 0;
3907 int error;
3908
3909 ip = VTOI(vp);
3910 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3911
3912 if (uiop->uio_loffset >= MAXOFF32_T) {
3913 if (eofp)
3914 *eofp = 1;
3915 return (0);
3916 }
3917
3918 /*
3919 * Check if we have been called with a valid iov_len
3920 * and bail out if not, otherwise we may potentially loop
3921 * forever further down.
3922 */
3923 if (uiop->uio_iov->iov_len <= 0) {
3924 error = EINVAL;
3925 goto out;
3926 }
3927
3928 /*
3929 * Large Files: When we come here we are guaranteed that
3930 * uio_offset can be used safely. The high word is zero.
3931 */
3932
3933 ufsvfsp = ip->i_ufsvfs;
3934 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3935 if (error)
3936 goto out;
3937
3938 iovp = uiop->uio_iov;
3939 total_bytes_wanted = iovp->iov_len;
3940
3941 /* Large Files: directory files should not be "large" */
3942
3943 ASSERT(ip->i_size <= MAXOFF32_T);
3944
3945 /* Force offset to be valid (to guard against bogus lseek() values) */
3946 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3947
3948 /* Quit if at end of file or link count of zero (posix) */
3949 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3950 if (eofp)
3951 *eofp = 1;
3952 error = 0;
3953 goto unlock;
3954 }
3955
3956 /*
3957 * Get space to change directory entries into fs independent format.
3958 * Do fast alloc for the most commonly used-request size (filesystem
3959 * block size).
3960 */
3961 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3962 bufsize = total_bytes_wanted;
3963 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3964 odp = (struct dirent64 *)outbuf;
3965 } else {
3966 bufsize = total_bytes_wanted;
3967 odp = (struct dirent64 *)iovp->iov_base;
3968 }
3969
3970 nextblk:
3971 bytes_wanted = total_bytes_wanted;
3972
3973 /* Truncate request to file size */
3974 if (offset + bytes_wanted > (int)ip->i_size)
3975 bytes_wanted = (int)(ip->i_size - offset);
3976
3977 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3978 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3979 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3980
3981 /*
3982 * Read in the next chunk.
3983 * We are still holding the i_rwlock.
3984 */
3985 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
3986
3987 if (error)
3988 goto update_inode;
3989 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
3990 (!ufsvfsp->vfs_noatime)) {
3991 ip->i_flag |= IACC;
3992 }
3993 incount = 0;
3994 idp = (struct direct *)fbp->fb_addr;
3995 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
3996 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
3997 "fs = %s\n",
3998 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
3999 fbrelse(fbp, S_OTHER);
4000 error = ENXIO;
4001 goto update_inode;
4002 }
4003 /* Transform to file-system independent format */
4004 while (incount < bytes_wanted) {
4005 /*
4006 * If the current directory entry is mangled, then skip
4007 * to the next block. It would be nice to set the FSBAD
4008 * flag in the super-block so that a fsck is forced on
4009 * next reboot, but locking is a problem.
4010 */
4011 if (idp->d_reclen & 0x3) {
4012 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4013 break;
4014 }
4015
4016 /* Skip to requested offset and skip empty entries */
4017 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4018 ushort_t this_reclen =
4019 DIRENT64_RECLEN(idp->d_namlen);
4020 /* Buffer too small for any entries */
4021 if (!outcount && this_reclen > bufsize) {
4022 fbrelse(fbp, S_OTHER);
4023 error = EINVAL;
4024 goto update_inode;
4025 }
4026 /* If would overrun the buffer, quit */
4027 if (outcount + this_reclen > bufsize) {
4028 break;
4029 }
4030 /* Take this entry */
4031 odp->d_ino = (ino64_t)idp->d_ino;
4032 odp->d_reclen = (ushort_t)this_reclen;
4033 odp->d_off = (offset_t)(offset + idp->d_reclen);
4034
4035 /* use strncpy(9f) to zero out uninitialized bytes */
4036
4037 ASSERT(strlen(idp->d_name) + 1 <=
4038 DIRENT64_NAMELEN(this_reclen));
4039 (void) strncpy(odp->d_name, idp->d_name,
4040 DIRENT64_NAMELEN(this_reclen));
4041 outcount += odp->d_reclen;
4042 odp = (struct dirent64 *)
4043 ((intptr_t)odp + odp->d_reclen);
4044 ASSERT(outcount <= bufsize);
4045 }
4046 if (idp->d_reclen) {
4047 incount += idp->d_reclen;
4048 offset += idp->d_reclen;
4049 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4050 } else {
4051 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4052 break;
4053 }
4054 }
4055 /* Release the chunk */
4056 fbrelse(fbp, S_OTHER);
4057
4058 /* Read whole block, but got no entries, read another if not eof */
4059
4060 /*
4061 * Large Files: casting i_size to int here is not a problem
4062 * because directory sizes are always less than MAXOFF32_T.
4063 * See assertion above.
4064 */
4065
4066 if (offset < (int)ip->i_size && !outcount)
4067 goto nextblk;
4068
4069 /* Copy out the entry data */
4070 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4071 iovp->iov_base += outcount;
4072 iovp->iov_len -= outcount;
4073 uiop->uio_resid -= outcount;
4074 uiop->uio_offset = offset;
4075 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4076 uiop)) == 0)
4077 uiop->uio_offset = offset;
4078 update_inode:
4079 ITIMES(ip);
4080 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4081 kmem_free(outbuf, bufsize);
4082
4083 if (eofp && error == 0)
4084 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4085 unlock:
4086 if (ulp) {
4087 ufs_lockfs_end(ulp);
4088 }
4089 out:
4090 return (error);
4091 }
4092
4093 /*ARGSUSED*/
4094 static int
ufs_symlink(struct vnode * dvp,char * linkname,struct vattr * vap,char * target,struct cred * cr,caller_context_t * ct,int flags)4095 ufs_symlink(
4096 struct vnode *dvp, /* ptr to parent dir vnode */
4097 char *linkname, /* name of symbolic link */
4098 struct vattr *vap, /* attributes */
4099 char *target, /* target path */
4100 struct cred *cr, /* user credentials */
4101 caller_context_t *ct,
4102 int flags)
4103 {
4104 struct inode *ip, *dip = VTOI(dvp);
4105 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4106 struct ulockfs *ulp;
4107 int error;
4108 int issync;
4109 int trans_size;
4110 int residual;
4111 int ioflag;
4112 int retry = 1;
4113
4114 /*
4115 * No symlinks in attrdirs at this time
4116 */
4117 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4118 return (EINVAL);
4119
4120 again:
4121 ip = (struct inode *)NULL;
4122 vap->va_type = VLNK;
4123 vap->va_rdev = 0;
4124
4125 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4126 if (error)
4127 goto out;
4128
4129 if (ulp)
4130 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4131 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4132
4133 /*
4134 * We must create the inode before the directory entry, to avoid
4135 * racing with readlink(). ufs_dirmakeinode requires that we
4136 * hold the quota lock as reader, and directory locks as writer.
4137 */
4138
4139 rw_enter(&dip->i_rwlock, RW_WRITER);
4140 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4141 rw_enter(&dip->i_contents, RW_WRITER);
4142
4143 /*
4144 * Suppress any out of inodes messages if we will retry on
4145 * ENOSP
4146 */
4147 if (retry)
4148 dip->i_flag |= IQUIET;
4149
4150 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4151
4152 dip->i_flag &= ~IQUIET;
4153
4154 rw_exit(&dip->i_contents);
4155 rw_exit(&ufsvfsp->vfs_dqrwlock);
4156 rw_exit(&dip->i_rwlock);
4157
4158 if (error)
4159 goto unlock;
4160
4161 /*
4162 * OK. The inode has been created. Write out the data of the
4163 * symbolic link. Since symbolic links are metadata, and should
4164 * remain consistent across a system crash, we need to force the
4165 * data out synchronously.
4166 *
4167 * (This is a change from the semantics in earlier releases, which
4168 * only created symbolic links synchronously if the semi-documented
4169 * 'syncdir' option was set, or if we were being invoked by the NFS
4170 * server, which requires symbolic links to be created synchronously.)
4171 *
4172 * We need to pass in a pointer for the residual length; otherwise
4173 * ufs_rdwri() will always return EIO if it can't write the data,
4174 * even if the error was really ENOSPC or EDQUOT.
4175 */
4176
4177 ioflag = FWRITE | FDSYNC;
4178 residual = 0;
4179
4180 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4181 rw_enter(&ip->i_contents, RW_WRITER);
4182
4183 /*
4184 * Suppress file system full messages if we will retry
4185 */
4186 if (retry)
4187 ip->i_flag |= IQUIET;
4188
4189 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4190 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4191
4192 ip->i_flag &= ~IQUIET;
4193
4194 if (error) {
4195 rw_exit(&ip->i_contents);
4196 rw_exit(&ufsvfsp->vfs_dqrwlock);
4197 goto remove;
4198 }
4199
4200 /*
4201 * If the link's data is small enough, we can cache it in the inode.
4202 * This is a "fast symbolic link". We don't use the first direct
4203 * block because that's actually used to point at the symbolic link's
4204 * contents on disk; but we know that none of the other direct or
4205 * indirect blocks can be used because symbolic links are restricted
4206 * to be smaller than a file system block.
4207 */
4208
4209 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4210
4211 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4212 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4213 ip->i_flag |= IFASTSYMLNK;
4214 } else {
4215 int i;
4216 /* error, clear garbage left behind */
4217 for (i = 1; i < NDADDR; i++)
4218 ip->i_db[i] = 0;
4219 for (i = 0; i < NIADDR; i++)
4220 ip->i_ib[i] = 0;
4221 }
4222 }
4223
4224 rw_exit(&ip->i_contents);
4225 rw_exit(&ufsvfsp->vfs_dqrwlock);
4226
4227 /*
4228 * OK. We've successfully created the symbolic link. All that
4229 * remains is to insert it into the appropriate directory.
4230 */
4231
4232 rw_enter(&dip->i_rwlock, RW_WRITER);
4233 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4234 rw_exit(&dip->i_rwlock);
4235
4236 /*
4237 * Fall through into remove-on-error code. We're either done, or we
4238 * need to remove the inode (if we couldn't insert it).
4239 */
4240
4241 remove:
4242 if (error && (ip != NULL)) {
4243 rw_enter(&ip->i_contents, RW_WRITER);
4244 ip->i_nlink--;
4245 ip->i_flag |= ICHG;
4246 ip->i_seq++;
4247 ufs_setreclaim(ip);
4248 rw_exit(&ip->i_contents);
4249 }
4250
4251 unlock:
4252 if (ip != NULL)
4253 VN_RELE(ITOV(ip));
4254
4255 if (ulp) {
4256 int terr = 0;
4257
4258 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4259 trans_size);
4260 ufs_lockfs_end(ulp);
4261 if (error == 0)
4262 error = terr;
4263 }
4264
4265 /*
4266 * We may have failed due to lack of an inode or of a block to
4267 * store the target in. Try flushing the delete queue to free
4268 * logically-available things up and try again.
4269 */
4270 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4271 ufs_delete_drain_wait(ufsvfsp, 1);
4272 retry = 0;
4273 goto again;
4274 }
4275
4276 out:
4277 return (error);
4278 }
4279
4280 /*
4281 * Ufs specific routine used to do ufs io.
4282 */
4283 int
ufs_rdwri(enum uio_rw rw,int ioflag,struct inode * ip,caddr_t base,ssize_t len,offset_t offset,enum uio_seg seg,int * aresid,struct cred * cr)4284 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4285 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4286 struct cred *cr)
4287 {
4288 struct uio auio;
4289 struct iovec aiov;
4290 int error;
4291
4292 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4293
4294 bzero((caddr_t)&auio, sizeof (uio_t));
4295 bzero((caddr_t)&aiov, sizeof (iovec_t));
4296
4297 aiov.iov_base = base;
4298 aiov.iov_len = len;
4299 auio.uio_iov = &aiov;
4300 auio.uio_iovcnt = 1;
4301 auio.uio_loffset = offset;
4302 auio.uio_segflg = (short)seg;
4303 auio.uio_resid = len;
4304
4305 if (rw == UIO_WRITE) {
4306 auio.uio_fmode = FWRITE;
4307 auio.uio_extflg = UIO_COPY_DEFAULT;
4308 auio.uio_llimit = curproc->p_fsz_ctl;
4309 error = wrip(ip, &auio, ioflag, cr);
4310 } else {
4311 auio.uio_fmode = FREAD;
4312 auio.uio_extflg = UIO_COPY_CACHED;
4313 auio.uio_llimit = MAXOFFSET_T;
4314 error = rdip(ip, &auio, ioflag, cr);
4315 }
4316
4317 if (aresid) {
4318 *aresid = auio.uio_resid;
4319 } else if (auio.uio_resid) {
4320 error = EIO;
4321 }
4322 return (error);
4323 }
4324
4325 /*ARGSUSED*/
4326 static int
ufs_fid(struct vnode * vp,struct fid * fidp,caller_context_t * ct)4327 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4328 {
4329 struct ufid *ufid;
4330 struct inode *ip = VTOI(vp);
4331
4332 if (ip->i_ufsvfs == NULL)
4333 return (EIO);
4334
4335 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4336 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4337 return (ENOSPC);
4338 }
4339
4340 ufid = (struct ufid *)fidp;
4341 bzero((char *)ufid, sizeof (struct ufid));
4342 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4343 ufid->ufid_ino = ip->i_number;
4344 ufid->ufid_gen = ip->i_gen;
4345
4346 return (0);
4347 }
4348
4349 /* ARGSUSED2 */
4350 static int
ufs_rwlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4351 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4352 {
4353 struct inode *ip = VTOI(vp);
4354 struct ufsvfs *ufsvfsp;
4355 int forcedirectio;
4356
4357 /*
4358 * Read case is easy.
4359 */
4360 if (!write_lock) {
4361 rw_enter(&ip->i_rwlock, RW_READER);
4362 return (V_WRITELOCK_FALSE);
4363 }
4364
4365 /*
4366 * Caller has requested a writer lock, but that inhibits any
4367 * concurrency in the VOPs that follow. Acquire the lock shared
4368 * and defer exclusive access until it is known to be needed in
4369 * other VOP handlers. Some cases can be determined here.
4370 */
4371
4372 /*
4373 * If directio is not set, there is no chance of concurrency,
4374 * so just acquire the lock exclusive. Beware of a forced
4375 * unmount before looking at the mount option.
4376 */
4377 ufsvfsp = ip->i_ufsvfs;
4378 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4379 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4380 !ufs_allow_shared_writes) {
4381 rw_enter(&ip->i_rwlock, RW_WRITER);
4382 return (V_WRITELOCK_TRUE);
4383 }
4384
4385 /*
4386 * Mandatory locking forces acquiring i_rwlock exclusive.
4387 */
4388 if (MANDLOCK(vp, ip->i_mode)) {
4389 rw_enter(&ip->i_rwlock, RW_WRITER);
4390 return (V_WRITELOCK_TRUE);
4391 }
4392
4393 /*
4394 * Acquire the lock shared in case a concurrent write follows.
4395 * Mandatory locking could have become enabled before the lock
4396 * was acquired. Re-check and upgrade if needed.
4397 */
4398 rw_enter(&ip->i_rwlock, RW_READER);
4399 if (MANDLOCK(vp, ip->i_mode)) {
4400 rw_exit(&ip->i_rwlock);
4401 rw_enter(&ip->i_rwlock, RW_WRITER);
4402 return (V_WRITELOCK_TRUE);
4403 }
4404 return (V_WRITELOCK_FALSE);
4405 }
4406
4407 /*ARGSUSED*/
4408 static void
ufs_rwunlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4409 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4410 {
4411 struct inode *ip = VTOI(vp);
4412
4413 rw_exit(&ip->i_rwlock);
4414 }
4415
4416 /* ARGSUSED */
4417 static int
ufs_seek(struct vnode * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4418 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
4419 caller_context_t *ct)
4420 {
4421 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4422 }
4423
4424 /* ARGSUSED */
4425 static int
ufs_frlock(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,struct cred * cr,caller_context_t * ct)4426 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4427 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4428 caller_context_t *ct)
4429 {
4430 struct inode *ip = VTOI(vp);
4431
4432 if (ip->i_ufsvfs == NULL)
4433 return (EIO);
4434
4435 /*
4436 * If file is being mapped, disallow frlock.
4437 * XXX I am not holding tlock while checking i_mapcnt because the
4438 * current locking strategy drops all locks before calling fs_frlock.
4439 * So, mapcnt could change before we enter fs_frlock making is
4440 * meaningless to have held tlock in the first place.
4441 */
4442 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4443 return (EAGAIN);
4444 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4445 }
4446
4447 /* ARGSUSED */
4448 static int
ufs_space(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4449 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4450 offset_t offset, cred_t *cr, caller_context_t *ct)
4451 {
4452 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4453 struct ulockfs *ulp;
4454 int error;
4455
4456 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4457 if (cmd == F_FREESP) {
4458 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4459 ULOCKFS_SPACE_MASK);
4460 if (error)
4461 return (error);
4462 error = ufs_freesp(vp, bfp, flag, cr);
4463 } else if (cmd == F_ALLOCSP) {
4464 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4465 ULOCKFS_FALLOCATE_MASK);
4466 if (error)
4467 return (error);
4468 error = ufs_allocsp(vp, bfp, cr);
4469 } else
4470 return (EINVAL); /* Command not handled here */
4471
4472 if (ulp)
4473 ufs_lockfs_end(ulp);
4474
4475 }
4476 return (error);
4477 }
4478
4479 /*
4480 * Used to determine if read ahead should be done. Also used to
4481 * to determine when write back occurs.
4482 */
4483 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4484
4485 /*
4486 * A faster version of ufs_getpage.
4487 *
4488 * We optimize by inlining the pvn_getpages iterator, eliminating
4489 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4490 * the overhead of page_exists().
4491 *
4492 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4493 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4494 * victimizes performance when a file with UFS holes is faulted
4495 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4496 * two MMU faults in this case.
4497 *
4498 * XXX - the inode fields which control the sequential mode are not
4499 * protected by any mutex. The read ahead will act wild if
4500 * multiple processes will access the file concurrently and
4501 * some of them in sequential mode. One particulary bad case
4502 * is if another thread will change the value of i_nextrio between
4503 * the time this thread tests the i_nextrio value and then reads it
4504 * again to use it as the offset for the read ahead.
4505 */
4506 /*ARGSUSED*/
4507 static int
ufs_getpage(struct vnode * vp,offset_t off,size_t len,uint_t * protp,page_t * plarr[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,struct cred * cr,caller_context_t * ct)4508 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4509 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4510 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4511 {
4512 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4513 u_offset_t pgoff;
4514 u_offset_t eoff;
4515 struct inode *ip = VTOI(vp);
4516 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4517 struct fs *fs;
4518 struct ulockfs *ulp;
4519 page_t **pl;
4520 caddr_t pgaddr;
4521 krw_t rwtype;
4522 int err;
4523 int has_holes;
4524 int beyond_eof;
4525 int seqmode;
4526 int pgsize = PAGESIZE;
4527 int dolock;
4528 int do_qlock;
4529 int trans_size;
4530
4531 ASSERT((uoff & PAGEOFFSET) == 0);
4532
4533 if (protp)
4534 *protp = PROT_ALL;
4535
4536 /*
4537 * Obey the lockfs protocol
4538 */
4539 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4540 rw == S_READ || rw == S_EXEC, protp);
4541 if (err)
4542 goto out;
4543
4544 fs = ufsvfsp->vfs_fs;
4545
4546 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4547 !(vp->v_flag & VISSWAP)) {
4548 /*
4549 * Try to start a transaction, will return if blocking is
4550 * expected to occur and the address space is not the
4551 * kernel address space.
4552 */
4553 trans_size = TOP_GETPAGE_SIZE(ip);
4554 if (seg->s_as != &kas) {
4555 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4556 trans_size, err)
4557 if (err == EWOULDBLOCK) {
4558 /*
4559 * Use EDEADLK here because the VM code
4560 * can normally never see this error.
4561 */
4562 err = EDEADLK;
4563 ufs_lockfs_end(ulp);
4564 goto out;
4565 }
4566 } else {
4567 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4568 }
4569 }
4570
4571 if (vp->v_flag & VNOMAP) {
4572 err = ENOSYS;
4573 goto unlock;
4574 }
4575
4576 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4577
4578 rwtype = RW_READER; /* start as a reader */
4579 dolock = (rw_owner(&ip->i_contents) != curthread);
4580 /*
4581 * If this thread owns the lock, i.e., this thread grabbed it
4582 * as writer somewhere above, then we don't need to grab the
4583 * lock as reader in this routine.
4584 */
4585 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4586
4587 retrylock:
4588 if (dolock) {
4589 /*
4590 * Grab the quota lock if we need to call
4591 * bmap_write() below (with i_contents as writer).
4592 */
4593 if (do_qlock && rwtype == RW_WRITER)
4594 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4595 rw_enter(&ip->i_contents, rwtype);
4596 }
4597
4598 /*
4599 * We may be getting called as a side effect of a bmap using
4600 * fbread() when the blocks might be being allocated and the
4601 * size has not yet been up'ed. In this case we want to be
4602 * able to return zero pages if we get back UFS_HOLE from
4603 * calling bmap for a non write case here. We also might have
4604 * to read some frags from the disk into a page if we are
4605 * extending the number of frags for a given lbn in bmap().
4606 * Large Files: The read of i_size here is atomic because
4607 * i_contents is held here. If dolock is zero, the lock
4608 * is held in bmap routines.
4609 */
4610 beyond_eof = uoff + len >
4611 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4612 if (beyond_eof && seg != segkmap) {
4613 if (dolock) {
4614 rw_exit(&ip->i_contents);
4615 if (do_qlock && rwtype == RW_WRITER)
4616 rw_exit(&ufsvfsp->vfs_dqrwlock);
4617 }
4618 err = EFAULT;
4619 goto unlock;
4620 }
4621
4622 /*
4623 * Must hold i_contents lock throughout the call to pvn_getpages
4624 * since locked pages are returned from each call to ufs_getapage.
4625 * Must *not* return locked pages and then try for contents lock
4626 * due to lock ordering requirements (inode > page)
4627 */
4628
4629 has_holes = bmap_has_holes(ip);
4630
4631 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4632 int blk_size;
4633 u_offset_t offset;
4634
4635 /*
4636 * We must acquire the RW_WRITER lock in order to
4637 * call bmap_write().
4638 */
4639 if (dolock && rwtype == RW_READER) {
4640 rwtype = RW_WRITER;
4641
4642 /*
4643 * Grab the quota lock before
4644 * upgrading i_contents, but if we can't grab it
4645 * don't wait here due to lock order:
4646 * vfs_dqrwlock > i_contents.
4647 */
4648 if (do_qlock &&
4649 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4650 == 0) {
4651 rw_exit(&ip->i_contents);
4652 goto retrylock;
4653 }
4654 if (!rw_tryupgrade(&ip->i_contents)) {
4655 rw_exit(&ip->i_contents);
4656 if (do_qlock)
4657 rw_exit(&ufsvfsp->vfs_dqrwlock);
4658 goto retrylock;
4659 }
4660 }
4661
4662 /*
4663 * May be allocating disk blocks for holes here as
4664 * a result of mmap faults. write(2) does the bmap_write
4665 * in rdip/wrip, not here. We are not dealing with frags
4666 * in this case.
4667 */
4668 /*
4669 * Large Files: We cast fs_bmask field to offset_t
4670 * just as we do for MAXBMASK because uoff is a 64-bit
4671 * data type. fs_bmask will still be a 32-bit type
4672 * as we cannot change any ondisk data structures.
4673 */
4674
4675 offset = uoff & (offset_t)fs->fs_bmask;
4676 while (offset < uoff + len) {
4677 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4678 err = bmap_write(ip, offset, blk_size,
4679 BI_NORMAL, NULL, cr);
4680 if (ip->i_flag & (ICHG|IUPD))
4681 ip->i_seq++;
4682 if (err)
4683 goto update_inode;
4684 offset += blk_size; /* XXX - make this contig */
4685 }
4686 }
4687
4688 /*
4689 * Can be a reader from now on.
4690 */
4691 if (dolock && rwtype == RW_WRITER) {
4692 rw_downgrade(&ip->i_contents);
4693 /*
4694 * We can release vfs_dqrwlock early so do it, but make
4695 * sure we don't try to release it again at the bottom.
4696 */
4697 if (do_qlock) {
4698 rw_exit(&ufsvfsp->vfs_dqrwlock);
4699 do_qlock = 0;
4700 }
4701 }
4702
4703 /*
4704 * We remove PROT_WRITE in cases when the file has UFS holes
4705 * because we don't want to call bmap_read() to check each
4706 * page if it is backed with a disk block.
4707 */
4708 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4709 *protp &= ~PROT_WRITE;
4710
4711 err = 0;
4712
4713 /*
4714 * The loop looks up pages in the range [off, off + len).
4715 * For each page, we first check if we should initiate an asynchronous
4716 * read ahead before we call page_lookup (we may sleep in page_lookup
4717 * for a previously initiated disk read).
4718 */
4719 eoff = (uoff + len);
4720 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4721 pgoff < eoff; /* empty */) {
4722 page_t *pp;
4723 u_offset_t nextrio;
4724 se_t se;
4725 int retval;
4726
4727 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4728
4729 /* Handle async getpage (faultahead) */
4730 if (plarr == NULL) {
4731 ip->i_nextrio = pgoff;
4732 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4733 pgoff += pgsize;
4734 pgaddr += pgsize;
4735 continue;
4736 }
4737 /*
4738 * Check if we should initiate read ahead of next cluster.
4739 * We call page_exists only when we need to confirm that
4740 * we have the current page before we initiate the read ahead.
4741 */
4742 nextrio = ip->i_nextrio;
4743 if (seqmode &&
4744 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4745 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4746 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4747 /*
4748 * We always read ahead the next cluster of data
4749 * starting from i_nextrio. If the page (vp,nextrio)
4750 * is actually in core at this point, the routine
4751 * ufs_getpage_ra() will stop pre-fetching data
4752 * until we read that page in a synchronized manner
4753 * through ufs_getpage_miss(). So, we should increase
4754 * i_nextrio if the page (vp, nextrio) exists.
4755 */
4756 if ((retval == 0) && page_exists(vp, nextrio)) {
4757 ip->i_nextrio = nextrio + pgsize;
4758 }
4759 }
4760
4761 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4762 /*
4763 * We found the page in the page cache.
4764 */
4765 *pl++ = pp;
4766 pgoff += pgsize;
4767 pgaddr += pgsize;
4768 len -= pgsize;
4769 plsz -= pgsize;
4770 } else {
4771 /*
4772 * We have to create the page, or read it from disk.
4773 */
4774 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4775 pl, plsz, rw, seqmode))
4776 goto error;
4777
4778 while (*pl != NULL) {
4779 pl++;
4780 pgoff += pgsize;
4781 pgaddr += pgsize;
4782 len -= pgsize;
4783 plsz -= pgsize;
4784 }
4785 }
4786 }
4787
4788 /*
4789 * Return pages up to plsz if they are in the page cache.
4790 * We cannot return pages if there is a chance that they are
4791 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4792 */
4793 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4794
4795 ASSERT((protp == NULL) ||
4796 !(has_holes && (*protp & PROT_WRITE)));
4797
4798 eoff = pgoff + plsz;
4799 while (pgoff < eoff) {
4800 page_t *pp;
4801
4802 if ((pp = page_lookup_nowait(vp, pgoff,
4803 SE_SHARED)) == NULL)
4804 break;
4805
4806 *pl++ = pp;
4807 pgoff += pgsize;
4808 plsz -= pgsize;
4809 }
4810 }
4811
4812 if (plarr)
4813 *pl = NULL; /* Terminate page list */
4814 ip->i_nextr = pgoff;
4815
4816 error:
4817 if (err && plarr) {
4818 /*
4819 * Release any pages we have locked.
4820 */
4821 while (pl > &plarr[0])
4822 page_unlock(*--pl);
4823
4824 plarr[0] = NULL;
4825 }
4826
4827 update_inode:
4828 /*
4829 * If the inode is not already marked for IACC (in rdip() for read)
4830 * and the inode is not marked for no access time update (in wrip()
4831 * for write) then update the inode access time and mod time now.
4832 */
4833 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4834 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4835 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4836 (fs->fs_ronly == 0) &&
4837 (!ufsvfsp->vfs_noatime)) {
4838 mutex_enter(&ip->i_tlock);
4839 ip->i_flag |= IACC;
4840 ITIMES_NOLOCK(ip);
4841 mutex_exit(&ip->i_tlock);
4842 }
4843 }
4844 }
4845
4846 if (dolock) {
4847 rw_exit(&ip->i_contents);
4848 if (do_qlock && rwtype == RW_WRITER)
4849 rw_exit(&ufsvfsp->vfs_dqrwlock);
4850 }
4851
4852 unlock:
4853 if (ulp) {
4854 if ((rw == S_CREATE || rw == S_WRITE) &&
4855 !(vp->v_flag & VISSWAP)) {
4856 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4857 }
4858 ufs_lockfs_end(ulp);
4859 }
4860 out:
4861 return (err);
4862 }
4863
4864 /*
4865 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4866 * cache. The page is either read from the disk, or it's created.
4867 * A page is created (without disk read) if rw == S_CREATE, or if
4868 * the page is not backed with a real disk block (UFS hole).
4869 */
4870 /* ARGSUSED */
4871 static int
ufs_getpage_miss(struct vnode * vp,u_offset_t off,size_t len,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw,int seq)4872 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4873 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4874 {
4875 struct inode *ip = VTOI(vp);
4876 page_t *pp;
4877 daddr_t bn;
4878 size_t io_len;
4879 int crpage = 0;
4880 int err;
4881 int contig;
4882 int bsize = ip->i_fs->fs_bsize;
4883
4884 /*
4885 * Figure out whether the page can be created, or must be
4886 * must be read from the disk.
4887 */
4888 if (rw == S_CREATE)
4889 crpage = 1;
4890 else {
4891 contig = 0;
4892 if (err = bmap_read(ip, off, &bn, &contig))
4893 return (err);
4894
4895 crpage = (bn == UFS_HOLE);
4896
4897 /*
4898 * If its also a fallocated block that hasn't been written to
4899 * yet, we will treat it just like a UFS_HOLE and create
4900 * a zero page for it
4901 */
4902 if (ISFALLOCBLK(ip, bn))
4903 crpage = 1;
4904 }
4905
4906 if (crpage) {
4907 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4908 addr)) == NULL) {
4909 return (ufs_fault(vp,
4910 "ufs_getpage_miss: page_create == NULL"));
4911 }
4912
4913 if (rw != S_CREATE)
4914 pagezero(pp, 0, PAGESIZE);
4915
4916 io_len = PAGESIZE;
4917 } else {
4918 u_offset_t io_off;
4919 uint_t xlen;
4920 struct buf *bp;
4921 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4922
4923 /*
4924 * If access is not in sequential order, we read from disk
4925 * in bsize units.
4926 *
4927 * We limit the size of the transfer to bsize if we are reading
4928 * from the beginning of the file. Note in this situation we
4929 * will hedge our bets and initiate an async read ahead of
4930 * the second block.
4931 */
4932 if (!seq || off == 0)
4933 contig = MIN(contig, bsize);
4934
4935 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4936 &io_len, off, contig, 0);
4937
4938 /*
4939 * Some other thread has entered the page.
4940 * ufs_getpage will retry page_lookup.
4941 */
4942 if (pp == NULL) {
4943 pl[0] = NULL;
4944 return (0);
4945 }
4946
4947 /*
4948 * Zero part of the page which we are not
4949 * going to read from the disk.
4950 */
4951 xlen = io_len & PAGEOFFSET;
4952 if (xlen != 0)
4953 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4954
4955 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4956 bp->b_edev = ip->i_dev;
4957 bp->b_dev = cmpdev(ip->i_dev);
4958 bp->b_blkno = bn;
4959 bp->b_un.b_addr = (caddr_t)0;
4960 bp->b_file = ip->i_vnode;
4961 bp->b_offset = off;
4962
4963 if (ufsvfsp->vfs_log) {
4964 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4965 } else if (ufsvfsp->vfs_snapshot) {
4966 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4967 } else {
4968 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4969 ub.ub_getpages.value.ul++;
4970 (void) bdev_strategy(bp);
4971 lwp_stat_update(LWP_STAT_INBLK, 1);
4972 }
4973
4974 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4975
4976 /*
4977 * If the file access is sequential, initiate read ahead
4978 * of the next cluster.
4979 */
4980 if (seq && ip->i_nextrio < ip->i_size)
4981 (void) ufs_getpage_ra(vp, off, seg, addr);
4982 err = biowait(bp);
4983 pageio_done(bp);
4984
4985 if (err) {
4986 pvn_read_done(pp, B_ERROR);
4987 return (err);
4988 }
4989 }
4990
4991 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4992 return (0);
4993 }
4994
4995 /*
4996 * Read ahead a cluster from the disk. Returns the length in bytes.
4997 */
4998 static int
ufs_getpage_ra(struct vnode * vp,u_offset_t off,struct seg * seg,caddr_t addr)4999 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
5000 {
5001 struct inode *ip = VTOI(vp);
5002 page_t *pp;
5003 u_offset_t io_off = ip->i_nextrio;
5004 ufsvfs_t *ufsvfsp;
5005 caddr_t addr2 = addr + (io_off - off);
5006 struct buf *bp;
5007 daddr_t bn;
5008 size_t io_len;
5009 int err;
5010 int contig;
5011 int xlen;
5012 int bsize = ip->i_fs->fs_bsize;
5013
5014 /*
5015 * If the directio advisory is in effect on this file,
5016 * then do not do buffered read ahead. Read ahead makes
5017 * it more difficult on threads using directio as they
5018 * will be forced to flush the pages from this vnode.
5019 */
5020 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5021 return (0);
5022 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5023 return (0);
5024
5025 /*
5026 * Is this test needed?
5027 */
5028 if (addr2 >= seg->s_base + seg->s_size)
5029 return (0);
5030
5031 contig = 0;
5032 err = bmap_read(ip, io_off, &bn, &contig);
5033 /*
5034 * If its a UFS_HOLE or a fallocated block, do not perform
5035 * any read ahead's since there probably is nothing to read ahead
5036 */
5037 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5038 return (0);
5039
5040 /*
5041 * Limit the transfer size to bsize if this is the 2nd block.
5042 */
5043 if (io_off == (u_offset_t)bsize)
5044 contig = MIN(contig, bsize);
5045
5046 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5047 &io_len, io_off, contig, 1)) == NULL)
5048 return (0);
5049
5050 /*
5051 * Zero part of page which we are not going to read from disk
5052 */
5053 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5054 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5055
5056 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5057
5058 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5059 bp->b_edev = ip->i_dev;
5060 bp->b_dev = cmpdev(ip->i_dev);
5061 bp->b_blkno = bn;
5062 bp->b_un.b_addr = (caddr_t)0;
5063 bp->b_file = ip->i_vnode;
5064 bp->b_offset = off;
5065
5066 if (ufsvfsp->vfs_log) {
5067 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5068 } else if (ufsvfsp->vfs_snapshot) {
5069 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5070 } else {
5071 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5072 ub.ub_getras.value.ul++;
5073 (void) bdev_strategy(bp);
5074 lwp_stat_update(LWP_STAT_INBLK, 1);
5075 }
5076
5077 return (io_len);
5078 }
5079
5080 int ufs_delay = 1;
5081 /*
5082 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5083 *
5084 * LMXXX - the inode really ought to contain a pointer to one of these
5085 * async args. Stuff gunk in there and just hand the whole mess off.
5086 * This would replace i_delaylen, i_delayoff.
5087 */
5088 /*ARGSUSED*/
5089 static int
ufs_putpage(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr,caller_context_t * ct)5090 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5091 struct cred *cr, caller_context_t *ct)
5092 {
5093 struct inode *ip = VTOI(vp);
5094 int err = 0;
5095
5096 if (vp->v_count == 0) {
5097 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5098 }
5099
5100 /*
5101 * XXX - Why should this check be made here?
5102 */
5103 if (vp->v_flag & VNOMAP) {
5104 err = ENOSYS;
5105 goto errout;
5106 }
5107
5108 if (ip->i_ufsvfs == NULL) {
5109 err = EIO;
5110 goto errout;
5111 }
5112
5113 if (flags & B_ASYNC) {
5114 if (ufs_delay && len &&
5115 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5116 mutex_enter(&ip->i_tlock);
5117 /*
5118 * If nobody stalled, start a new cluster.
5119 */
5120 if (ip->i_delaylen == 0) {
5121 ip->i_delayoff = off;
5122 ip->i_delaylen = len;
5123 mutex_exit(&ip->i_tlock);
5124 goto errout;
5125 }
5126 /*
5127 * If we have a full cluster or they are not contig,
5128 * then push last cluster and start over.
5129 */
5130 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5131 ip->i_delayoff + ip->i_delaylen != off) {
5132 u_offset_t doff;
5133 size_t dlen;
5134
5135 doff = ip->i_delayoff;
5136 dlen = ip->i_delaylen;
5137 ip->i_delayoff = off;
5138 ip->i_delaylen = len;
5139 mutex_exit(&ip->i_tlock);
5140 err = ufs_putpages(vp, doff, dlen,
5141 flags, cr);
5142 /* LMXXX - flags are new val, not old */
5143 goto errout;
5144 }
5145 /*
5146 * There is something there, it's not full, and
5147 * it is contig.
5148 */
5149 ip->i_delaylen += len;
5150 mutex_exit(&ip->i_tlock);
5151 goto errout;
5152 }
5153 /*
5154 * Must have weird flags or we are not clustering.
5155 */
5156 }
5157
5158 err = ufs_putpages(vp, off, len, flags, cr);
5159
5160 errout:
5161 return (err);
5162 }
5163
5164 /*
5165 * If len == 0, do from off to EOF.
5166 *
5167 * The normal cases should be len == 0 & off == 0 (entire vp list),
5168 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5169 * (from pageout).
5170 */
5171 /*ARGSUSED*/
5172 static int
ufs_putpages(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr)5173 ufs_putpages(
5174 struct vnode *vp,
5175 offset_t off,
5176 size_t len,
5177 int flags,
5178 struct cred *cr)
5179 {
5180 u_offset_t io_off;
5181 u_offset_t eoff;
5182 struct inode *ip = VTOI(vp);
5183 page_t *pp;
5184 size_t io_len;
5185 int err = 0;
5186 int dolock;
5187
5188 if (vp->v_count == 0)
5189 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5190 /*
5191 * Acquire the readers/write inode lock before locking
5192 * any pages in this inode.
5193 * The inode lock is held during i/o.
5194 */
5195 if (len == 0) {
5196 mutex_enter(&ip->i_tlock);
5197 ip->i_delayoff = ip->i_delaylen = 0;
5198 mutex_exit(&ip->i_tlock);
5199 }
5200 dolock = (rw_owner(&ip->i_contents) != curthread);
5201 if (dolock) {
5202 /*
5203 * Must synchronize this thread and any possible thread
5204 * operating in the window of vulnerability in wrip().
5205 * It is dangerous to allow both a thread doing a putpage
5206 * and a thread writing, so serialize them. The exception
5207 * is when the thread in wrip() does something which causes
5208 * a putpage operation. Then, the thread must be allowed
5209 * to continue. It may encounter a bmap_read problem in
5210 * ufs_putapage, but that is handled in ufs_putapage.
5211 * Allow async writers to proceed, we don't want to block
5212 * the pageout daemon.
5213 */
5214 if (ip->i_writer == curthread)
5215 rw_enter(&ip->i_contents, RW_READER);
5216 else {
5217 for (;;) {
5218 rw_enter(&ip->i_contents, RW_READER);
5219 mutex_enter(&ip->i_tlock);
5220 /*
5221 * If there is no thread in the critical
5222 * section of wrip(), then proceed.
5223 * Otherwise, wait until there isn't one.
5224 */
5225 if (ip->i_writer == NULL) {
5226 mutex_exit(&ip->i_tlock);
5227 break;
5228 }
5229 rw_exit(&ip->i_contents);
5230 /*
5231 * Bounce async writers when we have a writer
5232 * working on this file so we don't deadlock
5233 * the pageout daemon.
5234 */
5235 if (flags & B_ASYNC) {
5236 mutex_exit(&ip->i_tlock);
5237 return (0);
5238 }
5239 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5240 mutex_exit(&ip->i_tlock);
5241 }
5242 }
5243 }
5244
5245 if (!vn_has_cached_data(vp)) {
5246 if (dolock)
5247 rw_exit(&ip->i_contents);
5248 return (0);
5249 }
5250
5251 if (len == 0) {
5252 /*
5253 * Search the entire vp list for pages >= off.
5254 */
5255 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5256 flags, cr);
5257 } else {
5258 /*
5259 * Loop over all offsets in the range looking for
5260 * pages to deal with.
5261 */
5262 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5263 eoff = MIN(off + len, eoff);
5264 else
5265 eoff = off + len;
5266
5267 for (io_off = off; io_off < eoff; io_off += io_len) {
5268 /*
5269 * If we are not invalidating, synchronously
5270 * freeing or writing pages, use the routine
5271 * page_lookup_nowait() to prevent reclaiming
5272 * them from the free list.
5273 */
5274 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5275 pp = page_lookup(vp, io_off,
5276 (flags & (B_INVAL | B_FREE)) ?
5277 SE_EXCL : SE_SHARED);
5278 } else {
5279 pp = page_lookup_nowait(vp, io_off,
5280 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5281 }
5282
5283 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5284 io_len = PAGESIZE;
5285 else {
5286 u_offset_t *io_offp = &io_off;
5287
5288 err = ufs_putapage(vp, pp, io_offp, &io_len,
5289 flags, cr);
5290 if (err != 0)
5291 break;
5292 /*
5293 * "io_off" and "io_len" are returned as
5294 * the range of pages we actually wrote.
5295 * This allows us to skip ahead more quickly
5296 * since several pages may've been dealt
5297 * with by this iteration of the loop.
5298 */
5299 }
5300 }
5301 }
5302 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5303 /*
5304 * We have just sync'ed back all the pages on
5305 * the inode, turn off the IMODTIME flag.
5306 */
5307 mutex_enter(&ip->i_tlock);
5308 ip->i_flag &= ~IMODTIME;
5309 mutex_exit(&ip->i_tlock);
5310 }
5311 if (dolock)
5312 rw_exit(&ip->i_contents);
5313 return (err);
5314 }
5315
5316 static void
ufs_iodone(buf_t * bp)5317 ufs_iodone(buf_t *bp)
5318 {
5319 struct inode *ip;
5320
5321 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5322
5323 bp->b_iodone = NULL;
5324
5325 ip = VTOI(bp->b_pages->p_vnode);
5326
5327 mutex_enter(&ip->i_tlock);
5328 if (ip->i_writes >= ufs_LW) {
5329 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5330 if (ufs_WRITES)
5331 cv_broadcast(&ip->i_wrcv); /* wake all up */
5332 } else {
5333 ip->i_writes -= bp->b_bcount;
5334 }
5335
5336 mutex_exit(&ip->i_tlock);
5337 iodone(bp);
5338 }
5339
5340 /*
5341 * Write out a single page, possibly klustering adjacent
5342 * dirty pages. The inode lock must be held.
5343 *
5344 * LMXXX - bsize < pagesize not done.
5345 */
5346 /*ARGSUSED*/
5347 int
ufs_putapage(struct vnode * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,struct cred * cr)5348 ufs_putapage(
5349 struct vnode *vp,
5350 page_t *pp,
5351 u_offset_t *offp,
5352 size_t *lenp, /* return values */
5353 int flags,
5354 struct cred *cr)
5355 {
5356 u_offset_t io_off;
5357 u_offset_t off;
5358 struct inode *ip = VTOI(vp);
5359 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5360 struct fs *fs;
5361 struct buf *bp;
5362 size_t io_len;
5363 daddr_t bn;
5364 int err;
5365 int contig;
5366 int dotrans;
5367
5368 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5369
5370 if (ufsvfsp == NULL) {
5371 err = EIO;
5372 goto out_trace;
5373 }
5374
5375 fs = ip->i_fs;
5376 ASSERT(fs->fs_ronly == 0);
5377
5378 /*
5379 * If the modified time on the inode has not already been
5380 * set elsewhere (e.g. for write/setattr) we set the time now.
5381 * This gives us approximate modified times for mmap'ed files
5382 * which are modified via stores in the user address space.
5383 */
5384 if ((ip->i_flag & IMODTIME) == 0) {
5385 mutex_enter(&ip->i_tlock);
5386 ip->i_flag |= IUPD;
5387 ip->i_seq++;
5388 ITIMES_NOLOCK(ip);
5389 mutex_exit(&ip->i_tlock);
5390 }
5391
5392 /*
5393 * Align the request to a block boundry (for old file systems),
5394 * and go ask bmap() how contiguous things are for this file.
5395 */
5396 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5397 contig = 0;
5398 err = bmap_read(ip, off, &bn, &contig);
5399 if (err)
5400 goto out;
5401 if (bn == UFS_HOLE) { /* putpage never allocates */
5402 /*
5403 * logging device is in error mode; simply return EIO
5404 */
5405 if (TRANS_ISERROR(ufsvfsp)) {
5406 err = EIO;
5407 goto out;
5408 }
5409 /*
5410 * Oops, the thread in the window in wrip() did some
5411 * sort of operation which caused a putpage in the bad
5412 * range. In this case, just return an error which will
5413 * cause the software modified bit on the page to set
5414 * and the page will get written out again later.
5415 */
5416 if (ip->i_writer == curthread) {
5417 err = EIO;
5418 goto out;
5419 }
5420 /*
5421 * If the pager is trying to push a page in the bad range
5422 * just tell him to try again later when things are better.
5423 */
5424 if (flags & B_ASYNC) {
5425 err = EAGAIN;
5426 goto out;
5427 }
5428 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5429 goto out;
5430 }
5431
5432 /*
5433 * If it is an fallocate'd block, reverse the negativity since
5434 * we are now writing to it
5435 */
5436 if (ISFALLOCBLK(ip, bn)) {
5437 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5438 if (err)
5439 goto out;
5440
5441 bn = -bn;
5442 }
5443
5444 /*
5445 * Take the length (of contiguous bytes) passed back from bmap()
5446 * and _try_ and get a set of pages covering that extent.
5447 */
5448 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5449
5450 /*
5451 * May have run out of memory and not clustered backwards.
5452 * off p_offset
5453 * [ pp - 1 ][ pp ]
5454 * [ block ]
5455 * We told bmap off, so we have to adjust the bn accordingly.
5456 */
5457 if (io_off > off) {
5458 bn += btod(io_off - off);
5459 contig -= (io_off - off);
5460 }
5461
5462 /*
5463 * bmap was carefull to tell us the right size so use that.
5464 * There might be unallocated frags at the end.
5465 * LMXXX - bzero the end of the page? We must be writing after EOF.
5466 */
5467 if (io_len > contig) {
5468 ASSERT(io_len - contig < fs->fs_bsize);
5469 io_len -= (io_len - contig);
5470 }
5471
5472 /*
5473 * Handle the case where we are writing the last page after EOF.
5474 *
5475 * XXX - just a patch for i-mt3.
5476 */
5477 if (io_len == 0) {
5478 ASSERT(pp->p_offset >=
5479 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5480 io_len = PAGESIZE;
5481 }
5482
5483 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5484
5485 ULOCKFS_SET_MOD(ITOUL(ip));
5486
5487 bp->b_edev = ip->i_dev;
5488 bp->b_dev = cmpdev(ip->i_dev);
5489 bp->b_blkno = bn;
5490 bp->b_un.b_addr = (caddr_t)0;
5491 bp->b_file = ip->i_vnode;
5492
5493 /*
5494 * File contents of shadow or quota inodes are metadata, and updates
5495 * to these need to be put into a logging transaction. All direct
5496 * callers in UFS do that, but fsflush can come here _before_ the
5497 * normal codepath. An example would be updating ACL information, for
5498 * which the normal codepath would be:
5499 * ufs_si_store()
5500 * ufs_rdwri()
5501 * wrip()
5502 * segmap_release()
5503 * VOP_PUTPAGE()
5504 * Here, fsflush can pick up the dirty page before segmap_release()
5505 * forces it out. If that happens, there's no transaction.
5506 * We therefore need to test whether a transaction exists, and if not
5507 * create one - for fsflush.
5508 */
5509 dotrans =
5510 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5511 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5512 (TRANS_ISTRANS(ufsvfsp)));
5513
5514 if (dotrans) {
5515 curthread->t_flag |= T_DONTBLOCK;
5516 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5517 }
5518 if (TRANS_ISTRANS(ufsvfsp)) {
5519 if ((ip->i_mode & IFMT) == IFSHAD) {
5520 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5521 } else if (ufsvfsp->vfs_qinod == ip) {
5522 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5523 0, 0);
5524 }
5525 }
5526 if (dotrans) {
5527 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5528 curthread->t_flag &= ~T_DONTBLOCK;
5529 }
5530
5531 /* write throttle */
5532
5533 ASSERT(bp->b_iodone == NULL);
5534 bp->b_iodone = (int (*)())ufs_iodone;
5535 mutex_enter(&ip->i_tlock);
5536 ip->i_writes += bp->b_bcount;
5537 mutex_exit(&ip->i_tlock);
5538
5539 if (bp->b_flags & B_ASYNC) {
5540 if (ufsvfsp->vfs_log) {
5541 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5542 } else if (ufsvfsp->vfs_snapshot) {
5543 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5544 } else {
5545 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5546 ub.ub_putasyncs.value.ul++;
5547 (void) bdev_strategy(bp);
5548 lwp_stat_update(LWP_STAT_OUBLK, 1);
5549 }
5550 } else {
5551 if (ufsvfsp->vfs_log) {
5552 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5553 } else if (ufsvfsp->vfs_snapshot) {
5554 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5555 } else {
5556 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5557 ub.ub_putsyncs.value.ul++;
5558 (void) bdev_strategy(bp);
5559 lwp_stat_update(LWP_STAT_OUBLK, 1);
5560 }
5561 err = biowait(bp);
5562 pageio_done(bp);
5563 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5564 }
5565
5566 pp = NULL;
5567
5568 out:
5569 if (err != 0 && pp != NULL)
5570 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5571
5572 if (offp)
5573 *offp = io_off;
5574 if (lenp)
5575 *lenp = io_len;
5576 out_trace:
5577 return (err);
5578 }
5579
5580 uint64_t ufs_map_alock_retry_cnt;
5581 uint64_t ufs_map_lockfs_retry_cnt;
5582
5583 /* ARGSUSED */
5584 static int
ufs_map(struct vnode * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5585 ufs_map(struct vnode *vp,
5586 offset_t off,
5587 struct as *as,
5588 caddr_t *addrp,
5589 size_t len,
5590 uchar_t prot,
5591 uchar_t maxprot,
5592 uint_t flags,
5593 struct cred *cr,
5594 caller_context_t *ct)
5595 {
5596 struct segvn_crargs vn_a;
5597 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5598 struct ulockfs *ulp;
5599 int error, sig;
5600 k_sigset_t smask;
5601 caddr_t hint = *addrp;
5602
5603 if (vp->v_flag & VNOMAP) {
5604 error = ENOSYS;
5605 goto out;
5606 }
5607
5608 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5609 error = ENXIO;
5610 goto out;
5611 }
5612
5613 if (vp->v_type != VREG) {
5614 error = ENODEV;
5615 goto out;
5616 }
5617
5618 retry_map:
5619 *addrp = hint;
5620 /*
5621 * If file is being locked, disallow mapping.
5622 */
5623 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5624 error = EAGAIN;
5625 goto out;
5626 }
5627
5628 as_rangelock(as);
5629 /*
5630 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5631 * the previous attempt), some other thread could have grabbed
5632 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5633 * would unmap the valid VA range, that is ok.
5634 */
5635 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5636 if (error != 0) {
5637 as_rangeunlock(as);
5638 goto out;
5639 }
5640
5641 /*
5642 * a_lock has to be acquired before entering the lockfs protocol
5643 * because that is the order in which pagefault works. Also we cannot
5644 * block on a_lock here because this waiting writer will prevent
5645 * further readers like ufs_read from progressing and could cause
5646 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5647 * pending.
5648 */
5649 while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) {
5650 ufs_map_alock_retry_cnt++;
5651 delay(RETRY_LOCK_DELAY);
5652 }
5653
5654 /*
5655 * We can't hold as->a_lock and wait for lockfs to succeed because
5656 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5657 * instead.
5658 */
5659 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5660 /*
5661 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5662 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5663 */
5664 ufs_map_lockfs_retry_cnt++;
5665 AS_LOCK_EXIT(as, &as->a_lock);
5666 as_rangeunlock(as);
5667 if (error == EIO)
5668 goto out;
5669
5670 mutex_enter(&ulp->ul_lock);
5671 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5672 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5673 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5674 } else {
5675 sigintr(&smask, 1);
5676 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5677 sigunintr(&smask);
5678 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5679 !sig) || ufsvfsp->vfs_dontblock) {
5680 mutex_exit(&ulp->ul_lock);
5681 return (EINTR);
5682 }
5683 }
5684 }
5685 mutex_exit(&ulp->ul_lock);
5686 goto retry_map;
5687 }
5688
5689 vn_a.vp = vp;
5690 vn_a.offset = (u_offset_t)off;
5691 vn_a.type = flags & MAP_TYPE;
5692 vn_a.prot = prot;
5693 vn_a.maxprot = maxprot;
5694 vn_a.cred = cr;
5695 vn_a.amp = NULL;
5696 vn_a.flags = flags & ~MAP_TYPE;
5697 vn_a.szc = 0;
5698 vn_a.lgrp_mem_policy_flags = 0;
5699
5700 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5701 if (ulp)
5702 ufs_lockfs_end(ulp);
5703 as_rangeunlock(as);
5704 out:
5705 return (error);
5706 }
5707
5708 /* ARGSUSED */
5709 static int
ufs_addmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5710 ufs_addmap(struct vnode *vp,
5711 offset_t off,
5712 struct as *as,
5713 caddr_t addr,
5714 size_t len,
5715 uchar_t prot,
5716 uchar_t maxprot,
5717 uint_t flags,
5718 struct cred *cr,
5719 caller_context_t *ct)
5720 {
5721 struct inode *ip = VTOI(vp);
5722
5723 if (vp->v_flag & VNOMAP) {
5724 return (ENOSYS);
5725 }
5726
5727 mutex_enter(&ip->i_tlock);
5728 ip->i_mapcnt += btopr(len);
5729 mutex_exit(&ip->i_tlock);
5730 return (0);
5731 }
5732
5733 /*ARGSUSED*/
5734 static int
ufs_delmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5735 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5736 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5737 struct cred *cr, caller_context_t *ct)
5738 {
5739 struct inode *ip = VTOI(vp);
5740
5741 if (vp->v_flag & VNOMAP) {
5742 return (ENOSYS);
5743 }
5744
5745 mutex_enter(&ip->i_tlock);
5746 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5747 ASSERT(ip->i_mapcnt >= 0);
5748 mutex_exit(&ip->i_tlock);
5749 return (0);
5750 }
5751 /*
5752 * Return the answer requested to poll() for non-device files
5753 */
5754 struct pollhead ufs_pollhd;
5755
5756 /* ARGSUSED */
5757 int
ufs_poll(vnode_t * vp,short ev,int any,short * revp,struct pollhead ** phpp,caller_context_t * ct)5758 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5759 caller_context_t *ct)
5760 {
5761 struct ufsvfs *ufsvfsp;
5762
5763 *revp = 0;
5764 ufsvfsp = VTOI(vp)->i_ufsvfs;
5765
5766 if (!ufsvfsp) {
5767 *revp = POLLHUP;
5768 goto out;
5769 }
5770
5771 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5772 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5773 *revp |= POLLERR;
5774
5775 } else {
5776 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5777 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5778 *revp |= POLLOUT;
5779
5780 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5781 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5782 *revp |= POLLWRBAND;
5783
5784 if (ev & POLLIN)
5785 *revp |= POLLIN;
5786
5787 if (ev & POLLRDNORM)
5788 *revp |= POLLRDNORM;
5789
5790 if (ev & POLLRDBAND)
5791 *revp |= POLLRDBAND;
5792 }
5793
5794 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5795 *revp |= POLLPRI;
5796 out:
5797 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
5798
5799 return (0);
5800 }
5801
5802 /* ARGSUSED */
5803 static int
ufs_l_pathconf(struct vnode * vp,int cmd,ulong_t * valp,struct cred * cr,caller_context_t * ct)5804 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5805 caller_context_t *ct)
5806 {
5807 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5808 struct ulockfs *ulp = NULL;
5809 struct inode *sip = NULL;
5810 int error;
5811 struct inode *ip = VTOI(vp);
5812 int issync;
5813
5814 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5815 if (error)
5816 return (error);
5817
5818 switch (cmd) {
5819 /*
5820 * Have to handle _PC_NAME_MAX here, because the normal way
5821 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5822 * results in a lock ordering reversal between
5823 * ufs_lockfs_{begin,end}() and
5824 * ufs_thread_{suspend,continue}().
5825 *
5826 * Keep in sync with ufs_statvfs().
5827 */
5828 case _PC_NAME_MAX:
5829 *valp = MAXNAMLEN;
5830 break;
5831
5832 case _PC_FILESIZEBITS:
5833 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5834 *valp = UFS_FILESIZE_BITS;
5835 else
5836 *valp = 32;
5837 break;
5838
5839 case _PC_XATTR_EXISTS:
5840 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5841
5842 error =
5843 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5844 if (error == 0 && sip != NULL) {
5845 /* Start transaction */
5846 if (ulp) {
5847 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5848 TOP_RMDIR, TOP_RMDIR_SIZE);
5849 }
5850 /*
5851 * Is directory empty
5852 */
5853 rw_enter(&sip->i_rwlock, RW_WRITER);
5854 rw_enter(&sip->i_contents, RW_WRITER);
5855 if (ufs_xattrdirempty(sip,
5856 sip->i_number, CRED())) {
5857 rw_enter(&ip->i_contents, RW_WRITER);
5858 ufs_unhook_shadow(ip, sip);
5859 rw_exit(&ip->i_contents);
5860
5861 *valp = 0;
5862
5863 } else
5864 *valp = 1;
5865 rw_exit(&sip->i_contents);
5866 rw_exit(&sip->i_rwlock);
5867 if (ulp) {
5868 TRANS_END_CSYNC(ufsvfsp, error, issync,
5869 TOP_RMDIR, TOP_RMDIR_SIZE);
5870 }
5871 VN_RELE(ITOV(sip));
5872 } else if (error == ENOENT) {
5873 *valp = 0;
5874 error = 0;
5875 }
5876 } else {
5877 error = fs_pathconf(vp, cmd, valp, cr, ct);
5878 }
5879 break;
5880
5881 case _PC_ACL_ENABLED:
5882 *valp = _ACL_ACLENT_ENABLED;
5883 break;
5884
5885 case _PC_MIN_HOLE_SIZE:
5886 *valp = (ulong_t)ip->i_fs->fs_bsize;
5887 break;
5888
5889 case _PC_SATTR_ENABLED:
5890 case _PC_SATTR_EXISTS:
5891 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5892 (vp->v_type == VREG || vp->v_type == VDIR);
5893 break;
5894
5895 case _PC_TIMESTAMP_RESOLUTION:
5896 /*
5897 * UFS keeps only microsecond timestamp resolution.
5898 * This is historical and will probably never change.
5899 */
5900 *valp = 1000L;
5901 break;
5902
5903 default:
5904 error = fs_pathconf(vp, cmd, valp, cr, ct);
5905 break;
5906 }
5907
5908 if (ulp != NULL) {
5909 ufs_lockfs_end(ulp);
5910 }
5911 return (error);
5912 }
5913
5914 int ufs_pageio_writes, ufs_pageio_reads;
5915
5916 /*ARGSUSED*/
5917 static int
ufs_pageio(struct vnode * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,struct cred * cr,caller_context_t * ct)5918 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5919 int flags, struct cred *cr, caller_context_t *ct)
5920 {
5921 struct inode *ip = VTOI(vp);
5922 struct ufsvfs *ufsvfsp;
5923 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5924 struct buf *bp;
5925 daddr_t bn;
5926 size_t done_len = 0, cur_len = 0;
5927 int err = 0;
5928 int contig = 0;
5929 int dolock;
5930 int vmpss = 0;
5931 struct ulockfs *ulp;
5932
5933 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5934 vp->v_mpssdata != NULL) {
5935 vmpss = 1;
5936 }
5937
5938 dolock = (rw_owner(&ip->i_contents) != curthread);
5939 /*
5940 * We need a better check. Ideally, we would use another
5941 * vnodeops so that hlocked and forcibly unmounted file
5942 * systems would return EIO where appropriate and w/o the
5943 * need for these checks.
5944 */
5945 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5946 return (EIO);
5947
5948 /*
5949 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5950 * ul_lock must be taken before locking pages so we can't use it here
5951 * if pp is non NULL because segvn already locked pages
5952 * SE_EXCL. Instead we rely on the fact that a forced umount or
5953 * applying a filesystem lock via ufs_fiolfs() will block in the
5954 * implicit call to ufs_flush() until we unlock the pages after the
5955 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5956 * above 0 until they are done. We have to be careful not to increment
5957 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5958 *
5959 * If pp is NULL use ul_lock to make sure we don't increment
5960 * ul_vnops_cnt after forceful unmount hlocks the file system.
5961 */
5962 if (vmpss || pp == NULL) {
5963 ulp = &ufsvfsp->vfs_ulockfs;
5964 if (pp == NULL)
5965 mutex_enter(&ulp->ul_lock);
5966 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5967 if (pp == NULL) {
5968 mutex_exit(&ulp->ul_lock);
5969 }
5970 return (vmpss ? EIO : EINVAL);
5971 }
5972 atomic_add_long(&ulp->ul_vnops_cnt, 1);
5973 if (pp == NULL)
5974 mutex_exit(&ulp->ul_lock);
5975 if (ufs_quiesce_pend) {
5976 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
5977 cv_broadcast(&ulp->ul_cv);
5978 return (vmpss ? EIO : EINVAL);
5979 }
5980 }
5981
5982 if (dolock) {
5983 /*
5984 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
5985 * handle a fault against a segment that maps vnode pages with
5986 * large mappings. Segvn creates pages and holds them locked
5987 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
5988 * use rw_tryenter() to avoid a potential deadlock since in
5989 * lock order i_contents needs to be taken first.
5990 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
5991 */
5992 if (!vmpss) {
5993 rw_enter(&ip->i_contents, RW_READER);
5994 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
5995 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
5996 cv_broadcast(&ulp->ul_cv);
5997 return (EDEADLK);
5998 }
5999 }
6000
6001 /*
6002 * Return an error to segvn because the pagefault request is beyond
6003 * PAGESIZE rounded EOF.
6004 */
6005 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
6006 if (dolock)
6007 rw_exit(&ip->i_contents);
6008 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
6009 cv_broadcast(&ulp->ul_cv);
6010 return (EFAULT);
6011 }
6012
6013 if (pp == NULL) {
6014 if (bmap_has_holes(ip)) {
6015 err = ENOSYS;
6016 } else {
6017 err = EINVAL;
6018 }
6019 if (dolock)
6020 rw_exit(&ip->i_contents);
6021 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
6022 cv_broadcast(&ulp->ul_cv);
6023 return (err);
6024 }
6025
6026 /*
6027 * Break the io request into chunks, one for each contiguous
6028 * stretch of disk blocks in the target file.
6029 */
6030 while (done_len < io_len) {
6031 ASSERT(cpp);
6032 contig = 0;
6033 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6034 &bn, &contig))
6035 break;
6036
6037 if (bn == UFS_HOLE) { /* No holey swapfiles */
6038 if (vmpss) {
6039 err = EFAULT;
6040 break;
6041 }
6042 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6043 break;
6044 }
6045
6046 cur_len = MIN(io_len - done_len, contig);
6047 /*
6048 * Zero out a page beyond EOF, when the last block of
6049 * a file is a UFS fragment so that ufs_pageio() can be used
6050 * instead of ufs_getpage() to handle faults against
6051 * segvn segments that use large pages.
6052 */
6053 page_list_break(&cpp, &npp, btopr(cur_len));
6054 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6055 size_t xlen = cur_len & PAGEOFFSET;
6056 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6057 }
6058
6059 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6060 ASSERT(bp != NULL);
6061
6062 bp->b_edev = ip->i_dev;
6063 bp->b_dev = cmpdev(ip->i_dev);
6064 bp->b_blkno = bn;
6065 bp->b_un.b_addr = (caddr_t)0;
6066 bp->b_file = ip->i_vnode;
6067
6068 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6069 ub.ub_pageios.value.ul++;
6070 if (ufsvfsp->vfs_snapshot)
6071 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6072 else
6073 (void) bdev_strategy(bp);
6074
6075 if (flags & B_READ)
6076 ufs_pageio_reads++;
6077 else
6078 ufs_pageio_writes++;
6079 if (flags & B_READ)
6080 lwp_stat_update(LWP_STAT_INBLK, 1);
6081 else
6082 lwp_stat_update(LWP_STAT_OUBLK, 1);
6083 /*
6084 * If the request is not B_ASYNC, wait for i/o to complete
6085 * and re-assemble the page list to return to the caller.
6086 * If it is B_ASYNC we leave the page list in pieces and
6087 * cleanup() will dispose of them.
6088 */
6089 if ((flags & B_ASYNC) == 0) {
6090 err = biowait(bp);
6091 pageio_done(bp);
6092 if (err)
6093 break;
6094 page_list_concat(&opp, &cpp);
6095 }
6096 cpp = npp;
6097 npp = NULL;
6098 if (flags & B_READ)
6099 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6100 done_len += cur_len;
6101 }
6102 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6103 if (err) {
6104 if (flags & B_ASYNC) {
6105 /* Cleanup unprocessed parts of list */
6106 page_list_concat(&cpp, &npp);
6107 if (flags & B_READ)
6108 pvn_read_done(cpp, B_ERROR);
6109 else
6110 pvn_write_done(cpp, B_ERROR);
6111 } else {
6112 /* Re-assemble list and let caller clean up */
6113 page_list_concat(&opp, &cpp);
6114 page_list_concat(&opp, &npp);
6115 }
6116 }
6117
6118 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6119 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6120 mutex_enter(&ip->i_tlock);
6121 ip->i_flag |= IACC;
6122 ITIMES_NOLOCK(ip);
6123 mutex_exit(&ip->i_tlock);
6124 }
6125
6126 if (dolock)
6127 rw_exit(&ip->i_contents);
6128 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1))
6129 cv_broadcast(&ulp->ul_cv);
6130 return (err);
6131 }
6132
6133 /*
6134 * Called when the kernel is in a frozen state to dump data
6135 * directly to the device. It uses a private dump data structure,
6136 * set up by dump_ctl, to locate the correct disk block to which to dump.
6137 */
6138 /*ARGSUSED*/
6139 static int
ufs_dump(vnode_t * vp,caddr_t addr,offset_t ldbn,offset_t dblks,caller_context_t * ct)6140 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6141 caller_context_t *ct)
6142 {
6143 u_offset_t file_size;
6144 struct inode *ip = VTOI(vp);
6145 struct fs *fs = ip->i_fs;
6146 daddr_t dbn, lfsbn;
6147 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6148 int error = 0;
6149 int ndbs, nfsbs;
6150
6151 /*
6152 * forced unmount case
6153 */
6154 if (ip->i_ufsvfs == NULL)
6155 return (EIO);
6156 /*
6157 * Validate the inode that it has not been modified since
6158 * the dump structure is allocated.
6159 */
6160 mutex_enter(&ip->i_tlock);
6161 if ((dump_info == NULL) ||
6162 (dump_info->ip != ip) ||
6163 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6164 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6165 mutex_exit(&ip->i_tlock);
6166 return (-1);
6167 }
6168 mutex_exit(&ip->i_tlock);
6169
6170 /*
6171 * See that the file has room for this write
6172 */
6173 UFS_GET_ISIZE(&file_size, ip);
6174
6175 if (ldbtob(ldbn + dblks) > file_size)
6176 return (ENOSPC);
6177
6178 /*
6179 * Find the physical disk block numbers from the dump
6180 * private data structure directly and write out the data
6181 * in contiguous block lumps
6182 */
6183 while (dblks > 0 && !error) {
6184 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6185 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6186 nfsbs = 1;
6187 ndbs = disk_blks - ldbn % disk_blks;
6188 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6189 nfsbs]) == dbn + ndbs) {
6190 nfsbs++;
6191 ndbs += disk_blks;
6192 }
6193 if (ndbs > dblks)
6194 ndbs = dblks;
6195 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6196 addr += ldbtob((offset_t)ndbs);
6197 dblks -= ndbs;
6198 ldbn += ndbs;
6199 }
6200 return (error);
6201
6202 }
6203
6204 /*
6205 * Prepare the file system before and after the dump operation.
6206 *
6207 * action = DUMP_ALLOC:
6208 * Preparation before dump, allocate dump private data structure
6209 * to hold all the direct and indirect block info for dump.
6210 *
6211 * action = DUMP_FREE:
6212 * Clean up after dump, deallocate the dump private data structure.
6213 *
6214 * action = DUMP_SCAN:
6215 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6216 * if found, the starting file-relative DEV_BSIZE lbn is written
6217 * to *bklp; that lbn is intended for use with VOP_DUMP()
6218 */
6219 /*ARGSUSED*/
6220 static int
ufs_dumpctl(vnode_t * vp,int action,offset_t * blkp,caller_context_t * ct)6221 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6222 {
6223 struct inode *ip = VTOI(vp);
6224 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6225 struct fs *fs;
6226 daddr32_t *dblk, *storeblk;
6227 daddr32_t *nextblk, *endblk;
6228 struct buf *bp;
6229 int i, entry, entries;
6230 int n, ncontig;
6231
6232 /*
6233 * check for forced unmount
6234 */
6235 if (ufsvfsp == NULL)
6236 return (EIO);
6237
6238 if (action == DUMP_ALLOC) {
6239 /*
6240 * alloc and record dump_info
6241 */
6242 if (dump_info != NULL)
6243 return (EINVAL);
6244
6245 ASSERT(vp->v_type == VREG);
6246 fs = ufsvfsp->vfs_fs;
6247
6248 rw_enter(&ip->i_contents, RW_READER);
6249
6250 if (bmap_has_holes(ip)) {
6251 rw_exit(&ip->i_contents);
6252 return (EFAULT);
6253 }
6254
6255 /*
6256 * calculate and allocate space needed according to i_size
6257 */
6258 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6259 dump_info = kmem_alloc(sizeof (struct dump) +
6260 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6261 if (dump_info == NULL) {
6262 rw_exit(&ip->i_contents);
6263 return (ENOMEM);
6264 }
6265
6266 /* Start saving the info */
6267 dump_info->fsbs = entries;
6268 dump_info->ip = ip;
6269 storeblk = &dump_info->dblk[0];
6270
6271 /* Direct Blocks */
6272 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6273 *storeblk++ = ip->i_db[entry];
6274
6275 /* Indirect Blocks */
6276 for (i = 0; i < NIADDR; i++) {
6277 int error = 0;
6278
6279 bp = UFS_BREAD(ufsvfsp,
6280 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6281 if (bp->b_flags & B_ERROR)
6282 error = EIO;
6283 else {
6284 dblk = bp->b_un.b_daddr;
6285 if ((storeblk = save_dblks(ip, ufsvfsp,
6286 storeblk, dblk, i, entries)) == NULL)
6287 error = EIO;
6288 }
6289
6290 brelse(bp);
6291
6292 if (error != 0) {
6293 kmem_free(dump_info, sizeof (struct dump) +
6294 (entries - 1) * sizeof (daddr32_t));
6295 rw_exit(&ip->i_contents);
6296 dump_info = NULL;
6297 return (error);
6298 }
6299 }
6300 /* and time stamp the information */
6301 mutex_enter(&ip->i_tlock);
6302 dump_info->time = ip->i_mtime;
6303 mutex_exit(&ip->i_tlock);
6304
6305 rw_exit(&ip->i_contents);
6306 } else if (action == DUMP_FREE) {
6307 /*
6308 * free dump_info
6309 */
6310 if (dump_info == NULL)
6311 return (EINVAL);
6312 entries = dump_info->fsbs - 1;
6313 kmem_free(dump_info, sizeof (struct dump) +
6314 entries * sizeof (daddr32_t));
6315 dump_info = NULL;
6316 } else if (action == DUMP_SCAN) {
6317 /*
6318 * scan dump_info
6319 */
6320 if (dump_info == NULL)
6321 return (EINVAL);
6322
6323 dblk = dump_info->dblk;
6324 nextblk = dblk + 1;
6325 endblk = dblk + dump_info->fsbs - 1;
6326 fs = ufsvfsp->vfs_fs;
6327 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6328
6329 /*
6330 * scan dblk[] entries; contig fs space is found when:
6331 * ((current blkno + frags per block) == next blkno)
6332 */
6333 n = 0;
6334 while (n < ncontig && dblk < endblk) {
6335 if ((*dblk + fs->fs_frag) == *nextblk)
6336 n++;
6337 else
6338 n = 0;
6339 dblk++;
6340 nextblk++;
6341 }
6342
6343 /*
6344 * index is where size bytes of contig space begins;
6345 * conversion from index to the file's DEV_BSIZE lbn
6346 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6347 */
6348 if (n == ncontig) {
6349 i = (dblk - dump_info->dblk) - ncontig;
6350 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6351 } else
6352 return (EFAULT);
6353 }
6354 return (0);
6355 }
6356
6357 /*
6358 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6359 * system blocks until it reaches the the disk block addresses, which are
6360 * then stored into the given buffer, storeblk.
6361 */
6362 static daddr32_t *
save_dblks(struct inode * ip,struct ufsvfs * ufsvfsp,daddr32_t * storeblk,daddr32_t * dblk,int level,int entries)6363 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6364 daddr32_t *dblk, int level, int entries)
6365 {
6366 struct fs *fs = ufsvfsp->vfs_fs;
6367 struct buf *bp;
6368 int i;
6369
6370 if (level == 0) {
6371 for (i = 0; i < NINDIR(fs); i++) {
6372 if (storeblk - dump_info->dblk >= entries)
6373 break;
6374 *storeblk++ = dblk[i];
6375 }
6376 return (storeblk);
6377 }
6378 for (i = 0; i < NINDIR(fs); i++) {
6379 if (storeblk - dump_info->dblk >= entries)
6380 break;
6381 bp = UFS_BREAD(ufsvfsp,
6382 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6383 if (bp->b_flags & B_ERROR) {
6384 brelse(bp);
6385 return (NULL);
6386 }
6387 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6388 level - 1, entries);
6389 brelse(bp);
6390
6391 if (storeblk == NULL)
6392 return (NULL);
6393 }
6394 return (storeblk);
6395 }
6396
6397 /* ARGSUSED */
6398 static int
ufs_getsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6399 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6400 struct cred *cr, caller_context_t *ct)
6401 {
6402 struct inode *ip = VTOI(vp);
6403 struct ulockfs *ulp;
6404 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6405 ulong_t vsa_mask = vsap->vsa_mask;
6406 int err = EINVAL;
6407
6408 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6409
6410 /*
6411 * Only grab locks if needed - they're not needed to check vsa_mask
6412 * or if the mask contains no acl flags.
6413 */
6414 if (vsa_mask != 0) {
6415 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6416 ULOCKFS_GETATTR_MASK))
6417 return (err);
6418
6419 rw_enter(&ip->i_contents, RW_READER);
6420 err = ufs_acl_get(ip, vsap, flag, cr);
6421 rw_exit(&ip->i_contents);
6422
6423 if (ulp)
6424 ufs_lockfs_end(ulp);
6425 }
6426 return (err);
6427 }
6428
6429 /* ARGSUSED */
6430 static int
ufs_setsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6431 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6432 caller_context_t *ct)
6433 {
6434 struct inode *ip = VTOI(vp);
6435 struct ulockfs *ulp = NULL;
6436 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6437 ulong_t vsa_mask = vsap->vsa_mask;
6438 int err;
6439 int haverwlock = 1;
6440 int trans_size;
6441 int donetrans = 0;
6442 int retry = 1;
6443
6444 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6445
6446 /* Abort now if the request is either empty or invalid. */
6447 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6448 if ((vsa_mask == 0) ||
6449 ((vsap->vsa_aclentp == NULL) &&
6450 (vsap->vsa_dfaclentp == NULL))) {
6451 err = EINVAL;
6452 goto out;
6453 }
6454
6455 /*
6456 * Following convention, if this is a directory then we acquire the
6457 * inode's i_rwlock after starting a UFS logging transaction;
6458 * otherwise, we acquire it beforehand. Since we were called (and
6459 * must therefore return) with the lock held, we will have to drop it,
6460 * and later reacquire it, if operating on a directory.
6461 */
6462 if (vp->v_type == VDIR) {
6463 rw_exit(&ip->i_rwlock);
6464 haverwlock = 0;
6465 } else {
6466 /* Upgrade the lock if required. */
6467 if (!rw_write_held(&ip->i_rwlock)) {
6468 rw_exit(&ip->i_rwlock);
6469 rw_enter(&ip->i_rwlock, RW_WRITER);
6470 }
6471 }
6472
6473 again:
6474 ASSERT(!(vp->v_type == VDIR && haverwlock));
6475 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6476 ulp = NULL;
6477 retry = 0;
6478 goto out;
6479 }
6480
6481 /*
6482 * Check that the file system supports this operation. Note that
6483 * ufs_lockfs_begin() will have checked that the file system had
6484 * not been forcibly unmounted.
6485 */
6486 if (ufsvfsp->vfs_fs->fs_ronly) {
6487 err = EROFS;
6488 goto out;
6489 }
6490 if (ufsvfsp->vfs_nosetsec) {
6491 err = ENOSYS;
6492 goto out;
6493 }
6494
6495 if (ulp) {
6496 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6497 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6498 donetrans = 1;
6499 }
6500
6501 if (vp->v_type == VDIR) {
6502 rw_enter(&ip->i_rwlock, RW_WRITER);
6503 haverwlock = 1;
6504 }
6505
6506 ASSERT(haverwlock);
6507
6508 /* Do the actual work. */
6509 rw_enter(&ip->i_contents, RW_WRITER);
6510 /*
6511 * Suppress out of inodes messages if we will retry.
6512 */
6513 if (retry)
6514 ip->i_flag |= IQUIET;
6515 err = ufs_acl_set(ip, vsap, flag, cr);
6516 ip->i_flag &= ~IQUIET;
6517 rw_exit(&ip->i_contents);
6518
6519 out:
6520 if (ulp) {
6521 if (donetrans) {
6522 /*
6523 * top_end_async() can eventually call
6524 * top_end_sync(), which can block. We must
6525 * therefore observe the lock-ordering protocol
6526 * here as well.
6527 */
6528 if (vp->v_type == VDIR) {
6529 rw_exit(&ip->i_rwlock);
6530 haverwlock = 0;
6531 }
6532 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6533 }
6534 ufs_lockfs_end(ulp);
6535 }
6536 /*
6537 * If no inodes available, try scaring a logically-
6538 * free one out of the delete queue to someplace
6539 * that we can find it.
6540 */
6541 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6542 ufs_delete_drain_wait(ufsvfsp, 1);
6543 retry = 0;
6544 if (vp->v_type == VDIR && haverwlock) {
6545 rw_exit(&ip->i_rwlock);
6546 haverwlock = 0;
6547 }
6548 goto again;
6549 }
6550 /*
6551 * If we need to reacquire the lock then it is safe to do so
6552 * as a reader. This is because ufs_rwunlock(), which will be
6553 * called by our caller after we return, does not differentiate
6554 * between shared and exclusive locks.
6555 */
6556 if (!haverwlock) {
6557 ASSERT(vp->v_type == VDIR);
6558 rw_enter(&ip->i_rwlock, RW_READER);
6559 }
6560
6561 return (err);
6562 }
6563
6564 /*
6565 * Locate the vnode to be used for an event notification. As this will
6566 * be called prior to the name space change perform basic verification
6567 * that the change will be allowed.
6568 */
6569
6570 static int
ufs_eventlookup(struct vnode * dvp,char * nm,struct cred * cr,struct vnode ** vpp)6571 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6572 struct vnode **vpp)
6573 {
6574 int namlen;
6575 int error;
6576 struct vnode *vp;
6577 struct inode *ip;
6578 struct inode *xip;
6579 struct ufsvfs *ufsvfsp;
6580 struct ulockfs *ulp;
6581
6582 ip = VTOI(dvp);
6583 *vpp = NULL;
6584
6585 if ((namlen = strlen(nm)) == 0)
6586 return (EINVAL);
6587
6588 if (nm[0] == '.') {
6589 if (namlen == 1)
6590 return (EINVAL);
6591 else if ((namlen == 2) && nm[1] == '.') {
6592 return (EEXIST);
6593 }
6594 }
6595
6596 /*
6597 * Check accessibility and write access of parent directory as we
6598 * only want to post the event if we're able to make a change.
6599 */
6600 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6601 return (error);
6602
6603 if (vp = dnlc_lookup(dvp, nm)) {
6604 if (vp == DNLC_NO_VNODE) {
6605 VN_RELE(vp);
6606 return (ENOENT);
6607 }
6608
6609 *vpp = vp;
6610 return (0);
6611 }
6612
6613 /*
6614 * Keep the idle queue from getting too long by idling two
6615 * inodes before attempting to allocate another.
6616 * This operation must be performed before entering lockfs
6617 * or a transaction.
6618 */
6619 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6620 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6621 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6622 ufs_idle_some(ufs_lookup_idle_count);
6623 }
6624
6625 ufsvfsp = ip->i_ufsvfs;
6626
6627 retry_lookup:
6628 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6629 return (error);
6630
6631 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6632 vp = ITOV(xip);
6633 *vpp = vp;
6634 }
6635
6636 if (ulp) {
6637 ufs_lockfs_end(ulp);
6638 }
6639
6640 if (error == EAGAIN)
6641 goto retry_lookup;
6642
6643 return (error);
6644 }
6645