1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCContext.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83
84 #define DEBUG_TYPE "irtranslator"
85
86 using namespace llvm;
87
88 static cl::opt<bool>
89 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
90 cl::desc("Should enable CSE in irtranslator"),
91 cl::Optional, cl::init(false));
92 char IRTranslator::ID = 0;
93
94 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
95 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)96 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
97 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
98 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
99 INITIALIZE_PASS_DEPENDENCY(StackProtector)
100 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
101 false, false)
102
103 static void reportTranslationError(MachineFunction &MF,
104 const TargetPassConfig &TPC,
105 OptimizationRemarkEmitter &ORE,
106 OptimizationRemarkMissed &R) {
107 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
108
109 // Print the function name explicitly if we don't have a debug location (which
110 // makes the diagnostic less useful) or if we're going to emit a raw error.
111 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
112 R << (" (in function: " + MF.getName() + ")").str();
113
114 if (TPC.isGlobalISelAbortEnabled())
115 report_fatal_error(R.getMsg());
116 else
117 ORE.emit(R);
118 }
119
IRTranslator(CodeGenOpt::Level optlevel)120 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
121 : MachineFunctionPass(ID), OptLevel(optlevel) {}
122
123 #ifndef NDEBUG
124 namespace {
125 /// Verify that every instruction created has the same DILocation as the
126 /// instruction being translated.
127 class DILocationVerifier : public GISelChangeObserver {
128 const Instruction *CurrInst = nullptr;
129
130 public:
131 DILocationVerifier() = default;
132 ~DILocationVerifier() = default;
133
getCurrentInst() const134 const Instruction *getCurrentInst() const { return CurrInst; }
setCurrentInst(const Instruction * Inst)135 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
136
erasingInstr(MachineInstr & MI)137 void erasingInstr(MachineInstr &MI) override {}
changingInstr(MachineInstr & MI)138 void changingInstr(MachineInstr &MI) override {}
changedInstr(MachineInstr & MI)139 void changedInstr(MachineInstr &MI) override {}
140
createdInstr(MachineInstr & MI)141 void createdInstr(MachineInstr &MI) override {
142 assert(getCurrentInst() && "Inserted instruction without a current MI");
143
144 // Only print the check message if we're actually checking it.
145 #ifndef NDEBUG
146 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
147 << " was copied to " << MI);
148 #endif
149 // We allow insts in the entry block to have a debug loc line of 0 because
150 // they could have originated from constants, and we don't want a jumpy
151 // debug experience.
152 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
153 MI.getDebugLoc().getLine() == 0) &&
154 "Line info was not transferred to all instructions");
155 }
156 };
157 } // namespace
158 #endif // ifndef NDEBUG
159
160
getAnalysisUsage(AnalysisUsage & AU) const161 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
162 AU.addRequired<StackProtector>();
163 AU.addRequired<TargetPassConfig>();
164 AU.addRequired<GISelCSEAnalysisWrapperPass>();
165 if (OptLevel != CodeGenOpt::None)
166 AU.addRequired<BranchProbabilityInfoWrapperPass>();
167 getSelectionDAGFallbackAnalysisUsage(AU);
168 MachineFunctionPass::getAnalysisUsage(AU);
169 }
170
171 IRTranslator::ValueToVRegInfo::VRegListT &
allocateVRegs(const Value & Val)172 IRTranslator::allocateVRegs(const Value &Val) {
173 auto VRegsIt = VMap.findVRegs(Val);
174 if (VRegsIt != VMap.vregs_end())
175 return *VRegsIt->second;
176 auto *Regs = VMap.getVRegs(Val);
177 auto *Offsets = VMap.getOffsets(Val);
178 SmallVector<LLT, 4> SplitTys;
179 computeValueLLTs(*DL, *Val.getType(), SplitTys,
180 Offsets->empty() ? Offsets : nullptr);
181 for (unsigned i = 0; i < SplitTys.size(); ++i)
182 Regs->push_back(0);
183 return *Regs;
184 }
185
getOrCreateVRegs(const Value & Val)186 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
187 auto VRegsIt = VMap.findVRegs(Val);
188 if (VRegsIt != VMap.vregs_end())
189 return *VRegsIt->second;
190
191 if (Val.getType()->isVoidTy())
192 return *VMap.getVRegs(Val);
193
194 // Create entry for this type.
195 auto *VRegs = VMap.getVRegs(Val);
196 auto *Offsets = VMap.getOffsets(Val);
197
198 assert(Val.getType()->isSized() &&
199 "Don't know how to create an empty vreg");
200
201 SmallVector<LLT, 4> SplitTys;
202 computeValueLLTs(*DL, *Val.getType(), SplitTys,
203 Offsets->empty() ? Offsets : nullptr);
204
205 if (!isa<Constant>(Val)) {
206 for (auto Ty : SplitTys)
207 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
208 return *VRegs;
209 }
210
211 if (Val.getType()->isAggregateType()) {
212 // UndefValue, ConstantAggregateZero
213 auto &C = cast<Constant>(Val);
214 unsigned Idx = 0;
215 while (auto Elt = C.getAggregateElement(Idx++)) {
216 auto EltRegs = getOrCreateVRegs(*Elt);
217 llvm::copy(EltRegs, std::back_inserter(*VRegs));
218 }
219 } else {
220 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
221 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
222 bool Success = translate(cast<Constant>(Val), VRegs->front());
223 if (!Success) {
224 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
225 MF->getFunction().getSubprogram(),
226 &MF->getFunction().getEntryBlock());
227 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
228 reportTranslationError(*MF, *TPC, *ORE, R);
229 return *VRegs;
230 }
231 }
232
233 return *VRegs;
234 }
235
getOrCreateFrameIndex(const AllocaInst & AI)236 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
237 auto MapEntry = FrameIndices.find(&AI);
238 if (MapEntry != FrameIndices.end())
239 return MapEntry->second;
240
241 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
242 uint64_t Size =
243 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
244
245 // Always allocate at least one byte.
246 Size = std::max<uint64_t>(Size, 1u);
247
248 int &FI = FrameIndices[&AI];
249 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
250 return FI;
251 }
252
getMemOpAlign(const Instruction & I)253 Align IRTranslator::getMemOpAlign(const Instruction &I) {
254 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
255 return SI->getAlign();
256 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
257 return LI->getAlign();
258 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
259 return AI->getAlign();
260 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
261 return AI->getAlign();
262
263 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
264 R << "unable to translate memop: " << ore::NV("Opcode", &I);
265 reportTranslationError(*MF, *TPC, *ORE, R);
266 return Align(1);
267 }
268
getMBB(const BasicBlock & BB)269 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
270 MachineBasicBlock *&MBB = BBToMBB[&BB];
271 assert(MBB && "BasicBlock was not encountered before");
272 return *MBB;
273 }
274
addMachineCFGPred(CFGEdge Edge,MachineBasicBlock * NewPred)275 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
276 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
277 MachinePreds[Edge].push_back(NewPred);
278 }
279
translateBinaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)280 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
281 MachineIRBuilder &MIRBuilder) {
282 // Get or create a virtual register for each value.
283 // Unless the value is a Constant => loadimm cst?
284 // or inline constant each time?
285 // Creation of a virtual register needs to have a size.
286 Register Op0 = getOrCreateVReg(*U.getOperand(0));
287 Register Op1 = getOrCreateVReg(*U.getOperand(1));
288 Register Res = getOrCreateVReg(U);
289 uint16_t Flags = 0;
290 if (isa<Instruction>(U)) {
291 const Instruction &I = cast<Instruction>(U);
292 Flags = MachineInstr::copyFlagsFromInstruction(I);
293 }
294
295 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
296 return true;
297 }
298
translateUnaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)299 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
300 MachineIRBuilder &MIRBuilder) {
301 Register Op0 = getOrCreateVReg(*U.getOperand(0));
302 Register Res = getOrCreateVReg(U);
303 uint16_t Flags = 0;
304 if (isa<Instruction>(U)) {
305 const Instruction &I = cast<Instruction>(U);
306 Flags = MachineInstr::copyFlagsFromInstruction(I);
307 }
308 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
309 return true;
310 }
311
translateFNeg(const User & U,MachineIRBuilder & MIRBuilder)312 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
313 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
314 }
315
translateCompare(const User & U,MachineIRBuilder & MIRBuilder)316 bool IRTranslator::translateCompare(const User &U,
317 MachineIRBuilder &MIRBuilder) {
318 auto *CI = dyn_cast<CmpInst>(&U);
319 Register Op0 = getOrCreateVReg(*U.getOperand(0));
320 Register Op1 = getOrCreateVReg(*U.getOperand(1));
321 Register Res = getOrCreateVReg(U);
322 CmpInst::Predicate Pred =
323 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
324 cast<ConstantExpr>(U).getPredicate());
325 if (CmpInst::isIntPredicate(Pred))
326 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
327 else if (Pred == CmpInst::FCMP_FALSE)
328 MIRBuilder.buildCopy(
329 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
330 else if (Pred == CmpInst::FCMP_TRUE)
331 MIRBuilder.buildCopy(
332 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
333 else {
334 assert(CI && "Instruction should be CmpInst");
335 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
336 MachineInstr::copyFlagsFromInstruction(*CI));
337 }
338
339 return true;
340 }
341
translateRet(const User & U,MachineIRBuilder & MIRBuilder)342 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
343 const ReturnInst &RI = cast<ReturnInst>(U);
344 const Value *Ret = RI.getReturnValue();
345 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
346 Ret = nullptr;
347
348 ArrayRef<Register> VRegs;
349 if (Ret)
350 VRegs = getOrCreateVRegs(*Ret);
351
352 Register SwiftErrorVReg = 0;
353 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
354 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
355 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
356 }
357
358 // The target may mess up with the insertion point, but
359 // this is not important as a return is the last instruction
360 // of the block anyway.
361 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
362 }
363
emitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)364 void IRTranslator::emitBranchForMergedCondition(
365 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
366 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
367 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
368 // If the leaf of the tree is a comparison, merge the condition into
369 // the caseblock.
370 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
371 CmpInst::Predicate Condition;
372 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
373 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
374 } else {
375 const FCmpInst *FC = cast<FCmpInst>(Cond);
376 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
377 }
378
379 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
380 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
381 CurBuilder->getDebugLoc(), TProb, FProb);
382 SL->SwitchCases.push_back(CB);
383 return;
384 }
385
386 // Create a CaseBlock record representing this branch.
387 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
388 SwitchCG::CaseBlock CB(
389 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
390 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
391 SL->SwitchCases.push_back(CB);
392 }
393
isValInBlock(const Value * V,const BasicBlock * BB)394 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
395 if (const Instruction *I = dyn_cast<Instruction>(V))
396 return I->getParent() == BB;
397 return true;
398 }
399
findMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)400 void IRTranslator::findMergedConditions(
401 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
402 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
403 Instruction::BinaryOps Opc, BranchProbability TProb,
404 BranchProbability FProb, bool InvertCond) {
405 using namespace PatternMatch;
406 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
407 "Expected Opc to be AND/OR");
408 // Skip over not part of the tree and remember to invert op and operands at
409 // next level.
410 Value *NotCond;
411 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
412 isValInBlock(NotCond, CurBB->getBasicBlock())) {
413 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
414 !InvertCond);
415 return;
416 }
417
418 const Instruction *BOp = dyn_cast<Instruction>(Cond);
419 const Value *BOpOp0, *BOpOp1;
420 // Compute the effective opcode for Cond, taking into account whether it needs
421 // to be inverted, e.g.
422 // and (not (or A, B)), C
423 // gets lowered as
424 // and (and (not A, not B), C)
425 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
426 if (BOp) {
427 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
428 ? Instruction::And
429 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
430 ? Instruction::Or
431 : (Instruction::BinaryOps)0);
432 if (InvertCond) {
433 if (BOpc == Instruction::And)
434 BOpc = Instruction::Or;
435 else if (BOpc == Instruction::Or)
436 BOpc = Instruction::And;
437 }
438 }
439
440 // If this node is not part of the or/and tree, emit it as a branch.
441 // Note that all nodes in the tree should have same opcode.
442 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
443 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
444 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
445 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
446 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
447 InvertCond);
448 return;
449 }
450
451 // Create TmpBB after CurBB.
452 MachineFunction::iterator BBI(CurBB);
453 MachineBasicBlock *TmpBB =
454 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
455 CurBB->getParent()->insert(++BBI, TmpBB);
456
457 if (Opc == Instruction::Or) {
458 // Codegen X | Y as:
459 // BB1:
460 // jmp_if_X TBB
461 // jmp TmpBB
462 // TmpBB:
463 // jmp_if_Y TBB
464 // jmp FBB
465 //
466
467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
468 // The requirement is that
469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
470 // = TrueProb for original BB.
471 // Assuming the original probabilities are A and B, one choice is to set
472 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
473 // A/(1+B) and 2B/(1+B). This choice assumes that
474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
476 // TmpBB, but the math is more complicated.
477
478 auto NewTrueProb = TProb / 2;
479 auto NewFalseProb = TProb / 2 + FProb;
480 // Emit the LHS condition.
481 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
482 NewFalseProb, InvertCond);
483
484 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
485 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
486 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
487 // Emit the RHS condition into TmpBB.
488 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
489 Probs[1], InvertCond);
490 } else {
491 assert(Opc == Instruction::And && "Unknown merge op!");
492 // Codegen X & Y as:
493 // BB1:
494 // jmp_if_X TmpBB
495 // jmp FBB
496 // TmpBB:
497 // jmp_if_Y TBB
498 // jmp FBB
499 //
500 // This requires creation of TmpBB after CurBB.
501
502 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
503 // The requirement is that
504 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
505 // = FalseProb for original BB.
506 // Assuming the original probabilities are A and B, one choice is to set
507 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
508 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
509 // TrueProb for BB1 * FalseProb for TmpBB.
510
511 auto NewTrueProb = TProb + FProb / 2;
512 auto NewFalseProb = FProb / 2;
513 // Emit the LHS condition.
514 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
515 NewFalseProb, InvertCond);
516
517 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
518 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
519 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
520 // Emit the RHS condition into TmpBB.
521 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
522 Probs[1], InvertCond);
523 }
524 }
525
shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> & Cases)526 bool IRTranslator::shouldEmitAsBranches(
527 const std::vector<SwitchCG::CaseBlock> &Cases) {
528 // For multiple cases, it's better to emit as branches.
529 if (Cases.size() != 2)
530 return true;
531
532 // If this is two comparisons of the same values or'd or and'd together, they
533 // will get folded into a single comparison, so don't emit two blocks.
534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
535 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
536 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
537 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
538 return false;
539 }
540
541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
543 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
544 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
545 isa<Constant>(Cases[0].CmpRHS) &&
546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
547 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
548 Cases[0].TrueBB == Cases[1].ThisBB)
549 return false;
550 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
551 Cases[0].FalseBB == Cases[1].ThisBB)
552 return false;
553 }
554
555 return true;
556 }
557
translateBr(const User & U,MachineIRBuilder & MIRBuilder)558 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
559 const BranchInst &BrInst = cast<BranchInst>(U);
560 auto &CurMBB = MIRBuilder.getMBB();
561 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
562
563 if (BrInst.isUnconditional()) {
564 // If the unconditional target is the layout successor, fallthrough.
565 if (!CurMBB.isLayoutSuccessor(Succ0MBB))
566 MIRBuilder.buildBr(*Succ0MBB);
567
568 // Link successors.
569 for (const BasicBlock *Succ : successors(&BrInst))
570 CurMBB.addSuccessor(&getMBB(*Succ));
571 return true;
572 }
573
574 // If this condition is one of the special cases we handle, do special stuff
575 // now.
576 const Value *CondVal = BrInst.getCondition();
577 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
578
579 const auto &TLI = *MF->getSubtarget().getTargetLowering();
580
581 // If this is a series of conditions that are or'd or and'd together, emit
582 // this as a sequence of branches instead of setcc's with and/or operations.
583 // As long as jumps are not expensive (exceptions for multi-use logic ops,
584 // unpredictable branches, and vector extracts because those jumps are likely
585 // expensive for any target), this should improve performance.
586 // For example, instead of something like:
587 // cmp A, B
588 // C = seteq
589 // cmp D, E
590 // F = setle
591 // or C, F
592 // jnz foo
593 // Emit:
594 // cmp A, B
595 // je foo
596 // cmp D, E
597 // jle foo
598 using namespace PatternMatch;
599 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
600 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
601 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
602 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
603 Value *Vec;
604 const Value *BOp0, *BOp1;
605 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
606 Opcode = Instruction::And;
607 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
608 Opcode = Instruction::Or;
609
610 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
611 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
612 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
613 getEdgeProbability(&CurMBB, Succ0MBB),
614 getEdgeProbability(&CurMBB, Succ1MBB),
615 /*InvertCond=*/false);
616 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
617
618 // Allow some cases to be rejected.
619 if (shouldEmitAsBranches(SL->SwitchCases)) {
620 // Emit the branch for this block.
621 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
622 SL->SwitchCases.erase(SL->SwitchCases.begin());
623 return true;
624 }
625
626 // Okay, we decided not to do this, remove any inserted MBB's and clear
627 // SwitchCases.
628 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
629 MF->erase(SL->SwitchCases[I].ThisBB);
630
631 SL->SwitchCases.clear();
632 }
633 }
634
635 // Create a CaseBlock record representing this branch.
636 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
637 ConstantInt::getTrue(MF->getFunction().getContext()),
638 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
639 CurBuilder->getDebugLoc());
640
641 // Use emitSwitchCase to actually insert the fast branch sequence for this
642 // cond branch.
643 emitSwitchCase(CB, &CurMBB, *CurBuilder);
644 return true;
645 }
646
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)647 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
648 MachineBasicBlock *Dst,
649 BranchProbability Prob) {
650 if (!FuncInfo.BPI) {
651 Src->addSuccessorWithoutProb(Dst);
652 return;
653 }
654 if (Prob.isUnknown())
655 Prob = getEdgeProbability(Src, Dst);
656 Src->addSuccessor(Dst, Prob);
657 }
658
659 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const660 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
661 const MachineBasicBlock *Dst) const {
662 const BasicBlock *SrcBB = Src->getBasicBlock();
663 const BasicBlock *DstBB = Dst->getBasicBlock();
664 if (!FuncInfo.BPI) {
665 // If BPI is not available, set the default probability as 1 / N, where N is
666 // the number of successors.
667 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
668 return BranchProbability(1, SuccSize);
669 }
670 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
671 }
672
translateSwitch(const User & U,MachineIRBuilder & MIB)673 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
674 using namespace SwitchCG;
675 // Extract cases from the switch.
676 const SwitchInst &SI = cast<SwitchInst>(U);
677 BranchProbabilityInfo *BPI = FuncInfo.BPI;
678 CaseClusterVector Clusters;
679 Clusters.reserve(SI.getNumCases());
680 for (auto &I : SI.cases()) {
681 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
682 assert(Succ && "Could not find successor mbb in mapping");
683 const ConstantInt *CaseVal = I.getCaseValue();
684 BranchProbability Prob =
685 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
686 : BranchProbability(1, SI.getNumCases() + 1);
687 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
688 }
689
690 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
691
692 // Cluster adjacent cases with the same destination. We do this at all
693 // optimization levels because it's cheap to do and will make codegen faster
694 // if there are many clusters.
695 sortAndRangeify(Clusters);
696
697 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
698
699 // If there is only the default destination, jump there directly.
700 if (Clusters.empty()) {
701 SwitchMBB->addSuccessor(DefaultMBB);
702 if (DefaultMBB != SwitchMBB->getNextNode())
703 MIB.buildBr(*DefaultMBB);
704 return true;
705 }
706
707 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
708 SL->findBitTestClusters(Clusters, &SI);
709
710 LLVM_DEBUG({
711 dbgs() << "Case clusters: ";
712 for (const CaseCluster &C : Clusters) {
713 if (C.Kind == CC_JumpTable)
714 dbgs() << "JT:";
715 if (C.Kind == CC_BitTests)
716 dbgs() << "BT:";
717
718 C.Low->getValue().print(dbgs(), true);
719 if (C.Low != C.High) {
720 dbgs() << '-';
721 C.High->getValue().print(dbgs(), true);
722 }
723 dbgs() << ' ';
724 }
725 dbgs() << '\n';
726 });
727
728 assert(!Clusters.empty());
729 SwitchWorkList WorkList;
730 CaseClusterIt First = Clusters.begin();
731 CaseClusterIt Last = Clusters.end() - 1;
732 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
733 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
734
735 // FIXME: At the moment we don't do any splitting optimizations here like
736 // SelectionDAG does, so this worklist only has one entry.
737 while (!WorkList.empty()) {
738 SwitchWorkListItem W = WorkList.back();
739 WorkList.pop_back();
740 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
741 return false;
742 }
743 return true;
744 }
745
emitJumpTable(SwitchCG::JumpTable & JT,MachineBasicBlock * MBB)746 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
747 MachineBasicBlock *MBB) {
748 // Emit the code for the jump table
749 assert(JT.Reg != -1U && "Should lower JT Header first!");
750 MachineIRBuilder MIB(*MBB->getParent());
751 MIB.setMBB(*MBB);
752 MIB.setDebugLoc(CurBuilder->getDebugLoc());
753
754 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
755 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
756
757 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
758 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
759 }
760
emitJumpTableHeader(SwitchCG::JumpTable & JT,SwitchCG::JumpTableHeader & JTH,MachineBasicBlock * HeaderBB)761 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
762 SwitchCG::JumpTableHeader &JTH,
763 MachineBasicBlock *HeaderBB) {
764 MachineIRBuilder MIB(*HeaderBB->getParent());
765 MIB.setMBB(*HeaderBB);
766 MIB.setDebugLoc(CurBuilder->getDebugLoc());
767
768 const Value &SValue = *JTH.SValue;
769 // Subtract the lowest switch case value from the value being switched on.
770 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
771 Register SwitchOpReg = getOrCreateVReg(SValue);
772 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
773 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
774
775 // This value may be smaller or larger than the target's pointer type, and
776 // therefore require extension or truncating.
777 Type *PtrIRTy = SValue.getType()->getPointerTo();
778 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
779 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
780
781 JT.Reg = Sub.getReg(0);
782
783 if (JTH.OmitRangeCheck) {
784 if (JT.MBB != HeaderBB->getNextNode())
785 MIB.buildBr(*JT.MBB);
786 return true;
787 }
788
789 // Emit the range check for the jump table, and branch to the default block
790 // for the switch statement if the value being switched on exceeds the
791 // largest case in the switch.
792 auto Cst = getOrCreateVReg(
793 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
794 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
795 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
796
797 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
798
799 // Avoid emitting unnecessary branches to the next block.
800 if (JT.MBB != HeaderBB->getNextNode())
801 BrCond = MIB.buildBr(*JT.MBB);
802 return true;
803 }
804
emitSwitchCase(SwitchCG::CaseBlock & CB,MachineBasicBlock * SwitchBB,MachineIRBuilder & MIB)805 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
806 MachineBasicBlock *SwitchBB,
807 MachineIRBuilder &MIB) {
808 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
809 Register Cond;
810 DebugLoc OldDbgLoc = MIB.getDebugLoc();
811 MIB.setDebugLoc(CB.DbgLoc);
812 MIB.setMBB(*CB.ThisBB);
813
814 if (CB.PredInfo.NoCmp) {
815 // Branch or fall through to TrueBB.
816 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
817 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
818 CB.ThisBB);
819 CB.ThisBB->normalizeSuccProbs();
820 if (CB.TrueBB != CB.ThisBB->getNextNode())
821 MIB.buildBr(*CB.TrueBB);
822 MIB.setDebugLoc(OldDbgLoc);
823 return;
824 }
825
826 const LLT i1Ty = LLT::scalar(1);
827 // Build the compare.
828 if (!CB.CmpMHS) {
829 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
830 // For conditional branch lowering, we might try to do something silly like
831 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
832 // just re-use the existing condition vreg.
833 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
834 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
835 Cond = CondLHS;
836 } else {
837 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
838 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
839 Cond =
840 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
841 else
842 Cond =
843 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
844 }
845 } else {
846 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
847 "Can only handle SLE ranges");
848
849 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
850 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
851
852 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
853 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
854 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
855 Cond =
856 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
857 } else {
858 const LLT CmpTy = MRI->getType(CmpOpReg);
859 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
860 auto Diff = MIB.buildConstant(CmpTy, High - Low);
861 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
862 }
863 }
864
865 // Update successor info
866 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
867
868 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
869 CB.ThisBB);
870
871 // TrueBB and FalseBB are always different unless the incoming IR is
872 // degenerate. This only happens when running llc on weird IR.
873 if (CB.TrueBB != CB.FalseBB)
874 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
875 CB.ThisBB->normalizeSuccProbs();
876
877 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
878 CB.ThisBB);
879
880 MIB.buildBrCond(Cond, *CB.TrueBB);
881 MIB.buildBr(*CB.FalseBB);
882 MIB.setDebugLoc(OldDbgLoc);
883 }
884
lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)885 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
886 MachineBasicBlock *SwitchMBB,
887 MachineBasicBlock *CurMBB,
888 MachineBasicBlock *DefaultMBB,
889 MachineIRBuilder &MIB,
890 MachineFunction::iterator BBI,
891 BranchProbability UnhandledProbs,
892 SwitchCG::CaseClusterIt I,
893 MachineBasicBlock *Fallthrough,
894 bool FallthroughUnreachable) {
895 using namespace SwitchCG;
896 MachineFunction *CurMF = SwitchMBB->getParent();
897 // FIXME: Optimize away range check based on pivot comparisons.
898 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
899 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
900 BranchProbability DefaultProb = W.DefaultProb;
901
902 // The jump block hasn't been inserted yet; insert it here.
903 MachineBasicBlock *JumpMBB = JT->MBB;
904 CurMF->insert(BBI, JumpMBB);
905
906 // Since the jump table block is separate from the switch block, we need
907 // to keep track of it as a machine predecessor to the default block,
908 // otherwise we lose the phi edges.
909 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
910 CurMBB);
911 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
912 JumpMBB);
913
914 auto JumpProb = I->Prob;
915 auto FallthroughProb = UnhandledProbs;
916
917 // If the default statement is a target of the jump table, we evenly
918 // distribute the default probability to successors of CurMBB. Also
919 // update the probability on the edge from JumpMBB to Fallthrough.
920 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
921 SE = JumpMBB->succ_end();
922 SI != SE; ++SI) {
923 if (*SI == DefaultMBB) {
924 JumpProb += DefaultProb / 2;
925 FallthroughProb -= DefaultProb / 2;
926 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
927 JumpMBB->normalizeSuccProbs();
928 } else {
929 // Also record edges from the jump table block to it's successors.
930 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
931 JumpMBB);
932 }
933 }
934
935 // Skip the range check if the fallthrough block is unreachable.
936 if (FallthroughUnreachable)
937 JTH->OmitRangeCheck = true;
938
939 if (!JTH->OmitRangeCheck)
940 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
941 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
942 CurMBB->normalizeSuccProbs();
943
944 // The jump table header will be inserted in our current block, do the
945 // range check, and fall through to our fallthrough block.
946 JTH->HeaderBB = CurMBB;
947 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
948
949 // If we're in the right place, emit the jump table header right now.
950 if (CurMBB == SwitchMBB) {
951 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
952 return false;
953 JTH->Emitted = true;
954 }
955 return true;
956 }
lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,Value * Cond,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable,BranchProbability UnhandledProbs,MachineBasicBlock * CurMBB,MachineIRBuilder & MIB,MachineBasicBlock * SwitchMBB)957 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
958 Value *Cond,
959 MachineBasicBlock *Fallthrough,
960 bool FallthroughUnreachable,
961 BranchProbability UnhandledProbs,
962 MachineBasicBlock *CurMBB,
963 MachineIRBuilder &MIB,
964 MachineBasicBlock *SwitchMBB) {
965 using namespace SwitchCG;
966 const Value *RHS, *LHS, *MHS;
967 CmpInst::Predicate Pred;
968 if (I->Low == I->High) {
969 // Check Cond == I->Low.
970 Pred = CmpInst::ICMP_EQ;
971 LHS = Cond;
972 RHS = I->Low;
973 MHS = nullptr;
974 } else {
975 // Check I->Low <= Cond <= I->High.
976 Pred = CmpInst::ICMP_SLE;
977 LHS = I->Low;
978 MHS = Cond;
979 RHS = I->High;
980 }
981
982 // If Fallthrough is unreachable, fold away the comparison.
983 // The false probability is the sum of all unhandled cases.
984 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
985 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
986
987 emitSwitchCase(CB, SwitchMBB, MIB);
988 return true;
989 }
990
emitBitTestHeader(SwitchCG::BitTestBlock & B,MachineBasicBlock * SwitchBB)991 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
992 MachineBasicBlock *SwitchBB) {
993 MachineIRBuilder &MIB = *CurBuilder;
994 MIB.setMBB(*SwitchBB);
995
996 // Subtract the minimum value.
997 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
998
999 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1000 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1001 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1002
1003 // Ensure that the type will fit the mask value.
1004 LLT MaskTy = SwitchOpTy;
1005 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1006 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1007 // Switch table case range are encoded into series of masks.
1008 // Just use pointer type, it's guaranteed to fit.
1009 MaskTy = LLT::scalar(64);
1010 break;
1011 }
1012 }
1013 Register SubReg = RangeSub.getReg(0);
1014 if (SwitchOpTy != MaskTy)
1015 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1016
1017 B.RegVT = getMVTForLLT(MaskTy);
1018 B.Reg = SubReg;
1019
1020 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1021
1022 if (!B.OmitRangeCheck)
1023 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1024 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1025
1026 SwitchBB->normalizeSuccProbs();
1027
1028 if (!B.OmitRangeCheck) {
1029 // Conditional branch to the default block.
1030 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1031 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1032 RangeSub, RangeCst);
1033 MIB.buildBrCond(RangeCmp, *B.Default);
1034 }
1035
1036 // Avoid emitting unnecessary branches to the next block.
1037 if (MBB != SwitchBB->getNextNode())
1038 MIB.buildBr(*MBB);
1039 }
1040
emitBitTestCase(SwitchCG::BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,Register Reg,SwitchCG::BitTestCase & B,MachineBasicBlock * SwitchBB)1041 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1042 MachineBasicBlock *NextMBB,
1043 BranchProbability BranchProbToNext,
1044 Register Reg, SwitchCG::BitTestCase &B,
1045 MachineBasicBlock *SwitchBB) {
1046 MachineIRBuilder &MIB = *CurBuilder;
1047 MIB.setMBB(*SwitchBB);
1048
1049 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1050 Register Cmp;
1051 unsigned PopCount = countPopulation(B.Mask);
1052 if (PopCount == 1) {
1053 // Testing for a single bit; just compare the shift count with what it
1054 // would need to be to shift a 1 bit in that position.
1055 auto MaskTrailingZeros =
1056 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1057 Cmp =
1058 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1059 .getReg(0);
1060 } else if (PopCount == BB.Range) {
1061 // There is only one zero bit in the range, test for it directly.
1062 auto MaskTrailingOnes =
1063 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1064 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1065 .getReg(0);
1066 } else {
1067 // Make desired shift.
1068 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1069 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1070
1071 // Emit bit tests and jumps.
1072 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1073 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1074 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1075 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1076 .getReg(0);
1077 }
1078
1079 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1080 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1081 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1082 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1083 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1084 // one as they are relative probabilities (and thus work more like weights),
1085 // and hence we need to normalize them to let the sum of them become one.
1086 SwitchBB->normalizeSuccProbs();
1087
1088 // Record the fact that the IR edge from the header to the bit test target
1089 // will go through our new block. Neeeded for PHIs to have nodes added.
1090 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1091 SwitchBB);
1092
1093 MIB.buildBrCond(Cmp, *B.TargetBB);
1094
1095 // Avoid emitting unnecessary branches to the next block.
1096 if (NextMBB != SwitchBB->getNextNode())
1097 MIB.buildBr(*NextMBB);
1098 }
1099
lowerBitTestWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability DefaultProb,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)1100 bool IRTranslator::lowerBitTestWorkItem(
1101 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1102 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1103 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1104 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1105 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1106 bool FallthroughUnreachable) {
1107 using namespace SwitchCG;
1108 MachineFunction *CurMF = SwitchMBB->getParent();
1109 // FIXME: Optimize away range check based on pivot comparisons.
1110 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1111 // The bit test blocks haven't been inserted yet; insert them here.
1112 for (BitTestCase &BTC : BTB->Cases)
1113 CurMF->insert(BBI, BTC.ThisBB);
1114
1115 // Fill in fields of the BitTestBlock.
1116 BTB->Parent = CurMBB;
1117 BTB->Default = Fallthrough;
1118
1119 BTB->DefaultProb = UnhandledProbs;
1120 // If the cases in bit test don't form a contiguous range, we evenly
1121 // distribute the probability on the edge to Fallthrough to two
1122 // successors of CurMBB.
1123 if (!BTB->ContiguousRange) {
1124 BTB->Prob += DefaultProb / 2;
1125 BTB->DefaultProb -= DefaultProb / 2;
1126 }
1127
1128 if (FallthroughUnreachable) {
1129 // Skip the range check if the fallthrough block is unreachable.
1130 BTB->OmitRangeCheck = true;
1131 }
1132
1133 // If we're in the right place, emit the bit test header right now.
1134 if (CurMBB == SwitchMBB) {
1135 emitBitTestHeader(*BTB, SwitchMBB);
1136 BTB->Emitted = true;
1137 }
1138 return true;
1139 }
1140
lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB)1141 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1142 Value *Cond,
1143 MachineBasicBlock *SwitchMBB,
1144 MachineBasicBlock *DefaultMBB,
1145 MachineIRBuilder &MIB) {
1146 using namespace SwitchCG;
1147 MachineFunction *CurMF = FuncInfo.MF;
1148 MachineBasicBlock *NextMBB = nullptr;
1149 MachineFunction::iterator BBI(W.MBB);
1150 if (++BBI != FuncInfo.MF->end())
1151 NextMBB = &*BBI;
1152
1153 if (EnableOpts) {
1154 // Here, we order cases by probability so the most likely case will be
1155 // checked first. However, two clusters can have the same probability in
1156 // which case their relative ordering is non-deterministic. So we use Low
1157 // as a tie-breaker as clusters are guaranteed to never overlap.
1158 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1159 [](const CaseCluster &a, const CaseCluster &b) {
1160 return a.Prob != b.Prob
1161 ? a.Prob > b.Prob
1162 : a.Low->getValue().slt(b.Low->getValue());
1163 });
1164
1165 // Rearrange the case blocks so that the last one falls through if possible
1166 // without changing the order of probabilities.
1167 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1168 --I;
1169 if (I->Prob > W.LastCluster->Prob)
1170 break;
1171 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1172 std::swap(*I, *W.LastCluster);
1173 break;
1174 }
1175 }
1176 }
1177
1178 // Compute total probability.
1179 BranchProbability DefaultProb = W.DefaultProb;
1180 BranchProbability UnhandledProbs = DefaultProb;
1181 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1182 UnhandledProbs += I->Prob;
1183
1184 MachineBasicBlock *CurMBB = W.MBB;
1185 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1186 bool FallthroughUnreachable = false;
1187 MachineBasicBlock *Fallthrough;
1188 if (I == W.LastCluster) {
1189 // For the last cluster, fall through to the default destination.
1190 Fallthrough = DefaultMBB;
1191 FallthroughUnreachable = isa<UnreachableInst>(
1192 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1193 } else {
1194 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1195 CurMF->insert(BBI, Fallthrough);
1196 }
1197 UnhandledProbs -= I->Prob;
1198
1199 switch (I->Kind) {
1200 case CC_BitTests: {
1201 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1202 DefaultProb, UnhandledProbs, I, Fallthrough,
1203 FallthroughUnreachable)) {
1204 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1205 return false;
1206 }
1207 break;
1208 }
1209
1210 case CC_JumpTable: {
1211 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1212 UnhandledProbs, I, Fallthrough,
1213 FallthroughUnreachable)) {
1214 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1215 return false;
1216 }
1217 break;
1218 }
1219 case CC_Range: {
1220 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1221 FallthroughUnreachable, UnhandledProbs,
1222 CurMBB, MIB, SwitchMBB)) {
1223 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1224 return false;
1225 }
1226 break;
1227 }
1228 }
1229 CurMBB = Fallthrough;
1230 }
1231
1232 return true;
1233 }
1234
translateIndirectBr(const User & U,MachineIRBuilder & MIRBuilder)1235 bool IRTranslator::translateIndirectBr(const User &U,
1236 MachineIRBuilder &MIRBuilder) {
1237 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1238
1239 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1240 MIRBuilder.buildBrIndirect(Tgt);
1241
1242 // Link successors.
1243 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1244 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1245 for (const BasicBlock *Succ : successors(&BrInst)) {
1246 // It's legal for indirectbr instructions to have duplicate blocks in the
1247 // destination list. We don't allow this in MIR. Skip anything that's
1248 // already a successor.
1249 if (!AddedSuccessors.insert(Succ).second)
1250 continue;
1251 CurBB.addSuccessor(&getMBB(*Succ));
1252 }
1253
1254 return true;
1255 }
1256
isSwiftError(const Value * V)1257 static bool isSwiftError(const Value *V) {
1258 if (auto Arg = dyn_cast<Argument>(V))
1259 return Arg->hasSwiftErrorAttr();
1260 if (auto AI = dyn_cast<AllocaInst>(V))
1261 return AI->isSwiftError();
1262 return false;
1263 }
1264
translateLoad(const User & U,MachineIRBuilder & MIRBuilder)1265 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1266 const LoadInst &LI = cast<LoadInst>(U);
1267 if (DL->getTypeStoreSize(LI.getType()) == 0)
1268 return true;
1269
1270 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1271 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1272 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1273
1274 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1275 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1276
1277 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1278 assert(Regs.size() == 1 && "swifterror should be single pointer");
1279 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1280 LI.getPointerOperand());
1281 MIRBuilder.buildCopy(Regs[0], VReg);
1282 return true;
1283 }
1284
1285 auto &TLI = *MF->getSubtarget().getTargetLowering();
1286 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1287
1288 const MDNode *Ranges =
1289 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1290 for (unsigned i = 0; i < Regs.size(); ++i) {
1291 Register Addr;
1292 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1293
1294 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1295 Align BaseAlign = getMemOpAlign(LI);
1296 AAMDNodes AAMetadata;
1297 LI.getAAMetadata(AAMetadata);
1298 auto MMO = MF->getMachineMemOperand(
1299 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
1300 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1301 LI.getSyncScopeID(), LI.getOrdering());
1302 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1303 }
1304
1305 return true;
1306 }
1307
translateStore(const User & U,MachineIRBuilder & MIRBuilder)1308 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1309 const StoreInst &SI = cast<StoreInst>(U);
1310 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1311 return true;
1312
1313 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1314 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1315 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1316
1317 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1318 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1319
1320 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1321 assert(Vals.size() == 1 && "swifterror should be single pointer");
1322
1323 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1324 SI.getPointerOperand());
1325 MIRBuilder.buildCopy(VReg, Vals[0]);
1326 return true;
1327 }
1328
1329 auto &TLI = *MF->getSubtarget().getTargetLowering();
1330 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1331
1332 for (unsigned i = 0; i < Vals.size(); ++i) {
1333 Register Addr;
1334 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1335
1336 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1337 Align BaseAlign = getMemOpAlign(SI);
1338 AAMDNodes AAMetadata;
1339 SI.getAAMetadata(AAMetadata);
1340 auto MMO = MF->getMachineMemOperand(
1341 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
1342 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1343 SI.getSyncScopeID(), SI.getOrdering());
1344 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1345 }
1346 return true;
1347 }
1348
getOffsetFromIndices(const User & U,const DataLayout & DL)1349 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1350 const Value *Src = U.getOperand(0);
1351 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1352
1353 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1354 // usual array element rather than looking into the actual aggregate.
1355 SmallVector<Value *, 1> Indices;
1356 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1357
1358 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1359 for (auto Idx : EVI->indices())
1360 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1361 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1362 for (auto Idx : IVI->indices())
1363 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1364 } else {
1365 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1366 Indices.push_back(U.getOperand(i));
1367 }
1368
1369 return 8 * static_cast<uint64_t>(
1370 DL.getIndexedOffsetInType(Src->getType(), Indices));
1371 }
1372
translateExtractValue(const User & U,MachineIRBuilder & MIRBuilder)1373 bool IRTranslator::translateExtractValue(const User &U,
1374 MachineIRBuilder &MIRBuilder) {
1375 const Value *Src = U.getOperand(0);
1376 uint64_t Offset = getOffsetFromIndices(U, *DL);
1377 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1378 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1379 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1380 auto &DstRegs = allocateVRegs(U);
1381
1382 for (unsigned i = 0; i < DstRegs.size(); ++i)
1383 DstRegs[i] = SrcRegs[Idx++];
1384
1385 return true;
1386 }
1387
translateInsertValue(const User & U,MachineIRBuilder & MIRBuilder)1388 bool IRTranslator::translateInsertValue(const User &U,
1389 MachineIRBuilder &MIRBuilder) {
1390 const Value *Src = U.getOperand(0);
1391 uint64_t Offset = getOffsetFromIndices(U, *DL);
1392 auto &DstRegs = allocateVRegs(U);
1393 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1394 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1395 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1396 auto InsertedIt = InsertedRegs.begin();
1397
1398 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1399 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1400 DstRegs[i] = *InsertedIt++;
1401 else
1402 DstRegs[i] = SrcRegs[i];
1403 }
1404
1405 return true;
1406 }
1407
translateSelect(const User & U,MachineIRBuilder & MIRBuilder)1408 bool IRTranslator::translateSelect(const User &U,
1409 MachineIRBuilder &MIRBuilder) {
1410 Register Tst = getOrCreateVReg(*U.getOperand(0));
1411 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1412 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1413 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1414
1415 uint16_t Flags = 0;
1416 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1417 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1418
1419 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1420 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1421 }
1422
1423 return true;
1424 }
1425
translateCopy(const User & U,const Value & V,MachineIRBuilder & MIRBuilder)1426 bool IRTranslator::translateCopy(const User &U, const Value &V,
1427 MachineIRBuilder &MIRBuilder) {
1428 Register Src = getOrCreateVReg(V);
1429 auto &Regs = *VMap.getVRegs(U);
1430 if (Regs.empty()) {
1431 Regs.push_back(Src);
1432 VMap.getOffsets(U)->push_back(0);
1433 } else {
1434 // If we already assigned a vreg for this instruction, we can't change that.
1435 // Emit a copy to satisfy the users we already emitted.
1436 MIRBuilder.buildCopy(Regs[0], Src);
1437 }
1438 return true;
1439 }
1440
translateBitCast(const User & U,MachineIRBuilder & MIRBuilder)1441 bool IRTranslator::translateBitCast(const User &U,
1442 MachineIRBuilder &MIRBuilder) {
1443 // If we're bitcasting to the source type, we can reuse the source vreg.
1444 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1445 getLLTForType(*U.getType(), *DL))
1446 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1447
1448 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1449 }
1450
translateCast(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)1451 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1452 MachineIRBuilder &MIRBuilder) {
1453 Register Op = getOrCreateVReg(*U.getOperand(0));
1454 Register Res = getOrCreateVReg(U);
1455 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1456 return true;
1457 }
1458
translateGetElementPtr(const User & U,MachineIRBuilder & MIRBuilder)1459 bool IRTranslator::translateGetElementPtr(const User &U,
1460 MachineIRBuilder &MIRBuilder) {
1461 Value &Op0 = *U.getOperand(0);
1462 Register BaseReg = getOrCreateVReg(Op0);
1463 Type *PtrIRTy = Op0.getType();
1464 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1465 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1466 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1467
1468 // Normalize Vector GEP - all scalar operands should be converted to the
1469 // splat vector.
1470 unsigned VectorWidth = 0;
1471 if (auto *VT = dyn_cast<VectorType>(U.getType()))
1472 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1473
1474 // We might need to splat the base pointer into a vector if the offsets
1475 // are vectors.
1476 if (VectorWidth && !PtrTy.isVector()) {
1477 BaseReg =
1478 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1479 .getReg(0);
1480 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1481 PtrTy = getLLTForType(*PtrIRTy, *DL);
1482 OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1483 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1484 }
1485
1486 int64_t Offset = 0;
1487 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1488 GTI != E; ++GTI) {
1489 const Value *Idx = GTI.getOperand();
1490 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1491 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1492 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1493 continue;
1494 } else {
1495 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1496
1497 // If this is a scalar constant or a splat vector of constants,
1498 // handle it quickly.
1499 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1500 Offset += ElementSize * CI->getSExtValue();
1501 continue;
1502 }
1503
1504 if (Offset != 0) {
1505 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1506 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1507 .getReg(0);
1508 Offset = 0;
1509 }
1510
1511 Register IdxReg = getOrCreateVReg(*Idx);
1512 LLT IdxTy = MRI->getType(IdxReg);
1513 if (IdxTy != OffsetTy) {
1514 if (!IdxTy.isVector() && VectorWidth) {
1515 IdxReg = MIRBuilder.buildSplatVector(
1516 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1517 }
1518
1519 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1520 }
1521
1522 // N = N + Idx * ElementSize;
1523 // Avoid doing it for ElementSize of 1.
1524 Register GepOffsetReg;
1525 if (ElementSize != 1) {
1526 auto ElementSizeMIB = MIRBuilder.buildConstant(
1527 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1528 GepOffsetReg =
1529 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1530 } else
1531 GepOffsetReg = IdxReg;
1532
1533 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1534 }
1535 }
1536
1537 if (Offset != 0) {
1538 auto OffsetMIB =
1539 MIRBuilder.buildConstant(OffsetTy, Offset);
1540 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1541 return true;
1542 }
1543
1544 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1545 return true;
1546 }
1547
translateMemFunc(const CallInst & CI,MachineIRBuilder & MIRBuilder,unsigned Opcode)1548 bool IRTranslator::translateMemFunc(const CallInst &CI,
1549 MachineIRBuilder &MIRBuilder,
1550 unsigned Opcode) {
1551
1552 // If the source is undef, then just emit a nop.
1553 if (isa<UndefValue>(CI.getArgOperand(1)))
1554 return true;
1555
1556 SmallVector<Register, 3> SrcRegs;
1557
1558 unsigned MinPtrSize = UINT_MAX;
1559 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1560 Register SrcReg = getOrCreateVReg(**AI);
1561 LLT SrcTy = MRI->getType(SrcReg);
1562 if (SrcTy.isPointer())
1563 MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize);
1564 SrcRegs.push_back(SrcReg);
1565 }
1566
1567 LLT SizeTy = LLT::scalar(MinPtrSize);
1568
1569 // The size operand should be the minimum of the pointer sizes.
1570 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1571 if (MRI->getType(SizeOpReg) != SizeTy)
1572 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1573
1574 auto ICall = MIRBuilder.buildInstr(Opcode);
1575 for (Register SrcReg : SrcRegs)
1576 ICall.addUse(SrcReg);
1577
1578 Align DstAlign;
1579 Align SrcAlign;
1580 unsigned IsVol =
1581 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1582 ->getZExtValue();
1583
1584 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1585 DstAlign = MCI->getDestAlign().valueOrOne();
1586 SrcAlign = MCI->getSourceAlign().valueOrOne();
1587 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1588 DstAlign = MMI->getDestAlign().valueOrOne();
1589 SrcAlign = MMI->getSourceAlign().valueOrOne();
1590 } else {
1591 auto *MSI = cast<MemSetInst>(&CI);
1592 DstAlign = MSI->getDestAlign().valueOrOne();
1593 }
1594
1595 // We need to propagate the tail call flag from the IR inst as an argument.
1596 // Otherwise, we have to pessimize and assume later that we cannot tail call
1597 // any memory intrinsics.
1598 ICall.addImm(CI.isTailCall() ? 1 : 0);
1599
1600 // Create mem operands to store the alignment and volatile info.
1601 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1602 ICall.addMemOperand(MF->getMachineMemOperand(
1603 MachinePointerInfo(CI.getArgOperand(0)),
1604 MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1605 if (Opcode != TargetOpcode::G_MEMSET)
1606 ICall.addMemOperand(MF->getMachineMemOperand(
1607 MachinePointerInfo(CI.getArgOperand(1)),
1608 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1609
1610 return true;
1611 }
1612
getStackGuard(Register DstReg,MachineIRBuilder & MIRBuilder)1613 void IRTranslator::getStackGuard(Register DstReg,
1614 MachineIRBuilder &MIRBuilder) {
1615 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1616 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1617 auto MIB =
1618 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1619
1620 auto &TLI = *MF->getSubtarget().getTargetLowering();
1621 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1622 if (!Global)
1623 return;
1624
1625 MachinePointerInfo MPInfo(Global);
1626 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1627 MachineMemOperand::MODereferenceable;
1628 MachineMemOperand *MemRef =
1629 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1630 DL->getPointerABIAlignment(0));
1631 MIB.setMemRefs({MemRef});
1632 }
1633
translateOverflowIntrinsic(const CallInst & CI,unsigned Op,MachineIRBuilder & MIRBuilder)1634 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1635 MachineIRBuilder &MIRBuilder) {
1636 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1637 MIRBuilder.buildInstr(
1638 Op, {ResRegs[0], ResRegs[1]},
1639 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1640
1641 return true;
1642 }
1643
translateFixedPointIntrinsic(unsigned Op,const CallInst & CI,MachineIRBuilder & MIRBuilder)1644 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1645 MachineIRBuilder &MIRBuilder) {
1646 Register Dst = getOrCreateVReg(CI);
1647 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1648 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1649 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1650 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1651 return true;
1652 }
1653
getSimpleIntrinsicOpcode(Intrinsic::ID ID)1654 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1655 switch (ID) {
1656 default:
1657 break;
1658 case Intrinsic::bswap:
1659 return TargetOpcode::G_BSWAP;
1660 case Intrinsic::bitreverse:
1661 return TargetOpcode::G_BITREVERSE;
1662 case Intrinsic::fshl:
1663 return TargetOpcode::G_FSHL;
1664 case Intrinsic::fshr:
1665 return TargetOpcode::G_FSHR;
1666 case Intrinsic::ceil:
1667 return TargetOpcode::G_FCEIL;
1668 case Intrinsic::cos:
1669 return TargetOpcode::G_FCOS;
1670 case Intrinsic::ctpop:
1671 return TargetOpcode::G_CTPOP;
1672 case Intrinsic::exp:
1673 return TargetOpcode::G_FEXP;
1674 case Intrinsic::exp2:
1675 return TargetOpcode::G_FEXP2;
1676 case Intrinsic::fabs:
1677 return TargetOpcode::G_FABS;
1678 case Intrinsic::copysign:
1679 return TargetOpcode::G_FCOPYSIGN;
1680 case Intrinsic::minnum:
1681 return TargetOpcode::G_FMINNUM;
1682 case Intrinsic::maxnum:
1683 return TargetOpcode::G_FMAXNUM;
1684 case Intrinsic::minimum:
1685 return TargetOpcode::G_FMINIMUM;
1686 case Intrinsic::maximum:
1687 return TargetOpcode::G_FMAXIMUM;
1688 case Intrinsic::canonicalize:
1689 return TargetOpcode::G_FCANONICALIZE;
1690 case Intrinsic::floor:
1691 return TargetOpcode::G_FFLOOR;
1692 case Intrinsic::fma:
1693 return TargetOpcode::G_FMA;
1694 case Intrinsic::log:
1695 return TargetOpcode::G_FLOG;
1696 case Intrinsic::log2:
1697 return TargetOpcode::G_FLOG2;
1698 case Intrinsic::log10:
1699 return TargetOpcode::G_FLOG10;
1700 case Intrinsic::nearbyint:
1701 return TargetOpcode::G_FNEARBYINT;
1702 case Intrinsic::pow:
1703 return TargetOpcode::G_FPOW;
1704 case Intrinsic::powi:
1705 return TargetOpcode::G_FPOWI;
1706 case Intrinsic::rint:
1707 return TargetOpcode::G_FRINT;
1708 case Intrinsic::round:
1709 return TargetOpcode::G_INTRINSIC_ROUND;
1710 case Intrinsic::roundeven:
1711 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1712 case Intrinsic::sin:
1713 return TargetOpcode::G_FSIN;
1714 case Intrinsic::sqrt:
1715 return TargetOpcode::G_FSQRT;
1716 case Intrinsic::trunc:
1717 return TargetOpcode::G_INTRINSIC_TRUNC;
1718 case Intrinsic::readcyclecounter:
1719 return TargetOpcode::G_READCYCLECOUNTER;
1720 case Intrinsic::ptrmask:
1721 return TargetOpcode::G_PTRMASK;
1722 case Intrinsic::lrint:
1723 return TargetOpcode::G_INTRINSIC_LRINT;
1724 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1725 case Intrinsic::vector_reduce_fmin:
1726 return TargetOpcode::G_VECREDUCE_FMIN;
1727 case Intrinsic::vector_reduce_fmax:
1728 return TargetOpcode::G_VECREDUCE_FMAX;
1729 case Intrinsic::vector_reduce_add:
1730 return TargetOpcode::G_VECREDUCE_ADD;
1731 case Intrinsic::vector_reduce_mul:
1732 return TargetOpcode::G_VECREDUCE_MUL;
1733 case Intrinsic::vector_reduce_and:
1734 return TargetOpcode::G_VECREDUCE_AND;
1735 case Intrinsic::vector_reduce_or:
1736 return TargetOpcode::G_VECREDUCE_OR;
1737 case Intrinsic::vector_reduce_xor:
1738 return TargetOpcode::G_VECREDUCE_XOR;
1739 case Intrinsic::vector_reduce_smax:
1740 return TargetOpcode::G_VECREDUCE_SMAX;
1741 case Intrinsic::vector_reduce_smin:
1742 return TargetOpcode::G_VECREDUCE_SMIN;
1743 case Intrinsic::vector_reduce_umax:
1744 return TargetOpcode::G_VECREDUCE_UMAX;
1745 case Intrinsic::vector_reduce_umin:
1746 return TargetOpcode::G_VECREDUCE_UMIN;
1747 }
1748 return Intrinsic::not_intrinsic;
1749 }
1750
translateSimpleIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1751 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1752 Intrinsic::ID ID,
1753 MachineIRBuilder &MIRBuilder) {
1754
1755 unsigned Op = getSimpleIntrinsicOpcode(ID);
1756
1757 // Is this a simple intrinsic?
1758 if (Op == Intrinsic::not_intrinsic)
1759 return false;
1760
1761 // Yes. Let's translate it.
1762 SmallVector<llvm::SrcOp, 4> VRegs;
1763 for (auto &Arg : CI.arg_operands())
1764 VRegs.push_back(getOrCreateVReg(*Arg));
1765
1766 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1767 MachineInstr::copyFlagsFromInstruction(CI));
1768 return true;
1769 }
1770
1771 // TODO: Include ConstainedOps.def when all strict instructions are defined.
getConstrainedOpcode(Intrinsic::ID ID)1772 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1773 switch (ID) {
1774 case Intrinsic::experimental_constrained_fadd:
1775 return TargetOpcode::G_STRICT_FADD;
1776 case Intrinsic::experimental_constrained_fsub:
1777 return TargetOpcode::G_STRICT_FSUB;
1778 case Intrinsic::experimental_constrained_fmul:
1779 return TargetOpcode::G_STRICT_FMUL;
1780 case Intrinsic::experimental_constrained_fdiv:
1781 return TargetOpcode::G_STRICT_FDIV;
1782 case Intrinsic::experimental_constrained_frem:
1783 return TargetOpcode::G_STRICT_FREM;
1784 case Intrinsic::experimental_constrained_fma:
1785 return TargetOpcode::G_STRICT_FMA;
1786 case Intrinsic::experimental_constrained_sqrt:
1787 return TargetOpcode::G_STRICT_FSQRT;
1788 default:
1789 return 0;
1790 }
1791 }
1792
translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI,MachineIRBuilder & MIRBuilder)1793 bool IRTranslator::translateConstrainedFPIntrinsic(
1794 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1795 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1796
1797 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1798 if (!Opcode)
1799 return false;
1800
1801 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1802 if (EB == fp::ExceptionBehavior::ebIgnore)
1803 Flags |= MachineInstr::NoFPExcept;
1804
1805 SmallVector<llvm::SrcOp, 4> VRegs;
1806 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1807 if (!FPI.isUnaryOp())
1808 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1809 if (FPI.isTernaryOp())
1810 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1811
1812 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1813 return true;
1814 }
1815
translateKnownIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1816 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1817 MachineIRBuilder &MIRBuilder) {
1818
1819 // If this is a simple intrinsic (that is, we just need to add a def of
1820 // a vreg, and uses for each arg operand, then translate it.
1821 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1822 return true;
1823
1824 switch (ID) {
1825 default:
1826 break;
1827 case Intrinsic::lifetime_start:
1828 case Intrinsic::lifetime_end: {
1829 // No stack colouring in O0, discard region information.
1830 if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1831 return true;
1832
1833 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1834 : TargetOpcode::LIFETIME_END;
1835
1836 // Get the underlying objects for the location passed on the lifetime
1837 // marker.
1838 SmallVector<const Value *, 4> Allocas;
1839 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1840
1841 // Iterate over each underlying object, creating lifetime markers for each
1842 // static alloca. Quit if we find a non-static alloca.
1843 for (const Value *V : Allocas) {
1844 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1845 if (!AI)
1846 continue;
1847
1848 if (!AI->isStaticAlloca())
1849 return true;
1850
1851 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1852 }
1853 return true;
1854 }
1855 case Intrinsic::dbg_declare: {
1856 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1857 assert(DI.getVariable() && "Missing variable");
1858
1859 const Value *Address = DI.getAddress();
1860 if (!Address || isa<UndefValue>(Address)) {
1861 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1862 return true;
1863 }
1864
1865 assert(DI.getVariable()->isValidLocationForIntrinsic(
1866 MIRBuilder.getDebugLoc()) &&
1867 "Expected inlined-at fields to agree");
1868 auto AI = dyn_cast<AllocaInst>(Address);
1869 if (AI && AI->isStaticAlloca()) {
1870 // Static allocas are tracked at the MF level, no need for DBG_VALUE
1871 // instructions (in fact, they get ignored if they *do* exist).
1872 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1873 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1874 } else {
1875 // A dbg.declare describes the address of a source variable, so lower it
1876 // into an indirect DBG_VALUE.
1877 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1878 DI.getVariable(), DI.getExpression());
1879 }
1880 return true;
1881 }
1882 case Intrinsic::dbg_label: {
1883 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1884 assert(DI.getLabel() && "Missing label");
1885
1886 assert(DI.getLabel()->isValidLocationForIntrinsic(
1887 MIRBuilder.getDebugLoc()) &&
1888 "Expected inlined-at fields to agree");
1889
1890 MIRBuilder.buildDbgLabel(DI.getLabel());
1891 return true;
1892 }
1893 case Intrinsic::vaend:
1894 // No target I know of cares about va_end. Certainly no in-tree target
1895 // does. Simplest intrinsic ever!
1896 return true;
1897 case Intrinsic::vastart: {
1898 auto &TLI = *MF->getSubtarget().getTargetLowering();
1899 Value *Ptr = CI.getArgOperand(0);
1900 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1901
1902 // FIXME: Get alignment
1903 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1904 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1905 MachineMemOperand::MOStore,
1906 ListSize, Align(1)));
1907 return true;
1908 }
1909 case Intrinsic::dbg_value: {
1910 // This form of DBG_VALUE is target-independent.
1911 const DbgValueInst &DI = cast<DbgValueInst>(CI);
1912 const Value *V = DI.getValue();
1913 assert(DI.getVariable()->isValidLocationForIntrinsic(
1914 MIRBuilder.getDebugLoc()) &&
1915 "Expected inlined-at fields to agree");
1916 if (!V || DI.hasArgList()) {
1917 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1918 // terminate any prior location.
1919 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1920 } else if (const auto *CI = dyn_cast<Constant>(V)) {
1921 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1922 } else {
1923 for (Register Reg : getOrCreateVRegs(*V)) {
1924 // FIXME: This does not handle register-indirect values at offset 0. The
1925 // direct/indirect thing shouldn't really be handled by something as
1926 // implicit as reg+noreg vs reg+imm in the first place, but it seems
1927 // pretty baked in right now.
1928 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1929 }
1930 }
1931 return true;
1932 }
1933 case Intrinsic::uadd_with_overflow:
1934 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1935 case Intrinsic::sadd_with_overflow:
1936 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1937 case Intrinsic::usub_with_overflow:
1938 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1939 case Intrinsic::ssub_with_overflow:
1940 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1941 case Intrinsic::umul_with_overflow:
1942 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1943 case Intrinsic::smul_with_overflow:
1944 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1945 case Intrinsic::uadd_sat:
1946 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1947 case Intrinsic::sadd_sat:
1948 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1949 case Intrinsic::usub_sat:
1950 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1951 case Intrinsic::ssub_sat:
1952 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1953 case Intrinsic::ushl_sat:
1954 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1955 case Intrinsic::sshl_sat:
1956 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1957 case Intrinsic::umin:
1958 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1959 case Intrinsic::umax:
1960 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1961 case Intrinsic::smin:
1962 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1963 case Intrinsic::smax:
1964 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1965 case Intrinsic::abs:
1966 // TODO: Preserve "int min is poison" arg in GMIR?
1967 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1968 case Intrinsic::smul_fix:
1969 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1970 case Intrinsic::umul_fix:
1971 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
1972 case Intrinsic::smul_fix_sat:
1973 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
1974 case Intrinsic::umul_fix_sat:
1975 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
1976 case Intrinsic::sdiv_fix:
1977 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
1978 case Intrinsic::udiv_fix:
1979 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
1980 case Intrinsic::sdiv_fix_sat:
1981 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
1982 case Intrinsic::udiv_fix_sat:
1983 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
1984 case Intrinsic::fmuladd: {
1985 const TargetMachine &TM = MF->getTarget();
1986 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1987 Register Dst = getOrCreateVReg(CI);
1988 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1989 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1990 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1991 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1992 TLI.isFMAFasterThanFMulAndFAdd(*MF,
1993 TLI.getValueType(*DL, CI.getType()))) {
1994 // TODO: Revisit this to see if we should move this part of the
1995 // lowering to the combiner.
1996 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1997 MachineInstr::copyFlagsFromInstruction(CI));
1998 } else {
1999 LLT Ty = getLLTForType(*CI.getType(), *DL);
2000 auto FMul = MIRBuilder.buildFMul(
2001 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2002 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2003 MachineInstr::copyFlagsFromInstruction(CI));
2004 }
2005 return true;
2006 }
2007 case Intrinsic::convert_from_fp16:
2008 // FIXME: This intrinsic should probably be removed from the IR.
2009 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2010 getOrCreateVReg(*CI.getArgOperand(0)),
2011 MachineInstr::copyFlagsFromInstruction(CI));
2012 return true;
2013 case Intrinsic::convert_to_fp16:
2014 // FIXME: This intrinsic should probably be removed from the IR.
2015 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2016 getOrCreateVReg(*CI.getArgOperand(0)),
2017 MachineInstr::copyFlagsFromInstruction(CI));
2018 return true;
2019 case Intrinsic::memcpy:
2020 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2021 case Intrinsic::memmove:
2022 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2023 case Intrinsic::memset:
2024 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2025 case Intrinsic::eh_typeid_for: {
2026 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2027 Register Reg = getOrCreateVReg(CI);
2028 unsigned TypeID = MF->getTypeIDFor(GV);
2029 MIRBuilder.buildConstant(Reg, TypeID);
2030 return true;
2031 }
2032 case Intrinsic::objectsize:
2033 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2034
2035 case Intrinsic::is_constant:
2036 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2037
2038 case Intrinsic::stackguard:
2039 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2040 return true;
2041 case Intrinsic::stackprotector: {
2042 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2043 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2044 getStackGuard(GuardVal, MIRBuilder);
2045
2046 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2047 int FI = getOrCreateFrameIndex(*Slot);
2048 MF->getFrameInfo().setStackProtectorIndex(FI);
2049
2050 MIRBuilder.buildStore(
2051 GuardVal, getOrCreateVReg(*Slot),
2052 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2053 MachineMemOperand::MOStore |
2054 MachineMemOperand::MOVolatile,
2055 PtrTy.getSizeInBits() / 8, Align(8)));
2056 return true;
2057 }
2058 case Intrinsic::stacksave: {
2059 // Save the stack pointer to the location provided by the intrinsic.
2060 Register Reg = getOrCreateVReg(CI);
2061 Register StackPtr = MF->getSubtarget()
2062 .getTargetLowering()
2063 ->getStackPointerRegisterToSaveRestore();
2064
2065 // If the target doesn't specify a stack pointer, then fall back.
2066 if (!StackPtr)
2067 return false;
2068
2069 MIRBuilder.buildCopy(Reg, StackPtr);
2070 return true;
2071 }
2072 case Intrinsic::stackrestore: {
2073 // Restore the stack pointer from the location provided by the intrinsic.
2074 Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2075 Register StackPtr = MF->getSubtarget()
2076 .getTargetLowering()
2077 ->getStackPointerRegisterToSaveRestore();
2078
2079 // If the target doesn't specify a stack pointer, then fall back.
2080 if (!StackPtr)
2081 return false;
2082
2083 MIRBuilder.buildCopy(StackPtr, Reg);
2084 return true;
2085 }
2086 case Intrinsic::cttz:
2087 case Intrinsic::ctlz: {
2088 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2089 bool isTrailing = ID == Intrinsic::cttz;
2090 unsigned Opcode = isTrailing
2091 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2092 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2093 : Cst->isZero() ? TargetOpcode::G_CTLZ
2094 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2095 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2096 {getOrCreateVReg(*CI.getArgOperand(0))});
2097 return true;
2098 }
2099 case Intrinsic::invariant_start: {
2100 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2101 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2102 MIRBuilder.buildUndef(Undef);
2103 return true;
2104 }
2105 case Intrinsic::invariant_end:
2106 return true;
2107 case Intrinsic::expect:
2108 case Intrinsic::annotation:
2109 case Intrinsic::ptr_annotation:
2110 case Intrinsic::launder_invariant_group:
2111 case Intrinsic::strip_invariant_group: {
2112 // Drop the intrinsic, but forward the value.
2113 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2114 getOrCreateVReg(*CI.getArgOperand(0)));
2115 return true;
2116 }
2117 case Intrinsic::assume:
2118 case Intrinsic::experimental_noalias_scope_decl:
2119 case Intrinsic::var_annotation:
2120 case Intrinsic::sideeffect:
2121 // Discard annotate attributes, assumptions, and artificial side-effects.
2122 return true;
2123 case Intrinsic::read_volatile_register:
2124 case Intrinsic::read_register: {
2125 Value *Arg = CI.getArgOperand(0);
2126 MIRBuilder
2127 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2128 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2129 return true;
2130 }
2131 case Intrinsic::write_register: {
2132 Value *Arg = CI.getArgOperand(0);
2133 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2134 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2135 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2136 return true;
2137 }
2138 case Intrinsic::localescape: {
2139 MachineBasicBlock &EntryMBB = MF->front();
2140 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2141
2142 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2143 // is the same on all targets.
2144 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2145 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2146 if (isa<ConstantPointerNull>(Arg))
2147 continue; // Skip null pointers. They represent a hole in index space.
2148
2149 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2150 MCSymbol *FrameAllocSym =
2151 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2152 Idx);
2153
2154 // This should be inserted at the start of the entry block.
2155 auto LocalEscape =
2156 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2157 .addSym(FrameAllocSym)
2158 .addFrameIndex(FI);
2159
2160 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2161 }
2162
2163 return true;
2164 }
2165 case Intrinsic::vector_reduce_fadd:
2166 case Intrinsic::vector_reduce_fmul: {
2167 // Need to check for the reassoc flag to decide whether we want a
2168 // sequential reduction opcode or not.
2169 Register Dst = getOrCreateVReg(CI);
2170 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2171 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2172 unsigned Opc = 0;
2173 if (!CI.hasAllowReassoc()) {
2174 // The sequential ordering case.
2175 Opc = ID == Intrinsic::vector_reduce_fadd
2176 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2177 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2178 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2179 MachineInstr::copyFlagsFromInstruction(CI));
2180 return true;
2181 }
2182 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2183 // since the associativity doesn't matter.
2184 unsigned ScalarOpc;
2185 if (ID == Intrinsic::vector_reduce_fadd) {
2186 Opc = TargetOpcode::G_VECREDUCE_FADD;
2187 ScalarOpc = TargetOpcode::G_FADD;
2188 } else {
2189 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2190 ScalarOpc = TargetOpcode::G_FMUL;
2191 }
2192 LLT DstTy = MRI->getType(Dst);
2193 auto Rdx = MIRBuilder.buildInstr(
2194 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2195 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2196 MachineInstr::copyFlagsFromInstruction(CI));
2197
2198 return true;
2199 }
2200 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2201 case Intrinsic::INTRINSIC:
2202 #include "llvm/IR/ConstrainedOps.def"
2203 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2204 MIRBuilder);
2205
2206 }
2207 return false;
2208 }
2209
translateInlineAsm(const CallBase & CB,MachineIRBuilder & MIRBuilder)2210 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2211 MachineIRBuilder &MIRBuilder) {
2212
2213 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2214
2215 if (!ALI) {
2216 LLVM_DEBUG(
2217 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2218 return false;
2219 }
2220
2221 return ALI->lowerInlineAsm(
2222 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2223 }
2224
translateCallBase(const CallBase & CB,MachineIRBuilder & MIRBuilder)2225 bool IRTranslator::translateCallBase(const CallBase &CB,
2226 MachineIRBuilder &MIRBuilder) {
2227 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2228
2229 SmallVector<ArrayRef<Register>, 8> Args;
2230 Register SwiftInVReg = 0;
2231 Register SwiftErrorVReg = 0;
2232 for (auto &Arg : CB.args()) {
2233 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2234 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2235 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2236 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2237 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2238 &CB, &MIRBuilder.getMBB(), Arg));
2239 Args.emplace_back(makeArrayRef(SwiftInVReg));
2240 SwiftErrorVReg =
2241 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2242 continue;
2243 }
2244 Args.push_back(getOrCreateVRegs(*Arg));
2245 }
2246
2247 // We don't set HasCalls on MFI here yet because call lowering may decide to
2248 // optimize into tail calls. Instead, we defer that to selection where a final
2249 // scan is done to check if any instructions are calls.
2250 bool Success =
2251 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2252 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2253
2254 // Check if we just inserted a tail call.
2255 if (Success) {
2256 assert(!HasTailCall && "Can't tail call return twice from block?");
2257 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2258 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2259 }
2260
2261 return Success;
2262 }
2263
translateCall(const User & U,MachineIRBuilder & MIRBuilder)2264 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2265 const CallInst &CI = cast<CallInst>(U);
2266 auto TII = MF->getTarget().getIntrinsicInfo();
2267 const Function *F = CI.getCalledFunction();
2268
2269 // FIXME: support Windows dllimport function calls.
2270 if (F && (F->hasDLLImportStorageClass() ||
2271 (MF->getTarget().getTargetTriple().isOSWindows() &&
2272 F->hasExternalWeakLinkage())))
2273 return false;
2274
2275 // FIXME: support control flow guard targets.
2276 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2277 return false;
2278
2279 if (CI.isInlineAsm())
2280 return translateInlineAsm(CI, MIRBuilder);
2281
2282 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2283 if (F && F->isIntrinsic()) {
2284 ID = F->getIntrinsicID();
2285 if (TII && ID == Intrinsic::not_intrinsic)
2286 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2287 }
2288
2289 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2290 return translateCallBase(CI, MIRBuilder);
2291
2292 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2293
2294 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2295 return true;
2296
2297 ArrayRef<Register> ResultRegs;
2298 if (!CI.getType()->isVoidTy())
2299 ResultRegs = getOrCreateVRegs(CI);
2300
2301 // Ignore the callsite attributes. Backend code is most likely not expecting
2302 // an intrinsic to sometimes have side effects and sometimes not.
2303 MachineInstrBuilder MIB =
2304 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2305 if (isa<FPMathOperator>(CI))
2306 MIB->copyIRFlags(CI);
2307
2308 for (auto &Arg : enumerate(CI.arg_operands())) {
2309 // If this is required to be an immediate, don't materialize it in a
2310 // register.
2311 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2312 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2313 // imm arguments are more convenient than cimm (and realistically
2314 // probably sufficient), so use them.
2315 assert(CI->getBitWidth() <= 64 &&
2316 "large intrinsic immediates not handled");
2317 MIB.addImm(CI->getSExtValue());
2318 } else {
2319 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2320 }
2321 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2322 auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2323 if (!MDN) // This was probably an MDString.
2324 return false;
2325 MIB.addMetadata(MDN);
2326 } else {
2327 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2328 if (VRegs.size() > 1)
2329 return false;
2330 MIB.addUse(VRegs[0]);
2331 }
2332 }
2333
2334 // Add a MachineMemOperand if it is a target mem intrinsic.
2335 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2336 TargetLowering::IntrinsicInfo Info;
2337 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2338 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2339 Align Alignment = Info.align.getValueOr(
2340 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2341
2342 uint64_t Size = Info.memVT.getStoreSize();
2343 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2344 Info.flags, Size, Alignment));
2345 }
2346
2347 return true;
2348 }
2349
findUnwindDestinations(const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2350 bool IRTranslator::findUnwindDestinations(
2351 const BasicBlock *EHPadBB,
2352 BranchProbability Prob,
2353 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2354 &UnwindDests) {
2355 EHPersonality Personality = classifyEHPersonality(
2356 EHPadBB->getParent()->getFunction().getPersonalityFn());
2357 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2358 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2359 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2360 bool IsSEH = isAsynchronousEHPersonality(Personality);
2361
2362 if (IsWasmCXX) {
2363 // Ignore this for now.
2364 return false;
2365 }
2366
2367 while (EHPadBB) {
2368 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2369 BasicBlock *NewEHPadBB = nullptr;
2370 if (isa<LandingPadInst>(Pad)) {
2371 // Stop on landingpads. They are not funclets.
2372 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2373 break;
2374 }
2375 if (isa<CleanupPadInst>(Pad)) {
2376 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2377 // personalities.
2378 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2379 UnwindDests.back().first->setIsEHScopeEntry();
2380 UnwindDests.back().first->setIsEHFuncletEntry();
2381 break;
2382 }
2383 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2384 // Add the catchpad handlers to the possible destinations.
2385 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2386 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2387 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2388 if (IsMSVCCXX || IsCoreCLR)
2389 UnwindDests.back().first->setIsEHFuncletEntry();
2390 if (!IsSEH)
2391 UnwindDests.back().first->setIsEHScopeEntry();
2392 }
2393 NewEHPadBB = CatchSwitch->getUnwindDest();
2394 } else {
2395 continue;
2396 }
2397
2398 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2399 if (BPI && NewEHPadBB)
2400 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2401 EHPadBB = NewEHPadBB;
2402 }
2403 return true;
2404 }
2405
translateInvoke(const User & U,MachineIRBuilder & MIRBuilder)2406 bool IRTranslator::translateInvoke(const User &U,
2407 MachineIRBuilder &MIRBuilder) {
2408 const InvokeInst &I = cast<InvokeInst>(U);
2409 MCContext &Context = MF->getContext();
2410
2411 const BasicBlock *ReturnBB = I.getSuccessor(0);
2412 const BasicBlock *EHPadBB = I.getSuccessor(1);
2413
2414 const Function *Fn = I.getCalledFunction();
2415
2416 // FIXME: support invoking patchpoint and statepoint intrinsics.
2417 if (Fn && Fn->isIntrinsic())
2418 return false;
2419
2420 // FIXME: support whatever these are.
2421 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2422 return false;
2423
2424 // FIXME: support control flow guard targets.
2425 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2426 return false;
2427
2428 // FIXME: support Windows exception handling.
2429 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2430 return false;
2431
2432 bool LowerInlineAsm = false;
2433 if (I.isInlineAsm()) {
2434 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand());
2435 if (!IA->canThrow()) {
2436 // Fast path without emitting EH_LABELs.
2437
2438 if (!translateInlineAsm(I, MIRBuilder))
2439 return false;
2440
2441 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(),
2442 *ReturnMBB = &getMBB(*ReturnBB);
2443
2444 // Update successor info.
2445 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne());
2446
2447 MIRBuilder.buildBr(*ReturnMBB);
2448 return true;
2449 } else {
2450 LowerInlineAsm = true;
2451 }
2452 }
2453
2454 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2455 // the region covered by the try.
2456 MCSymbol *BeginSymbol = Context.createTempSymbol();
2457 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2458
2459 if (LowerInlineAsm) {
2460 if (!translateInlineAsm(I, MIRBuilder))
2461 return false;
2462 } else if (!translateCallBase(I, MIRBuilder))
2463 return false;
2464
2465 MCSymbol *EndSymbol = Context.createTempSymbol();
2466 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2467
2468 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2469 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2470 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2471 BranchProbability EHPadBBProb =
2472 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2473 : BranchProbability::getZero();
2474
2475 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2476 return false;
2477
2478 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2479 &ReturnMBB = getMBB(*ReturnBB);
2480 // Update successor info.
2481 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2482 for (auto &UnwindDest : UnwindDests) {
2483 UnwindDest.first->setIsEHPad();
2484 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2485 }
2486 InvokeMBB->normalizeSuccProbs();
2487
2488 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2489 MIRBuilder.buildBr(ReturnMBB);
2490 return true;
2491 }
2492
translateCallBr(const User & U,MachineIRBuilder & MIRBuilder)2493 bool IRTranslator::translateCallBr(const User &U,
2494 MachineIRBuilder &MIRBuilder) {
2495 // FIXME: Implement this.
2496 return false;
2497 }
2498
translateLandingPad(const User & U,MachineIRBuilder & MIRBuilder)2499 bool IRTranslator::translateLandingPad(const User &U,
2500 MachineIRBuilder &MIRBuilder) {
2501 const LandingPadInst &LP = cast<LandingPadInst>(U);
2502
2503 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2504
2505 MBB.setIsEHPad();
2506
2507 // If there aren't registers to copy the values into (e.g., during SjLj
2508 // exceptions), then don't bother.
2509 auto &TLI = *MF->getSubtarget().getTargetLowering();
2510 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2511 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2512 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2513 return true;
2514
2515 // If landingpad's return type is token type, we don't create DAG nodes
2516 // for its exception pointer and selector value. The extraction of exception
2517 // pointer or selector value from token type landingpads is not currently
2518 // supported.
2519 if (LP.getType()->isTokenTy())
2520 return true;
2521
2522 // Add a label to mark the beginning of the landing pad. Deletion of the
2523 // landing pad can thus be detected via the MachineModuleInfo.
2524 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2525 .addSym(MF->addLandingPad(&MBB));
2526
2527 // If the unwinder does not preserve all registers, ensure that the
2528 // function marks the clobbered registers as used.
2529 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2530 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2531 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2532
2533 LLT Ty = getLLTForType(*LP.getType(), *DL);
2534 Register Undef = MRI->createGenericVirtualRegister(Ty);
2535 MIRBuilder.buildUndef(Undef);
2536
2537 SmallVector<LLT, 2> Tys;
2538 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2539 Tys.push_back(getLLTForType(*Ty, *DL));
2540 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2541
2542 // Mark exception register as live in.
2543 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2544 if (!ExceptionReg)
2545 return false;
2546
2547 MBB.addLiveIn(ExceptionReg);
2548 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2549 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2550
2551 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2552 if (!SelectorReg)
2553 return false;
2554
2555 MBB.addLiveIn(SelectorReg);
2556 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2557 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2558 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2559
2560 return true;
2561 }
2562
translateAlloca(const User & U,MachineIRBuilder & MIRBuilder)2563 bool IRTranslator::translateAlloca(const User &U,
2564 MachineIRBuilder &MIRBuilder) {
2565 auto &AI = cast<AllocaInst>(U);
2566
2567 if (AI.isSwiftError())
2568 return true;
2569
2570 if (AI.isStaticAlloca()) {
2571 Register Res = getOrCreateVReg(AI);
2572 int FI = getOrCreateFrameIndex(AI);
2573 MIRBuilder.buildFrameIndex(Res, FI);
2574 return true;
2575 }
2576
2577 // FIXME: support stack probing for Windows.
2578 if (MF->getTarget().getTargetTriple().isOSWindows())
2579 return false;
2580
2581 // Now we're in the harder dynamic case.
2582 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2583 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2584 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2585 if (MRI->getType(NumElts) != IntPtrTy) {
2586 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2587 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2588 NumElts = ExtElts;
2589 }
2590
2591 Type *Ty = AI.getAllocatedType();
2592
2593 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2594 Register TySize =
2595 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2596 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2597
2598 // Round the size of the allocation up to the stack alignment size
2599 // by add SA-1 to the size. This doesn't overflow because we're computing
2600 // an address inside an alloca.
2601 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2602 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2603 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2604 MachineInstr::NoUWrap);
2605 auto AlignCst =
2606 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2607 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2608
2609 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2610 if (Alignment <= StackAlign)
2611 Alignment = Align(1);
2612 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2613
2614 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2615 assert(MF->getFrameInfo().hasVarSizedObjects());
2616 return true;
2617 }
2618
translateVAArg(const User & U,MachineIRBuilder & MIRBuilder)2619 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2620 // FIXME: We may need more info about the type. Because of how LLT works,
2621 // we're completely discarding the i64/double distinction here (amongst
2622 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2623 // anyway but that's not guaranteed.
2624 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2625 {getOrCreateVReg(*U.getOperand(0)),
2626 DL->getABITypeAlign(U.getType()).value()});
2627 return true;
2628 }
2629
translateInsertElement(const User & U,MachineIRBuilder & MIRBuilder)2630 bool IRTranslator::translateInsertElement(const User &U,
2631 MachineIRBuilder &MIRBuilder) {
2632 // If it is a <1 x Ty> vector, use the scalar as it is
2633 // not a legal vector type in LLT.
2634 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2635 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2636
2637 Register Res = getOrCreateVReg(U);
2638 Register Val = getOrCreateVReg(*U.getOperand(0));
2639 Register Elt = getOrCreateVReg(*U.getOperand(1));
2640 Register Idx = getOrCreateVReg(*U.getOperand(2));
2641 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2642 return true;
2643 }
2644
translateExtractElement(const User & U,MachineIRBuilder & MIRBuilder)2645 bool IRTranslator::translateExtractElement(const User &U,
2646 MachineIRBuilder &MIRBuilder) {
2647 // If it is a <1 x Ty> vector, use the scalar as it is
2648 // not a legal vector type in LLT.
2649 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2650 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2651
2652 Register Res = getOrCreateVReg(U);
2653 Register Val = getOrCreateVReg(*U.getOperand(0));
2654 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2655 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2656 Register Idx;
2657 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2658 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2659 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2660 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2661 Idx = getOrCreateVReg(*NewIdxCI);
2662 }
2663 }
2664 if (!Idx)
2665 Idx = getOrCreateVReg(*U.getOperand(1));
2666 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2667 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2668 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2669 }
2670 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2671 return true;
2672 }
2673
translateShuffleVector(const User & U,MachineIRBuilder & MIRBuilder)2674 bool IRTranslator::translateShuffleVector(const User &U,
2675 MachineIRBuilder &MIRBuilder) {
2676 ArrayRef<int> Mask;
2677 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2678 Mask = SVI->getShuffleMask();
2679 else
2680 Mask = cast<ConstantExpr>(U).getShuffleMask();
2681 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2682 MIRBuilder
2683 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2684 {getOrCreateVReg(*U.getOperand(0)),
2685 getOrCreateVReg(*U.getOperand(1))})
2686 .addShuffleMask(MaskAlloc);
2687 return true;
2688 }
2689
translatePHI(const User & U,MachineIRBuilder & MIRBuilder)2690 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2691 const PHINode &PI = cast<PHINode>(U);
2692
2693 SmallVector<MachineInstr *, 4> Insts;
2694 for (auto Reg : getOrCreateVRegs(PI)) {
2695 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2696 Insts.push_back(MIB.getInstr());
2697 }
2698
2699 PendingPHIs.emplace_back(&PI, std::move(Insts));
2700 return true;
2701 }
2702
translateAtomicCmpXchg(const User & U,MachineIRBuilder & MIRBuilder)2703 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2704 MachineIRBuilder &MIRBuilder) {
2705 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2706
2707 auto &TLI = *MF->getSubtarget().getTargetLowering();
2708 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2709
2710 Type *ResType = I.getType();
2711 Type *ValType = ResType->Type::getStructElementType(0);
2712
2713 auto Res = getOrCreateVRegs(I);
2714 Register OldValRes = Res[0];
2715 Register SuccessRes = Res[1];
2716 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2717 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2718 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2719
2720 AAMDNodes AAMetadata;
2721 I.getAAMetadata(AAMetadata);
2722
2723 MIRBuilder.buildAtomicCmpXchgWithSuccess(
2724 OldValRes, SuccessRes, Addr, Cmp, NewVal,
2725 *MF->getMachineMemOperand(
2726 MachinePointerInfo(I.getPointerOperand()), Flags,
2727 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2728 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2729 return true;
2730 }
2731
translateAtomicRMW(const User & U,MachineIRBuilder & MIRBuilder)2732 bool IRTranslator::translateAtomicRMW(const User &U,
2733 MachineIRBuilder &MIRBuilder) {
2734 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2735 auto &TLI = *MF->getSubtarget().getTargetLowering();
2736 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2737
2738 Type *ResType = I.getType();
2739
2740 Register Res = getOrCreateVReg(I);
2741 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2742 Register Val = getOrCreateVReg(*I.getValOperand());
2743
2744 unsigned Opcode = 0;
2745 switch (I.getOperation()) {
2746 default:
2747 return false;
2748 case AtomicRMWInst::Xchg:
2749 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2750 break;
2751 case AtomicRMWInst::Add:
2752 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2753 break;
2754 case AtomicRMWInst::Sub:
2755 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2756 break;
2757 case AtomicRMWInst::And:
2758 Opcode = TargetOpcode::G_ATOMICRMW_AND;
2759 break;
2760 case AtomicRMWInst::Nand:
2761 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2762 break;
2763 case AtomicRMWInst::Or:
2764 Opcode = TargetOpcode::G_ATOMICRMW_OR;
2765 break;
2766 case AtomicRMWInst::Xor:
2767 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2768 break;
2769 case AtomicRMWInst::Max:
2770 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2771 break;
2772 case AtomicRMWInst::Min:
2773 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2774 break;
2775 case AtomicRMWInst::UMax:
2776 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2777 break;
2778 case AtomicRMWInst::UMin:
2779 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2780 break;
2781 case AtomicRMWInst::FAdd:
2782 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2783 break;
2784 case AtomicRMWInst::FSub:
2785 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2786 break;
2787 }
2788
2789 AAMDNodes AAMetadata;
2790 I.getAAMetadata(AAMetadata);
2791
2792 MIRBuilder.buildAtomicRMW(
2793 Opcode, Res, Addr, Val,
2794 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2795 Flags, DL->getTypeStoreSize(ResType),
2796 getMemOpAlign(I), AAMetadata, nullptr,
2797 I.getSyncScopeID(), I.getOrdering()));
2798 return true;
2799 }
2800
translateFence(const User & U,MachineIRBuilder & MIRBuilder)2801 bool IRTranslator::translateFence(const User &U,
2802 MachineIRBuilder &MIRBuilder) {
2803 const FenceInst &Fence = cast<FenceInst>(U);
2804 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2805 Fence.getSyncScopeID());
2806 return true;
2807 }
2808
translateFreeze(const User & U,MachineIRBuilder & MIRBuilder)2809 bool IRTranslator::translateFreeze(const User &U,
2810 MachineIRBuilder &MIRBuilder) {
2811 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2812 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2813
2814 assert(DstRegs.size() == SrcRegs.size() &&
2815 "Freeze with different source and destination type?");
2816
2817 for (unsigned I = 0; I < DstRegs.size(); ++I) {
2818 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2819 }
2820
2821 return true;
2822 }
2823
finishPendingPhis()2824 void IRTranslator::finishPendingPhis() {
2825 #ifndef NDEBUG
2826 DILocationVerifier Verifier;
2827 GISelObserverWrapper WrapperObserver(&Verifier);
2828 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2829 #endif // ifndef NDEBUG
2830 for (auto &Phi : PendingPHIs) {
2831 const PHINode *PI = Phi.first;
2832 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2833 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2834 EntryBuilder->setDebugLoc(PI->getDebugLoc());
2835 #ifndef NDEBUG
2836 Verifier.setCurrentInst(PI);
2837 #endif // ifndef NDEBUG
2838
2839 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2840 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2841 auto IRPred = PI->getIncomingBlock(i);
2842 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2843 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2844 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2845 continue;
2846 SeenPreds.insert(Pred);
2847 for (unsigned j = 0; j < ValRegs.size(); ++j) {
2848 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2849 MIB.addUse(ValRegs[j]);
2850 MIB.addMBB(Pred);
2851 }
2852 }
2853 }
2854 }
2855 }
2856
valueIsSplit(const Value & V,SmallVectorImpl<uint64_t> * Offsets)2857 bool IRTranslator::valueIsSplit(const Value &V,
2858 SmallVectorImpl<uint64_t> *Offsets) {
2859 SmallVector<LLT, 4> SplitTys;
2860 if (Offsets && !Offsets->empty())
2861 Offsets->clear();
2862 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2863 return SplitTys.size() > 1;
2864 }
2865
translate(const Instruction & Inst)2866 bool IRTranslator::translate(const Instruction &Inst) {
2867 CurBuilder->setDebugLoc(Inst.getDebugLoc());
2868
2869 auto &TLI = *MF->getSubtarget().getTargetLowering();
2870 if (TLI.fallBackToDAGISel(Inst))
2871 return false;
2872
2873 switch (Inst.getOpcode()) {
2874 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2875 case Instruction::OPCODE: \
2876 return translate##OPCODE(Inst, *CurBuilder.get());
2877 #include "llvm/IR/Instruction.def"
2878 default:
2879 return false;
2880 }
2881 }
2882
translate(const Constant & C,Register Reg)2883 bool IRTranslator::translate(const Constant &C, Register Reg) {
2884 // We only emit constants into the entry block from here. To prevent jumpy
2885 // debug behaviour set the line to 0.
2886 if (auto CurrInstDL = CurBuilder->getDL())
2887 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2888 CurrInstDL.getScope(),
2889 CurrInstDL.getInlinedAt()));
2890
2891 if (auto CI = dyn_cast<ConstantInt>(&C))
2892 EntryBuilder->buildConstant(Reg, *CI);
2893 else if (auto CF = dyn_cast<ConstantFP>(&C))
2894 EntryBuilder->buildFConstant(Reg, *CF);
2895 else if (isa<UndefValue>(C))
2896 EntryBuilder->buildUndef(Reg);
2897 else if (isa<ConstantPointerNull>(C))
2898 EntryBuilder->buildConstant(Reg, 0);
2899 else if (auto GV = dyn_cast<GlobalValue>(&C))
2900 EntryBuilder->buildGlobalValue(Reg, GV);
2901 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2902 if (!isa<FixedVectorType>(CAZ->getType()))
2903 return false;
2904 // Return the scalar if it is a <1 x Ty> vector.
2905 unsigned NumElts = CAZ->getElementCount().getFixedValue();
2906 if (NumElts == 1)
2907 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2908 SmallVector<Register, 4> Ops;
2909 for (unsigned I = 0; I < NumElts; ++I) {
2910 Constant &Elt = *CAZ->getElementValue(I);
2911 Ops.push_back(getOrCreateVReg(Elt));
2912 }
2913 EntryBuilder->buildBuildVector(Reg, Ops);
2914 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2915 // Return the scalar if it is a <1 x Ty> vector.
2916 if (CV->getNumElements() == 1)
2917 return translateCopy(C, *CV->getElementAsConstant(0),
2918 *EntryBuilder.get());
2919 SmallVector<Register, 4> Ops;
2920 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2921 Constant &Elt = *CV->getElementAsConstant(i);
2922 Ops.push_back(getOrCreateVReg(Elt));
2923 }
2924 EntryBuilder->buildBuildVector(Reg, Ops);
2925 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2926 switch(CE->getOpcode()) {
2927 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2928 case Instruction::OPCODE: \
2929 return translate##OPCODE(*CE, *EntryBuilder.get());
2930 #include "llvm/IR/Instruction.def"
2931 default:
2932 return false;
2933 }
2934 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2935 if (CV->getNumOperands() == 1)
2936 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2937 SmallVector<Register, 4> Ops;
2938 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2939 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2940 }
2941 EntryBuilder->buildBuildVector(Reg, Ops);
2942 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2943 EntryBuilder->buildBlockAddress(Reg, BA);
2944 } else
2945 return false;
2946
2947 return true;
2948 }
2949
finalizeBasicBlock()2950 void IRTranslator::finalizeBasicBlock() {
2951 for (auto &BTB : SL->BitTestCases) {
2952 // Emit header first, if it wasn't already emitted.
2953 if (!BTB.Emitted)
2954 emitBitTestHeader(BTB, BTB.Parent);
2955
2956 BranchProbability UnhandledProb = BTB.Prob;
2957 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2958 UnhandledProb -= BTB.Cases[j].ExtraProb;
2959 // Set the current basic block to the mbb we wish to insert the code into
2960 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
2961 // If all cases cover a contiguous range, it is not necessary to jump to
2962 // the default block after the last bit test fails. This is because the
2963 // range check during bit test header creation has guaranteed that every
2964 // case here doesn't go outside the range. In this case, there is no need
2965 // to perform the last bit test, as it will always be true. Instead, make
2966 // the second-to-last bit-test fall through to the target of the last bit
2967 // test, and delete the last bit test.
2968
2969 MachineBasicBlock *NextMBB;
2970 if (BTB.ContiguousRange && j + 2 == ej) {
2971 // Second-to-last bit-test with contiguous range: fall through to the
2972 // target of the final bit test.
2973 NextMBB = BTB.Cases[j + 1].TargetBB;
2974 } else if (j + 1 == ej) {
2975 // For the last bit test, fall through to Default.
2976 NextMBB = BTB.Default;
2977 } else {
2978 // Otherwise, fall through to the next bit test.
2979 NextMBB = BTB.Cases[j + 1].ThisBB;
2980 }
2981
2982 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
2983
2984 if (BTB.ContiguousRange && j + 2 == ej) {
2985 // We need to record the replacement phi edge here that normally
2986 // happens in emitBitTestCase before we delete the case, otherwise the
2987 // phi edge will be lost.
2988 addMachineCFGPred({BTB.Parent->getBasicBlock(),
2989 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
2990 MBB);
2991 // Since we're not going to use the final bit test, remove it.
2992 BTB.Cases.pop_back();
2993 break;
2994 }
2995 }
2996 // This is "default" BB. We have two jumps to it. From "header" BB and from
2997 // last "case" BB, unless the latter was skipped.
2998 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
2999 BTB.Default->getBasicBlock()};
3000 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3001 if (!BTB.ContiguousRange) {
3002 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3003 }
3004 }
3005 SL->BitTestCases.clear();
3006
3007 for (auto &JTCase : SL->JTCases) {
3008 // Emit header first, if it wasn't already emitted.
3009 if (!JTCase.first.Emitted)
3010 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3011
3012 emitJumpTable(JTCase.second, JTCase.second.MBB);
3013 }
3014 SL->JTCases.clear();
3015
3016 for (auto &SwCase : SL->SwitchCases)
3017 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3018 SL->SwitchCases.clear();
3019 }
3020
finalizeFunction()3021 void IRTranslator::finalizeFunction() {
3022 // Release the memory used by the different maps we
3023 // needed during the translation.
3024 PendingPHIs.clear();
3025 VMap.reset();
3026 FrameIndices.clear();
3027 MachinePreds.clear();
3028 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3029 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3030 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3031 EntryBuilder.reset();
3032 CurBuilder.reset();
3033 FuncInfo.clear();
3034 }
3035
3036 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3037 /// variadic musttail call.
checkForMustTailInVarArgFn(bool IsVarArg,const BasicBlock & BB)3038 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3039 if (!IsVarArg)
3040 return false;
3041
3042 // Walk the block backwards, because tail calls usually only appear at the end
3043 // of a block.
3044 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3045 const auto *CI = dyn_cast<CallInst>(&I);
3046 return CI && CI->isMustTailCall();
3047 });
3048 }
3049
runOnMachineFunction(MachineFunction & CurMF)3050 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3051 MF = &CurMF;
3052 const Function &F = MF->getFunction();
3053 if (F.empty())
3054 return false;
3055 GISelCSEAnalysisWrapper &Wrapper =
3056 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3057 // Set the CSEConfig and run the analysis.
3058 GISelCSEInfo *CSEInfo = nullptr;
3059 TPC = &getAnalysis<TargetPassConfig>();
3060 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3061 ? EnableCSEInIRTranslator
3062 : TPC->isGISelCSEEnabled();
3063
3064 if (EnableCSE) {
3065 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3066 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3067 EntryBuilder->setCSEInfo(CSEInfo);
3068 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3069 CurBuilder->setCSEInfo(CSEInfo);
3070 } else {
3071 EntryBuilder = std::make_unique<MachineIRBuilder>();
3072 CurBuilder = std::make_unique<MachineIRBuilder>();
3073 }
3074 CLI = MF->getSubtarget().getCallLowering();
3075 CurBuilder->setMF(*MF);
3076 EntryBuilder->setMF(*MF);
3077 MRI = &MF->getRegInfo();
3078 DL = &F.getParent()->getDataLayout();
3079 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3080 const TargetMachine &TM = MF->getTarget();
3081 TM.resetTargetOptions(F);
3082 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3083 FuncInfo.MF = MF;
3084 if (EnableOpts)
3085 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3086 else
3087 FuncInfo.BPI = nullptr;
3088
3089 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3090
3091 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3092
3093 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3094 SL->init(TLI, TM, *DL);
3095
3096
3097
3098 assert(PendingPHIs.empty() && "stale PHIs");
3099
3100 if (!DL->isLittleEndian()) {
3101 // Currently we don't properly handle big endian code.
3102 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3103 F.getSubprogram(), &F.getEntryBlock());
3104 R << "unable to translate in big endian mode";
3105 reportTranslationError(*MF, *TPC, *ORE, R);
3106 }
3107
3108 // Release the per-function state when we return, whether we succeeded or not.
3109 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3110
3111 // Setup a separate basic-block for the arguments and constants
3112 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3113 MF->push_back(EntryBB);
3114 EntryBuilder->setMBB(*EntryBB);
3115
3116 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3117 SwiftError.setFunction(CurMF);
3118 SwiftError.createEntriesInEntryBlock(DbgLoc);
3119
3120 bool IsVarArg = F.isVarArg();
3121 bool HasMustTailInVarArgFn = false;
3122
3123 // Create all blocks, in IR order, to preserve the layout.
3124 for (const BasicBlock &BB: F) {
3125 auto *&MBB = BBToMBB[&BB];
3126
3127 MBB = MF->CreateMachineBasicBlock(&BB);
3128 MF->push_back(MBB);
3129
3130 if (BB.hasAddressTaken())
3131 MBB->setHasAddressTaken();
3132
3133 if (!HasMustTailInVarArgFn)
3134 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3135 }
3136
3137 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3138
3139 // Make our arguments/constants entry block fallthrough to the IR entry block.
3140 EntryBB->addSuccessor(&getMBB(F.front()));
3141
3142 if (CLI->fallBackToDAGISel(*MF)) {
3143 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3144 F.getSubprogram(), &F.getEntryBlock());
3145 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3146 reportTranslationError(*MF, *TPC, *ORE, R);
3147 return false;
3148 }
3149
3150 // Lower the actual args into this basic block.
3151 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3152 for (const Argument &Arg: F.args()) {
3153 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3154 continue; // Don't handle zero sized types.
3155 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3156 VRegArgs.push_back(VRegs);
3157
3158 if (Arg.hasSwiftErrorAttr()) {
3159 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3160 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3161 }
3162 }
3163
3164 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3165 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3166 F.getSubprogram(), &F.getEntryBlock());
3167 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3168 reportTranslationError(*MF, *TPC, *ORE, R);
3169 return false;
3170 }
3171
3172 // Need to visit defs before uses when translating instructions.
3173 GISelObserverWrapper WrapperObserver;
3174 if (EnableCSE && CSEInfo)
3175 WrapperObserver.addObserver(CSEInfo);
3176 {
3177 ReversePostOrderTraversal<const Function *> RPOT(&F);
3178 #ifndef NDEBUG
3179 DILocationVerifier Verifier;
3180 WrapperObserver.addObserver(&Verifier);
3181 #endif // ifndef NDEBUG
3182 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3183 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3184 for (const BasicBlock *BB : RPOT) {
3185 MachineBasicBlock &MBB = getMBB(*BB);
3186 // Set the insertion point of all the following translations to
3187 // the end of this basic block.
3188 CurBuilder->setMBB(MBB);
3189 HasTailCall = false;
3190 for (const Instruction &Inst : *BB) {
3191 // If we translated a tail call in the last step, then we know
3192 // everything after the call is either a return, or something that is
3193 // handled by the call itself. (E.g. a lifetime marker or assume
3194 // intrinsic.) In this case, we should stop translating the block and
3195 // move on.
3196 if (HasTailCall)
3197 break;
3198 #ifndef NDEBUG
3199 Verifier.setCurrentInst(&Inst);
3200 #endif // ifndef NDEBUG
3201 if (translate(Inst))
3202 continue;
3203
3204 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3205 Inst.getDebugLoc(), BB);
3206 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3207
3208 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3209 std::string InstStrStorage;
3210 raw_string_ostream InstStr(InstStrStorage);
3211 InstStr << Inst;
3212
3213 R << ": '" << InstStr.str() << "'";
3214 }
3215
3216 reportTranslationError(*MF, *TPC, *ORE, R);
3217 return false;
3218 }
3219
3220 finalizeBasicBlock();
3221 }
3222 #ifndef NDEBUG
3223 WrapperObserver.removeObserver(&Verifier);
3224 #endif
3225 }
3226
3227 finishPendingPhis();
3228
3229 SwiftError.propagateVRegs();
3230
3231 // Merge the argument lowering and constants block with its single
3232 // successor, the LLVM-IR entry block. We want the basic block to
3233 // be maximal.
3234 assert(EntryBB->succ_size() == 1 &&
3235 "Custom BB used for lowering should have only one successor");
3236 // Get the successor of the current entry block.
3237 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3238 assert(NewEntryBB.pred_size() == 1 &&
3239 "LLVM-IR entry block has a predecessor!?");
3240 // Move all the instruction from the current entry block to the
3241 // new entry block.
3242 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3243 EntryBB->end());
3244
3245 // Update the live-in information for the new entry block.
3246 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3247 NewEntryBB.addLiveIn(LiveIn);
3248 NewEntryBB.sortUniqueLiveIns();
3249
3250 // Get rid of the now empty basic block.
3251 EntryBB->removeSuccessor(&NewEntryBB);
3252 MF->remove(EntryBB);
3253 MF->DeleteMachineBasicBlock(EntryBB);
3254
3255 assert(&MF->front() == &NewEntryBB &&
3256 "New entry wasn't next in the list of basic block!");
3257
3258 // Initialize stack protector information.
3259 StackProtector &SP = getAnalysis<StackProtector>();
3260 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3261
3262 return false;
3263 }
3264