xref: /spdk/module/bdev/nvme/bdev_nvme.c (revision cec5ba284b55d19c90359936d77b707e398829f7)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  *   Copyright (c) 2022 Dell Inc, or its subsidiaries. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "bdev_nvme.h"
11 
12 #include "spdk/accel.h"
13 #include "spdk/config.h"
14 #include "spdk/endian.h"
15 #include "spdk/bdev.h"
16 #include "spdk/json.h"
17 #include "spdk/keyring.h"
18 #include "spdk/likely.h"
19 #include "spdk/nvme.h"
20 #include "spdk/nvme_ocssd.h"
21 #include "spdk/nvme_zns.h"
22 #include "spdk/opal.h"
23 #include "spdk/thread.h"
24 #include "spdk/trace.h"
25 #include "spdk/string.h"
26 #include "spdk/util.h"
27 #include "spdk/uuid.h"
28 
29 #include "spdk/bdev_module.h"
30 #include "spdk/log.h"
31 
32 #include "spdk_internal/usdt.h"
33 #include "spdk_internal/trace_defs.h"
34 
35 #define CTRLR_STRING(nvme_ctrlr) \
36 	(spdk_nvme_trtype_is_fabrics(nvme_ctrlr->active_path_id->trid.trtype) ? \
37 	nvme_ctrlr->active_path_id->trid.subnqn : nvme_ctrlr->active_path_id->trid.traddr)
38 
39 #define CTRLR_ID(nvme_ctrlr)	(spdk_nvme_ctrlr_get_id(nvme_ctrlr->ctrlr))
40 
41 #define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
42 	SPDK_ERRLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
43 
44 #define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
45 	SPDK_WARNLOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
46 
47 #define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
48 	SPDK_NOTICELOG("[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
49 
50 #define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
51 	SPDK_INFOLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
52 
53 #ifdef DEBUG
54 #define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
55 	SPDK_DEBUGLOG(bdev_nvme, "[%s, %u] " format, CTRLR_STRING(ctrlr), CTRLR_ID(ctrlr), ##__VA_ARGS__);
56 #else
57 #define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
58 #endif
59 
60 #define BDEV_STRING(nbdev) (nbdev->disk.name)
61 
62 #define NVME_BDEV_ERRLOG(nbdev, format, ...) \
63 	SPDK_ERRLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
64 
65 #define NVME_BDEV_WARNLOG(nbdev, format, ...) \
66 	SPDK_WARNLOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
67 
68 #define NVME_BDEV_NOTICELOG(nbdev, format, ...) \
69 	SPDK_NOTICELOG("[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
70 
71 #define NVME_BDEV_INFOLOG(nbdev, format, ...) \
72 	SPDK_INFOLOG(bdev_nvme, "[%s] " format, BDEV_STRING(nbdev), ##__VA_ARGS__);
73 
74 #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
75 #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS	(10000)
76 
77 #define NSID_STR_LEN 10
78 
79 #define SPDK_CONTROLLER_NAME_MAX 512
80 
81 static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
82 
83 struct nvme_bdev_io {
84 	/** array of iovecs to transfer. */
85 	struct iovec *iovs;
86 
87 	/** Number of iovecs in iovs array. */
88 	int iovcnt;
89 
90 	/** Current iovec position. */
91 	int iovpos;
92 
93 	/** Offset in current iovec. */
94 	uint32_t iov_offset;
95 
96 	/** Offset in current iovec. */
97 	uint32_t fused_iov_offset;
98 
99 	/** array of iovecs to transfer. */
100 	struct iovec *fused_iovs;
101 
102 	/** Number of iovecs in iovs array. */
103 	int fused_iovcnt;
104 
105 	/** Current iovec position. */
106 	int fused_iovpos;
107 
108 	/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
109 	 *  being reset in a reset I/O.
110 	 */
111 	struct nvme_io_path *io_path;
112 
113 	/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
114 	struct spdk_nvme_cpl cpl;
115 
116 	/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
117 	struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
118 
119 	/** Keeps track if first of fused commands was submitted */
120 	bool first_fused_submitted;
121 
122 	/** Keeps track if first of fused commands was completed */
123 	bool first_fused_completed;
124 
125 	/* How many times the current I/O was retried. */
126 	int32_t retry_count;
127 
128 	/** Expiration value in ticks to retry the current I/O. */
129 	uint64_t retry_ticks;
130 
131 	/** Temporary pointer to zone report buffer */
132 	struct spdk_nvme_zns_zone_report *zone_report_buf;
133 
134 	/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
135 	uint64_t handled_zones;
136 
137 	/* Current tsc at submit time. */
138 	uint64_t submit_tsc;
139 
140 	/* Used to put nvme_bdev_io into the list */
141 	TAILQ_ENTRY(nvme_bdev_io) retry_link;
142 };
143 
144 struct nvme_probe_skip_entry {
145 	struct spdk_nvme_transport_id		trid;
146 	TAILQ_ENTRY(nvme_probe_skip_entry)	tailq;
147 };
148 /* All the controllers deleted by users via RPC are skipped by hotplug monitor */
149 static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
150 			g_skipped_nvme_ctrlrs);
151 
152 #define BDEV_NVME_DEFAULT_DIGESTS (SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) | \
153 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) | \
154 				   SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512))
155 
156 #define BDEV_NVME_DEFAULT_DHGROUPS (SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) | \
157 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) | \
158 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) | \
159 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) | \
160 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) | \
161 				    SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192))
162 
163 static struct spdk_bdev_nvme_opts g_opts = {
164 	.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
165 	.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
166 	.timeout_us = 0,
167 	.timeout_admin_us = 0,
168 	.transport_retry_count = 4,
169 	.arbitration_burst = 0,
170 	.low_priority_weight = 0,
171 	.medium_priority_weight = 0,
172 	.high_priority_weight = 0,
173 	.io_queue_requests = 0,
174 	.nvme_adminq_poll_period_us = 10000ULL,
175 	.nvme_ioq_poll_period_us = 0,
176 	.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
177 	.bdev_retry_count = 3,
178 	.ctrlr_loss_timeout_sec = 0,
179 	.reconnect_delay_sec = 0,
180 	.fast_io_fail_timeout_sec = 0,
181 	.transport_ack_timeout = 0,
182 	.disable_auto_failback = false,
183 	.generate_uuids = false,
184 	.transport_tos = 0,
185 	.nvme_error_stat = false,
186 	.io_path_stat = false,
187 	.allow_accel_sequence = false,
188 	.dhchap_digests = BDEV_NVME_DEFAULT_DIGESTS,
189 	.dhchap_dhgroups = BDEV_NVME_DEFAULT_DHGROUPS,
190 	.rdma_umr_per_io = false,
191 };
192 
193 #define NVME_HOTPLUG_POLL_PERIOD_MAX			10000000ULL
194 #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT		100000ULL
195 
196 static int g_hot_insert_nvme_controller_index = 0;
197 static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
198 static bool g_nvme_hotplug_enabled = false;
199 struct spdk_thread *g_bdev_nvme_init_thread;
200 static struct spdk_poller *g_hotplug_poller;
201 static struct spdk_poller *g_hotplug_probe_poller;
202 static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
203 
204 static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
205 		struct nvme_async_probe_ctx *ctx);
206 static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
207 		struct nvme_async_probe_ctx *ctx);
208 static int bdev_nvme_library_init(void);
209 static void bdev_nvme_library_fini(void);
210 static void _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch,
211 				      struct spdk_bdev_io *bdev_io);
212 static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
213 				     struct spdk_bdev_io *bdev_io);
214 static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
215 			   void *md, uint64_t lba_count, uint64_t lba,
216 			   uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
217 			   struct spdk_accel_sequence *seq);
218 static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
219 				 void *md, uint64_t lba_count, uint64_t lba);
220 static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
221 			    void *md, uint64_t lba_count, uint64_t lba,
222 			    uint32_t flags, struct spdk_memory_domain *domain, void *domain_ctx,
223 			    struct spdk_accel_sequence *seq,
224 			    union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13);
225 static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
226 				  void *md, uint64_t lba_count,
227 				  uint64_t zslba, uint32_t flags);
228 static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
229 			      void *md, uint64_t lba_count, uint64_t lba,
230 			      uint32_t flags);
231 static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
232 		struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
233 		int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
234 		uint32_t flags);
235 static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
236 				   uint32_t num_zones, struct spdk_bdev_zone_info *info);
237 static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
238 				     enum spdk_bdev_zone_action action);
239 static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
240 				     struct nvme_bdev_io *bio,
241 				     struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
242 static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
243 				 void *buf, size_t nbytes);
244 static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
245 				    void *buf, size_t nbytes, void *md_buf, size_t md_len);
246 static int bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
247 				     struct iovec *iov, int iovcnt, size_t nbytes,
248 				     void *md_buf, size_t md_len);
249 static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
250 			    struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
251 static void bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio);
252 static int bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
253 static int bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
254 static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
255 static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
256 
257 static struct nvme_ns *nvme_ns_alloc(void);
258 static void nvme_ns_free(struct nvme_ns *ns);
259 
260 static int
261 nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
262 {
263 	return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
264 }
265 
266 RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
267 
268 struct spdk_nvme_qpair *
269 bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
270 {
271 	struct nvme_ctrlr_channel *ctrlr_ch;
272 
273 	assert(ctrlr_io_ch != NULL);
274 
275 	ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
276 
277 	return ctrlr_ch->qpair->qpair;
278 }
279 
280 static int
281 bdev_nvme_get_ctx_size(void)
282 {
283 	return sizeof(struct nvme_bdev_io);
284 }
285 
286 static struct spdk_bdev_module nvme_if = {
287 	.name = "nvme",
288 	.async_fini = true,
289 	.module_init = bdev_nvme_library_init,
290 	.module_fini = bdev_nvme_library_fini,
291 	.config_json = bdev_nvme_config_json,
292 	.get_ctx_size = bdev_nvme_get_ctx_size,
293 
294 };
295 SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
296 
297 struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
298 pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
299 bool g_bdev_nvme_module_finish;
300 
301 struct nvme_bdev_ctrlr *
302 nvme_bdev_ctrlr_get_by_name(const char *name)
303 {
304 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
305 
306 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
307 		if (strcmp(name, nbdev_ctrlr->name) == 0) {
308 			break;
309 		}
310 	}
311 
312 	return nbdev_ctrlr;
313 }
314 
315 static struct nvme_ctrlr *
316 nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
317 			  const struct spdk_nvme_transport_id *trid, const char *hostnqn)
318 {
319 	const struct spdk_nvme_ctrlr_opts *opts;
320 	struct nvme_ctrlr *nvme_ctrlr;
321 
322 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
323 		opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
324 		if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0 &&
325 		    strcmp(hostnqn, opts->hostnqn) == 0) {
326 			break;
327 		}
328 	}
329 
330 	return nvme_ctrlr;
331 }
332 
333 struct nvme_ctrlr *
334 nvme_bdev_ctrlr_get_ctrlr_by_id(struct nvme_bdev_ctrlr *nbdev_ctrlr,
335 				uint16_t cntlid)
336 {
337 	struct nvme_ctrlr *nvme_ctrlr;
338 	const struct spdk_nvme_ctrlr_data *cdata;
339 
340 	TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
341 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
342 		if (cdata->cntlid == cntlid) {
343 			break;
344 		}
345 	}
346 
347 	return nvme_ctrlr;
348 }
349 
350 static struct nvme_bdev *
351 nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
352 {
353 	struct nvme_bdev *nbdev;
354 
355 	pthread_mutex_lock(&g_bdev_nvme_mutex);
356 	TAILQ_FOREACH(nbdev, &nbdev_ctrlr->bdevs, tailq) {
357 		if (nbdev->nsid == nsid) {
358 			break;
359 		}
360 	}
361 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
362 
363 	return nbdev;
364 }
365 
366 struct nvme_ns *
367 nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
368 {
369 	struct nvme_ns ns;
370 
371 	assert(nsid > 0);
372 
373 	ns.id = nsid;
374 	return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
375 }
376 
377 struct nvme_ns *
378 nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
379 {
380 	return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
381 }
382 
383 struct nvme_ns *
384 nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
385 {
386 	if (ns == NULL) {
387 		return NULL;
388 	}
389 
390 	return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
391 }
392 
393 static struct nvme_ctrlr *
394 nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid, const char *hostnqn)
395 {
396 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
397 	struct nvme_ctrlr	*nvme_ctrlr = NULL;
398 
399 	pthread_mutex_lock(&g_bdev_nvme_mutex);
400 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
401 		nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid, hostnqn);
402 		if (nvme_ctrlr != NULL) {
403 			break;
404 		}
405 	}
406 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
407 
408 	return nvme_ctrlr;
409 }
410 
411 struct nvme_ctrlr *
412 nvme_ctrlr_get_by_name(const char *name)
413 {
414 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
415 	struct nvme_ctrlr *nvme_ctrlr = NULL;
416 
417 	if (name == NULL) {
418 		return NULL;
419 	}
420 
421 	pthread_mutex_lock(&g_bdev_nvme_mutex);
422 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
423 	if (nbdev_ctrlr != NULL) {
424 		nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
425 	}
426 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
427 
428 	return nvme_ctrlr;
429 }
430 
431 void
432 nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
433 {
434 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
435 
436 	pthread_mutex_lock(&g_bdev_nvme_mutex);
437 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
438 		fn(nbdev_ctrlr, ctx);
439 	}
440 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
441 }
442 
443 struct nvme_ctrlr_channel_iter {
444 	nvme_ctrlr_for_each_channel_msg fn;
445 	nvme_ctrlr_for_each_channel_done cpl;
446 	struct spdk_io_channel_iter *i;
447 	void *ctx;
448 };
449 
450 void
451 nvme_ctrlr_for_each_channel_continue(struct nvme_ctrlr_channel_iter *iter, int status)
452 {
453 	spdk_for_each_channel_continue(iter->i, status);
454 }
455 
456 static void
457 nvme_ctrlr_each_channel_msg(struct spdk_io_channel_iter *i)
458 {
459 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
460 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
461 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
462 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
463 
464 	iter->i = i;
465 	iter->fn(iter, nvme_ctrlr, ctrlr_ch, iter->ctx);
466 }
467 
468 static void
469 nvme_ctrlr_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
470 {
471 	struct nvme_ctrlr_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
472 	struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
473 
474 	iter->i = i;
475 	iter->cpl(nvme_ctrlr, iter->ctx, status);
476 
477 	free(iter);
478 }
479 
480 void
481 nvme_ctrlr_for_each_channel(struct nvme_ctrlr *nvme_ctrlr,
482 			    nvme_ctrlr_for_each_channel_msg fn, void *ctx,
483 			    nvme_ctrlr_for_each_channel_done cpl)
484 {
485 	struct nvme_ctrlr_channel_iter *iter;
486 
487 	assert(nvme_ctrlr != NULL && fn != NULL);
488 
489 	iter = calloc(1, sizeof(struct nvme_ctrlr_channel_iter));
490 	if (iter == NULL) {
491 		SPDK_ERRLOG("Unable to allocate iterator\n");
492 		assert(false);
493 		return;
494 	}
495 
496 	iter->fn = fn;
497 	iter->cpl = cpl;
498 	iter->ctx = ctx;
499 
500 	spdk_for_each_channel(nvme_ctrlr, nvme_ctrlr_each_channel_msg,
501 			      iter, nvme_ctrlr_each_channel_cpl);
502 }
503 
504 struct nvme_bdev_channel_iter {
505 	nvme_bdev_for_each_channel_msg fn;
506 	nvme_bdev_for_each_channel_done cpl;
507 	struct spdk_io_channel_iter *i;
508 	void *ctx;
509 };
510 
511 void
512 nvme_bdev_for_each_channel_continue(struct nvme_bdev_channel_iter *iter, int status)
513 {
514 	spdk_for_each_channel_continue(iter->i, status);
515 }
516 
517 static void
518 nvme_bdev_each_channel_msg(struct spdk_io_channel_iter *i)
519 {
520 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
521 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
522 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
523 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
524 
525 	iter->i = i;
526 	iter->fn(iter, nbdev, nbdev_ch, iter->ctx);
527 }
528 
529 static void
530 nvme_bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
531 {
532 	struct nvme_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
533 	struct nvme_bdev *nbdev = spdk_io_channel_iter_get_io_device(i);
534 
535 	iter->i = i;
536 	iter->cpl(nbdev, iter->ctx, status);
537 
538 	free(iter);
539 }
540 
541 void
542 nvme_bdev_for_each_channel(struct nvme_bdev *nbdev,
543 			   nvme_bdev_for_each_channel_msg fn, void *ctx,
544 			   nvme_bdev_for_each_channel_done cpl)
545 {
546 	struct nvme_bdev_channel_iter *iter;
547 
548 	assert(nbdev != NULL && fn != NULL);
549 
550 	iter = calloc(1, sizeof(struct nvme_bdev_channel_iter));
551 	if (iter == NULL) {
552 		SPDK_ERRLOG("Unable to allocate iterator\n");
553 		assert(false);
554 		return;
555 	}
556 
557 	iter->fn = fn;
558 	iter->cpl = cpl;
559 	iter->ctx = ctx;
560 
561 	spdk_for_each_channel(nbdev, nvme_bdev_each_channel_msg, iter,
562 			      nvme_bdev_each_channel_cpl);
563 }
564 
565 void
566 nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
567 {
568 	const char *trtype_str;
569 	const char *adrfam_str;
570 
571 	trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
572 	if (trtype_str) {
573 		spdk_json_write_named_string(w, "trtype", trtype_str);
574 	}
575 
576 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
577 	if (adrfam_str) {
578 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
579 	}
580 
581 	if (trid->traddr[0] != '\0') {
582 		spdk_json_write_named_string(w, "traddr", trid->traddr);
583 	}
584 
585 	if (trid->trsvcid[0] != '\0') {
586 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
587 	}
588 
589 	if (trid->subnqn[0] != '\0') {
590 		spdk_json_write_named_string(w, "subnqn", trid->subnqn);
591 	}
592 }
593 
594 static void
595 nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
596 		       struct nvme_ctrlr *nvme_ctrlr)
597 {
598 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
599 	pthread_mutex_lock(&g_bdev_nvme_mutex);
600 
601 	TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
602 	if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
603 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
604 
605 		return;
606 	}
607 	TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
608 
609 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
610 
611 	assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
612 
613 	free(nbdev_ctrlr->name);
614 	free(nbdev_ctrlr);
615 }
616 
617 static void
618 _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
619 {
620 	struct nvme_path_id *path_id, *tmp_path;
621 	struct nvme_ns *ns, *tmp_ns;
622 
623 	free(nvme_ctrlr->copied_ana_desc);
624 	spdk_free(nvme_ctrlr->ana_log_page);
625 
626 	if (nvme_ctrlr->opal_dev) {
627 		spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
628 		nvme_ctrlr->opal_dev = NULL;
629 	}
630 
631 	if (nvme_ctrlr->nbdev_ctrlr) {
632 		nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
633 	}
634 
635 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
636 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
637 		nvme_ns_free(ns);
638 	}
639 
640 	TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
641 		TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
642 		free(path_id);
643 	}
644 
645 	pthread_mutex_destroy(&nvme_ctrlr->mutex);
646 	spdk_keyring_put_key(nvme_ctrlr->psk);
647 	spdk_keyring_put_key(nvme_ctrlr->dhchap_key);
648 	spdk_keyring_put_key(nvme_ctrlr->dhchap_ctrlr_key);
649 	free(nvme_ctrlr);
650 
651 	pthread_mutex_lock(&g_bdev_nvme_mutex);
652 	if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
653 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
654 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
655 		spdk_bdev_module_fini_done();
656 		return;
657 	}
658 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
659 }
660 
661 static int
662 nvme_detach_poller(void *arg)
663 {
664 	struct nvme_ctrlr *nvme_ctrlr = arg;
665 	int rc;
666 
667 	rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
668 	if (rc != -EAGAIN) {
669 		spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
670 		_nvme_ctrlr_delete(nvme_ctrlr);
671 	}
672 
673 	return SPDK_POLLER_BUSY;
674 }
675 
676 static void
677 nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
678 {
679 	int rc;
680 
681 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
682 
683 	if (spdk_interrupt_mode_is_enabled()) {
684 		spdk_interrupt_unregister(&nvme_ctrlr->intr);
685 	}
686 
687 	/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
688 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
689 
690 	/* If we got here, the reset/detach poller cannot be active */
691 	assert(nvme_ctrlr->reset_detach_poller == NULL);
692 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
693 					  nvme_ctrlr, 1000);
694 	if (nvme_ctrlr->reset_detach_poller == NULL) {
695 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to register detach poller\n");
696 		goto error;
697 	}
698 
699 	rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
700 	if (rc != 0) {
701 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to detach the NVMe controller\n");
702 		goto error;
703 	}
704 
705 	return;
706 error:
707 	/* We don't have a good way to handle errors here, so just do what we can and delete the
708 	 * controller without detaching the underlying NVMe device.
709 	 */
710 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
711 	_nvme_ctrlr_delete(nvme_ctrlr);
712 }
713 
714 static void
715 nvme_ctrlr_unregister_cb(void *io_device)
716 {
717 	struct nvme_ctrlr *nvme_ctrlr = io_device;
718 
719 	nvme_ctrlr_delete(nvme_ctrlr);
720 }
721 
722 static void
723 nvme_ctrlr_unregister(void *ctx)
724 {
725 	struct nvme_ctrlr *nvme_ctrlr = ctx;
726 
727 	spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
728 }
729 
730 static bool
731 nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
732 {
733 	if (!nvme_ctrlr->destruct) {
734 		return false;
735 	}
736 
737 	if (nvme_ctrlr->ref > 0) {
738 		return false;
739 	}
740 
741 	if (nvme_ctrlr->resetting) {
742 		return false;
743 	}
744 
745 	if (nvme_ctrlr->ana_log_page_updating) {
746 		return false;
747 	}
748 
749 	if (nvme_ctrlr->io_path_cache_clearing) {
750 		return false;
751 	}
752 
753 	return true;
754 }
755 
756 static void
757 nvme_ctrlr_put_ref(struct nvme_ctrlr *nvme_ctrlr)
758 {
759 	pthread_mutex_lock(&nvme_ctrlr->mutex);
760 	SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
761 
762 	assert(nvme_ctrlr->ref > 0);
763 	nvme_ctrlr->ref--;
764 
765 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
766 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
767 		return;
768 	}
769 
770 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
771 
772 	spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
773 }
774 
775 static void
776 nvme_ctrlr_get_ref(struct nvme_ctrlr *nvme_ctrlr)
777 {
778 	pthread_mutex_lock(&nvme_ctrlr->mutex);
779 	nvme_ctrlr->ref++;
780 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
781 }
782 
783 static void
784 bdev_nvme_clear_current_io_path(struct nvme_bdev_channel *nbdev_ch)
785 {
786 	nbdev_ch->current_io_path = NULL;
787 	nbdev_ch->rr_counter = 0;
788 }
789 
790 static struct nvme_io_path *
791 _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
792 {
793 	struct nvme_io_path *io_path;
794 
795 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
796 		if (io_path->nvme_ns == nvme_ns) {
797 			break;
798 		}
799 	}
800 
801 	return io_path;
802 }
803 
804 static struct nvme_io_path *
805 nvme_io_path_alloc(void)
806 {
807 	struct nvme_io_path *io_path;
808 
809 	io_path = calloc(1, sizeof(*io_path));
810 	if (io_path == NULL) {
811 		SPDK_ERRLOG("Failed to alloc io_path.\n");
812 		return NULL;
813 	}
814 
815 	if (g_opts.io_path_stat) {
816 		io_path->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
817 		if (io_path->stat == NULL) {
818 			free(io_path);
819 			SPDK_ERRLOG("Failed to alloc io_path stat.\n");
820 			return NULL;
821 		}
822 		spdk_bdev_reset_io_stat(io_path->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
823 	}
824 
825 	return io_path;
826 }
827 
828 static void
829 nvme_io_path_free(struct nvme_io_path *io_path)
830 {
831 	free(io_path->stat);
832 	free(io_path);
833 }
834 
835 static int
836 _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
837 {
838 	struct nvme_io_path *io_path;
839 	struct spdk_io_channel *ch;
840 	struct nvme_ctrlr_channel *ctrlr_ch;
841 	struct nvme_qpair *nvme_qpair;
842 
843 	io_path = nvme_io_path_alloc();
844 	if (io_path == NULL) {
845 		return -ENOMEM;
846 	}
847 
848 	io_path->nvme_ns = nvme_ns;
849 
850 	ch = spdk_get_io_channel(nvme_ns->ctrlr);
851 	if (ch == NULL) {
852 		nvme_io_path_free(io_path);
853 		SPDK_ERRLOG("Failed to alloc io_channel.\n");
854 		return -ENOMEM;
855 	}
856 
857 	ctrlr_ch = spdk_io_channel_get_ctx(ch);
858 
859 	nvme_qpair = ctrlr_ch->qpair;
860 	assert(nvme_qpair != NULL);
861 
862 	io_path->qpair = nvme_qpair;
863 	TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
864 
865 	io_path->nbdev_ch = nbdev_ch;
866 	STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
867 
868 	bdev_nvme_clear_current_io_path(nbdev_ch);
869 
870 	return 0;
871 }
872 
873 static void
874 bdev_nvme_clear_retry_io_path(struct nvme_bdev_channel *nbdev_ch,
875 			      struct nvme_io_path *io_path)
876 {
877 	struct nvme_bdev_io *bio;
878 
879 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
880 		if (bio->io_path == io_path) {
881 			bio->io_path = NULL;
882 		}
883 	}
884 }
885 
886 static void
887 _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
888 {
889 	struct spdk_io_channel *ch;
890 	struct nvme_qpair *nvme_qpair;
891 	struct nvme_ctrlr_channel *ctrlr_ch;
892 	struct nvme_bdev *nbdev;
893 
894 	nbdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(nbdev_ch));
895 
896 	/* Add the statistics to nvme_ns before this path is destroyed. */
897 	pthread_mutex_lock(&nbdev->mutex);
898 	if (nbdev->ref != 0 && io_path->nvme_ns->stat != NULL && io_path->stat != NULL) {
899 		spdk_bdev_add_io_stat(io_path->nvme_ns->stat, io_path->stat);
900 	}
901 	pthread_mutex_unlock(&nbdev->mutex);
902 
903 	bdev_nvme_clear_current_io_path(nbdev_ch);
904 	bdev_nvme_clear_retry_io_path(nbdev_ch, io_path);
905 
906 	STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
907 	io_path->nbdev_ch = NULL;
908 
909 	nvme_qpair = io_path->qpair;
910 	assert(nvme_qpair != NULL);
911 
912 	ctrlr_ch = nvme_qpair->ctrlr_ch;
913 	assert(ctrlr_ch != NULL);
914 
915 	ch = spdk_io_channel_from_ctx(ctrlr_ch);
916 	spdk_put_io_channel(ch);
917 
918 	/* After an io_path is removed, I/Os submitted to it may complete and update statistics
919 	 * of the io_path. To avoid heap-use-after-free error from this case, do not free the
920 	 * io_path here but free the io_path when the associated qpair is freed. It is ensured
921 	 * that all I/Os submitted to the io_path are completed when the associated qpair is freed.
922 	 */
923 }
924 
925 static void
926 _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
927 {
928 	struct nvme_io_path *io_path, *tmp_io_path;
929 
930 	STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
931 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
932 	}
933 }
934 
935 static int
936 bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
937 {
938 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
939 	struct nvme_bdev *nbdev = io_device;
940 	struct nvme_ns *nvme_ns;
941 	int rc;
942 
943 	STAILQ_INIT(&nbdev_ch->io_path_list);
944 	TAILQ_INIT(&nbdev_ch->retry_io_list);
945 
946 	pthread_mutex_lock(&nbdev->mutex);
947 
948 	nbdev_ch->mp_policy = nbdev->mp_policy;
949 	nbdev_ch->mp_selector = nbdev->mp_selector;
950 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
951 
952 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
953 		rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
954 		if (rc != 0) {
955 			pthread_mutex_unlock(&nbdev->mutex);
956 
957 			_bdev_nvme_delete_io_paths(nbdev_ch);
958 			return rc;
959 		}
960 	}
961 	pthread_mutex_unlock(&nbdev->mutex);
962 
963 	return 0;
964 }
965 
966 /* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
967  * If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
968  */
969 static inline void
970 __bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
971 			const struct spdk_nvme_cpl *cpl)
972 {
973 	spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
974 			  (uintptr_t)bdev_io);
975 	if (cpl) {
976 		spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
977 	} else {
978 		spdk_bdev_io_complete(bdev_io, status);
979 	}
980 }
981 
982 static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch);
983 
984 static void
985 bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
986 {
987 	struct nvme_bdev_channel *nbdev_ch = ctx_buf;
988 
989 	bdev_nvme_abort_retry_ios(nbdev_ch);
990 	_bdev_nvme_delete_io_paths(nbdev_ch);
991 }
992 
993 static inline bool
994 bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
995 {
996 	switch (io_type) {
997 	case SPDK_BDEV_IO_TYPE_RESET:
998 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
999 	case SPDK_BDEV_IO_TYPE_ABORT:
1000 		return true;
1001 	default:
1002 		break;
1003 	}
1004 
1005 	return false;
1006 }
1007 
1008 static inline bool
1009 nvme_ns_is_active(struct nvme_ns *nvme_ns)
1010 {
1011 	if (spdk_unlikely(nvme_ns->ana_state_updating)) {
1012 		return false;
1013 	}
1014 
1015 	if (spdk_unlikely(nvme_ns->ns == NULL)) {
1016 		return false;
1017 	}
1018 
1019 	return true;
1020 }
1021 
1022 static inline bool
1023 nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
1024 {
1025 	if (spdk_unlikely(!nvme_ns_is_active(nvme_ns))) {
1026 		return false;
1027 	}
1028 
1029 	switch (nvme_ns->ana_state) {
1030 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
1031 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1032 		return true;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 static inline bool
1041 nvme_qpair_is_connected(struct nvme_qpair *nvme_qpair)
1042 {
1043 	if (spdk_unlikely(nvme_qpair->qpair == NULL)) {
1044 		return false;
1045 	}
1046 
1047 	if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1048 			  SPDK_NVME_QPAIR_FAILURE_NONE)) {
1049 		return false;
1050 	}
1051 
1052 	if (spdk_unlikely(nvme_qpair->ctrlr_ch->reset_iter != NULL)) {
1053 		return false;
1054 	}
1055 
1056 	return true;
1057 }
1058 
1059 static inline bool
1060 nvme_io_path_is_available(struct nvme_io_path *io_path)
1061 {
1062 	if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1063 		return false;
1064 	}
1065 
1066 	if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
1067 		return false;
1068 	}
1069 
1070 	return true;
1071 }
1072 
1073 static inline bool
1074 nvme_ctrlr_is_failed(struct nvme_ctrlr *nvme_ctrlr)
1075 {
1076 	if (nvme_ctrlr->destruct) {
1077 		return true;
1078 	}
1079 
1080 	if (nvme_ctrlr->fast_io_fail_timedout) {
1081 		return true;
1082 	}
1083 
1084 	if (nvme_ctrlr->resetting) {
1085 		if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
1086 			return false;
1087 		} else {
1088 			return true;
1089 		}
1090 	}
1091 
1092 	if (nvme_ctrlr->reconnect_is_delayed) {
1093 		return false;
1094 	}
1095 
1096 	if (nvme_ctrlr->disabled) {
1097 		return true;
1098 	}
1099 
1100 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1101 		return true;
1102 	} else {
1103 		return false;
1104 	}
1105 }
1106 
1107 static bool
1108 nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
1109 {
1110 	if (nvme_ctrlr->destruct) {
1111 		return false;
1112 	}
1113 
1114 	if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
1115 		return false;
1116 	}
1117 
1118 	if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
1119 		return false;
1120 	}
1121 
1122 	if (nvme_ctrlr->disabled) {
1123 		return false;
1124 	}
1125 
1126 	return true;
1127 }
1128 
1129 /* Simulate circular linked list. */
1130 static inline struct nvme_io_path *
1131 nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
1132 {
1133 	struct nvme_io_path *next_path;
1134 
1135 	if (prev_path != NULL) {
1136 		next_path = STAILQ_NEXT(prev_path, stailq);
1137 		if (next_path != NULL) {
1138 			return next_path;
1139 		}
1140 	}
1141 
1142 	return STAILQ_FIRST(&nbdev_ch->io_path_list);
1143 }
1144 
1145 static struct nvme_io_path *
1146 _bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1147 {
1148 	struct nvme_io_path *io_path, *start, *non_optimized = NULL;
1149 
1150 	start = nvme_io_path_get_next(nbdev_ch, nbdev_ch->current_io_path);
1151 
1152 	io_path = start;
1153 	do {
1154 		if (spdk_likely(nvme_io_path_is_available(io_path))) {
1155 			switch (io_path->nvme_ns->ana_state) {
1156 			case SPDK_NVME_ANA_OPTIMIZED_STATE:
1157 				nbdev_ch->current_io_path = io_path;
1158 				return io_path;
1159 			case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1160 				if (non_optimized == NULL) {
1161 					non_optimized = io_path;
1162 				}
1163 				break;
1164 			default:
1165 				assert(false);
1166 				break;
1167 			}
1168 		}
1169 		io_path = nvme_io_path_get_next(nbdev_ch, io_path);
1170 	} while (io_path != start);
1171 
1172 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
1173 		/* We come here only if there is no optimized path. Cache even non_optimized
1174 		 * path for load balance across multiple non_optimized paths.
1175 		 */
1176 		nbdev_ch->current_io_path = non_optimized;
1177 	}
1178 
1179 	return non_optimized;
1180 }
1181 
1182 static struct nvme_io_path *
1183 _bdev_nvme_find_io_path_min_qd(struct nvme_bdev_channel *nbdev_ch)
1184 {
1185 	struct nvme_io_path *io_path;
1186 	struct nvme_io_path *optimized = NULL, *non_optimized = NULL;
1187 	uint32_t opt_min_qd = UINT32_MAX, non_opt_min_qd = UINT32_MAX;
1188 	uint32_t num_outstanding_reqs;
1189 
1190 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1191 		if (spdk_unlikely(!nvme_qpair_is_connected(io_path->qpair))) {
1192 			/* The device is currently resetting. */
1193 			continue;
1194 		}
1195 
1196 		if (spdk_unlikely(!nvme_ns_is_active(io_path->nvme_ns))) {
1197 			continue;
1198 		}
1199 
1200 		num_outstanding_reqs = spdk_nvme_qpair_get_num_outstanding_reqs(io_path->qpair->qpair);
1201 		switch (io_path->nvme_ns->ana_state) {
1202 		case SPDK_NVME_ANA_OPTIMIZED_STATE:
1203 			if (num_outstanding_reqs < opt_min_qd) {
1204 				opt_min_qd = num_outstanding_reqs;
1205 				optimized = io_path;
1206 			}
1207 			break;
1208 		case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
1209 			if (num_outstanding_reqs < non_opt_min_qd) {
1210 				non_opt_min_qd = num_outstanding_reqs;
1211 				non_optimized = io_path;
1212 			}
1213 			break;
1214 		default:
1215 			break;
1216 		}
1217 	}
1218 
1219 	/* don't cache io path for BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH selector */
1220 	if (optimized != NULL) {
1221 		return optimized;
1222 	}
1223 
1224 	return non_optimized;
1225 }
1226 
1227 static inline struct nvme_io_path *
1228 bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
1229 {
1230 	if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
1231 		if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE) {
1232 			return nbdev_ch->current_io_path;
1233 		} else if (nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1234 			if (++nbdev_ch->rr_counter < nbdev_ch->rr_min_io) {
1235 				return nbdev_ch->current_io_path;
1236 			}
1237 			nbdev_ch->rr_counter = 0;
1238 		}
1239 	}
1240 
1241 	if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE ||
1242 	    nbdev_ch->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
1243 		return _bdev_nvme_find_io_path(nbdev_ch);
1244 	} else {
1245 		return _bdev_nvme_find_io_path_min_qd(nbdev_ch);
1246 	}
1247 }
1248 
1249 /* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
1250  * or false otherwise.
1251  *
1252  * If any io_path has an active qpair but find_io_path() returned NULL, its namespace
1253  * is likely to be non-accessible now but may become accessible.
1254  *
1255  * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
1256  * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
1257  * when starting to reset it but it is set to failed when the reset failed. Hence, if
1258  * a ctrlr is unfailed, it is likely that it works fine or is resetting.
1259  */
1260 static bool
1261 any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
1262 {
1263 	struct nvme_io_path *io_path;
1264 
1265 	if (nbdev_ch->resetting) {
1266 		return false;
1267 	}
1268 
1269 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
1270 		if (io_path->nvme_ns->ana_transition_timedout) {
1271 			continue;
1272 		}
1273 
1274 		if (nvme_qpair_is_connected(io_path->qpair) ||
1275 		    !nvme_ctrlr_is_failed(io_path->qpair->ctrlr)) {
1276 			return true;
1277 		}
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 static void
1284 bdev_nvme_retry_io(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
1285 {
1286 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
1287 	struct spdk_io_channel *ch;
1288 
1289 	if (nbdev_io->io_path != NULL && nvme_io_path_is_available(nbdev_io->io_path)) {
1290 		_bdev_nvme_submit_request(nbdev_ch, bdev_io);
1291 	} else {
1292 		ch = spdk_io_channel_from_ctx(nbdev_ch);
1293 		bdev_nvme_submit_request(ch, bdev_io);
1294 	}
1295 }
1296 
1297 static int
1298 bdev_nvme_retry_ios(void *arg)
1299 {
1300 	struct nvme_bdev_channel *nbdev_ch = arg;
1301 	struct nvme_bdev_io *bio, *tmp_bio;
1302 	uint64_t now, delay_us;
1303 
1304 	now = spdk_get_ticks();
1305 
1306 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1307 		if (bio->retry_ticks > now) {
1308 			break;
1309 		}
1310 
1311 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1312 
1313 		bdev_nvme_retry_io(nbdev_ch, spdk_bdev_io_from_ctx(bio));
1314 	}
1315 
1316 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1317 
1318 	bio = TAILQ_FIRST(&nbdev_ch->retry_io_list);
1319 	if (bio != NULL) {
1320 		delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
1321 
1322 		nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1323 					    delay_us);
1324 	}
1325 
1326 	return SPDK_POLLER_BUSY;
1327 }
1328 
1329 static void
1330 bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
1331 			 struct nvme_bdev_io *bio, uint64_t delay_ms)
1332 {
1333 	struct nvme_bdev_io *tmp_bio;
1334 
1335 	bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
1336 
1337 	TAILQ_FOREACH_REVERSE(tmp_bio, &nbdev_ch->retry_io_list, retry_io_head, retry_link) {
1338 		if (tmp_bio->retry_ticks <= bio->retry_ticks) {
1339 			TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bio, bio,
1340 					   retry_link);
1341 			return;
1342 		}
1343 	}
1344 
1345 	/* No earlier I/Os were found. This I/O must be the new head. */
1346 	TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bio, retry_link);
1347 
1348 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1349 
1350 	nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
1351 				    delay_ms * 1000ULL);
1352 }
1353 
1354 static void
1355 bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
1356 {
1357 	struct nvme_bdev_io *bio, *tmp_bio;
1358 
1359 	TAILQ_FOREACH_SAFE(bio, &nbdev_ch->retry_io_list, retry_link, tmp_bio) {
1360 		TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1361 		__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1362 	}
1363 
1364 	spdk_poller_unregister(&nbdev_ch->retry_io_poller);
1365 }
1366 
1367 static int
1368 bdev_nvme_abort_retry_io(struct nvme_bdev_channel *nbdev_ch,
1369 			 struct nvme_bdev_io *bio_to_abort)
1370 {
1371 	struct nvme_bdev_io *bio;
1372 
1373 	TAILQ_FOREACH(bio, &nbdev_ch->retry_io_list, retry_link) {
1374 		if (bio == bio_to_abort) {
1375 			TAILQ_REMOVE(&nbdev_ch->retry_io_list, bio, retry_link);
1376 			__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_ABORTED, NULL);
1377 			return 0;
1378 		}
1379 	}
1380 
1381 	return -ENOENT;
1382 }
1383 
1384 static void
1385 bdev_nvme_update_nvme_error_stat(struct spdk_bdev_io *bdev_io, const struct spdk_nvme_cpl *cpl)
1386 {
1387 	struct nvme_bdev *nbdev;
1388 	uint16_t sct, sc;
1389 
1390 	assert(spdk_nvme_cpl_is_error(cpl));
1391 
1392 	nbdev = bdev_io->bdev->ctxt;
1393 
1394 	if (nbdev->err_stat == NULL) {
1395 		return;
1396 	}
1397 
1398 	sct = cpl->status.sct;
1399 	sc = cpl->status.sc;
1400 
1401 	pthread_mutex_lock(&nbdev->mutex);
1402 
1403 	nbdev->err_stat->status_type[sct]++;
1404 	switch (sct) {
1405 	case SPDK_NVME_SCT_GENERIC:
1406 	case SPDK_NVME_SCT_COMMAND_SPECIFIC:
1407 	case SPDK_NVME_SCT_MEDIA_ERROR:
1408 	case SPDK_NVME_SCT_PATH:
1409 		nbdev->err_stat->status[sct][sc]++;
1410 		break;
1411 	default:
1412 		break;
1413 	}
1414 
1415 	pthread_mutex_unlock(&nbdev->mutex);
1416 }
1417 
1418 static inline void
1419 bdev_nvme_update_io_path_stat(struct nvme_bdev_io *bio)
1420 {
1421 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1422 	uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
1423 	uint32_t blocklen = bdev_io->bdev->blocklen;
1424 	struct spdk_bdev_io_stat *stat;
1425 	uint64_t tsc_diff;
1426 
1427 	if (bio->io_path->stat == NULL) {
1428 		return;
1429 	}
1430 
1431 	tsc_diff = spdk_get_ticks() - bio->submit_tsc;
1432 	stat = bio->io_path->stat;
1433 
1434 	switch (bdev_io->type) {
1435 	case SPDK_BDEV_IO_TYPE_READ:
1436 		stat->bytes_read += num_blocks * blocklen;
1437 		stat->num_read_ops++;
1438 		stat->read_latency_ticks += tsc_diff;
1439 		if (stat->max_read_latency_ticks < tsc_diff) {
1440 			stat->max_read_latency_ticks = tsc_diff;
1441 		}
1442 		if (stat->min_read_latency_ticks > tsc_diff) {
1443 			stat->min_read_latency_ticks = tsc_diff;
1444 		}
1445 		break;
1446 	case SPDK_BDEV_IO_TYPE_WRITE:
1447 		stat->bytes_written += num_blocks * blocklen;
1448 		stat->num_write_ops++;
1449 		stat->write_latency_ticks += tsc_diff;
1450 		if (stat->max_write_latency_ticks < tsc_diff) {
1451 			stat->max_write_latency_ticks = tsc_diff;
1452 		}
1453 		if (stat->min_write_latency_ticks > tsc_diff) {
1454 			stat->min_write_latency_ticks = tsc_diff;
1455 		}
1456 		break;
1457 	case SPDK_BDEV_IO_TYPE_UNMAP:
1458 		stat->bytes_unmapped += num_blocks * blocklen;
1459 		stat->num_unmap_ops++;
1460 		stat->unmap_latency_ticks += tsc_diff;
1461 		if (stat->max_unmap_latency_ticks < tsc_diff) {
1462 			stat->max_unmap_latency_ticks = tsc_diff;
1463 		}
1464 		if (stat->min_unmap_latency_ticks > tsc_diff) {
1465 			stat->min_unmap_latency_ticks = tsc_diff;
1466 		}
1467 		break;
1468 	case SPDK_BDEV_IO_TYPE_ZCOPY:
1469 		/* Track the data in the start phase only */
1470 		if (!bdev_io->u.bdev.zcopy.start) {
1471 			break;
1472 		}
1473 		if (bdev_io->u.bdev.zcopy.populate) {
1474 			stat->bytes_read += num_blocks * blocklen;
1475 			stat->num_read_ops++;
1476 			stat->read_latency_ticks += tsc_diff;
1477 			if (stat->max_read_latency_ticks < tsc_diff) {
1478 				stat->max_read_latency_ticks = tsc_diff;
1479 			}
1480 			if (stat->min_read_latency_ticks > tsc_diff) {
1481 				stat->min_read_latency_ticks = tsc_diff;
1482 			}
1483 		} else {
1484 			stat->bytes_written += num_blocks * blocklen;
1485 			stat->num_write_ops++;
1486 			stat->write_latency_ticks += tsc_diff;
1487 			if (stat->max_write_latency_ticks < tsc_diff) {
1488 				stat->max_write_latency_ticks = tsc_diff;
1489 			}
1490 			if (stat->min_write_latency_ticks > tsc_diff) {
1491 				stat->min_write_latency_ticks = tsc_diff;
1492 			}
1493 		}
1494 		break;
1495 	case SPDK_BDEV_IO_TYPE_COPY:
1496 		stat->bytes_copied += num_blocks * blocklen;
1497 		stat->num_copy_ops++;
1498 		stat->copy_latency_ticks += tsc_diff;
1499 		if (stat->max_copy_latency_ticks < tsc_diff) {
1500 			stat->max_copy_latency_ticks = tsc_diff;
1501 		}
1502 		if (stat->min_copy_latency_ticks > tsc_diff) {
1503 			stat->min_copy_latency_ticks = tsc_diff;
1504 		}
1505 		break;
1506 	default:
1507 		break;
1508 	}
1509 }
1510 
1511 static bool
1512 bdev_nvme_check_retry_io(struct nvme_bdev_io *bio,
1513 			 const struct spdk_nvme_cpl *cpl,
1514 			 struct nvme_bdev_channel *nbdev_ch,
1515 			 uint64_t *_delay_ms)
1516 {
1517 	struct nvme_io_path *io_path = bio->io_path;
1518 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
1519 	const struct spdk_nvme_ctrlr_data *cdata;
1520 
1521 	if (spdk_nvme_cpl_is_path_error(cpl) ||
1522 	    spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
1523 	    !nvme_io_path_is_available(io_path) ||
1524 	    !nvme_ctrlr_is_available(nvme_ctrlr)) {
1525 		bdev_nvme_clear_current_io_path(nbdev_ch);
1526 		bio->io_path = NULL;
1527 		if (spdk_nvme_cpl_is_ana_error(cpl)) {
1528 			if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
1529 				io_path->nvme_ns->ana_state_updating = true;
1530 			}
1531 		}
1532 		if (!any_io_path_may_become_available(nbdev_ch)) {
1533 			return false;
1534 		}
1535 		*_delay_ms = 0;
1536 	} else {
1537 		bio->retry_count++;
1538 
1539 		cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
1540 
1541 		if (cpl->status.crd != 0) {
1542 			*_delay_ms = cdata->crdt[cpl->status.crd] * 100;
1543 		} else {
1544 			*_delay_ms = 0;
1545 		}
1546 	}
1547 
1548 	return true;
1549 }
1550 
1551 static inline void
1552 bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
1553 				  const struct spdk_nvme_cpl *cpl)
1554 {
1555 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1556 	struct nvme_bdev_channel *nbdev_ch;
1557 	uint64_t delay_ms;
1558 
1559 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1560 
1561 	if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
1562 		bdev_nvme_update_io_path_stat(bio);
1563 		goto complete;
1564 	}
1565 
1566 	/* Update error counts before deciding if retry is needed.
1567 	 * Hence, error counts may be more than the number of I/O errors.
1568 	 */
1569 	bdev_nvme_update_nvme_error_stat(bdev_io, cpl);
1570 
1571 	if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
1572 	    (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
1573 		goto complete;
1574 	}
1575 
1576 	/* At this point we don't know whether the sequence was successfully executed or not, so we
1577 	 * cannot retry the IO */
1578 	if (bdev_io->u.bdev.accel_sequence != NULL) {
1579 		goto complete;
1580 	}
1581 
1582 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1583 
1584 	if (bdev_nvme_check_retry_io(bio, cpl, nbdev_ch, &delay_ms)) {
1585 		bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
1586 		return;
1587 	}
1588 
1589 complete:
1590 	bio->retry_count = 0;
1591 	bio->submit_tsc = 0;
1592 	bdev_io->u.bdev.accel_sequence = NULL;
1593 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
1594 }
1595 
1596 static inline void
1597 bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
1598 {
1599 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1600 	struct nvme_bdev_channel *nbdev_ch;
1601 	enum spdk_bdev_io_status io_status;
1602 
1603 	assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
1604 
1605 	switch (rc) {
1606 	case 0:
1607 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1608 		break;
1609 	case -ENOMEM:
1610 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1611 		break;
1612 	case -ENXIO:
1613 		if (g_opts.bdev_retry_count == -1 || bio->retry_count < g_opts.bdev_retry_count) {
1614 			nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
1615 
1616 			bdev_nvme_clear_current_io_path(nbdev_ch);
1617 			bio->io_path = NULL;
1618 
1619 			if (any_io_path_may_become_available(nbdev_ch)) {
1620 				bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
1621 				return;
1622 			}
1623 		}
1624 
1625 	/* fallthrough */
1626 	default:
1627 		spdk_accel_sequence_abort(bdev_io->u.bdev.accel_sequence);
1628 		bdev_io->u.bdev.accel_sequence = NULL;
1629 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1630 		break;
1631 	}
1632 
1633 	bio->retry_count = 0;
1634 	bio->submit_tsc = 0;
1635 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1636 }
1637 
1638 static inline void
1639 bdev_nvme_admin_complete(struct nvme_bdev_io *bio, int rc)
1640 {
1641 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
1642 	enum spdk_bdev_io_status io_status;
1643 
1644 	switch (rc) {
1645 	case 0:
1646 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1647 		break;
1648 	case -ENOMEM:
1649 		io_status = SPDK_BDEV_IO_STATUS_NOMEM;
1650 		break;
1651 	case -ENXIO:
1652 	/* fallthrough */
1653 	default:
1654 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
1655 		break;
1656 	}
1657 
1658 	__bdev_nvme_io_complete(bdev_io, io_status, NULL);
1659 }
1660 
1661 static void
1662 bdev_nvme_clear_io_path_caches_done(struct nvme_ctrlr *nvme_ctrlr,
1663 				    void *ctx, int status)
1664 {
1665 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1666 
1667 	assert(nvme_ctrlr->io_path_cache_clearing == true);
1668 	nvme_ctrlr->io_path_cache_clearing = false;
1669 
1670 	if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
1671 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1672 		return;
1673 	}
1674 
1675 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1676 
1677 	nvme_ctrlr_unregister(nvme_ctrlr);
1678 }
1679 
1680 static void
1681 _bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
1682 {
1683 	struct nvme_io_path *io_path;
1684 
1685 	TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
1686 		if (io_path->nbdev_ch == NULL) {
1687 			continue;
1688 		}
1689 		bdev_nvme_clear_current_io_path(io_path->nbdev_ch);
1690 	}
1691 }
1692 
1693 static void
1694 bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel_iter *i,
1695 			      struct nvme_ctrlr *nvme_ctrlr,
1696 			      struct nvme_ctrlr_channel *ctrlr_ch,
1697 			      void *ctx)
1698 {
1699 	assert(ctrlr_ch->qpair != NULL);
1700 
1701 	_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
1702 
1703 	nvme_ctrlr_for_each_channel_continue(i, 0);
1704 }
1705 
1706 static void
1707 bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
1708 {
1709 	pthread_mutex_lock(&nvme_ctrlr->mutex);
1710 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
1711 	    nvme_ctrlr->io_path_cache_clearing) {
1712 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
1713 		return;
1714 	}
1715 
1716 	nvme_ctrlr->io_path_cache_clearing = true;
1717 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
1718 
1719 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
1720 				    bdev_nvme_clear_io_path_cache,
1721 				    NULL,
1722 				    bdev_nvme_clear_io_path_caches_done);
1723 }
1724 
1725 static struct nvme_qpair *
1726 nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
1727 {
1728 	struct nvme_qpair *nvme_qpair;
1729 
1730 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1731 		if (nvme_qpair->qpair == qpair) {
1732 			break;
1733 		}
1734 	}
1735 
1736 	return nvme_qpair;
1737 }
1738 
1739 static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
1740 
1741 static void
1742 bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
1743 {
1744 	struct nvme_poll_group *group = poll_group_ctx;
1745 	struct nvme_qpair *nvme_qpair;
1746 	struct nvme_ctrlr *nvme_ctrlr;
1747 	struct nvme_ctrlr_channel *ctrlr_ch;
1748 	int status;
1749 
1750 	nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
1751 	if (nvme_qpair == NULL) {
1752 		return;
1753 	}
1754 
1755 	if (nvme_qpair->qpair != NULL) {
1756 		spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
1757 		nvme_qpair->qpair = NULL;
1758 	}
1759 
1760 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
1761 
1762 	nvme_ctrlr = nvme_qpair->ctrlr;
1763 	ctrlr_ch = nvme_qpair->ctrlr_ch;
1764 
1765 	if (ctrlr_ch != NULL) {
1766 		if (ctrlr_ch->reset_iter != NULL) {
1767 			/* We are in a full reset sequence. */
1768 			if (ctrlr_ch->connect_poller != NULL) {
1769 				/* qpair was failed to connect. Abort the reset sequence. */
1770 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1771 						   "qpair %p was failed to connect. abort the reset ctrlr sequence.\n",
1772 						   qpair);
1773 				spdk_poller_unregister(&ctrlr_ch->connect_poller);
1774 				status = -1;
1775 			} else {
1776 				/* qpair was completed to disconnect. Just move to the next ctrlr_channel. */
1777 				NVME_CTRLR_INFOLOG(nvme_ctrlr,
1778 						   "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
1779 						   qpair);
1780 				status = 0;
1781 			}
1782 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, status);
1783 			ctrlr_ch->reset_iter = NULL;
1784 		} else {
1785 			/* qpair was disconnected unexpectedly. Reset controller for recovery. */
1786 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. reset controller.\n",
1787 					   qpair);
1788 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1789 		}
1790 	} else {
1791 		/* In this case, ctrlr_channel is already deleted. */
1792 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpair %p was disconnected and freed. delete nvme_qpair.\n",
1793 				   qpair);
1794 		nvme_qpair_delete(nvme_qpair);
1795 	}
1796 }
1797 
1798 static void
1799 bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
1800 {
1801 	struct nvme_qpair *nvme_qpair;
1802 
1803 	TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
1804 		if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
1805 			continue;
1806 		}
1807 
1808 		if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
1809 		    SPDK_NVME_QPAIR_FAILURE_NONE) {
1810 			_bdev_nvme_clear_io_path_cache(nvme_qpair);
1811 		}
1812 	}
1813 }
1814 
1815 static int
1816 bdev_nvme_poll(void *arg)
1817 {
1818 	struct nvme_poll_group *group = arg;
1819 	int64_t num_completions;
1820 
1821 	if (group->collect_spin_stat && group->start_ticks == 0) {
1822 		group->start_ticks = spdk_get_ticks();
1823 	}
1824 
1825 	num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
1826 			  bdev_nvme_disconnected_qpair_cb);
1827 	if (group->collect_spin_stat) {
1828 		if (num_completions > 0) {
1829 			if (group->end_ticks != 0) {
1830 				group->spin_ticks += (group->end_ticks - group->start_ticks);
1831 				group->end_ticks = 0;
1832 			}
1833 			group->start_ticks = 0;
1834 		} else {
1835 			group->end_ticks = spdk_get_ticks();
1836 		}
1837 	}
1838 
1839 	if (spdk_unlikely(num_completions < 0)) {
1840 		bdev_nvme_check_io_qpairs(group);
1841 	}
1842 
1843 	return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
1844 }
1845 
1846 static int bdev_nvme_poll_adminq(void *arg);
1847 
1848 static void
1849 bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
1850 {
1851 	if (spdk_interrupt_mode_is_enabled()) {
1852 		return;
1853 	}
1854 
1855 	spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
1856 
1857 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
1858 					  nvme_ctrlr, new_period_us);
1859 }
1860 
1861 static int
1862 bdev_nvme_poll_adminq(void *arg)
1863 {
1864 	int32_t rc;
1865 	struct nvme_ctrlr *nvme_ctrlr = arg;
1866 	nvme_ctrlr_disconnected_cb disconnected_cb;
1867 
1868 	assert(nvme_ctrlr != NULL);
1869 
1870 	rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
1871 	if (rc < 0) {
1872 		disconnected_cb = nvme_ctrlr->disconnected_cb;
1873 		nvme_ctrlr->disconnected_cb = NULL;
1874 
1875 		if (disconnected_cb != NULL) {
1876 			bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
1877 							    g_opts.nvme_adminq_poll_period_us);
1878 			disconnected_cb(nvme_ctrlr);
1879 		} else {
1880 			bdev_nvme_failover_ctrlr(nvme_ctrlr);
1881 		}
1882 	} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
1883 		   SPDK_NVME_QPAIR_FAILURE_NONE) {
1884 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
1885 	}
1886 
1887 	return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
1888 }
1889 
1890 static void
1891 nvme_bdev_free(void *io_device)
1892 {
1893 	struct nvme_bdev *nbdev = io_device;
1894 
1895 	pthread_mutex_destroy(&nbdev->mutex);
1896 	free(nbdev->disk.name);
1897 	free(nbdev->err_stat);
1898 	free(nbdev);
1899 }
1900 
1901 static int
1902 bdev_nvme_destruct(void *ctx)
1903 {
1904 	struct nvme_bdev *nbdev = ctx;
1905 	struct nvme_ns *nvme_ns, *tmp_nvme_ns;
1906 
1907 	SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nbdev->nbdev_ctrlr->name, nbdev->nsid);
1908 
1909 	pthread_mutex_lock(&nbdev->mutex);
1910 
1911 	TAILQ_FOREACH_SAFE(nvme_ns, &nbdev->nvme_ns_list, tailq, tmp_nvme_ns) {
1912 		pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
1913 
1914 		nvme_ns->bdev = NULL;
1915 
1916 		assert(nvme_ns->id > 0);
1917 
1918 		if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
1919 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1920 
1921 			nvme_ctrlr_put_ref(nvme_ns->ctrlr);
1922 			nvme_ns_free(nvme_ns);
1923 		} else {
1924 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
1925 		}
1926 	}
1927 
1928 	pthread_mutex_unlock(&nbdev->mutex);
1929 
1930 	pthread_mutex_lock(&g_bdev_nvme_mutex);
1931 	TAILQ_REMOVE(&nbdev->nbdev_ctrlr->bdevs, nbdev, tailq);
1932 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
1933 
1934 	spdk_io_device_unregister(nbdev, nvme_bdev_free);
1935 
1936 	return 0;
1937 }
1938 
1939 static int
1940 bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
1941 {
1942 	struct nvme_ctrlr *nvme_ctrlr;
1943 	struct spdk_nvme_io_qpair_opts opts;
1944 	struct spdk_nvme_qpair *qpair;
1945 	int rc;
1946 
1947 	nvme_ctrlr = nvme_qpair->ctrlr;
1948 
1949 	spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1950 	opts.create_only = true;
1951 	/* In interrupt mode qpairs must be created in sync mode, else it will never be connected.
1952 	 * delay_cmd_submit must be false as in interrupt mode requests cannot be submitted in
1953 	 * completion context.
1954 	 */
1955 	if (!spdk_interrupt_mode_is_enabled()) {
1956 		opts.async_mode = true;
1957 		opts.delay_cmd_submit = g_opts.delay_cmd_submit;
1958 	}
1959 	opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
1960 	g_opts.io_queue_requests = opts.io_queue_requests;
1961 
1962 	qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
1963 	if (qpair == NULL) {
1964 		return -1;
1965 	}
1966 
1967 	SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
1968 			   spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
1969 
1970 	assert(nvme_qpair->group != NULL);
1971 
1972 	rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
1973 	if (rc != 0) {
1974 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to begin polling on NVMe Channel.\n");
1975 		goto err;
1976 	}
1977 
1978 	rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
1979 	if (rc != 0) {
1980 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to connect I/O qpair.\n");
1981 		goto err;
1982 	}
1983 
1984 	nvme_qpair->qpair = qpair;
1985 
1986 	if (!g_opts.disable_auto_failback) {
1987 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
1988 	}
1989 
1990 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Connecting qpair %p:%u started.\n",
1991 			   qpair, spdk_nvme_qpair_get_id(qpair));
1992 
1993 	return 0;
1994 
1995 err:
1996 	spdk_nvme_ctrlr_free_io_qpair(qpair);
1997 
1998 	return rc;
1999 }
2000 
2001 static void bdev_nvme_reset_io_continue(void *cb_arg, int rc);
2002 
2003 static void
2004 bdev_nvme_complete_pending_resets(struct nvme_ctrlr *nvme_ctrlr, bool success)
2005 {
2006 	int rc = 0;
2007 	struct nvme_bdev_io *bio;
2008 
2009 	if (!success) {
2010 		rc = -1;
2011 	}
2012 
2013 	while (!TAILQ_EMPTY(&nvme_ctrlr->pending_resets)) {
2014 		bio = TAILQ_FIRST(&nvme_ctrlr->pending_resets);
2015 		TAILQ_REMOVE(&nvme_ctrlr->pending_resets, bio, retry_link);
2016 
2017 		bdev_nvme_reset_io_continue(bio, rc);
2018 	}
2019 }
2020 
2021 /* This function marks the current trid as failed by storing the current ticks
2022  * and then sets the next trid to the active trid within a controller if exists.
2023  *
2024  * The purpose of the boolean return value is to request the caller to disconnect
2025  * the current trid now to try connecting the next trid.
2026  */
2027 static bool
2028 bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove, bool start)
2029 {
2030 	struct nvme_path_id *path_id, *next_path;
2031 	int rc __attribute__((unused));
2032 
2033 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
2034 	assert(path_id);
2035 	assert(path_id == nvme_ctrlr->active_path_id);
2036 	next_path = TAILQ_NEXT(path_id, link);
2037 
2038 	/* Update the last failed time. It means the trid is failed if its last
2039 	 * failed time is non-zero.
2040 	 */
2041 	path_id->last_failed_tsc = spdk_get_ticks();
2042 
2043 	if (next_path == NULL) {
2044 		/* There is no alternate trid within a controller. */
2045 		return false;
2046 	}
2047 
2048 	if (!start && nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2049 		/* Connect is not retried in a controller reset sequence. Connecting
2050 		 * the next trid will be done by the next bdev_nvme_failover_ctrlr() call.
2051 		 */
2052 		return false;
2053 	}
2054 
2055 	assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
2056 
2057 	NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Start failover from %s:%s to %s:%s\n",
2058 			     path_id->trid.traddr, path_id->trid.trsvcid,
2059 			     next_path->trid.traddr, next_path->trid.trsvcid);
2060 
2061 	spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2062 	nvme_ctrlr->active_path_id = next_path;
2063 	rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
2064 	assert(rc == 0);
2065 	TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
2066 	if (!remove) {
2067 		/** Shuffle the old trid to the end of the list and use the new one.
2068 		 * Allows for round robin through multiple connections.
2069 		 */
2070 		TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
2071 	} else {
2072 		free(path_id);
2073 	}
2074 
2075 	if (start || next_path->last_failed_tsc == 0) {
2076 		/* bdev_nvme_failover_ctrlr() is just called or the next trid is not failed
2077 		 * or used yet. Try the next trid now.
2078 		 */
2079 		return true;
2080 	}
2081 
2082 	if (spdk_get_ticks() > next_path->last_failed_tsc + spdk_get_ticks_hz() *
2083 	    nvme_ctrlr->opts.reconnect_delay_sec) {
2084 		/* Enough backoff passed since the next trid failed. Try the next trid now. */
2085 		return true;
2086 	}
2087 
2088 	/* The next trid will be tried after reconnect_delay_sec seconds. */
2089 	return false;
2090 }
2091 
2092 static bool
2093 bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
2094 {
2095 	int32_t elapsed;
2096 
2097 	if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
2098 	    nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
2099 		return false;
2100 	}
2101 
2102 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2103 	if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
2104 		return true;
2105 	} else {
2106 		return false;
2107 	}
2108 }
2109 
2110 static bool
2111 bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
2112 {
2113 	uint32_t elapsed;
2114 
2115 	if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
2116 		return false;
2117 	}
2118 
2119 	elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
2120 	if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
2121 		return true;
2122 	} else {
2123 		return false;
2124 	}
2125 }
2126 
2127 static void bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success);
2128 
2129 static void
2130 nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
2131 {
2132 	int rc;
2133 
2134 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting ctrlr.\n");
2135 
2136 	rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
2137 	if (rc != 0) {
2138 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "disconnecting ctrlr failed.\n");
2139 
2140 		/* Disconnect fails if ctrlr is already resetting or removed. In this case,
2141 		 * fail the reset sequence immediately.
2142 		 */
2143 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2144 		return;
2145 	}
2146 
2147 	/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
2148 	 * Set callback here to execute the specified operation after ctrlr is really disconnected.
2149 	 */
2150 	assert(nvme_ctrlr->disconnected_cb == NULL);
2151 	nvme_ctrlr->disconnected_cb = cb_fn;
2152 
2153 	/* During disconnection, reduce the period to poll adminq more often. */
2154 	bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
2155 }
2156 
2157 enum bdev_nvme_op_after_reset {
2158 	OP_NONE,
2159 	OP_COMPLETE_PENDING_DESTRUCT,
2160 	OP_DESTRUCT,
2161 	OP_DELAYED_RECONNECT,
2162 	OP_FAILOVER,
2163 };
2164 
2165 typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
2166 
2167 static _bdev_nvme_op_after_reset
2168 bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
2169 {
2170 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
2171 		/* Complete pending destruct after reset completes. */
2172 		return OP_COMPLETE_PENDING_DESTRUCT;
2173 	} else if (nvme_ctrlr->pending_failover) {
2174 		nvme_ctrlr->pending_failover = false;
2175 		nvme_ctrlr->reset_start_tsc = 0;
2176 		return OP_FAILOVER;
2177 	} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
2178 		nvme_ctrlr->reset_start_tsc = 0;
2179 		return OP_NONE;
2180 	} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2181 		return OP_DESTRUCT;
2182 	} else {
2183 		if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
2184 			nvme_ctrlr->fast_io_fail_timedout = true;
2185 		}
2186 		return OP_DELAYED_RECONNECT;
2187 	}
2188 }
2189 
2190 static int bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
2191 static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
2192 
2193 static int
2194 bdev_nvme_reconnect_delay_timer_expired(void *ctx)
2195 {
2196 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2197 
2198 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
2199 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2200 
2201 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2202 
2203 	if (!nvme_ctrlr->reconnect_is_delayed) {
2204 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2205 		return SPDK_POLLER_BUSY;
2206 	}
2207 
2208 	nvme_ctrlr->reconnect_is_delayed = false;
2209 
2210 	if (nvme_ctrlr->destruct) {
2211 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2212 		return SPDK_POLLER_BUSY;
2213 	}
2214 
2215 	assert(nvme_ctrlr->resetting == false);
2216 	nvme_ctrlr->resetting = true;
2217 
2218 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2219 
2220 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2221 
2222 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2223 	return SPDK_POLLER_BUSY;
2224 }
2225 
2226 static void
2227 bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
2228 {
2229 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2230 
2231 	assert(nvme_ctrlr->reconnect_is_delayed == false);
2232 	nvme_ctrlr->reconnect_is_delayed = true;
2233 
2234 	assert(nvme_ctrlr->reconnect_delay_timer == NULL);
2235 	nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
2236 					    nvme_ctrlr,
2237 					    nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
2238 }
2239 
2240 static void remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr);
2241 
2242 static void
2243 bdev_nvme_reset_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
2244 {
2245 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2246 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2247 	enum bdev_nvme_op_after_reset op_after_reset;
2248 
2249 	assert(nvme_ctrlr->thread == spdk_get_thread());
2250 
2251 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2252 	if (!success) {
2253 		/* Connecting the active trid failed. Set the next alternate trid to the
2254 		 * active trid if it exists.
2255 		 */
2256 		if (bdev_nvme_failover_trid(nvme_ctrlr, false, false)) {
2257 			/* The next alternate trid exists and is ready to try. Try it now. */
2258 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
2259 
2260 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "Try the next alternate trid %s:%s now.\n",
2261 					   nvme_ctrlr->active_path_id->trid.traddr,
2262 					   nvme_ctrlr->active_path_id->trid.trsvcid);
2263 
2264 			nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2265 			return;
2266 		}
2267 
2268 		/* We came here if there is no alternate trid or if the next trid exists but
2269 		 * is not ready to try. We will try the active trid after reconnect_delay_sec
2270 		 * seconds if it is non-zero or at the next reset call otherwise.
2271 		 */
2272 	} else {
2273 		/* Connecting the active trid succeeded. Clear the last failed time because it
2274 		 * means the trid is failed if its last failed time is non-zero.
2275 		 */
2276 		nvme_ctrlr->active_path_id->last_failed_tsc = 0;
2277 	}
2278 
2279 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Clear pending resets.\n");
2280 
2281 	/* Make sure we clear any pending resets before returning. */
2282 	bdev_nvme_complete_pending_resets(nvme_ctrlr, success);
2283 
2284 	if (!success) {
2285 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Resetting controller failed.\n");
2286 	} else {
2287 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Resetting controller successful.\n");
2288 	}
2289 
2290 	nvme_ctrlr->resetting = false;
2291 	nvme_ctrlr->dont_retry = false;
2292 	nvme_ctrlr->in_failover = false;
2293 
2294 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2295 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2296 
2297 	op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
2298 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2299 
2300 	/* Delay callbacks when the next operation is a failover. */
2301 	if (ctrlr_op_cb_fn && op_after_reset != OP_FAILOVER) {
2302 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, success ? 0 : -1);
2303 	}
2304 
2305 	switch (op_after_reset) {
2306 	case OP_COMPLETE_PENDING_DESTRUCT:
2307 		nvme_ctrlr_unregister(nvme_ctrlr);
2308 		break;
2309 	case OP_DESTRUCT:
2310 		bdev_nvme_delete_ctrlr(nvme_ctrlr, false);
2311 		remove_discovery_entry(nvme_ctrlr);
2312 		break;
2313 	case OP_DELAYED_RECONNECT:
2314 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
2315 		break;
2316 	case OP_FAILOVER:
2317 		nvme_ctrlr->ctrlr_op_cb_fn = ctrlr_op_cb_fn;
2318 		nvme_ctrlr->ctrlr_op_cb_arg = ctrlr_op_cb_arg;
2319 		bdev_nvme_failover_ctrlr(nvme_ctrlr);
2320 		break;
2321 	default:
2322 		break;
2323 	}
2324 }
2325 
2326 static void
2327 bdev_nvme_reset_create_qpairs_failed(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2328 {
2329 	bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2330 }
2331 
2332 static void
2333 bdev_nvme_reset_destroy_qpair(struct nvme_ctrlr_channel_iter *i,
2334 			      struct nvme_ctrlr *nvme_ctrlr,
2335 			      struct nvme_ctrlr_channel *ctrlr_ch, void *ctx)
2336 {
2337 	struct nvme_qpair *nvme_qpair;
2338 	struct spdk_nvme_qpair *qpair;
2339 
2340 	nvme_qpair = ctrlr_ch->qpair;
2341 	assert(nvme_qpair != NULL);
2342 
2343 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
2344 
2345 	qpair = nvme_qpair->qpair;
2346 	if (qpair != NULL) {
2347 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start disconnecting qpair %p:%u.\n",
2348 				   qpair, spdk_nvme_qpair_get_id(qpair));
2349 
2350 		if (nvme_qpair->ctrlr->dont_retry) {
2351 			spdk_nvme_qpair_set_abort_dnr(qpair, true);
2352 		}
2353 		spdk_nvme_ctrlr_disconnect_io_qpair(qpair);
2354 
2355 		/* The current full reset sequence will move to the next
2356 		 * ctrlr_channel after the qpair is actually disconnected.
2357 		 */
2358 		assert(ctrlr_ch->reset_iter == NULL);
2359 		ctrlr_ch->reset_iter = i;
2360 	} else {
2361 		nvme_ctrlr_for_each_channel_continue(i, 0);
2362 	}
2363 }
2364 
2365 static void
2366 bdev_nvme_reset_create_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2367 {
2368 	if (status == 0) {
2369 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were created after ctrlr reset.\n");
2370 
2371 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, true);
2372 	} else {
2373 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were failed to create after ctrlr reset.\n");
2374 
2375 		/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
2376 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2377 					    bdev_nvme_reset_destroy_qpair,
2378 					    NULL,
2379 					    bdev_nvme_reset_create_qpairs_failed);
2380 	}
2381 }
2382 
2383 static int
2384 bdev_nvme_reset_check_qpair_connected(void *ctx)
2385 {
2386 	struct nvme_ctrlr_channel *ctrlr_ch = ctx;
2387 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2388 	struct spdk_nvme_qpair *qpair;
2389 
2390 	if (ctrlr_ch->reset_iter == NULL) {
2391 		/* qpair was already failed to connect and the reset sequence is being aborted. */
2392 		assert(ctrlr_ch->connect_poller == NULL);
2393 		assert(nvme_qpair->qpair == NULL);
2394 
2395 		NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr,
2396 				   "qpair was already failed to connect. reset is being aborted.\n");
2397 		return SPDK_POLLER_BUSY;
2398 	}
2399 
2400 	qpair = nvme_qpair->qpair;
2401 	assert(qpair != NULL);
2402 
2403 	if (!spdk_nvme_qpair_is_connected(qpair)) {
2404 		return SPDK_POLLER_BUSY;
2405 	}
2406 
2407 	NVME_CTRLR_INFOLOG(nvme_qpair->ctrlr, "qpair %p:%u was connected.\n",
2408 			   qpair, spdk_nvme_qpair_get_id(qpair));
2409 
2410 	spdk_poller_unregister(&ctrlr_ch->connect_poller);
2411 
2412 	/* qpair was completed to connect. Move to the next ctrlr_channel */
2413 	nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
2414 	ctrlr_ch->reset_iter = NULL;
2415 
2416 	if (!g_opts.disable_auto_failback) {
2417 		_bdev_nvme_clear_io_path_cache(nvme_qpair);
2418 	}
2419 
2420 	return SPDK_POLLER_BUSY;
2421 }
2422 
2423 static void
2424 bdev_nvme_reset_create_qpair(struct nvme_ctrlr_channel_iter *i,
2425 			     struct nvme_ctrlr *nvme_ctrlr,
2426 			     struct nvme_ctrlr_channel *ctrlr_ch,
2427 			     void *ctx)
2428 {
2429 	struct nvme_qpair *nvme_qpair = ctrlr_ch->qpair;
2430 	struct spdk_nvme_qpair *qpair;
2431 	int rc = 0;
2432 
2433 	if (nvme_qpair->qpair == NULL) {
2434 		rc = bdev_nvme_create_qpair(nvme_qpair);
2435 	}
2436 	if (rc == 0) {
2437 		ctrlr_ch->connect_poller = SPDK_POLLER_REGISTER(bdev_nvme_reset_check_qpair_connected,
2438 					   ctrlr_ch, 0);
2439 
2440 		qpair = nvme_qpair->qpair;
2441 
2442 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start checking qpair %p:%u to be connected.\n",
2443 				   qpair, spdk_nvme_qpair_get_id(qpair));
2444 
2445 		/* The current full reset sequence will move to the next
2446 		 * ctrlr_channel after the qpair is actually connected.
2447 		 */
2448 		assert(ctrlr_ch->reset_iter == NULL);
2449 		ctrlr_ch->reset_iter = i;
2450 	} else {
2451 		nvme_ctrlr_for_each_channel_continue(i, rc);
2452 	}
2453 }
2454 
2455 static void
2456 nvme_ctrlr_check_namespaces(struct nvme_ctrlr *nvme_ctrlr)
2457 {
2458 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
2459 	struct nvme_ns *nvme_ns;
2460 
2461 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
2462 	     nvme_ns != NULL;
2463 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
2464 		if (!spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
2465 			SPDK_DEBUGLOG(bdev_nvme, "NSID %u was removed during reset.\n", nvme_ns->id);
2466 			/* NS can be added again. Just nullify nvme_ns->ns. */
2467 			nvme_ns->ns = NULL;
2468 		}
2469 	}
2470 }
2471 
2472 
2473 static int
2474 bdev_nvme_reconnect_ctrlr_poll(void *arg)
2475 {
2476 	struct nvme_ctrlr *nvme_ctrlr = arg;
2477 	struct spdk_nvme_transport_id *trid;
2478 	int rc = -ETIMEDOUT;
2479 
2480 	if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
2481 		/* Mark the ctrlr as failed. The next call to
2482 		 * spdk_nvme_ctrlr_reconnect_poll_async() will then
2483 		 * do the necessary cleanup and return failure.
2484 		 */
2485 		spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
2486 	}
2487 
2488 	rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
2489 	if (rc == -EAGAIN) {
2490 		return SPDK_POLLER_BUSY;
2491 	}
2492 
2493 	spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
2494 	if (rc == 0) {
2495 		trid = &nvme_ctrlr->active_path_id->trid;
2496 
2497 		if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
2498 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected to %s:%s. Create qpairs.\n",
2499 					   trid->traddr, trid->trsvcid);
2500 		} else {
2501 			NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was connected. Create qpairs.\n");
2502 		}
2503 
2504 		nvme_ctrlr_check_namespaces(nvme_ctrlr);
2505 
2506 		/* Recreate all of the I/O queue pairs */
2507 		nvme_ctrlr_for_each_channel(nvme_ctrlr,
2508 					    bdev_nvme_reset_create_qpair,
2509 					    NULL,
2510 					    bdev_nvme_reset_create_qpairs_done);
2511 	} else {
2512 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr could not be connected.\n");
2513 
2514 		bdev_nvme_reset_ctrlr_complete(nvme_ctrlr, false);
2515 	}
2516 	return SPDK_POLLER_BUSY;
2517 }
2518 
2519 static void
2520 bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2521 {
2522 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Start reconnecting ctrlr.\n");
2523 
2524 	spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
2525 
2526 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
2527 	assert(nvme_ctrlr->reset_detach_poller == NULL);
2528 	nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
2529 					  nvme_ctrlr, 0);
2530 }
2531 
2532 static void
2533 bdev_nvme_reset_destroy_qpair_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2534 {
2535 	SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
2536 	assert(status == 0);
2537 
2538 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "qpairs were deleted.\n");
2539 
2540 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2541 		bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2542 	} else {
2543 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
2544 	}
2545 }
2546 
2547 static void
2548 bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2549 {
2550 	NVME_CTRLR_INFOLOG(nvme_ctrlr, "Delete qpairs for reset.\n");
2551 
2552 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2553 				    bdev_nvme_reset_destroy_qpair,
2554 				    NULL,
2555 				    bdev_nvme_reset_destroy_qpair_done);
2556 }
2557 
2558 static void
2559 bdev_nvme_reconnect_ctrlr_now(void *ctx)
2560 {
2561 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2562 
2563 	assert(nvme_ctrlr->resetting == true);
2564 	assert(nvme_ctrlr->thread == spdk_get_thread());
2565 
2566 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2567 
2568 	spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
2569 
2570 	bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
2571 }
2572 
2573 static void
2574 _bdev_nvme_reset_ctrlr(void *ctx)
2575 {
2576 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2577 
2578 	assert(nvme_ctrlr->resetting == true);
2579 	assert(nvme_ctrlr->thread == spdk_get_thread());
2580 
2581 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2582 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
2583 	} else {
2584 		bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
2585 	}
2586 }
2587 
2588 static int
2589 bdev_nvme_reset_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, spdk_msg_fn *msg_fn)
2590 {
2591 	if (nvme_ctrlr->destruct) {
2592 		return -ENXIO;
2593 	}
2594 
2595 	if (nvme_ctrlr->resetting) {
2596 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset, already in progress.\n");
2597 		return -EBUSY;
2598 	}
2599 
2600 	if (nvme_ctrlr->disabled) {
2601 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform reset. Controller is disabled.\n");
2602 		return -EALREADY;
2603 	}
2604 
2605 	nvme_ctrlr->resetting = true;
2606 	nvme_ctrlr->dont_retry = true;
2607 
2608 	if (nvme_ctrlr->reconnect_is_delayed) {
2609 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
2610 		*msg_fn = bdev_nvme_reconnect_ctrlr_now;
2611 		nvme_ctrlr->reconnect_is_delayed = false;
2612 	} else {
2613 		*msg_fn = _bdev_nvme_reset_ctrlr;
2614 		assert(nvme_ctrlr->reset_start_tsc == 0);
2615 	}
2616 
2617 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2618 
2619 	return 0;
2620 }
2621 
2622 static int
2623 bdev_nvme_reset_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2624 {
2625 	spdk_msg_fn msg_fn;
2626 	int rc;
2627 
2628 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2629 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
2630 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2631 
2632 	if (rc == 0) {
2633 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2634 	}
2635 
2636 	return rc;
2637 }
2638 
2639 static int
2640 bdev_nvme_enable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2641 {
2642 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2643 	if (nvme_ctrlr->destruct) {
2644 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2645 		return -ENXIO;
2646 	}
2647 
2648 	if (nvme_ctrlr->resetting) {
2649 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2650 		return -EBUSY;
2651 	}
2652 
2653 	if (!nvme_ctrlr->disabled) {
2654 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2655 		return -EALREADY;
2656 	}
2657 
2658 	nvme_ctrlr->disabled = false;
2659 	nvme_ctrlr->resetting = true;
2660 
2661 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2662 
2663 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2664 
2665 	spdk_thread_send_msg(nvme_ctrlr->thread, bdev_nvme_reconnect_ctrlr_now, nvme_ctrlr);
2666 	return 0;
2667 }
2668 
2669 static void
2670 bdev_nvme_disable_ctrlr_complete(struct nvme_ctrlr *nvme_ctrlr)
2671 {
2672 	bdev_nvme_ctrlr_op_cb ctrlr_op_cb_fn = nvme_ctrlr->ctrlr_op_cb_fn;
2673 	void *ctrlr_op_cb_arg = nvme_ctrlr->ctrlr_op_cb_arg;
2674 	enum bdev_nvme_op_after_reset op_after_disable;
2675 
2676 	assert(nvme_ctrlr->thread == spdk_get_thread());
2677 
2678 	nvme_ctrlr->ctrlr_op_cb_fn = NULL;
2679 	nvme_ctrlr->ctrlr_op_cb_arg = NULL;
2680 
2681 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2682 
2683 	nvme_ctrlr->resetting = false;
2684 	nvme_ctrlr->dont_retry = false;
2685 
2686 	op_after_disable = bdev_nvme_check_op_after_reset(nvme_ctrlr, true);
2687 
2688 	nvme_ctrlr->disabled = true;
2689 	spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
2690 
2691 	/* Make sure we clear any pending resets before returning. */
2692 	bdev_nvme_complete_pending_resets(nvme_ctrlr, true);
2693 
2694 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2695 
2696 	if (ctrlr_op_cb_fn) {
2697 		ctrlr_op_cb_fn(ctrlr_op_cb_arg, 0);
2698 	}
2699 
2700 	switch (op_after_disable) {
2701 	case OP_COMPLETE_PENDING_DESTRUCT:
2702 		nvme_ctrlr_unregister(nvme_ctrlr);
2703 		break;
2704 	default:
2705 		break;
2706 	}
2707 }
2708 
2709 static void
2710 bdev_nvme_disable_destroy_qpairs_done(struct nvme_ctrlr *nvme_ctrlr, void *ctx, int status)
2711 {
2712 	assert(status == 0);
2713 
2714 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2715 		bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2716 	} else {
2717 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_ctrlr_complete);
2718 	}
2719 }
2720 
2721 static void
2722 bdev_nvme_disable_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
2723 {
2724 	nvme_ctrlr_for_each_channel(nvme_ctrlr,
2725 				    bdev_nvme_reset_destroy_qpair,
2726 				    NULL,
2727 				    bdev_nvme_disable_destroy_qpairs_done);
2728 }
2729 
2730 static void
2731 _bdev_nvme_cancel_reconnect_and_disable_ctrlr(void *ctx)
2732 {
2733 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2734 
2735 	assert(nvme_ctrlr->resetting == true);
2736 	assert(nvme_ctrlr->thread == spdk_get_thread());
2737 
2738 	spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
2739 
2740 	bdev_nvme_disable_ctrlr_complete(nvme_ctrlr);
2741 }
2742 
2743 static void
2744 _bdev_nvme_disconnect_and_disable_ctrlr(void *ctx)
2745 {
2746 	struct nvme_ctrlr *nvme_ctrlr = ctx;
2747 
2748 	assert(nvme_ctrlr->resetting == true);
2749 	assert(nvme_ctrlr->thread == spdk_get_thread());
2750 
2751 	if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
2752 		nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_disable_destroy_qpairs);
2753 	} else {
2754 		bdev_nvme_disable_destroy_qpairs(nvme_ctrlr);
2755 	}
2756 }
2757 
2758 static int
2759 bdev_nvme_disable_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
2760 {
2761 	spdk_msg_fn msg_fn;
2762 
2763 	pthread_mutex_lock(&nvme_ctrlr->mutex);
2764 	if (nvme_ctrlr->destruct) {
2765 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2766 		return -ENXIO;
2767 	}
2768 
2769 	if (nvme_ctrlr->resetting) {
2770 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2771 		return -EBUSY;
2772 	}
2773 
2774 	if (nvme_ctrlr->disabled) {
2775 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
2776 		return -EALREADY;
2777 	}
2778 
2779 	nvme_ctrlr->resetting = true;
2780 	nvme_ctrlr->dont_retry = true;
2781 
2782 	if (nvme_ctrlr->reconnect_is_delayed) {
2783 		msg_fn = _bdev_nvme_cancel_reconnect_and_disable_ctrlr;
2784 		nvme_ctrlr->reconnect_is_delayed = false;
2785 	} else {
2786 		msg_fn = _bdev_nvme_disconnect_and_disable_ctrlr;
2787 	}
2788 
2789 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
2790 
2791 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
2792 
2793 	spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
2794 	return 0;
2795 }
2796 
2797 static int
2798 nvme_ctrlr_op(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2799 	      bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2800 {
2801 	int rc;
2802 
2803 	switch (op) {
2804 	case NVME_CTRLR_OP_RESET:
2805 		rc = bdev_nvme_reset_ctrlr(nvme_ctrlr);
2806 		break;
2807 	case NVME_CTRLR_OP_ENABLE:
2808 		rc = bdev_nvme_enable_ctrlr(nvme_ctrlr);
2809 		break;
2810 	case NVME_CTRLR_OP_DISABLE:
2811 		rc = bdev_nvme_disable_ctrlr(nvme_ctrlr);
2812 		break;
2813 	default:
2814 		rc = -EINVAL;
2815 		break;
2816 	}
2817 
2818 	if (rc == 0) {
2819 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
2820 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
2821 		nvme_ctrlr->ctrlr_op_cb_fn = cb_fn;
2822 		nvme_ctrlr->ctrlr_op_cb_arg = cb_arg;
2823 	}
2824 	return rc;
2825 }
2826 
2827 struct nvme_ctrlr_op_rpc_ctx {
2828 	struct nvme_ctrlr *nvme_ctrlr;
2829 	struct spdk_thread *orig_thread;
2830 	enum nvme_ctrlr_op op;
2831 	int rc;
2832 	bdev_nvme_ctrlr_op_cb cb_fn;
2833 	void *cb_arg;
2834 };
2835 
2836 static void
2837 _nvme_ctrlr_op_rpc_complete(void *_ctx)
2838 {
2839 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2840 
2841 	assert(ctx != NULL);
2842 	assert(ctx->cb_fn != NULL);
2843 
2844 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2845 
2846 	free(ctx);
2847 }
2848 
2849 static void
2850 nvme_ctrlr_op_rpc_complete(void *cb_arg, int rc)
2851 {
2852 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2853 
2854 	ctx->rc = rc;
2855 
2856 	spdk_thread_send_msg(ctx->orig_thread, _nvme_ctrlr_op_rpc_complete, ctx);
2857 }
2858 
2859 void
2860 nvme_ctrlr_op_rpc(struct nvme_ctrlr *nvme_ctrlr, enum nvme_ctrlr_op op,
2861 		  bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2862 {
2863 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2864 	int rc;
2865 
2866 	assert(cb_fn != NULL);
2867 
2868 	ctx = calloc(1, sizeof(*ctx));
2869 	if (ctx == NULL) {
2870 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2871 		cb_fn(cb_arg, -ENOMEM);
2872 		return;
2873 	}
2874 
2875 	ctx->orig_thread = spdk_get_thread();
2876 	ctx->cb_fn = cb_fn;
2877 	ctx->cb_arg = cb_arg;
2878 
2879 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_ctrlr_op_rpc_complete, ctx);
2880 	if (rc == 0) {
2881 		return;
2882 	} else if (rc == -EALREADY) {
2883 		rc = 0;
2884 	}
2885 
2886 	nvme_ctrlr_op_rpc_complete(ctx, rc);
2887 }
2888 
2889 static void nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc);
2890 
2891 static void
2892 _nvme_bdev_ctrlr_op_rpc_continue(void *_ctx)
2893 {
2894 	struct nvme_ctrlr_op_rpc_ctx *ctx = _ctx;
2895 	struct nvme_ctrlr *prev_nvme_ctrlr, *next_nvme_ctrlr;
2896 	int rc;
2897 
2898 	prev_nvme_ctrlr = ctx->nvme_ctrlr;
2899 	ctx->nvme_ctrlr = NULL;
2900 
2901 	if (ctx->rc != 0) {
2902 		goto complete;
2903 	}
2904 
2905 	next_nvme_ctrlr = TAILQ_NEXT(prev_nvme_ctrlr, tailq);
2906 	if (next_nvme_ctrlr == NULL) {
2907 		goto complete;
2908 	}
2909 
2910 	rc = nvme_ctrlr_op(next_nvme_ctrlr, ctx->op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2911 	if (rc == 0) {
2912 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2913 		return;
2914 	} else if (rc == -EALREADY) {
2915 		ctx->nvme_ctrlr = next_nvme_ctrlr;
2916 		rc = 0;
2917 	}
2918 
2919 	ctx->rc = rc;
2920 
2921 complete:
2922 	ctx->cb_fn(ctx->cb_arg, ctx->rc);
2923 	free(ctx);
2924 }
2925 
2926 static void
2927 nvme_bdev_ctrlr_op_rpc_continue(void *cb_arg, int rc)
2928 {
2929 	struct nvme_ctrlr_op_rpc_ctx *ctx = cb_arg;
2930 
2931 	ctx->rc = rc;
2932 
2933 	spdk_thread_send_msg(ctx->orig_thread, _nvme_bdev_ctrlr_op_rpc_continue, ctx);
2934 }
2935 
2936 void
2937 nvme_bdev_ctrlr_op_rpc(struct nvme_bdev_ctrlr *nbdev_ctrlr, enum nvme_ctrlr_op op,
2938 		       bdev_nvme_ctrlr_op_cb cb_fn, void *cb_arg)
2939 {
2940 	struct nvme_ctrlr_op_rpc_ctx *ctx;
2941 	struct nvme_ctrlr *nvme_ctrlr;
2942 	int rc;
2943 
2944 	assert(cb_fn != NULL);
2945 
2946 	ctx = calloc(1, sizeof(*ctx));
2947 	if (ctx == NULL) {
2948 		SPDK_ERRLOG("Failed to allocate nvme_ctrlr_op_rpc_ctx.\n");
2949 		cb_fn(cb_arg, -ENOMEM);
2950 		return;
2951 	}
2952 
2953 	ctx->orig_thread = spdk_get_thread();
2954 	ctx->op = op;
2955 	ctx->cb_fn = cb_fn;
2956 	ctx->cb_arg = cb_arg;
2957 
2958 	nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
2959 	assert(nvme_ctrlr != NULL);
2960 
2961 	rc = nvme_ctrlr_op(nvme_ctrlr, op, nvme_bdev_ctrlr_op_rpc_continue, ctx);
2962 	if (rc == 0) {
2963 		ctx->nvme_ctrlr = nvme_ctrlr;
2964 		return;
2965 	} else if (rc == -EALREADY) {
2966 		ctx->nvme_ctrlr = nvme_ctrlr;
2967 		rc = 0;
2968 	}
2969 
2970 	nvme_bdev_ctrlr_op_rpc_continue(ctx, rc);
2971 }
2972 
2973 static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
2974 
2975 static void
2976 bdev_nvme_unfreeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
2977 {
2978 	struct nvme_bdev_io *bio = ctx;
2979 	enum spdk_bdev_io_status io_status;
2980 
2981 	if (bio->cpl.cdw0 == 0) {
2982 		io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2983 	} else {
2984 		io_status = SPDK_BDEV_IO_STATUS_FAILED;
2985 	}
2986 
2987 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p completed, status:%d\n", bio, io_status);
2988 
2989 	__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
2990 }
2991 
2992 static void
2993 bdev_nvme_unfreeze_bdev_channel(struct nvme_bdev_channel_iter *i,
2994 				struct nvme_bdev *nbdev,
2995 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
2996 {
2997 	bdev_nvme_abort_retry_ios(nbdev_ch);
2998 	nbdev_ch->resetting = false;
2999 
3000 	nvme_bdev_for_each_channel_continue(i, 0);
3001 }
3002 
3003 static void
3004 bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
3005 {
3006 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3007 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3008 
3009 	/* Abort all queued I/Os for retry. */
3010 	nvme_bdev_for_each_channel(nbdev,
3011 				   bdev_nvme_unfreeze_bdev_channel,
3012 				   bio,
3013 				   bdev_nvme_unfreeze_bdev_channel_done);
3014 }
3015 
3016 static void
3017 _bdev_nvme_reset_io_continue(void *ctx)
3018 {
3019 	struct nvme_bdev_io *bio = ctx;
3020 	struct nvme_io_path *prev_io_path, *next_io_path;
3021 	int rc;
3022 
3023 	prev_io_path = bio->io_path;
3024 	bio->io_path = NULL;
3025 
3026 	next_io_path = STAILQ_NEXT(prev_io_path, stailq);
3027 	if (next_io_path == NULL) {
3028 		goto complete;
3029 	}
3030 
3031 	rc = _bdev_nvme_reset_io(next_io_path, bio);
3032 	if (rc == 0) {
3033 		return;
3034 	}
3035 
3036 complete:
3037 	bdev_nvme_reset_io_complete(bio);
3038 }
3039 
3040 static void
3041 bdev_nvme_reset_io_continue(void *cb_arg, int rc)
3042 {
3043 	struct nvme_bdev_io *bio = cb_arg;
3044 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3045 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3046 
3047 	NVME_BDEV_INFOLOG(nbdev, "continue reset_io %p, rc:%d\n", bio, rc);
3048 
3049 	/* Reset status is initialized as "failed". Set to "success" once we have at least one
3050 	 * successfully reset nvme_ctrlr.
3051 	 */
3052 	if (rc == 0) {
3053 		bio->cpl.cdw0 = 0;
3054 	}
3055 
3056 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_nvme_reset_io_continue, bio);
3057 }
3058 
3059 static int
3060 _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
3061 {
3062 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3063 	struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
3064 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
3065 	spdk_msg_fn msg_fn;
3066 	int rc;
3067 
3068 	assert(bio->io_path == NULL);
3069 	bio->io_path = io_path;
3070 
3071 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3072 	rc = bdev_nvme_reset_ctrlr_unsafe(nvme_ctrlr, &msg_fn);
3073 	if (rc == -EBUSY) {
3074 		/*
3075 		 * Reset call is queued only if it is from the app framework. This is on purpose so that
3076 		 * we don't interfere with the app framework reset strategy. i.e. we are deferring to the
3077 		 * upper level. If they are in the middle of a reset, we won't try to schedule another one.
3078 		 */
3079 		TAILQ_INSERT_TAIL(&nvme_ctrlr->pending_resets, bio, retry_link);
3080 	}
3081 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3082 
3083 	if (rc == 0) {
3084 		assert(nvme_ctrlr->ctrlr_op_cb_fn == NULL);
3085 		assert(nvme_ctrlr->ctrlr_op_cb_arg == NULL);
3086 		nvme_ctrlr->ctrlr_op_cb_fn = bdev_nvme_reset_io_continue;
3087 		nvme_ctrlr->ctrlr_op_cb_arg = bio;
3088 
3089 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
3090 
3091 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p started resetting ctrlr [%s, %u].\n",
3092 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3093 	} else if (rc == -EBUSY) {
3094 		rc = 0;
3095 
3096 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p was queued to ctrlr [%s, %u].\n",
3097 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr));
3098 	} else {
3099 		NVME_BDEV_INFOLOG(nbdev, "reset_io %p could not reset ctrlr [%s, %u], rc:%d\n",
3100 				  bio, CTRLR_STRING(nvme_ctrlr), CTRLR_ID(nvme_ctrlr), rc);
3101 	}
3102 
3103 	return rc;
3104 }
3105 
3106 static void
3107 bdev_nvme_freeze_bdev_channel_done(struct nvme_bdev *nbdev, void *ctx, int status)
3108 {
3109 	struct nvme_bdev_io *bio = ctx;
3110 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
3111 	struct nvme_bdev_channel *nbdev_ch;
3112 	struct nvme_io_path *io_path;
3113 	int rc;
3114 
3115 	nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
3116 
3117 	/* Initialize with failed status. With multipath it is enough to have at least one successful
3118 	 * nvme_ctrlr reset. If there is none, reset status will remain failed.
3119 	 */
3120 	bio->cpl.cdw0 = 1;
3121 
3122 	/* Reset all nvme_ctrlrs of a bdev controller sequentially. */
3123 	io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
3124 	assert(io_path != NULL);
3125 
3126 	rc = _bdev_nvme_reset_io(io_path, bio);
3127 	if (rc != 0) {
3128 		/* If the current nvme_ctrlr is disabled, skip it and move to the next nvme_ctrlr. */
3129 		rc = (rc == -EALREADY) ? 0 : rc;
3130 
3131 		bdev_nvme_reset_io_continue(bio, rc);
3132 	}
3133 }
3134 
3135 static void
3136 bdev_nvme_freeze_bdev_channel(struct nvme_bdev_channel_iter *i,
3137 			      struct nvme_bdev *nbdev,
3138 			      struct nvme_bdev_channel *nbdev_ch, void *ctx)
3139 {
3140 	nbdev_ch->resetting = true;
3141 
3142 	nvme_bdev_for_each_channel_continue(i, 0);
3143 }
3144 
3145 static void
3146 bdev_nvme_reset_io(struct nvme_bdev *nbdev, struct nvme_bdev_io *bio)
3147 {
3148 	NVME_BDEV_INFOLOG(nbdev, "reset_io %p started.\n", bio);
3149 
3150 	nvme_bdev_for_each_channel(nbdev,
3151 				   bdev_nvme_freeze_bdev_channel,
3152 				   bio,
3153 				   bdev_nvme_freeze_bdev_channel_done);
3154 }
3155 
3156 static int
3157 bdev_nvme_failover_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool remove)
3158 {
3159 	if (nvme_ctrlr->destruct) {
3160 		/* Don't bother resetting if the controller is in the process of being destructed. */
3161 		return -ENXIO;
3162 	}
3163 
3164 	if (nvme_ctrlr->resetting) {
3165 		if (!nvme_ctrlr->in_failover) {
3166 			NVME_CTRLR_NOTICELOG(nvme_ctrlr,
3167 					     "Reset is already in progress. Defer failover until reset completes.\n");
3168 
3169 			/* Defer failover until reset completes. */
3170 			nvme_ctrlr->pending_failover = true;
3171 			return -EINPROGRESS;
3172 		} else {
3173 			NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Unable to perform failover, already in progress.\n");
3174 			return -EBUSY;
3175 		}
3176 	}
3177 
3178 	bdev_nvme_failover_trid(nvme_ctrlr, remove, true);
3179 
3180 	if (nvme_ctrlr->reconnect_is_delayed) {
3181 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Reconnect is already scheduled.\n");
3182 
3183 		/* We rely on the next reconnect for the failover. */
3184 		return -EALREADY;
3185 	}
3186 
3187 	if (nvme_ctrlr->disabled) {
3188 		NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Controller is disabled.\n");
3189 
3190 		/* We rely on the enablement for the failover. */
3191 		return -EALREADY;
3192 	}
3193 
3194 	nvme_ctrlr->resetting = true;
3195 	nvme_ctrlr->in_failover = true;
3196 
3197 	assert(nvme_ctrlr->reset_start_tsc == 0);
3198 	nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
3199 
3200 	return 0;
3201 }
3202 
3203 static int
3204 bdev_nvme_failover_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
3205 {
3206 	int rc;
3207 
3208 	pthread_mutex_lock(&nvme_ctrlr->mutex);
3209 	rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, false);
3210 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
3211 
3212 	if (rc == 0) {
3213 		spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset_ctrlr, nvme_ctrlr);
3214 	} else if (rc == -EALREADY) {
3215 		rc = 0;
3216 	}
3217 
3218 	return rc;
3219 }
3220 
3221 static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3222 			   uint64_t num_blocks);
3223 
3224 static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
3225 				  uint64_t num_blocks);
3226 
3227 static int bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks,
3228 			  uint64_t src_offset_blocks,
3229 			  uint64_t num_blocks);
3230 
3231 static void
3232 bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
3233 		     bool success)
3234 {
3235 	struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3236 	int ret;
3237 
3238 	if (!success) {
3239 		ret = -EINVAL;
3240 		goto exit;
3241 	}
3242 
3243 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
3244 		ret = -ENXIO;
3245 		goto exit;
3246 	}
3247 
3248 	ret = bdev_nvme_readv(bio,
3249 			      bdev_io->u.bdev.iovs,
3250 			      bdev_io->u.bdev.iovcnt,
3251 			      bdev_io->u.bdev.md_buf,
3252 			      bdev_io->u.bdev.num_blocks,
3253 			      bdev_io->u.bdev.offset_blocks,
3254 			      bdev_io->u.bdev.dif_check_flags,
3255 			      bdev_io->u.bdev.memory_domain,
3256 			      bdev_io->u.bdev.memory_domain_ctx,
3257 			      bdev_io->u.bdev.accel_sequence);
3258 
3259 exit:
3260 	if (spdk_unlikely(ret != 0)) {
3261 		bdev_nvme_io_complete(bio, ret);
3262 	}
3263 }
3264 
3265 static inline void
3266 _bdev_nvme_submit_request(struct nvme_bdev_channel *nbdev_ch, struct spdk_bdev_io *bdev_io)
3267 {
3268 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3269 	struct spdk_bdev *bdev = bdev_io->bdev;
3270 	struct nvme_bdev_io *nbdev_io_to_abort;
3271 	int rc = 0;
3272 
3273 	switch (bdev_io->type) {
3274 	case SPDK_BDEV_IO_TYPE_READ:
3275 		if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
3276 
3277 			rc = bdev_nvme_readv(nbdev_io,
3278 					     bdev_io->u.bdev.iovs,
3279 					     bdev_io->u.bdev.iovcnt,
3280 					     bdev_io->u.bdev.md_buf,
3281 					     bdev_io->u.bdev.num_blocks,
3282 					     bdev_io->u.bdev.offset_blocks,
3283 					     bdev_io->u.bdev.dif_check_flags,
3284 					     bdev_io->u.bdev.memory_domain,
3285 					     bdev_io->u.bdev.memory_domain_ctx,
3286 					     bdev_io->u.bdev.accel_sequence);
3287 		} else {
3288 			spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
3289 					     bdev_io->u.bdev.num_blocks * bdev->blocklen);
3290 			rc = 0;
3291 		}
3292 		break;
3293 	case SPDK_BDEV_IO_TYPE_WRITE:
3294 		rc = bdev_nvme_writev(nbdev_io,
3295 				      bdev_io->u.bdev.iovs,
3296 				      bdev_io->u.bdev.iovcnt,
3297 				      bdev_io->u.bdev.md_buf,
3298 				      bdev_io->u.bdev.num_blocks,
3299 				      bdev_io->u.bdev.offset_blocks,
3300 				      bdev_io->u.bdev.dif_check_flags,
3301 				      bdev_io->u.bdev.memory_domain,
3302 				      bdev_io->u.bdev.memory_domain_ctx,
3303 				      bdev_io->u.bdev.accel_sequence,
3304 				      bdev_io->u.bdev.nvme_cdw12,
3305 				      bdev_io->u.bdev.nvme_cdw13);
3306 		break;
3307 	case SPDK_BDEV_IO_TYPE_COMPARE:
3308 		rc = bdev_nvme_comparev(nbdev_io,
3309 					bdev_io->u.bdev.iovs,
3310 					bdev_io->u.bdev.iovcnt,
3311 					bdev_io->u.bdev.md_buf,
3312 					bdev_io->u.bdev.num_blocks,
3313 					bdev_io->u.bdev.offset_blocks,
3314 					bdev_io->u.bdev.dif_check_flags);
3315 		break;
3316 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3317 		rc = bdev_nvme_comparev_and_writev(nbdev_io,
3318 						   bdev_io->u.bdev.iovs,
3319 						   bdev_io->u.bdev.iovcnt,
3320 						   bdev_io->u.bdev.fused_iovs,
3321 						   bdev_io->u.bdev.fused_iovcnt,
3322 						   bdev_io->u.bdev.md_buf,
3323 						   bdev_io->u.bdev.num_blocks,
3324 						   bdev_io->u.bdev.offset_blocks,
3325 						   bdev_io->u.bdev.dif_check_flags);
3326 		break;
3327 	case SPDK_BDEV_IO_TYPE_UNMAP:
3328 		rc = bdev_nvme_unmap(nbdev_io,
3329 				     bdev_io->u.bdev.offset_blocks,
3330 				     bdev_io->u.bdev.num_blocks);
3331 		break;
3332 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3333 		rc =  bdev_nvme_write_zeroes(nbdev_io,
3334 					     bdev_io->u.bdev.offset_blocks,
3335 					     bdev_io->u.bdev.num_blocks);
3336 		break;
3337 	case SPDK_BDEV_IO_TYPE_RESET:
3338 		nbdev_io->io_path = NULL;
3339 		bdev_nvme_reset_io(bdev->ctxt, nbdev_io);
3340 		return;
3341 
3342 	case SPDK_BDEV_IO_TYPE_FLUSH:
3343 		bdev_nvme_io_complete(nbdev_io, 0);
3344 		return;
3345 
3346 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3347 		rc = bdev_nvme_zone_appendv(nbdev_io,
3348 					    bdev_io->u.bdev.iovs,
3349 					    bdev_io->u.bdev.iovcnt,
3350 					    bdev_io->u.bdev.md_buf,
3351 					    bdev_io->u.bdev.num_blocks,
3352 					    bdev_io->u.bdev.offset_blocks,
3353 					    bdev_io->u.bdev.dif_check_flags);
3354 		break;
3355 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3356 		rc = bdev_nvme_get_zone_info(nbdev_io,
3357 					     bdev_io->u.zone_mgmt.zone_id,
3358 					     bdev_io->u.zone_mgmt.num_zones,
3359 					     bdev_io->u.zone_mgmt.buf);
3360 		break;
3361 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3362 		rc = bdev_nvme_zone_management(nbdev_io,
3363 					       bdev_io->u.zone_mgmt.zone_id,
3364 					       bdev_io->u.zone_mgmt.zone_action);
3365 		break;
3366 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3367 		nbdev_io->io_path = NULL;
3368 		bdev_nvme_admin_passthru(nbdev_ch,
3369 					 nbdev_io,
3370 					 &bdev_io->u.nvme_passthru.cmd,
3371 					 bdev_io->u.nvme_passthru.buf,
3372 					 bdev_io->u.nvme_passthru.nbytes);
3373 		return;
3374 
3375 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3376 		rc = bdev_nvme_io_passthru(nbdev_io,
3377 					   &bdev_io->u.nvme_passthru.cmd,
3378 					   bdev_io->u.nvme_passthru.buf,
3379 					   bdev_io->u.nvme_passthru.nbytes);
3380 		break;
3381 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3382 		rc = bdev_nvme_io_passthru_md(nbdev_io,
3383 					      &bdev_io->u.nvme_passthru.cmd,
3384 					      bdev_io->u.nvme_passthru.buf,
3385 					      bdev_io->u.nvme_passthru.nbytes,
3386 					      bdev_io->u.nvme_passthru.md_buf,
3387 					      bdev_io->u.nvme_passthru.md_len);
3388 		break;
3389 	case SPDK_BDEV_IO_TYPE_NVME_IOV_MD:
3390 		rc = bdev_nvme_iov_passthru_md(nbdev_io,
3391 					       &bdev_io->u.nvme_passthru.cmd,
3392 					       bdev_io->u.nvme_passthru.iovs,
3393 					       bdev_io->u.nvme_passthru.iovcnt,
3394 					       bdev_io->u.nvme_passthru.nbytes,
3395 					       bdev_io->u.nvme_passthru.md_buf,
3396 					       bdev_io->u.nvme_passthru.md_len);
3397 		break;
3398 	case SPDK_BDEV_IO_TYPE_ABORT:
3399 		nbdev_io->io_path = NULL;
3400 		nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
3401 		bdev_nvme_abort(nbdev_ch,
3402 				nbdev_io,
3403 				nbdev_io_to_abort);
3404 		return;
3405 
3406 	case SPDK_BDEV_IO_TYPE_COPY:
3407 		rc = bdev_nvme_copy(nbdev_io,
3408 				    bdev_io->u.bdev.offset_blocks,
3409 				    bdev_io->u.bdev.copy.src_offset_blocks,
3410 				    bdev_io->u.bdev.num_blocks);
3411 		break;
3412 	default:
3413 		rc = -EINVAL;
3414 		break;
3415 	}
3416 
3417 	if (spdk_unlikely(rc != 0)) {
3418 		bdev_nvme_io_complete(nbdev_io, rc);
3419 	}
3420 }
3421 
3422 static void
3423 bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
3424 {
3425 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
3426 	struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
3427 
3428 	if (spdk_likely(nbdev_io->submit_tsc == 0)) {
3429 		nbdev_io->submit_tsc = spdk_bdev_io_get_submit_tsc(bdev_io);
3430 	} else {
3431 		/* There are cases where submit_tsc != 0, i.e. retry I/O.
3432 		 * We need to update submit_tsc here.
3433 		 */
3434 		nbdev_io->submit_tsc = spdk_get_ticks();
3435 	}
3436 
3437 	spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
3438 	nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
3439 	if (spdk_unlikely(!nbdev_io->io_path)) {
3440 		if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
3441 			bdev_nvme_io_complete(nbdev_io, -ENXIO);
3442 			return;
3443 		}
3444 
3445 		/* Admin commands do not use the optimal I/O path.
3446 		 * Simply fall through even if it is not found.
3447 		 */
3448 	}
3449 
3450 	_bdev_nvme_submit_request(nbdev_ch, bdev_io);
3451 }
3452 
3453 static bool
3454 bdev_nvme_is_supported_csi(enum spdk_nvme_csi csi)
3455 {
3456 	switch (csi) {
3457 	case SPDK_NVME_CSI_NVM:
3458 		return true;
3459 	case SPDK_NVME_CSI_ZNS:
3460 		return true;
3461 	default:
3462 		return false;
3463 	}
3464 }
3465 
3466 static bool
3467 bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
3468 {
3469 	struct nvme_bdev *nbdev = ctx;
3470 	struct nvme_ns *nvme_ns;
3471 	struct spdk_nvme_ns *ns;
3472 	struct spdk_nvme_ctrlr *ctrlr;
3473 	const struct spdk_nvme_ctrlr_data *cdata;
3474 
3475 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3476 	assert(nvme_ns != NULL);
3477 	ns = nvme_ns->ns;
3478 	if (ns == NULL) {
3479 		return false;
3480 	}
3481 
3482 	if (!bdev_nvme_is_supported_csi(spdk_nvme_ns_get_csi(ns))) {
3483 		switch (io_type) {
3484 		case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3485 		case SPDK_BDEV_IO_TYPE_NVME_IO:
3486 			return true;
3487 
3488 		case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3489 			return spdk_nvme_ns_get_md_size(ns) ? true : false;
3490 
3491 		default:
3492 			return false;
3493 		}
3494 	}
3495 
3496 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
3497 
3498 	switch (io_type) {
3499 	case SPDK_BDEV_IO_TYPE_READ:
3500 	case SPDK_BDEV_IO_TYPE_WRITE:
3501 	case SPDK_BDEV_IO_TYPE_RESET:
3502 	case SPDK_BDEV_IO_TYPE_FLUSH:
3503 	case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
3504 	case SPDK_BDEV_IO_TYPE_NVME_IO:
3505 	case SPDK_BDEV_IO_TYPE_ABORT:
3506 		return true;
3507 
3508 	case SPDK_BDEV_IO_TYPE_COMPARE:
3509 		return spdk_nvme_ns_supports_compare(ns);
3510 
3511 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
3512 		return spdk_nvme_ns_get_md_size(ns) ? true : false;
3513 
3514 	case SPDK_BDEV_IO_TYPE_UNMAP:
3515 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3516 		return cdata->oncs.dsm;
3517 
3518 	case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
3519 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3520 		return cdata->oncs.write_zeroes;
3521 
3522 	case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
3523 		if (spdk_nvme_ctrlr_get_flags(ctrlr) &
3524 		    SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
3525 			return true;
3526 		}
3527 		return false;
3528 
3529 	case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
3530 	case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
3531 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
3532 
3533 	case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
3534 		return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
3535 		       spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
3536 
3537 	case SPDK_BDEV_IO_TYPE_COPY:
3538 		cdata = spdk_nvme_ctrlr_get_data(ctrlr);
3539 		return cdata->oncs.copy;
3540 
3541 	default:
3542 		return false;
3543 	}
3544 }
3545 
3546 static int
3547 nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
3548 {
3549 	struct nvme_qpair *nvme_qpair;
3550 	struct spdk_io_channel *pg_ch;
3551 	int rc;
3552 
3553 	nvme_qpair = calloc(1, sizeof(*nvme_qpair));
3554 	if (!nvme_qpair) {
3555 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to alloc nvme_qpair.\n");
3556 		return -1;
3557 	}
3558 
3559 	TAILQ_INIT(&nvme_qpair->io_path_list);
3560 
3561 	nvme_qpair->ctrlr = nvme_ctrlr;
3562 	nvme_qpair->ctrlr_ch = ctrlr_ch;
3563 
3564 	pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
3565 	if (!pg_ch) {
3566 		free(nvme_qpair);
3567 		return -1;
3568 	}
3569 
3570 	nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
3571 
3572 #ifdef SPDK_CONFIG_VTUNE
3573 	nvme_qpair->group->collect_spin_stat = true;
3574 #else
3575 	nvme_qpair->group->collect_spin_stat = false;
3576 #endif
3577 
3578 	if (!nvme_ctrlr->disabled) {
3579 		/* If a nvme_ctrlr is disabled, don't try to create qpair for it. Qpair will
3580 		 * be created when it's enabled.
3581 		 */
3582 		rc = bdev_nvme_create_qpair(nvme_qpair);
3583 		if (rc != 0) {
3584 			/* nvme_ctrlr can't create IO qpair if connection is down.
3585 			 * If reconnect_delay_sec is non-zero, creating IO qpair is retried
3586 			 * after reconnect_delay_sec seconds. If bdev_retry_count is non-zero,
3587 			 * submitted IO will be queued until IO qpair is successfully created.
3588 			 *
3589 			 * Hence, if both are satisfied, ignore the failure.
3590 			 */
3591 			if (nvme_ctrlr->opts.reconnect_delay_sec == 0 || g_opts.bdev_retry_count == 0) {
3592 				spdk_put_io_channel(pg_ch);
3593 				free(nvme_qpair);
3594 				return rc;
3595 			}
3596 		}
3597 	}
3598 
3599 	TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3600 
3601 	ctrlr_ch->qpair = nvme_qpair;
3602 
3603 	nvme_ctrlr_get_ref(nvme_ctrlr);
3604 
3605 	return 0;
3606 }
3607 
3608 static int
3609 bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3610 {
3611 	struct nvme_ctrlr *nvme_ctrlr = io_device;
3612 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3613 
3614 	return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
3615 }
3616 
3617 static void
3618 nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
3619 {
3620 	struct nvme_io_path *io_path, *next;
3621 
3622 	assert(nvme_qpair->group != NULL);
3623 
3624 	TAILQ_FOREACH_SAFE(io_path, &nvme_qpair->io_path_list, tailq, next) {
3625 		TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
3626 		nvme_io_path_free(io_path);
3627 	}
3628 
3629 	TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
3630 
3631 	spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
3632 
3633 	nvme_ctrlr_put_ref(nvme_qpair->ctrlr);
3634 
3635 	free(nvme_qpair);
3636 }
3637 
3638 static void
3639 bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
3640 {
3641 	struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
3642 	struct nvme_qpair *nvme_qpair;
3643 
3644 	nvme_qpair = ctrlr_ch->qpair;
3645 	assert(nvme_qpair != NULL);
3646 
3647 	_bdev_nvme_clear_io_path_cache(nvme_qpair);
3648 
3649 	if (nvme_qpair->qpair != NULL) {
3650 		/* Always try to disconnect the qpair, even if a reset is in progress.
3651 		 * The qpair may have been created after the reset process started.
3652 		 */
3653 		spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
3654 		if (ctrlr_ch->reset_iter) {
3655 			/* Skip current ctrlr_channel in a full reset sequence because
3656 			 * it is being deleted now.
3657 			 */
3658 			nvme_ctrlr_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
3659 		}
3660 
3661 		/* We cannot release a reference to the poll group now.
3662 		 * The qpair may be disconnected asynchronously later.
3663 		 * We need to poll it until it is actually disconnected.
3664 		 * Just detach the qpair from the deleting ctrlr_channel.
3665 		 */
3666 		nvme_qpair->ctrlr_ch = NULL;
3667 	} else {
3668 		assert(ctrlr_ch->reset_iter == NULL);
3669 
3670 		nvme_qpair_delete(nvme_qpair);
3671 	}
3672 }
3673 
3674 static inline struct spdk_io_channel *
3675 bdev_nvme_get_accel_channel(struct nvme_poll_group *group)
3676 {
3677 	if (spdk_unlikely(!group->accel_channel)) {
3678 		group->accel_channel = spdk_accel_get_io_channel();
3679 		if (!group->accel_channel) {
3680 			SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
3681 				    group);
3682 			return NULL;
3683 		}
3684 	}
3685 
3686 	return group->accel_channel;
3687 }
3688 
3689 static void
3690 bdev_nvme_finish_sequence(void *seq, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
3691 {
3692 	spdk_accel_sequence_finish(seq, cb_fn, cb_arg);
3693 }
3694 
3695 static void
3696 bdev_nvme_abort_sequence(void *seq)
3697 {
3698 	spdk_accel_sequence_abort(seq);
3699 }
3700 
3701 static void
3702 bdev_nvme_reverse_sequence(void *seq)
3703 {
3704 	spdk_accel_sequence_reverse(seq);
3705 }
3706 
3707 static int
3708 bdev_nvme_append_crc32c(void *ctx, void **seq, uint32_t *dst, struct iovec *iovs, uint32_t iovcnt,
3709 			struct spdk_memory_domain *domain, void *domain_ctx, uint32_t seed,
3710 			spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3711 {
3712 	struct spdk_io_channel *ch;
3713 	struct nvme_poll_group *group = ctx;
3714 
3715 	ch = bdev_nvme_get_accel_channel(group);
3716 	if (spdk_unlikely(ch == NULL)) {
3717 		return -ENOMEM;
3718 	}
3719 
3720 	return spdk_accel_append_crc32c((struct spdk_accel_sequence **)seq, ch, dst, iovs, iovcnt,
3721 					domain, domain_ctx, seed, cb_fn, cb_arg);
3722 }
3723 
3724 static int
3725 bdev_nvme_append_copy(void *ctx, void **seq, struct iovec *dst_iovs, uint32_t dst_iovcnt,
3726 		      struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
3727 		      struct iovec *src_iovs, uint32_t src_iovcnt,
3728 		      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
3729 		      spdk_nvme_accel_step_cb cb_fn, void *cb_arg)
3730 {
3731 	struct spdk_io_channel *ch;
3732 	struct nvme_poll_group *group = ctx;
3733 
3734 	ch = bdev_nvme_get_accel_channel(group);
3735 	if (spdk_unlikely(ch == NULL)) {
3736 		return -ENOMEM;
3737 	}
3738 
3739 	return spdk_accel_append_copy((struct spdk_accel_sequence **)seq, ch,
3740 				      dst_iovs, dst_iovcnt, dst_domain, dst_domain_ctx,
3741 				      src_iovs, src_iovcnt, src_domain, src_domain_ctx,
3742 				      cb_fn, cb_arg);
3743 }
3744 
3745 static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
3746 	.table_size		= sizeof(struct spdk_nvme_accel_fn_table),
3747 	.append_crc32c		= bdev_nvme_append_crc32c,
3748 	.append_copy		= bdev_nvme_append_copy,
3749 	.finish_sequence	= bdev_nvme_finish_sequence,
3750 	.reverse_sequence	= bdev_nvme_reverse_sequence,
3751 	.abort_sequence		= bdev_nvme_abort_sequence,
3752 };
3753 
3754 static void
3755 bdev_nvme_poll_group_interrupt_cb(struct spdk_nvme_poll_group *group, void *ctx)
3756 {
3757 	bdev_nvme_poll(ctx);
3758 }
3759 
3760 static int
3761 bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
3762 {
3763 	struct nvme_poll_group *group = ctx_buf;
3764 	struct spdk_fd_group *fgrp;
3765 	uint64_t period;
3766 	int rc;
3767 
3768 	TAILQ_INIT(&group->qpair_list);
3769 
3770 	group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
3771 	if (group->group == NULL) {
3772 		return -1;
3773 	}
3774 
3775 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_ioq_poll_period_us;
3776 	group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, period);
3777 
3778 	if (group->poller == NULL) {
3779 		spdk_nvme_poll_group_destroy(group->group);
3780 		return -1;
3781 	}
3782 
3783 	if (spdk_interrupt_mode_is_enabled()) {
3784 		spdk_poller_register_interrupt(group->poller, NULL, NULL);
3785 
3786 		fgrp = spdk_nvme_poll_group_get_fd_group(group->group);
3787 		if (fgrp == NULL) {
3788 			spdk_nvme_poll_group_destroy(group->group);
3789 			return -1;
3790 		}
3791 
3792 		rc = spdk_nvme_poll_group_set_interrupt_callback(group->group,
3793 				bdev_nvme_poll_group_interrupt_cb, group);
3794 		if (rc != 0) {
3795 			spdk_nvme_poll_group_destroy(group->group);
3796 			return -1;
3797 		}
3798 
3799 		group->intr = spdk_interrupt_register_fd_group(fgrp, "bdev_nvme_interrupt");
3800 		if (!group->intr) {
3801 			spdk_nvme_poll_group_destroy(group->group);
3802 			return -1;
3803 		}
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static void
3810 bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
3811 {
3812 	struct nvme_poll_group *group = ctx_buf;
3813 
3814 	assert(TAILQ_EMPTY(&group->qpair_list));
3815 
3816 	if (group->accel_channel) {
3817 		spdk_put_io_channel(group->accel_channel);
3818 	}
3819 
3820 	if (spdk_interrupt_mode_is_enabled()) {
3821 		spdk_interrupt_unregister(&group->intr);
3822 	}
3823 
3824 	spdk_poller_unregister(&group->poller);
3825 	if (spdk_nvme_poll_group_destroy(group->group)) {
3826 		SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
3827 		assert(false);
3828 	}
3829 }
3830 
3831 static struct spdk_io_channel *
3832 bdev_nvme_get_io_channel(void *ctx)
3833 {
3834 	struct nvme_bdev *nbdev = ctx;
3835 
3836 	return spdk_get_io_channel(nbdev);
3837 }
3838 
3839 static void *
3840 bdev_nvme_get_module_ctx(void *ctx)
3841 {
3842 	struct nvme_bdev *nbdev = ctx;
3843 	struct nvme_ns *nvme_ns;
3844 
3845 	if (!nbdev || nbdev->disk.module != &nvme_if) {
3846 		return NULL;
3847 	}
3848 
3849 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
3850 	if (!nvme_ns) {
3851 		return NULL;
3852 	}
3853 
3854 	return nvme_ns->ns;
3855 }
3856 
3857 static const char *
3858 _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
3859 {
3860 	switch (ana_state) {
3861 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
3862 		return "optimized";
3863 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
3864 		return "non_optimized";
3865 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
3866 		return "inaccessible";
3867 	case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
3868 		return "persistent_loss";
3869 	case SPDK_NVME_ANA_CHANGE_STATE:
3870 		return "change";
3871 	default:
3872 		return NULL;
3873 	}
3874 }
3875 
3876 static int
3877 bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
3878 {
3879 	struct spdk_memory_domain **_domains = NULL;
3880 	struct nvme_bdev *nbdev = ctx;
3881 	struct nvme_ns *nvme_ns;
3882 	int i = 0, _array_size = array_size;
3883 	int rc = 0;
3884 
3885 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
3886 		if (domains && array_size >= i) {
3887 			_domains = &domains[i];
3888 		} else {
3889 			_domains = NULL;
3890 		}
3891 		rc = spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, _domains, _array_size);
3892 		if (rc > 0) {
3893 			i += rc;
3894 			if (_array_size >= rc) {
3895 				_array_size -= rc;
3896 			} else {
3897 				_array_size = 0;
3898 			}
3899 		} else if (rc < 0) {
3900 			return rc;
3901 		}
3902 	}
3903 
3904 	return i;
3905 }
3906 
3907 static const char *
3908 nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
3909 {
3910 	if (nvme_ctrlr->destruct) {
3911 		return "deleting";
3912 	} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
3913 		return "failed";
3914 	} else if (nvme_ctrlr->resetting) {
3915 		return "resetting";
3916 	} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
3917 		return "reconnect_is_delayed";
3918 	} else if (nvme_ctrlr->disabled) {
3919 		return "disabled";
3920 	} else {
3921 		return "enabled";
3922 	}
3923 }
3924 
3925 void
3926 nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
3927 {
3928 	struct spdk_nvme_transport_id *trid;
3929 	const struct spdk_nvme_ctrlr_opts *opts;
3930 	const struct spdk_nvme_ctrlr_data *cdata;
3931 	struct nvme_path_id *path_id;
3932 	int32_t numa_id;
3933 
3934 	spdk_json_write_object_begin(w);
3935 
3936 	spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
3937 
3938 #ifdef SPDK_CONFIG_NVME_CUSE
3939 	size_t cuse_name_size = 128;
3940 	char cuse_name[cuse_name_size];
3941 
3942 	int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
3943 	if (rc == 0) {
3944 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
3945 	}
3946 #endif
3947 	trid = &nvme_ctrlr->active_path_id->trid;
3948 	spdk_json_write_named_object_begin(w, "trid");
3949 	nvme_bdev_dump_trid_json(trid, w);
3950 	spdk_json_write_object_end(w);
3951 
3952 	path_id = TAILQ_NEXT(nvme_ctrlr->active_path_id, link);
3953 	if (path_id != NULL) {
3954 		spdk_json_write_named_array_begin(w, "alternate_trids");
3955 		do {
3956 			trid = &path_id->trid;
3957 			spdk_json_write_object_begin(w);
3958 			nvme_bdev_dump_trid_json(trid, w);
3959 			spdk_json_write_object_end(w);
3960 
3961 			path_id = TAILQ_NEXT(path_id, link);
3962 		} while (path_id != NULL);
3963 		spdk_json_write_array_end(w);
3964 	}
3965 
3966 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
3967 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
3968 
3969 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
3970 	spdk_json_write_named_object_begin(w, "host");
3971 	spdk_json_write_named_string(w, "nqn", opts->hostnqn);
3972 	spdk_json_write_named_string(w, "addr", opts->src_addr);
3973 	spdk_json_write_named_string(w, "svcid", opts->src_svcid);
3974 	spdk_json_write_object_end(w);
3975 
3976 	numa_id = spdk_nvme_ctrlr_get_numa_id(nvme_ctrlr->ctrlr);
3977 	if (numa_id != SPDK_ENV_NUMA_ID_ANY) {
3978 		spdk_json_write_named_uint32(w, "numa_id", numa_id);
3979 	}
3980 	spdk_json_write_object_end(w);
3981 }
3982 
3983 static void
3984 nvme_namespace_info_json(struct spdk_json_write_ctx *w,
3985 			 struct nvme_ns *nvme_ns)
3986 {
3987 	struct spdk_nvme_ns *ns;
3988 	struct spdk_nvme_ctrlr *ctrlr;
3989 	const struct spdk_nvme_ctrlr_data *cdata;
3990 	const struct spdk_nvme_transport_id *trid;
3991 	union spdk_nvme_vs_register vs;
3992 	const struct spdk_nvme_ns_data *nsdata;
3993 	char buf[128];
3994 
3995 	ns = nvme_ns->ns;
3996 	if (ns == NULL) {
3997 		return;
3998 	}
3999 
4000 	ctrlr = spdk_nvme_ns_get_ctrlr(ns);
4001 
4002 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4003 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
4004 	vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
4005 
4006 	spdk_json_write_object_begin(w);
4007 
4008 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
4009 		spdk_json_write_named_string(w, "pci_address", trid->traddr);
4010 	}
4011 
4012 	spdk_json_write_named_object_begin(w, "trid");
4013 
4014 	nvme_bdev_dump_trid_json(trid, w);
4015 
4016 	spdk_json_write_object_end(w);
4017 
4018 #ifdef SPDK_CONFIG_NVME_CUSE
4019 	size_t cuse_name_size = 128;
4020 	char cuse_name[cuse_name_size];
4021 
4022 	int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
4023 					    cuse_name, &cuse_name_size);
4024 	if (rc == 0) {
4025 		spdk_json_write_named_string(w, "cuse_device", cuse_name);
4026 	}
4027 #endif
4028 
4029 	spdk_json_write_named_object_begin(w, "ctrlr_data");
4030 
4031 	spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
4032 
4033 	spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
4034 
4035 	snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
4036 	spdk_str_trim(buf);
4037 	spdk_json_write_named_string(w, "model_number", buf);
4038 
4039 	snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
4040 	spdk_str_trim(buf);
4041 	spdk_json_write_named_string(w, "serial_number", buf);
4042 
4043 	snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
4044 	spdk_str_trim(buf);
4045 	spdk_json_write_named_string(w, "firmware_revision", buf);
4046 
4047 	if (cdata->subnqn[0] != '\0') {
4048 		spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
4049 	}
4050 
4051 	spdk_json_write_named_object_begin(w, "oacs");
4052 
4053 	spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
4054 	spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
4055 	spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
4056 	spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
4057 
4058 	spdk_json_write_object_end(w);
4059 
4060 	spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
4061 	spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
4062 
4063 	spdk_json_write_object_end(w);
4064 
4065 	spdk_json_write_named_object_begin(w, "vs");
4066 
4067 	spdk_json_write_name(w, "nvme_version");
4068 	if (vs.bits.ter) {
4069 		spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
4070 	} else {
4071 		spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
4072 	}
4073 
4074 	spdk_json_write_object_end(w);
4075 
4076 	nsdata = spdk_nvme_ns_get_data(ns);
4077 
4078 	spdk_json_write_named_object_begin(w, "ns_data");
4079 
4080 	spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
4081 
4082 	if (cdata->cmic.ana_reporting) {
4083 		spdk_json_write_named_string(w, "ana_state",
4084 					     _nvme_ana_state_str(nvme_ns->ana_state));
4085 	}
4086 
4087 	spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
4088 
4089 	spdk_json_write_object_end(w);
4090 
4091 	if (cdata->oacs.security) {
4092 		spdk_json_write_named_object_begin(w, "security");
4093 
4094 		spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
4095 
4096 		spdk_json_write_object_end(w);
4097 	}
4098 
4099 	spdk_json_write_object_end(w);
4100 }
4101 
4102 static const char *
4103 nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
4104 {
4105 	switch (nbdev->mp_policy) {
4106 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
4107 		return "active_passive";
4108 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
4109 		return "active_active";
4110 	default:
4111 		assert(false);
4112 		return "invalid";
4113 	}
4114 }
4115 
4116 static const char *
4117 nvme_bdev_get_mp_selector_str(struct nvme_bdev *nbdev)
4118 {
4119 	switch (nbdev->mp_selector) {
4120 	case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
4121 		return "round_robin";
4122 	case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
4123 		return "queue_depth";
4124 	default:
4125 		assert(false);
4126 		return "invalid";
4127 	}
4128 }
4129 
4130 static int
4131 bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
4132 {
4133 	struct nvme_bdev *nbdev = ctx;
4134 	struct nvme_ns *nvme_ns;
4135 
4136 	pthread_mutex_lock(&nbdev->mutex);
4137 	spdk_json_write_named_array_begin(w, "nvme");
4138 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
4139 		nvme_namespace_info_json(w, nvme_ns);
4140 	}
4141 	spdk_json_write_array_end(w);
4142 	spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nbdev));
4143 	if (nbdev->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
4144 		spdk_json_write_named_string(w, "selector", nvme_bdev_get_mp_selector_str(nbdev));
4145 		if (nbdev->mp_selector == BDEV_NVME_MP_SELECTOR_ROUND_ROBIN) {
4146 			spdk_json_write_named_uint32(w, "rr_min_io", nbdev->rr_min_io);
4147 		}
4148 	}
4149 	pthread_mutex_unlock(&nbdev->mutex);
4150 
4151 	return 0;
4152 }
4153 
4154 static void
4155 bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
4156 {
4157 	/* No config per bdev needed */
4158 }
4159 
4160 static uint64_t
4161 bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
4162 {
4163 	struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
4164 	struct nvme_io_path *io_path;
4165 	struct nvme_poll_group *group;
4166 	uint64_t spin_time = 0;
4167 
4168 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
4169 		group = io_path->qpair->group;
4170 
4171 		if (!group || !group->collect_spin_stat) {
4172 			continue;
4173 		}
4174 
4175 		if (group->end_ticks != 0) {
4176 			group->spin_ticks += (group->end_ticks - group->start_ticks);
4177 			group->end_ticks = 0;
4178 		}
4179 
4180 		spin_time += group->spin_ticks;
4181 		group->start_ticks = 0;
4182 		group->spin_ticks = 0;
4183 	}
4184 
4185 	return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
4186 }
4187 
4188 static void
4189 bdev_nvme_reset_device_stat(void *ctx)
4190 {
4191 	struct nvme_bdev *nbdev = ctx;
4192 
4193 	if (nbdev->err_stat != NULL) {
4194 		memset(nbdev->err_stat, 0, sizeof(struct nvme_error_stat));
4195 	}
4196 }
4197 
4198 /* JSON string should be lowercases and underscore delimited string. */
4199 static void
4200 bdev_nvme_format_nvme_status(char *dst, const char *src)
4201 {
4202 	char tmp[256];
4203 
4204 	spdk_strcpy_replace(dst, 256, src, " - ", "_");
4205 	spdk_strcpy_replace(tmp, 256, dst, "-", "_");
4206 	spdk_strcpy_replace(dst, 256, tmp, " ", "_");
4207 	spdk_strlwr(dst);
4208 }
4209 
4210 static void
4211 bdev_nvme_dump_device_stat_json(void *ctx, struct spdk_json_write_ctx *w)
4212 {
4213 	struct nvme_bdev *nbdev = ctx;
4214 	struct spdk_nvme_status status = {};
4215 	uint16_t sct, sc;
4216 	char status_json[256];
4217 	const char *status_str;
4218 
4219 	if (nbdev->err_stat == NULL) {
4220 		return;
4221 	}
4222 
4223 	spdk_json_write_named_object_begin(w, "nvme_error");
4224 
4225 	spdk_json_write_named_object_begin(w, "status_type");
4226 	for (sct = 0; sct < 8; sct++) {
4227 		if (nbdev->err_stat->status_type[sct] == 0) {
4228 			continue;
4229 		}
4230 		status.sct = sct;
4231 
4232 		status_str = spdk_nvme_cpl_get_status_type_string(&status);
4233 		assert(status_str != NULL);
4234 		bdev_nvme_format_nvme_status(status_json, status_str);
4235 
4236 		spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status_type[sct]);
4237 	}
4238 	spdk_json_write_object_end(w);
4239 
4240 	spdk_json_write_named_object_begin(w, "status_code");
4241 	for (sct = 0; sct < 4; sct++) {
4242 		status.sct = sct;
4243 		for (sc = 0; sc < 256; sc++) {
4244 			if (nbdev->err_stat->status[sct][sc] == 0) {
4245 				continue;
4246 			}
4247 			status.sc = sc;
4248 
4249 			status_str = spdk_nvme_cpl_get_status_string(&status);
4250 			assert(status_str != NULL);
4251 			bdev_nvme_format_nvme_status(status_json, status_str);
4252 
4253 			spdk_json_write_named_uint32(w, status_json, nbdev->err_stat->status[sct][sc]);
4254 		}
4255 	}
4256 	spdk_json_write_object_end(w);
4257 
4258 	spdk_json_write_object_end(w);
4259 }
4260 
4261 static bool
4262 bdev_nvme_accel_sequence_supported(void *ctx, enum spdk_bdev_io_type type)
4263 {
4264 	struct nvme_bdev *nbdev = ctx;
4265 	struct nvme_ns *nvme_ns;
4266 	struct spdk_nvme_ctrlr *ctrlr;
4267 
4268 	if (!g_opts.allow_accel_sequence) {
4269 		return false;
4270 	}
4271 
4272 	switch (type) {
4273 	case SPDK_BDEV_IO_TYPE_WRITE:
4274 	case SPDK_BDEV_IO_TYPE_READ:
4275 		break;
4276 	default:
4277 		return false;
4278 	}
4279 
4280 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4281 	assert(nvme_ns != NULL);
4282 
4283 	ctrlr = nvme_ns->ctrlr->ctrlr;
4284 	assert(ctrlr != NULL);
4285 
4286 	return spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
4287 }
4288 
4289 static const struct spdk_bdev_fn_table nvmelib_fn_table = {
4290 	.destruct			= bdev_nvme_destruct,
4291 	.submit_request			= bdev_nvme_submit_request,
4292 	.io_type_supported		= bdev_nvme_io_type_supported,
4293 	.get_io_channel			= bdev_nvme_get_io_channel,
4294 	.dump_info_json			= bdev_nvme_dump_info_json,
4295 	.write_config_json		= bdev_nvme_write_config_json,
4296 	.get_spin_time			= bdev_nvme_get_spin_time,
4297 	.get_module_ctx			= bdev_nvme_get_module_ctx,
4298 	.get_memory_domains		= bdev_nvme_get_memory_domains,
4299 	.accel_sequence_supported	= bdev_nvme_accel_sequence_supported,
4300 	.reset_device_stat		= bdev_nvme_reset_device_stat,
4301 	.dump_device_stat_json		= bdev_nvme_dump_device_stat_json,
4302 };
4303 
4304 typedef int (*bdev_nvme_parse_ana_log_page_cb)(
4305 	const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
4306 
4307 static int
4308 bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
4309 			     bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
4310 {
4311 	struct spdk_nvme_ana_group_descriptor *copied_desc;
4312 	uint8_t *orig_desc;
4313 	uint32_t i, desc_size, copy_len;
4314 	int rc = 0;
4315 
4316 	if (nvme_ctrlr->ana_log_page == NULL) {
4317 		return -EINVAL;
4318 	}
4319 
4320 	copied_desc = nvme_ctrlr->copied_ana_desc;
4321 
4322 	orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
4323 	copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
4324 
4325 	for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
4326 		memcpy(copied_desc, orig_desc, copy_len);
4327 
4328 		rc = cb_fn(copied_desc, cb_arg);
4329 		if (rc != 0) {
4330 			break;
4331 		}
4332 
4333 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
4334 			    copied_desc->num_of_nsid * sizeof(uint32_t);
4335 		orig_desc += desc_size;
4336 		copy_len -= desc_size;
4337 	}
4338 
4339 	return rc;
4340 }
4341 
4342 static int
4343 nvme_ns_ana_transition_timedout(void *ctx)
4344 {
4345 	struct nvme_ns *nvme_ns = ctx;
4346 
4347 	spdk_poller_unregister(&nvme_ns->anatt_timer);
4348 	nvme_ns->ana_transition_timedout = true;
4349 
4350 	return SPDK_POLLER_BUSY;
4351 }
4352 
4353 static void
4354 _nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
4355 		       const struct spdk_nvme_ana_group_descriptor *desc)
4356 {
4357 	const struct spdk_nvme_ctrlr_data *cdata;
4358 
4359 	nvme_ns->ana_group_id = desc->ana_group_id;
4360 	nvme_ns->ana_state = desc->ana_state;
4361 	nvme_ns->ana_state_updating = false;
4362 
4363 	switch (nvme_ns->ana_state) {
4364 	case SPDK_NVME_ANA_OPTIMIZED_STATE:
4365 	case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
4366 		nvme_ns->ana_transition_timedout = false;
4367 		spdk_poller_unregister(&nvme_ns->anatt_timer);
4368 		break;
4369 
4370 	case SPDK_NVME_ANA_INACCESSIBLE_STATE:
4371 	case SPDK_NVME_ANA_CHANGE_STATE:
4372 		if (nvme_ns->anatt_timer != NULL) {
4373 			break;
4374 		}
4375 
4376 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
4377 		nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
4378 				       nvme_ns,
4379 				       cdata->anatt * SPDK_SEC_TO_USEC);
4380 		break;
4381 	default:
4382 		break;
4383 	}
4384 }
4385 
4386 static int
4387 nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
4388 {
4389 	struct nvme_ns *nvme_ns = cb_arg;
4390 	uint32_t i;
4391 
4392 	assert(nvme_ns->ns != NULL);
4393 
4394 	for (i = 0; i < desc->num_of_nsid; i++) {
4395 		if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
4396 			continue;
4397 		}
4398 
4399 		_nvme_ns_set_ana_state(nvme_ns, desc);
4400 		return 1;
4401 	}
4402 
4403 	return 0;
4404 }
4405 
4406 static int
4407 nvme_generate_uuid(const char *sn, uint32_t nsid, struct spdk_uuid *uuid)
4408 {
4409 	int rc = 0;
4410 	struct spdk_uuid new_uuid, namespace_uuid;
4411 	char merged_str[SPDK_NVME_CTRLR_SN_LEN + NSID_STR_LEN + 1] = {'\0'};
4412 	/* This namespace UUID was generated using uuid_generate() method. */
4413 	const char *namespace_str = {"edaed2de-24bc-4b07-b559-f47ecbe730fd"};
4414 	int size;
4415 
4416 	assert(strlen(sn) <= SPDK_NVME_CTRLR_SN_LEN);
4417 
4418 	spdk_uuid_set_null(&new_uuid);
4419 	spdk_uuid_set_null(&namespace_uuid);
4420 
4421 	size = snprintf(merged_str, sizeof(merged_str), "%s%"PRIu32, sn, nsid);
4422 	if (size <= 0 || (unsigned long)size >= sizeof(merged_str)) {
4423 		return -EINVAL;
4424 	}
4425 
4426 	spdk_uuid_parse(&namespace_uuid, namespace_str);
4427 
4428 	rc = spdk_uuid_generate_sha1(&new_uuid, &namespace_uuid, merged_str, size);
4429 	if (rc == 0) {
4430 		memcpy(uuid, &new_uuid, sizeof(struct spdk_uuid));
4431 	}
4432 
4433 	return rc;
4434 }
4435 
4436 static int
4437 nbdev_create(struct spdk_bdev *disk, const char *base_name,
4438 	     struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
4439 	     struct spdk_bdev_nvme_ctrlr_opts *bdev_opts, void *ctx)
4440 {
4441 	const struct spdk_uuid		*uuid;
4442 	const uint8_t *nguid;
4443 	const struct spdk_nvme_ctrlr_data *cdata;
4444 	const struct spdk_nvme_ns_data	*nsdata;
4445 	const struct spdk_nvme_ctrlr_opts *opts;
4446 	enum spdk_nvme_csi		csi;
4447 	uint32_t atomic_bs, phys_bs, bs;
4448 	char sn_tmp[SPDK_NVME_CTRLR_SN_LEN + 1] = {'\0'};
4449 	int rc;
4450 
4451 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
4452 	csi = spdk_nvme_ns_get_csi(ns);
4453 	opts = spdk_nvme_ctrlr_get_opts(ctrlr);
4454 
4455 	switch (csi) {
4456 	case SPDK_NVME_CSI_NVM:
4457 		disk->product_name = "NVMe disk";
4458 		break;
4459 	case SPDK_NVME_CSI_ZNS:
4460 		disk->product_name = "NVMe ZNS disk";
4461 		disk->zoned = true;
4462 		disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
4463 		disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
4464 					     spdk_nvme_ns_get_extended_sector_size(ns);
4465 		disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
4466 		disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
4467 		break;
4468 	default:
4469 		if (bdev_opts->allow_unrecognized_csi) {
4470 			disk->product_name = "NVMe Passthrough disk";
4471 			break;
4472 		}
4473 		SPDK_ERRLOG("unsupported CSI: %u\n", csi);
4474 		return -ENOTSUP;
4475 	}
4476 
4477 	nguid = spdk_nvme_ns_get_nguid(ns);
4478 	if (!nguid) {
4479 		uuid = spdk_nvme_ns_get_uuid(ns);
4480 		if (uuid) {
4481 			disk->uuid = *uuid;
4482 		} else if (g_opts.generate_uuids) {
4483 			spdk_strcpy_pad(sn_tmp, cdata->sn, SPDK_NVME_CTRLR_SN_LEN, '\0');
4484 			rc = nvme_generate_uuid(sn_tmp, spdk_nvme_ns_get_id(ns), &disk->uuid);
4485 			if (rc < 0) {
4486 				SPDK_ERRLOG("UUID generation failed (%s)\n", spdk_strerror(-rc));
4487 				return rc;
4488 			}
4489 		}
4490 	} else {
4491 		memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
4492 	}
4493 
4494 	disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
4495 	if (!disk->name) {
4496 		return -ENOMEM;
4497 	}
4498 
4499 	disk->write_cache = 0;
4500 	if (cdata->vwc.present) {
4501 		/* Enable if the Volatile Write Cache exists */
4502 		disk->write_cache = 1;
4503 	}
4504 	if (cdata->oncs.write_zeroes) {
4505 		disk->max_write_zeroes = UINT16_MAX + 1;
4506 	}
4507 	disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
4508 	disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
4509 	disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
4510 	disk->ctratt.raw = cdata->ctratt.raw;
4511 	disk->nsid = spdk_nvme_ns_get_id(ns);
4512 	/* NVMe driver will split one request into multiple requests
4513 	 * based on MDTS and stripe boundary, the bdev layer will use
4514 	 * max_segment_size and max_num_segments to split one big IO
4515 	 * into multiple requests, then small request can't run out
4516 	 * of NVMe internal requests data structure.
4517 	 */
4518 	if (opts && opts->io_queue_requests) {
4519 		disk->max_num_segments = opts->io_queue_requests / 2;
4520 	}
4521 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4522 		/* The nvme driver will try to split I/O that have too many
4523 		 * SGEs, but it doesn't work if that last SGE doesn't end on
4524 		 * an aggregate total that is block aligned. The bdev layer has
4525 		 * a more robust splitting framework, so use that instead for
4526 		 * this case. (See issue #3269.)
4527 		 */
4528 		uint16_t max_sges = spdk_nvme_ctrlr_get_max_sges(ctrlr);
4529 
4530 		if (disk->max_num_segments == 0) {
4531 			disk->max_num_segments = max_sges;
4532 		} else {
4533 			disk->max_num_segments = spdk_min(disk->max_num_segments, max_sges);
4534 		}
4535 	}
4536 	disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
4537 
4538 	nsdata = spdk_nvme_ns_get_data(ns);
4539 	bs = spdk_nvme_ns_get_sector_size(ns);
4540 	atomic_bs = bs;
4541 	phys_bs = bs;
4542 	if (nsdata->nabo == 0) {
4543 		if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
4544 			atomic_bs = bs * (1 + nsdata->nawupf);
4545 		} else {
4546 			atomic_bs = bs * (1 + cdata->awupf);
4547 		}
4548 	}
4549 	if (nsdata->nsfeat.optperf) {
4550 		phys_bs = bs * (1 + nsdata->npwg);
4551 	}
4552 	disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
4553 
4554 	disk->md_len = spdk_nvme_ns_get_md_size(ns);
4555 	if (disk->md_len != 0) {
4556 		disk->md_interleave = nsdata->flbas.extended;
4557 		disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
4558 		if (disk->dif_type != SPDK_DIF_DISABLE) {
4559 			disk->dif_is_head_of_md = nsdata->dps.md_start;
4560 			disk->dif_check_flags = bdev_opts->prchk_flags;
4561 			disk->dif_pi_format = (enum spdk_dif_pi_format)spdk_nvme_ns_get_pi_format(ns);
4562 		}
4563 	}
4564 
4565 	if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
4566 	      SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
4567 		disk->acwu = 0;
4568 	} else if (nsdata->nsfeat.ns_atomic_write_unit) {
4569 		disk->acwu = nsdata->nacwu + 1; /* 0-based */
4570 	} else {
4571 		disk->acwu = cdata->acwu + 1; /* 0-based */
4572 	}
4573 
4574 	if (cdata->oncs.copy) {
4575 		/* For now bdev interface allows only single segment copy */
4576 		disk->max_copy = nsdata->mssrl;
4577 	}
4578 
4579 	disk->ctxt = ctx;
4580 	disk->fn_table = &nvmelib_fn_table;
4581 	disk->module = &nvme_if;
4582 
4583 	disk->numa.id_valid = 1;
4584 	disk->numa.id = spdk_nvme_ctrlr_get_numa_id(ctrlr);
4585 
4586 	return 0;
4587 }
4588 
4589 static struct nvme_bdev *
4590 nvme_bdev_alloc(void)
4591 {
4592 	struct nvme_bdev *nbdev;
4593 	int rc;
4594 
4595 	nbdev = calloc(1, sizeof(*nbdev));
4596 	if (!nbdev) {
4597 		SPDK_ERRLOG("nbdev calloc() failed\n");
4598 		return NULL;
4599 	}
4600 
4601 	if (g_opts.nvme_error_stat) {
4602 		nbdev->err_stat = calloc(1, sizeof(struct nvme_error_stat));
4603 		if (!nbdev->err_stat) {
4604 			SPDK_ERRLOG("err_stat calloc() failed\n");
4605 			free(nbdev);
4606 			return NULL;
4607 		}
4608 	}
4609 
4610 	rc = pthread_mutex_init(&nbdev->mutex, NULL);
4611 	if (rc != 0) {
4612 		free(nbdev->err_stat);
4613 		free(nbdev);
4614 		return NULL;
4615 	}
4616 
4617 	nbdev->ref = 1;
4618 	nbdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
4619 	nbdev->mp_selector = BDEV_NVME_MP_SELECTOR_ROUND_ROBIN;
4620 	nbdev->rr_min_io = UINT32_MAX;
4621 	TAILQ_INIT(&nbdev->nvme_ns_list);
4622 
4623 	return nbdev;
4624 }
4625 
4626 static int
4627 nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4628 {
4629 	struct nvme_bdev *nbdev;
4630 	struct nvme_bdev_ctrlr *nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
4631 	int rc;
4632 
4633 	nbdev = nvme_bdev_alloc();
4634 	if (nbdev == NULL) {
4635 		SPDK_ERRLOG("Failed to allocate NVMe bdev\n");
4636 		return -ENOMEM;
4637 	}
4638 
4639 	nbdev->opal = nvme_ctrlr->opal_dev != NULL;
4640 
4641 	rc = nbdev_create(&nbdev->disk, nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
4642 			  nvme_ns->ns, &nvme_ctrlr->opts, nbdev);
4643 	if (rc != 0) {
4644 		SPDK_ERRLOG("Failed to create NVMe disk\n");
4645 		nvme_bdev_free(nbdev);
4646 		return rc;
4647 	}
4648 
4649 	spdk_io_device_register(nbdev,
4650 				bdev_nvme_create_bdev_channel_cb,
4651 				bdev_nvme_destroy_bdev_channel_cb,
4652 				sizeof(struct nvme_bdev_channel),
4653 				nbdev->disk.name);
4654 
4655 	nvme_ns->bdev = nbdev;
4656 	nbdev->nsid = nvme_ns->id;
4657 	TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq);
4658 
4659 	pthread_mutex_lock(&g_bdev_nvme_mutex);
4660 
4661 	nbdev->nbdev_ctrlr = nbdev_ctrlr;
4662 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->bdevs, nbdev, tailq);
4663 
4664 	rc = spdk_bdev_register(&nbdev->disk);
4665 	if (rc != 0) {
4666 		SPDK_ERRLOG("spdk_bdev_register() failed\n");
4667 		spdk_io_device_unregister(nbdev, NULL);
4668 		nvme_ns->bdev = NULL;
4669 
4670 		TAILQ_REMOVE(&nbdev_ctrlr->bdevs, nbdev, tailq);
4671 
4672 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
4673 
4674 		nvme_bdev_free(nbdev);
4675 		return rc;
4676 	}
4677 
4678 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
4679 
4680 	return 0;
4681 }
4682 
4683 static bool
4684 bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
4685 {
4686 	const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
4687 	const struct spdk_uuid *uuid1, *uuid2;
4688 
4689 	nsdata1 = spdk_nvme_ns_get_data(ns1);
4690 	nsdata2 = spdk_nvme_ns_get_data(ns2);
4691 	uuid1 = spdk_nvme_ns_get_uuid(ns1);
4692 	uuid2 = spdk_nvme_ns_get_uuid(ns2);
4693 
4694 	return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
4695 	       nsdata1->eui64 == nsdata2->eui64 &&
4696 	       ((uuid1 == NULL && uuid2 == NULL) ||
4697 		(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
4698 	       spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
4699 }
4700 
4701 static bool
4702 hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
4703 		 struct spdk_nvme_ctrlr_opts *opts)
4704 {
4705 	struct nvme_probe_skip_entry *entry;
4706 
4707 	TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
4708 		if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
4709 			return false;
4710 		}
4711 	}
4712 
4713 	opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
4714 	opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
4715 	opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
4716 	opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
4717 	opts->disable_read_ana_log_page = true;
4718 
4719 	SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
4720 
4721 	return true;
4722 }
4723 
4724 static void
4725 nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
4726 {
4727 	struct nvme_ctrlr *nvme_ctrlr = ctx;
4728 
4729 	if (spdk_nvme_cpl_is_error(cpl)) {
4730 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Abort failed. Resetting controller. sc is %u, sct is %u.\n",
4731 				   cpl->status.sc, cpl->status.sct);
4732 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4733 	} else if (cpl->cdw0 & 0x1) {
4734 		NVME_CTRLR_WARNLOG(nvme_ctrlr, "Specified command could not be aborted.\n");
4735 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4736 	}
4737 }
4738 
4739 static void
4740 timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
4741 	   struct spdk_nvme_qpair *qpair, uint16_t cid)
4742 {
4743 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
4744 	union spdk_nvme_csts_register csts;
4745 	int rc;
4746 
4747 	assert(nvme_ctrlr->ctrlr == ctrlr);
4748 
4749 	NVME_CTRLR_WARNLOG(nvme_ctrlr, "Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n",
4750 			   ctrlr, qpair, cid);
4751 
4752 	/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
4753 	 * queue.  (Note: qpair == NULL when there's an admin cmd timeout.)  Otherwise we
4754 	 * would submit another fabrics cmd on the admin queue to read CSTS and check for its
4755 	 * completion recursively.
4756 	 */
4757 	if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
4758 		csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
4759 		if (csts.bits.cfs) {
4760 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Controller Fatal Status, reset required\n");
4761 			bdev_nvme_reset_ctrlr(nvme_ctrlr);
4762 			return;
4763 		}
4764 	}
4765 
4766 	switch (g_opts.action_on_timeout) {
4767 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
4768 		if (qpair) {
4769 			/* Don't send abort to ctrlr when ctrlr is not available. */
4770 			pthread_mutex_lock(&nvme_ctrlr->mutex);
4771 			if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
4772 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
4773 				NVME_CTRLR_NOTICELOG(nvme_ctrlr, "Quit abort. Ctrlr is not available.\n");
4774 				return;
4775 			}
4776 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
4777 
4778 			rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
4779 						       nvme_abort_cpl, nvme_ctrlr);
4780 			if (rc == 0) {
4781 				return;
4782 			}
4783 
4784 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Unable to send abort. Resetting, rc is %d.\n", rc);
4785 		}
4786 
4787 	/* FALLTHROUGH */
4788 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
4789 		bdev_nvme_reset_ctrlr(nvme_ctrlr);
4790 		break;
4791 	case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
4792 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "No action for nvme controller timeout.\n");
4793 		break;
4794 	default:
4795 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "An invalid timeout action value is found.\n");
4796 		break;
4797 	}
4798 }
4799 
4800 static struct nvme_ns *
4801 nvme_ns_alloc(void)
4802 {
4803 	struct nvme_ns *nvme_ns;
4804 
4805 	nvme_ns = calloc(1, sizeof(struct nvme_ns));
4806 	if (nvme_ns == NULL) {
4807 		return NULL;
4808 	}
4809 
4810 	if (g_opts.io_path_stat) {
4811 		nvme_ns->stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
4812 		if (nvme_ns->stat == NULL) {
4813 			free(nvme_ns);
4814 			return NULL;
4815 		}
4816 		spdk_bdev_reset_io_stat(nvme_ns->stat, SPDK_BDEV_RESET_STAT_MAXMIN);
4817 	}
4818 
4819 	return nvme_ns;
4820 }
4821 
4822 static void
4823 nvme_ns_free(struct nvme_ns *nvme_ns)
4824 {
4825 	free(nvme_ns->stat);
4826 	free(nvme_ns);
4827 }
4828 
4829 static void
4830 nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
4831 {
4832 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4833 	struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
4834 
4835 	if (rc == 0) {
4836 		nvme_ns->probe_ctx = NULL;
4837 		nvme_ctrlr_get_ref(nvme_ctrlr);
4838 	} else {
4839 		pthread_mutex_lock(&nvme_ctrlr->mutex);
4840 		RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4841 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4842 
4843 		nvme_ns_free(nvme_ns);
4844 	}
4845 
4846 	if (ctx) {
4847 		ctx->populates_in_progress--;
4848 		if (ctx->populates_in_progress == 0) {
4849 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
4850 		}
4851 	}
4852 }
4853 
4854 static void
4855 bdev_nvme_add_io_path(struct nvme_bdev_channel_iter *i,
4856 		      struct nvme_bdev *nbdev,
4857 		      struct nvme_bdev_channel *nbdev_ch, void *ctx)
4858 {
4859 	struct nvme_ns *nvme_ns = ctx;
4860 	int rc;
4861 
4862 	rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
4863 	if (rc != 0) {
4864 		SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
4865 	}
4866 
4867 	nvme_bdev_for_each_channel_continue(i, rc);
4868 }
4869 
4870 static void
4871 bdev_nvme_delete_io_path(struct nvme_bdev_channel_iter *i,
4872 			 struct nvme_bdev *nbdev,
4873 			 struct nvme_bdev_channel *nbdev_ch, void *ctx)
4874 {
4875 	struct nvme_ns *nvme_ns = ctx;
4876 	struct nvme_io_path *io_path;
4877 
4878 	io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
4879 	if (io_path != NULL) {
4880 		_bdev_nvme_delete_io_path(nbdev_ch, io_path);
4881 	}
4882 
4883 	nvme_bdev_for_each_channel_continue(i, 0);
4884 }
4885 
4886 static void
4887 bdev_nvme_add_io_path_failed(struct nvme_bdev *nbdev, void *ctx, int status)
4888 {
4889 	struct nvme_ns *nvme_ns = ctx;
4890 
4891 	nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
4892 }
4893 
4894 static void
4895 bdev_nvme_add_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
4896 {
4897 	struct nvme_ns *nvme_ns = ctx;
4898 
4899 	if (status == 0) {
4900 		nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
4901 	} else {
4902 		/* Delete the added io_paths and fail populating the namespace. */
4903 		nvme_bdev_for_each_channel(nbdev,
4904 					   bdev_nvme_delete_io_path,
4905 					   nvme_ns,
4906 					   bdev_nvme_add_io_path_failed);
4907 	}
4908 }
4909 
4910 static int
4911 nvme_bdev_add_ns(struct nvme_bdev *nbdev, struct nvme_ns *nvme_ns)
4912 {
4913 	struct nvme_ns *tmp_ns;
4914 	const struct spdk_nvme_ns_data *nsdata;
4915 
4916 	nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
4917 	if (!nsdata->nmic.can_share) {
4918 		SPDK_ERRLOG("Namespace cannot be shared.\n");
4919 		return -EINVAL;
4920 	}
4921 
4922 	pthread_mutex_lock(&nbdev->mutex);
4923 
4924 	tmp_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
4925 	assert(tmp_ns != NULL);
4926 
4927 	if (tmp_ns->ns != NULL && !bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
4928 		pthread_mutex_unlock(&nbdev->mutex);
4929 		SPDK_ERRLOG("Namespaces are not identical.\n");
4930 		return -EINVAL;
4931 	}
4932 
4933 	nbdev->ref++;
4934 	TAILQ_INSERT_TAIL(&nbdev->nvme_ns_list, nvme_ns, tailq);
4935 	nvme_ns->bdev = nbdev;
4936 
4937 	pthread_mutex_unlock(&nbdev->mutex);
4938 
4939 	/* Add nvme_io_path to nvme_bdev_channels dynamically. */
4940 	nvme_bdev_for_each_channel(nbdev,
4941 				   bdev_nvme_add_io_path,
4942 				   nvme_ns,
4943 				   bdev_nvme_add_io_path_done);
4944 
4945 	return 0;
4946 }
4947 
4948 static void
4949 nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
4950 {
4951 	struct spdk_nvme_ns	*ns;
4952 	struct nvme_bdev	*bdev;
4953 	int			rc = 0;
4954 
4955 	ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
4956 	if (!ns) {
4957 		NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "Invalid NS %d\n", nvme_ns->id);
4958 		rc = -EINVAL;
4959 		goto done;
4960 	}
4961 
4962 	nvme_ns->ns = ns;
4963 	nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
4964 
4965 	if (nvme_ctrlr->ana_log_page != NULL) {
4966 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
4967 	}
4968 
4969 	bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
4970 	if (bdev == NULL) {
4971 		rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
4972 	} else {
4973 		rc = nvme_bdev_add_ns(bdev, nvme_ns);
4974 		if (rc == 0) {
4975 			return;
4976 		}
4977 	}
4978 done:
4979 	nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
4980 }
4981 
4982 static void
4983 nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
4984 {
4985 	struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
4986 
4987 	assert(nvme_ctrlr != NULL);
4988 
4989 	pthread_mutex_lock(&nvme_ctrlr->mutex);
4990 
4991 	RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
4992 
4993 	if (nvme_ns->bdev != NULL) {
4994 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
4995 		return;
4996 	}
4997 
4998 	nvme_ns_free(nvme_ns);
4999 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5000 
5001 	nvme_ctrlr_put_ref(nvme_ctrlr);
5002 }
5003 
5004 static void
5005 bdev_nvme_delete_io_path_done(struct nvme_bdev *nbdev, void *ctx, int status)
5006 {
5007 	struct nvme_ns *nvme_ns = ctx;
5008 
5009 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5010 }
5011 
5012 static void
5013 nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
5014 {
5015 	struct nvme_bdev *nbdev;
5016 
5017 	if (nvme_ns->depopulating) {
5018 		/* Maybe we received 2 AENs in a row */
5019 		return;
5020 	}
5021 	nvme_ns->depopulating = true;
5022 
5023 	spdk_poller_unregister(&nvme_ns->anatt_timer);
5024 
5025 	nbdev = nvme_ns->bdev;
5026 	if (nbdev != NULL) {
5027 		pthread_mutex_lock(&nbdev->mutex);
5028 
5029 		assert(nbdev->ref > 0);
5030 		nbdev->ref--;
5031 		if (nbdev->ref == 0) {
5032 			pthread_mutex_unlock(&nbdev->mutex);
5033 
5034 			spdk_bdev_unregister(&nbdev->disk, NULL, NULL);
5035 		} else {
5036 			/* spdk_bdev_unregister() is not called until the last nvme_ns is
5037 			 * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
5038 			 * and clear nvme_ns->bdev here.
5039 			 */
5040 			TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5041 
5042 			pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
5043 			nvme_ns->bdev = NULL;
5044 			pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
5045 
5046 			pthread_mutex_unlock(&nbdev->mutex);
5047 
5048 			/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
5049 			 * we call depopulate_namespace_done() to avoid use-after-free.
5050 			 */
5051 			nvme_bdev_for_each_channel(nbdev,
5052 						   bdev_nvme_delete_io_path,
5053 						   nvme_ns,
5054 						   bdev_nvme_delete_io_path_done);
5055 			return;
5056 		}
5057 	}
5058 
5059 	nvme_ctrlr_depopulate_namespace_done(nvme_ns);
5060 }
5061 
5062 static void
5063 nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
5064 			       struct nvme_async_probe_ctx *ctx)
5065 {
5066 	struct spdk_nvme_ctrlr	*ctrlr = nvme_ctrlr->ctrlr;
5067 	struct nvme_ns	*nvme_ns, *next;
5068 	struct spdk_nvme_ns	*ns;
5069 	struct nvme_bdev	*nbdev;
5070 	uint32_t		nsid;
5071 	int			rc;
5072 	uint64_t		num_sectors;
5073 
5074 	if (ctx) {
5075 		/* Initialize this count to 1 to handle the populate functions
5076 		 * calling nvme_ctrlr_populate_namespace_done() immediately.
5077 		 */
5078 		ctx->populates_in_progress = 1;
5079 	}
5080 
5081 	/* First loop over our existing namespaces and see if they have been
5082 	 * removed. */
5083 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5084 	while (nvme_ns != NULL) {
5085 		next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
5086 
5087 		if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
5088 			/* NS is still there or added again. Its attributes may have changed. */
5089 			ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
5090 			if (nvme_ns->ns != ns) {
5091 				assert(nvme_ns->ns == NULL);
5092 				nvme_ns->ns = ns;
5093 				NVME_CTRLR_DEBUGLOG(nvme_ctrlr, "NSID %u was added\n", nvme_ns->id);
5094 			}
5095 
5096 			num_sectors = spdk_nvme_ns_get_num_sectors(ns);
5097 			nbdev = nvme_ns->bdev;
5098 			assert(nbdev != NULL);
5099 			if (nbdev->disk.blockcnt != num_sectors) {
5100 				NVME_CTRLR_NOTICELOG(nvme_ctrlr,
5101 						     "NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
5102 						     nvme_ns->id,
5103 						     nbdev->disk.name,
5104 						     nbdev->disk.blockcnt,
5105 						     num_sectors);
5106 				rc = spdk_bdev_notify_blockcnt_change(&nbdev->disk, num_sectors);
5107 				if (rc != 0) {
5108 					NVME_CTRLR_ERRLOG(nvme_ctrlr,
5109 							  "Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
5110 							  nbdev->disk.name, rc);
5111 				}
5112 			}
5113 		} else {
5114 			/* Namespace was removed */
5115 			nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5116 		}
5117 
5118 		nvme_ns = next;
5119 	}
5120 
5121 	/* Loop through all of the namespaces at the nvme level and see if any of them are new */
5122 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5123 	while (nsid != 0) {
5124 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5125 
5126 		if (nvme_ns == NULL) {
5127 			/* Found a new one */
5128 			nvme_ns = nvme_ns_alloc();
5129 			if (nvme_ns == NULL) {
5130 				NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate namespace\n");
5131 				/* This just fails to attach the namespace. It may work on a future attempt. */
5132 				continue;
5133 			}
5134 
5135 			nvme_ns->id = nsid;
5136 			nvme_ns->ctrlr = nvme_ctrlr;
5137 
5138 			nvme_ns->bdev = NULL;
5139 
5140 			if (ctx) {
5141 				ctx->populates_in_progress++;
5142 			}
5143 			nvme_ns->probe_ctx = ctx;
5144 
5145 			pthread_mutex_lock(&nvme_ctrlr->mutex);
5146 			RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
5147 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
5148 
5149 			nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
5150 		}
5151 
5152 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
5153 	}
5154 
5155 	if (ctx) {
5156 		/* Decrement this count now that the loop is over to account
5157 		 * for the one we started with.  If the count is then 0, we
5158 		 * know any populate_namespace functions completed immediately,
5159 		 * so we'll kick the callback here.
5160 		 */
5161 		ctx->populates_in_progress--;
5162 		if (ctx->populates_in_progress == 0) {
5163 			nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
5164 		}
5165 	}
5166 
5167 }
5168 
5169 static void
5170 nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
5171 {
5172 	struct nvme_ns *nvme_ns, *tmp;
5173 
5174 	RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
5175 		nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
5176 	}
5177 }
5178 
5179 static uint32_t
5180 nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
5181 {
5182 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5183 	const struct spdk_nvme_ctrlr_data *cdata;
5184 	uint32_t nsid, ns_count = 0;
5185 
5186 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5187 
5188 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
5189 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
5190 		ns_count++;
5191 	}
5192 
5193 	return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5194 	       sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
5195 	       sizeof(uint32_t);
5196 }
5197 
5198 static int
5199 nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
5200 			  void *cb_arg)
5201 {
5202 	struct nvme_ctrlr *nvme_ctrlr = cb_arg;
5203 	struct nvme_ns *nvme_ns;
5204 	uint32_t i, nsid;
5205 
5206 	for (i = 0; i < desc->num_of_nsid; i++) {
5207 		nsid = desc->nsid[i];
5208 		if (nsid == 0) {
5209 			continue;
5210 		}
5211 
5212 		nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
5213 
5214 		if (nvme_ns == NULL) {
5215 			/* Target told us that an inactive namespace had an ANA change */
5216 			continue;
5217 		}
5218 
5219 		_nvme_ns_set_ana_state(nvme_ns, desc);
5220 	}
5221 
5222 	return 0;
5223 }
5224 
5225 static void
5226 bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5227 {
5228 	struct nvme_ns *nvme_ns;
5229 
5230 	spdk_free(nvme_ctrlr->ana_log_page);
5231 	nvme_ctrlr->ana_log_page = NULL;
5232 
5233 	for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
5234 	     nvme_ns != NULL;
5235 	     nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
5236 		nvme_ns->ana_state_updating = false;
5237 		nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
5238 	}
5239 }
5240 
5241 static void
5242 nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
5243 {
5244 	struct nvme_ctrlr *nvme_ctrlr = ctx;
5245 
5246 	if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
5247 		bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
5248 					     nvme_ctrlr);
5249 	} else {
5250 		bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
5251 	}
5252 
5253 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5254 
5255 	assert(nvme_ctrlr->ana_log_page_updating == true);
5256 	nvme_ctrlr->ana_log_page_updating = false;
5257 
5258 	if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
5259 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5260 
5261 		nvme_ctrlr_unregister(nvme_ctrlr);
5262 	} else {
5263 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5264 
5265 		bdev_nvme_clear_io_path_caches(nvme_ctrlr);
5266 	}
5267 }
5268 
5269 static int
5270 nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
5271 {
5272 	uint32_t ana_log_page_size;
5273 	int rc;
5274 
5275 	if (nvme_ctrlr->ana_log_page == NULL) {
5276 		return -EINVAL;
5277 	}
5278 
5279 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5280 
5281 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5282 		NVME_CTRLR_ERRLOG(nvme_ctrlr,
5283 				  "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5284 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5285 		return -EINVAL;
5286 	}
5287 
5288 	pthread_mutex_lock(&nvme_ctrlr->mutex);
5289 	if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
5290 	    nvme_ctrlr->ana_log_page_updating) {
5291 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
5292 		return -EBUSY;
5293 	}
5294 
5295 	nvme_ctrlr->ana_log_page_updating = true;
5296 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
5297 
5298 	rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
5299 					      SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5300 					      SPDK_NVME_GLOBAL_NS_TAG,
5301 					      nvme_ctrlr->ana_log_page,
5302 					      ana_log_page_size, 0,
5303 					      nvme_ctrlr_read_ana_log_page_done,
5304 					      nvme_ctrlr);
5305 	if (rc != 0) {
5306 		nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
5307 	}
5308 
5309 	return rc;
5310 }
5311 
5312 static void
5313 dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
5314 {
5315 }
5316 
5317 struct bdev_nvme_set_preferred_path_ctx {
5318 	struct spdk_bdev_desc *desc;
5319 	struct nvme_ns *nvme_ns;
5320 	bdev_nvme_set_preferred_path_cb cb_fn;
5321 	void *cb_arg;
5322 };
5323 
5324 static void
5325 bdev_nvme_set_preferred_path_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5326 {
5327 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5328 
5329 	assert(ctx != NULL);
5330 	assert(ctx->desc != NULL);
5331 	assert(ctx->cb_fn != NULL);
5332 
5333 	spdk_bdev_close(ctx->desc);
5334 
5335 	ctx->cb_fn(ctx->cb_arg, status);
5336 
5337 	free(ctx);
5338 }
5339 
5340 static void
5341 _bdev_nvme_set_preferred_path(struct nvme_bdev_channel_iter *i,
5342 			      struct nvme_bdev *nbdev,
5343 			      struct nvme_bdev_channel *nbdev_ch, void *_ctx)
5344 {
5345 	struct bdev_nvme_set_preferred_path_ctx *ctx = _ctx;
5346 	struct nvme_io_path *io_path, *prev;
5347 
5348 	prev = NULL;
5349 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
5350 		if (io_path->nvme_ns == ctx->nvme_ns) {
5351 			break;
5352 		}
5353 		prev = io_path;
5354 	}
5355 
5356 	if (io_path != NULL) {
5357 		if (prev != NULL) {
5358 			STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
5359 			STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
5360 		}
5361 
5362 		/* We can set io_path to nbdev_ch->current_io_path directly here.
5363 		 * However, it needs to be conditional. To simplify the code,
5364 		 * just clear nbdev_ch->current_io_path and let find_io_path()
5365 		 * fill it.
5366 		 *
5367 		 * Automatic failback may be disabled. Hence even if the io_path is
5368 		 * already at the head, clear nbdev_ch->current_io_path.
5369 		 */
5370 		bdev_nvme_clear_current_io_path(nbdev_ch);
5371 	}
5372 
5373 	nvme_bdev_for_each_channel_continue(i, 0);
5374 }
5375 
5376 static struct nvme_ns *
5377 bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
5378 {
5379 	struct nvme_ns *nvme_ns, *prev;
5380 	const struct spdk_nvme_ctrlr_data *cdata;
5381 
5382 	prev = NULL;
5383 	TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
5384 		cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
5385 
5386 		if (cdata->cntlid == cntlid) {
5387 			break;
5388 		}
5389 		prev = nvme_ns;
5390 	}
5391 
5392 	if (nvme_ns != NULL && prev != NULL) {
5393 		TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
5394 		TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
5395 	}
5396 
5397 	return nvme_ns;
5398 }
5399 
5400 /* This function supports only multipath mode. There is only a single I/O path
5401  * for each NVMe-oF controller. Hence, just move the matched I/O path to the
5402  * head of the I/O path list for each NVMe bdev channel.
5403  *
5404  * NVMe bdev channel may be acquired after completing this function. move the
5405  * matched namespace to the head of the namespace list for the NVMe bdev too.
5406  */
5407 void
5408 bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
5409 			     bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
5410 {
5411 	struct bdev_nvme_set_preferred_path_ctx *ctx;
5412 	struct spdk_bdev *bdev;
5413 	struct nvme_bdev *nbdev;
5414 	int rc = 0;
5415 
5416 	assert(cb_fn != NULL);
5417 
5418 	ctx = calloc(1, sizeof(*ctx));
5419 	if (ctx == NULL) {
5420 		SPDK_ERRLOG("Failed to alloc context.\n");
5421 		rc = -ENOMEM;
5422 		goto err_alloc;
5423 	}
5424 
5425 	ctx->cb_fn = cb_fn;
5426 	ctx->cb_arg = cb_arg;
5427 
5428 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5429 	if (rc != 0) {
5430 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5431 		goto err_open;
5432 	}
5433 
5434 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5435 
5436 	if (bdev->module != &nvme_if) {
5437 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5438 		rc = -ENODEV;
5439 		goto err_bdev;
5440 	}
5441 
5442 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5443 
5444 	pthread_mutex_lock(&nbdev->mutex);
5445 
5446 	ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
5447 	if (ctx->nvme_ns == NULL) {
5448 		pthread_mutex_unlock(&nbdev->mutex);
5449 
5450 		SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
5451 		rc = -ENODEV;
5452 		goto err_bdev;
5453 	}
5454 
5455 	pthread_mutex_unlock(&nbdev->mutex);
5456 
5457 	nvme_bdev_for_each_channel(nbdev,
5458 				   _bdev_nvme_set_preferred_path,
5459 				   ctx,
5460 				   bdev_nvme_set_preferred_path_done);
5461 	return;
5462 
5463 err_bdev:
5464 	spdk_bdev_close(ctx->desc);
5465 err_open:
5466 	free(ctx);
5467 err_alloc:
5468 	cb_fn(cb_arg, rc);
5469 }
5470 
5471 struct bdev_nvme_set_multipath_policy_ctx {
5472 	struct spdk_bdev_desc *desc;
5473 	spdk_bdev_nvme_set_multipath_policy_cb cb_fn;
5474 	void *cb_arg;
5475 };
5476 
5477 static void
5478 bdev_nvme_set_multipath_policy_done(struct nvme_bdev *nbdev, void *_ctx, int status)
5479 {
5480 	struct bdev_nvme_set_multipath_policy_ctx *ctx = _ctx;
5481 
5482 	assert(ctx != NULL);
5483 	assert(ctx->desc != NULL);
5484 	assert(ctx->cb_fn != NULL);
5485 
5486 	spdk_bdev_close(ctx->desc);
5487 
5488 	ctx->cb_fn(ctx->cb_arg, status);
5489 
5490 	free(ctx);
5491 }
5492 
5493 static void
5494 _bdev_nvme_set_multipath_policy(struct nvme_bdev_channel_iter *i,
5495 				struct nvme_bdev *nbdev,
5496 				struct nvme_bdev_channel *nbdev_ch, void *ctx)
5497 {
5498 	nbdev_ch->mp_policy = nbdev->mp_policy;
5499 	nbdev_ch->mp_selector = nbdev->mp_selector;
5500 	nbdev_ch->rr_min_io = nbdev->rr_min_io;
5501 	bdev_nvme_clear_current_io_path(nbdev_ch);
5502 
5503 	nvme_bdev_for_each_channel_continue(i, 0);
5504 }
5505 
5506 void
5507 spdk_bdev_nvme_set_multipath_policy(const char *name, enum spdk_bdev_nvme_multipath_policy policy,
5508 				    enum spdk_bdev_nvme_multipath_selector selector, uint32_t rr_min_io,
5509 				    spdk_bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
5510 {
5511 	struct bdev_nvme_set_multipath_policy_ctx *ctx;
5512 	struct spdk_bdev *bdev;
5513 	struct nvme_bdev *nbdev;
5514 	int rc;
5515 
5516 	assert(cb_fn != NULL);
5517 
5518 	switch (policy) {
5519 	case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
5520 		break;
5521 	case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
5522 		switch (selector) {
5523 		case BDEV_NVME_MP_SELECTOR_ROUND_ROBIN:
5524 			if (rr_min_io == UINT32_MAX) {
5525 				rr_min_io = 1;
5526 			} else if (rr_min_io == 0) {
5527 				rc = -EINVAL;
5528 				goto exit;
5529 			}
5530 			break;
5531 		case BDEV_NVME_MP_SELECTOR_QUEUE_DEPTH:
5532 			break;
5533 		default:
5534 			rc = -EINVAL;
5535 			goto exit;
5536 		}
5537 		break;
5538 	default:
5539 		rc = -EINVAL;
5540 		goto exit;
5541 	}
5542 
5543 	ctx = calloc(1, sizeof(*ctx));
5544 	if (ctx == NULL) {
5545 		SPDK_ERRLOG("Failed to alloc context.\n");
5546 		rc = -ENOMEM;
5547 		goto exit;
5548 	}
5549 
5550 	ctx->cb_fn = cb_fn;
5551 	ctx->cb_arg = cb_arg;
5552 
5553 	rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
5554 	if (rc != 0) {
5555 		SPDK_ERRLOG("Failed to open bdev %s.\n", name);
5556 		rc = -ENODEV;
5557 		goto err_open;
5558 	}
5559 
5560 	bdev = spdk_bdev_desc_get_bdev(ctx->desc);
5561 	if (bdev->module != &nvme_if) {
5562 		SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
5563 		rc = -ENODEV;
5564 		goto err_module;
5565 	}
5566 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
5567 
5568 	pthread_mutex_lock(&nbdev->mutex);
5569 	nbdev->mp_policy = policy;
5570 	nbdev->mp_selector = selector;
5571 	nbdev->rr_min_io = rr_min_io;
5572 	pthread_mutex_unlock(&nbdev->mutex);
5573 
5574 	nvme_bdev_for_each_channel(nbdev,
5575 				   _bdev_nvme_set_multipath_policy,
5576 				   ctx,
5577 				   bdev_nvme_set_multipath_policy_done);
5578 	return;
5579 
5580 err_module:
5581 	spdk_bdev_close(ctx->desc);
5582 err_open:
5583 	free(ctx);
5584 exit:
5585 	cb_fn(cb_arg, rc);
5586 }
5587 
5588 static void
5589 aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5590 {
5591 	struct nvme_ctrlr *nvme_ctrlr		= arg;
5592 	union spdk_nvme_async_event_completion	event;
5593 
5594 	if (spdk_nvme_cpl_is_error(cpl)) {
5595 		SPDK_WARNLOG("AER request execute failed\n");
5596 		return;
5597 	}
5598 
5599 	event.raw = cpl->cdw0;
5600 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5601 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
5602 		nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
5603 	} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
5604 		   (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
5605 		nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
5606 	}
5607 }
5608 
5609 static void
5610 free_nvme_async_probe_ctx(struct nvme_async_probe_ctx *ctx)
5611 {
5612 	spdk_keyring_put_key(ctx->drv_opts.tls_psk);
5613 	spdk_keyring_put_key(ctx->drv_opts.dhchap_key);
5614 	spdk_keyring_put_key(ctx->drv_opts.dhchap_ctrlr_key);
5615 	free(ctx->base_name);
5616 	free(ctx);
5617 }
5618 
5619 static void
5620 populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, int rc)
5621 {
5622 	if (ctx->cb_fn) {
5623 		ctx->cb_fn(ctx->cb_ctx, ctx->reported_bdevs, rc);
5624 	}
5625 
5626 	ctx->namespaces_populated = true;
5627 	if (ctx->probe_done) {
5628 		/* The probe was already completed, so we need to free the context
5629 		 * here.  This can happen for cases like OCSSD, where we need to
5630 		 * send additional commands to the SSD after attach.
5631 		 */
5632 		free_nvme_async_probe_ctx(ctx);
5633 	}
5634 }
5635 
5636 static int
5637 bdev_nvme_remove_poller(void *ctx)
5638 {
5639 	struct spdk_nvme_transport_id trid_pcie;
5640 
5641 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
5642 		spdk_poller_unregister(&g_hotplug_poller);
5643 		return SPDK_POLLER_IDLE;
5644 	}
5645 
5646 	memset(&trid_pcie, 0, sizeof(trid_pcie));
5647 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
5648 
5649 	if (spdk_nvme_scan_attached(&trid_pcie)) {
5650 		SPDK_ERRLOG_RATELIMIT("spdk_nvme_scan_attached() failed\n");
5651 	}
5652 
5653 	return SPDK_POLLER_BUSY;
5654 }
5655 
5656 static void
5657 nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
5658 		       struct nvme_async_probe_ctx *ctx)
5659 {
5660 	struct spdk_nvme_transport_id *trid = &nvme_ctrlr->active_path_id->trid;
5661 
5662 	if (spdk_nvme_trtype_is_fabrics(trid->trtype)) {
5663 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created to %s:%s\n",
5664 				   trid->traddr, trid->trsvcid);
5665 	} else {
5666 		NVME_CTRLR_INFOLOG(nvme_ctrlr, "ctrlr was created\n");
5667 	}
5668 
5669 	spdk_io_device_register(nvme_ctrlr,
5670 				bdev_nvme_create_ctrlr_channel_cb,
5671 				bdev_nvme_destroy_ctrlr_channel_cb,
5672 				sizeof(struct nvme_ctrlr_channel),
5673 				nvme_ctrlr->nbdev_ctrlr->name);
5674 
5675 	nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
5676 
5677 	if (g_hotplug_poller == NULL) {
5678 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
5679 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
5680 	}
5681 }
5682 
5683 static void
5684 nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
5685 {
5686 	struct nvme_ctrlr *nvme_ctrlr = _ctx;
5687 	struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
5688 
5689 	nvme_ctrlr->probe_ctx = NULL;
5690 
5691 	if (spdk_nvme_cpl_is_error(cpl)) {
5692 		nvme_ctrlr_delete(nvme_ctrlr);
5693 
5694 		if (ctx != NULL) {
5695 			ctx->reported_bdevs = 0;
5696 			populate_namespaces_cb(ctx, -1);
5697 		}
5698 		return;
5699 	}
5700 
5701 	nvme_ctrlr_create_done(nvme_ctrlr, ctx);
5702 }
5703 
5704 static int
5705 nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
5706 			     struct nvme_async_probe_ctx *ctx)
5707 {
5708 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5709 	const struct spdk_nvme_ctrlr_data *cdata;
5710 	uint32_t ana_log_page_size;
5711 
5712 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5713 
5714 	/* Set buffer size enough to include maximum number of allowed namespaces. */
5715 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
5716 			    sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
5717 			    sizeof(uint32_t);
5718 
5719 	nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
5720 						SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
5721 	if (nvme_ctrlr->ana_log_page == NULL) {
5722 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate ANA log page buffer\n");
5723 		return -ENXIO;
5724 	}
5725 
5726 	/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
5727 	 * Hence copy each descriptor to a temporary area when parsing it.
5728 	 *
5729 	 * Allocate a buffer whose size is as large as ANA log page buffer because
5730 	 * we do not know the size of a descriptor until actually reading it.
5731 	 */
5732 	nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
5733 	if (nvme_ctrlr->copied_ana_desc == NULL) {
5734 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "could not allocate a buffer to parse ANA descriptor\n");
5735 		return -ENOMEM;
5736 	}
5737 
5738 	nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
5739 
5740 	nvme_ctrlr->probe_ctx = ctx;
5741 
5742 	/* Then, set the read size only to include the current active namespaces. */
5743 	ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
5744 
5745 	if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
5746 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
5747 				  ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
5748 		return -EINVAL;
5749 	}
5750 
5751 	return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
5752 						SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
5753 						SPDK_NVME_GLOBAL_NS_TAG,
5754 						nvme_ctrlr->ana_log_page,
5755 						ana_log_page_size, 0,
5756 						nvme_ctrlr_init_ana_log_page_done,
5757 						nvme_ctrlr);
5758 }
5759 
5760 /* hostnqn and subnqn were already verified before attaching a controller.
5761  * Hence check only the multipath capability and cntlid here.
5762  */
5763 static bool
5764 bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
5765 {
5766 	struct nvme_ctrlr *tmp;
5767 	const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
5768 
5769 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5770 
5771 	if (!cdata->cmic.multi_ctrlr) {
5772 		SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
5773 		return false;
5774 	}
5775 
5776 	TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
5777 		tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
5778 
5779 		if (!tmp_cdata->cmic.multi_ctrlr) {
5780 			NVME_CTRLR_ERRLOG(tmp, "Ctrlr%u does not support multipath.\n", cdata->cntlid);
5781 			return false;
5782 		}
5783 		if (cdata->cntlid == tmp_cdata->cntlid) {
5784 			NVME_CTRLR_ERRLOG(tmp, "cntlid %u are duplicated.\n", tmp_cdata->cntlid);
5785 			return false;
5786 		}
5787 	}
5788 
5789 	return true;
5790 }
5791 
5792 
5793 static int
5794 nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
5795 {
5796 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
5797 	struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
5798 	struct nvme_ctrlr      *nctrlr;
5799 	int rc = 0;
5800 
5801 	pthread_mutex_lock(&g_bdev_nvme_mutex);
5802 
5803 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
5804 	if (nbdev_ctrlr != NULL) {
5805 		if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
5806 			rc = -EINVAL;
5807 			goto exit;
5808 		}
5809 		TAILQ_FOREACH(nctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
5810 			if (nctrlr->opts.multipath != nvme_ctrlr->opts.multipath) {
5811 				/* All controllers with the same name must be configured the same
5812 				 * way, either for multipath or failover. If the configuration doesn't
5813 				 * match - report error.
5814 				 */
5815 				rc = -EINVAL;
5816 				goto exit;
5817 			}
5818 		}
5819 	} else {
5820 		nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
5821 		if (nbdev_ctrlr == NULL) {
5822 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate nvme_bdev_ctrlr.\n");
5823 			rc = -ENOMEM;
5824 			goto exit;
5825 		}
5826 		nbdev_ctrlr->name = strdup(name);
5827 		if (nbdev_ctrlr->name == NULL) {
5828 			NVME_CTRLR_ERRLOG(nvme_ctrlr, "Failed to allocate name of nvme_bdev_ctrlr.\n");
5829 			free(nbdev_ctrlr);
5830 			goto exit;
5831 		}
5832 		TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
5833 		TAILQ_INIT(&nbdev_ctrlr->bdevs);
5834 		TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
5835 	}
5836 	nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
5837 	TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
5838 exit:
5839 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
5840 	return rc;
5841 }
5842 
5843 static int
5844 nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
5845 		  const char *name,
5846 		  const struct spdk_nvme_transport_id *trid,
5847 		  struct nvme_async_probe_ctx *ctx)
5848 {
5849 	struct nvme_ctrlr *nvme_ctrlr;
5850 	struct nvme_path_id *path_id;
5851 	const struct spdk_nvme_ctrlr_data *cdata;
5852 	struct spdk_event_handler_opts opts = {
5853 		.opts_size = SPDK_SIZEOF(&opts, fd_type),
5854 	};
5855 	uint64_t period;
5856 	int fd, rc;
5857 
5858 	nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
5859 	if (nvme_ctrlr == NULL) {
5860 		SPDK_ERRLOG("Failed to allocate device struct\n");
5861 		return -ENOMEM;
5862 	}
5863 
5864 	rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
5865 	if (rc != 0) {
5866 		free(nvme_ctrlr);
5867 		return rc;
5868 	}
5869 
5870 	TAILQ_INIT(&nvme_ctrlr->trids);
5871 	TAILQ_INIT(&nvme_ctrlr->pending_resets);
5872 	RB_INIT(&nvme_ctrlr->namespaces);
5873 
5874 	/* Get another reference to the key, so the first one can be released from probe_ctx */
5875 	if (ctx != NULL) {
5876 		if (ctx->drv_opts.tls_psk != NULL) {
5877 			nvme_ctrlr->psk = spdk_keyring_get_key(
5878 						  spdk_key_get_name(ctx->drv_opts.tls_psk));
5879 			if (nvme_ctrlr->psk == NULL) {
5880 				/* Could only happen if the key was removed in the meantime */
5881 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5882 					    spdk_key_get_name(ctx->drv_opts.tls_psk));
5883 				rc = -ENOKEY;
5884 				goto err;
5885 			}
5886 		}
5887 
5888 		if (ctx->drv_opts.dhchap_key != NULL) {
5889 			nvme_ctrlr->dhchap_key = spdk_keyring_get_key(
5890 							 spdk_key_get_name(ctx->drv_opts.dhchap_key));
5891 			if (nvme_ctrlr->dhchap_key == NULL) {
5892 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5893 					    spdk_key_get_name(ctx->drv_opts.dhchap_key));
5894 				rc = -ENOKEY;
5895 				goto err;
5896 			}
5897 		}
5898 
5899 		if (ctx->drv_opts.dhchap_ctrlr_key != NULL) {
5900 			nvme_ctrlr->dhchap_ctrlr_key =
5901 				spdk_keyring_get_key(
5902 					spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5903 			if (nvme_ctrlr->dhchap_ctrlr_key == NULL) {
5904 				SPDK_ERRLOG("Couldn't get a reference to the key '%s'\n",
5905 					    spdk_key_get_name(ctx->drv_opts.dhchap_ctrlr_key));
5906 				rc = -ENOKEY;
5907 				goto err;
5908 			}
5909 		}
5910 	}
5911 
5912 	/* Check if we manage to enable interrupts on the controller. */
5913 	if (spdk_interrupt_mode_is_enabled() && ctx != NULL && !ctx->drv_opts.enable_interrupts) {
5914 		SPDK_ERRLOG("Failed to enable interrupts on the controller\n");
5915 		rc = -ENOTSUP;
5916 		goto err;
5917 	}
5918 
5919 	path_id = calloc(1, sizeof(*path_id));
5920 	if (path_id == NULL) {
5921 		SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
5922 		rc = -ENOMEM;
5923 		goto err;
5924 	}
5925 
5926 	path_id->trid = *trid;
5927 	if (ctx != NULL) {
5928 		memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
5929 		memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
5930 	}
5931 	nvme_ctrlr->active_path_id = path_id;
5932 	TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
5933 
5934 	nvme_ctrlr->thread = spdk_get_thread();
5935 	nvme_ctrlr->ctrlr = ctrlr;
5936 	nvme_ctrlr->ref = 1;
5937 
5938 	if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
5939 		SPDK_ERRLOG("OCSSDs are not supported");
5940 		rc = -ENOTSUP;
5941 		goto err;
5942 	}
5943 
5944 	if (ctx != NULL) {
5945 		memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
5946 	} else {
5947 		spdk_bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
5948 	}
5949 
5950 	period = spdk_interrupt_mode_is_enabled() ? 0 : g_opts.nvme_adminq_poll_period_us;
5951 
5952 	nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
5953 					  period);
5954 
5955 	if (spdk_interrupt_mode_is_enabled()) {
5956 		spdk_poller_register_interrupt(nvme_ctrlr->adminq_timer_poller, NULL, NULL);
5957 
5958 		fd = spdk_nvme_ctrlr_get_admin_qp_fd(nvme_ctrlr->ctrlr, &opts);
5959 		if (fd < 0) {
5960 			rc = fd;
5961 			goto err;
5962 		}
5963 
5964 		nvme_ctrlr->intr = SPDK_INTERRUPT_REGISTER_EXT(fd, bdev_nvme_poll_adminq,
5965 				   nvme_ctrlr, &opts);
5966 		if (!nvme_ctrlr->intr) {
5967 			rc = -EINVAL;
5968 			goto err;
5969 		}
5970 	}
5971 
5972 	if (g_opts.timeout_us > 0) {
5973 		/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
5974 		/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
5975 		uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
5976 					  g_opts.timeout_us : g_opts.timeout_admin_us;
5977 		spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
5978 				adm_timeout_us, timeout_cb, nvme_ctrlr);
5979 	}
5980 
5981 	spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
5982 	spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
5983 
5984 	if (spdk_nvme_ctrlr_get_flags(ctrlr) &
5985 	    SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
5986 		nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
5987 	}
5988 
5989 	rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
5990 	if (rc != 0) {
5991 		goto err;
5992 	}
5993 
5994 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
5995 
5996 	if (cdata->cmic.ana_reporting) {
5997 		rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
5998 		if (rc == 0) {
5999 			return 0;
6000 		}
6001 	} else {
6002 		nvme_ctrlr_create_done(nvme_ctrlr, ctx);
6003 		return 0;
6004 	}
6005 
6006 err:
6007 	nvme_ctrlr_delete(nvme_ctrlr);
6008 	return rc;
6009 }
6010 
6011 void
6012 spdk_bdev_nvme_get_default_ctrlr_opts(struct spdk_bdev_nvme_ctrlr_opts *opts)
6013 {
6014 	opts->prchk_flags = 0;
6015 	opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
6016 	opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
6017 	opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
6018 	opts->multipath = true;
6019 }
6020 
6021 static void
6022 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6023 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
6024 {
6025 	char *name;
6026 
6027 	name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
6028 	if (!name) {
6029 		SPDK_ERRLOG("Failed to assign name to NVMe device\n");
6030 		return;
6031 	}
6032 
6033 	if (nvme_ctrlr_create(ctrlr, name, trid, NULL) == 0) {
6034 		SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
6035 	} else {
6036 		SPDK_ERRLOG("Failed to attach to %s (%s)\n", trid->traddr, name);
6037 	}
6038 
6039 	free(name);
6040 }
6041 
6042 static void
6043 _nvme_ctrlr_destruct(void *ctx)
6044 {
6045 	struct nvme_ctrlr *nvme_ctrlr = ctx;
6046 
6047 	nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
6048 	nvme_ctrlr_put_ref(nvme_ctrlr);
6049 }
6050 
6051 static int
6052 bdev_nvme_delete_ctrlr_unsafe(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6053 {
6054 	struct nvme_probe_skip_entry *entry;
6055 
6056 	/* The controller's destruction was already started */
6057 	if (nvme_ctrlr->destruct) {
6058 		return -EALREADY;
6059 	}
6060 
6061 	if (!hotplug &&
6062 	    nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
6063 		entry = calloc(1, sizeof(*entry));
6064 		if (!entry) {
6065 			return -ENOMEM;
6066 		}
6067 		entry->trid = nvme_ctrlr->active_path_id->trid;
6068 		TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
6069 	}
6070 
6071 	nvme_ctrlr->destruct = true;
6072 	return 0;
6073 }
6074 
6075 static int
6076 bdev_nvme_delete_ctrlr(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
6077 {
6078 	int rc;
6079 
6080 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6081 	rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, hotplug);
6082 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6083 
6084 	if (rc == 0) {
6085 		_nvme_ctrlr_destruct(nvme_ctrlr);
6086 	} else if (rc == -EALREADY) {
6087 		rc = 0;
6088 	}
6089 
6090 	return rc;
6091 }
6092 
6093 static void
6094 remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
6095 {
6096 	struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
6097 
6098 	bdev_nvme_delete_ctrlr(nvme_ctrlr, true);
6099 }
6100 
6101 static int
6102 bdev_nvme_hotplug_probe(void *arg)
6103 {
6104 	if (g_hotplug_probe_ctx == NULL) {
6105 		spdk_poller_unregister(&g_hotplug_probe_poller);
6106 		return SPDK_POLLER_IDLE;
6107 	}
6108 
6109 	if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
6110 		g_hotplug_probe_ctx = NULL;
6111 		spdk_poller_unregister(&g_hotplug_probe_poller);
6112 	}
6113 
6114 	return SPDK_POLLER_BUSY;
6115 }
6116 
6117 static int
6118 bdev_nvme_hotplug(void *arg)
6119 {
6120 	struct spdk_nvme_transport_id trid_pcie;
6121 
6122 	if (g_hotplug_probe_ctx) {
6123 		return SPDK_POLLER_BUSY;
6124 	}
6125 
6126 	memset(&trid_pcie, 0, sizeof(trid_pcie));
6127 	spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
6128 
6129 	g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
6130 			      hotplug_probe_cb, attach_cb, NULL);
6131 
6132 	if (g_hotplug_probe_ctx) {
6133 		assert(g_hotplug_probe_poller == NULL);
6134 		g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
6135 	}
6136 
6137 	return SPDK_POLLER_BUSY;
6138 }
6139 
6140 void
6141 spdk_bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts, size_t opts_size)
6142 {
6143 	if (!opts) {
6144 		SPDK_ERRLOG("opts should not be NULL\n");
6145 		return;
6146 	}
6147 
6148 	if (!opts_size) {
6149 		SPDK_ERRLOG("opts_size should not be zero value\n");
6150 		return;
6151 	}
6152 
6153 	opts->opts_size = opts_size;
6154 
6155 #define SET_FIELD(field, defval) \
6156 		opts->field = SPDK_GET_FIELD(&g_opts, field, defval, opts_size); \
6157 
6158 	SET_FIELD(action_on_timeout, 0);
6159 	SET_FIELD(keep_alive_timeout_ms, 0);
6160 	SET_FIELD(timeout_us, 0);
6161 	SET_FIELD(timeout_admin_us, 0);
6162 	SET_FIELD(transport_retry_count, 0);
6163 	SET_FIELD(arbitration_burst, 0);
6164 	SET_FIELD(low_priority_weight, 0);
6165 	SET_FIELD(medium_priority_weight, 0);
6166 	SET_FIELD(high_priority_weight, 0);
6167 	SET_FIELD(io_queue_requests, 0);
6168 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6169 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6170 	SET_FIELD(delay_cmd_submit, 0);
6171 	SET_FIELD(bdev_retry_count, 0);
6172 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6173 	SET_FIELD(reconnect_delay_sec, 0);
6174 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6175 	SET_FIELD(transport_ack_timeout, 0);
6176 	SET_FIELD(disable_auto_failback, false);
6177 	SET_FIELD(generate_uuids, false);
6178 	SET_FIELD(transport_tos, 0);
6179 	SET_FIELD(nvme_error_stat, false);
6180 	SET_FIELD(io_path_stat, false);
6181 	SET_FIELD(allow_accel_sequence, false);
6182 	SET_FIELD(rdma_srq_size, 0);
6183 	SET_FIELD(rdma_max_cq_size, 0);
6184 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6185 	SET_FIELD(dhchap_digests, 0);
6186 	SET_FIELD(dhchap_dhgroups, 0);
6187 	SET_FIELD(rdma_umr_per_io, false);
6188 
6189 #undef SET_FIELD
6190 
6191 	/* Do not remove this statement, you should always update this statement when you adding a new field,
6192 	 * and do not forget to add the SET_FIELD statement for your added field. */
6193 	SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_nvme_opts) == 128, "Incorrect size");
6194 }
6195 
6196 static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6197 		uint32_t reconnect_delay_sec,
6198 		uint32_t fast_io_fail_timeout_sec);
6199 
6200 static int
6201 bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
6202 {
6203 	if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
6204 		/* Can't set timeout_admin_us without also setting timeout_us */
6205 		SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
6206 		return -EINVAL;
6207 	}
6208 
6209 	if (opts->bdev_retry_count < -1) {
6210 		SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
6211 		return -EINVAL;
6212 	}
6213 
6214 	if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
6215 			opts->reconnect_delay_sec,
6216 			opts->fast_io_fail_timeout_sec)) {
6217 		return -EINVAL;
6218 	}
6219 
6220 	return 0;
6221 }
6222 
6223 int
6224 spdk_bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
6225 {
6226 	struct spdk_nvme_transport_opts drv_opts;
6227 	int ret;
6228 
6229 	if (!opts) {
6230 		SPDK_ERRLOG("opts cannot be NULL\n");
6231 		return -1;
6232 	}
6233 
6234 	if (!opts->opts_size) {
6235 		SPDK_ERRLOG("opts_size inside opts cannot be zero value\n");
6236 		return -1;
6237 	}
6238 
6239 	ret = bdev_nvme_validate_opts(opts);
6240 	if (ret) {
6241 		SPDK_WARNLOG("Failed to set nvme opts.\n");
6242 		return ret;
6243 	}
6244 
6245 	if (g_bdev_nvme_init_thread != NULL) {
6246 		if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
6247 			return -EPERM;
6248 		}
6249 	}
6250 
6251 	spdk_nvme_transport_get_opts(&drv_opts, sizeof(drv_opts));
6252 	if (opts->rdma_srq_size != 0) {
6253 		drv_opts.rdma_srq_size = opts->rdma_srq_size;
6254 	}
6255 	if (opts->rdma_max_cq_size != 0) {
6256 		drv_opts.rdma_max_cq_size = opts->rdma_max_cq_size;
6257 	}
6258 	if (opts->rdma_cm_event_timeout_ms != 0) {
6259 		drv_opts.rdma_cm_event_timeout_ms = opts->rdma_cm_event_timeout_ms;
6260 	}
6261 	if (drv_opts.rdma_umr_per_io != opts->rdma_umr_per_io) {
6262 		drv_opts.rdma_umr_per_io = opts->rdma_umr_per_io;
6263 	}
6264 	ret = spdk_nvme_transport_set_opts(&drv_opts, sizeof(drv_opts));
6265 	if (ret) {
6266 		SPDK_ERRLOG("Failed to set NVMe transport opts.\n");
6267 		return ret;
6268 	}
6269 
6270 #define SET_FIELD(field, defval) \
6271 		g_opts.field = SPDK_GET_FIELD(opts, field, defval, opts->opts_size); \
6272 
6273 	SET_FIELD(action_on_timeout, 0);
6274 	SET_FIELD(keep_alive_timeout_ms, 0);
6275 	SET_FIELD(timeout_us, 0);
6276 	SET_FIELD(timeout_admin_us, 0);
6277 	SET_FIELD(transport_retry_count, 0);
6278 	SET_FIELD(arbitration_burst, 0);
6279 	SET_FIELD(low_priority_weight, 0);
6280 	SET_FIELD(medium_priority_weight, 0);
6281 	SET_FIELD(high_priority_weight, 0);
6282 	SET_FIELD(io_queue_requests, 0);
6283 	SET_FIELD(nvme_adminq_poll_period_us, 0);
6284 	SET_FIELD(nvme_ioq_poll_period_us, 0);
6285 	SET_FIELD(delay_cmd_submit, 0);
6286 	SET_FIELD(bdev_retry_count, 0);
6287 	SET_FIELD(ctrlr_loss_timeout_sec, 0);
6288 	SET_FIELD(reconnect_delay_sec, 0);
6289 	SET_FIELD(fast_io_fail_timeout_sec, 0);
6290 	SET_FIELD(transport_ack_timeout, 0);
6291 	SET_FIELD(disable_auto_failback, false);
6292 	SET_FIELD(generate_uuids, false);
6293 	SET_FIELD(transport_tos, 0);
6294 	SET_FIELD(nvme_error_stat, false);
6295 	SET_FIELD(io_path_stat, false);
6296 	SET_FIELD(allow_accel_sequence, false);
6297 	SET_FIELD(rdma_srq_size, 0);
6298 	SET_FIELD(rdma_max_cq_size, 0);
6299 	SET_FIELD(rdma_cm_event_timeout_ms, 0);
6300 	SET_FIELD(dhchap_digests, 0);
6301 	SET_FIELD(dhchap_dhgroups, 0);
6302 
6303 	g_opts.opts_size = opts->opts_size;
6304 
6305 #undef SET_FIELD
6306 
6307 	return 0;
6308 }
6309 
6310 struct set_nvme_hotplug_ctx {
6311 	uint64_t period_us;
6312 	bool enabled;
6313 	spdk_msg_fn fn;
6314 	void *fn_ctx;
6315 };
6316 
6317 static void
6318 set_nvme_hotplug_period_cb(void *_ctx)
6319 {
6320 	struct set_nvme_hotplug_ctx *ctx = _ctx;
6321 
6322 	spdk_poller_unregister(&g_hotplug_poller);
6323 	if (ctx->enabled) {
6324 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
6325 	} else {
6326 		g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_remove_poller, NULL,
6327 							NVME_HOTPLUG_POLL_PERIOD_DEFAULT);
6328 	}
6329 
6330 	g_nvme_hotplug_poll_period_us = ctx->period_us;
6331 	g_nvme_hotplug_enabled = ctx->enabled;
6332 	if (ctx->fn) {
6333 		ctx->fn(ctx->fn_ctx);
6334 	}
6335 
6336 	free(ctx);
6337 }
6338 
6339 int
6340 bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
6341 {
6342 	struct set_nvme_hotplug_ctx *ctx;
6343 
6344 	if (enabled == true && !spdk_process_is_primary()) {
6345 		return -EPERM;
6346 	}
6347 
6348 	ctx = calloc(1, sizeof(*ctx));
6349 	if (ctx == NULL) {
6350 		return -ENOMEM;
6351 	}
6352 
6353 	period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
6354 	ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
6355 	ctx->enabled = enabled;
6356 	ctx->fn = cb;
6357 	ctx->fn_ctx = cb_ctx;
6358 
6359 	spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
6360 	return 0;
6361 }
6362 
6363 static void
6364 nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
6365 				    struct nvme_async_probe_ctx *ctx)
6366 {
6367 	struct nvme_ns	*nvme_ns;
6368 	struct nvme_bdev	*nvme_bdev;
6369 	size_t			j;
6370 
6371 	assert(nvme_ctrlr != NULL);
6372 
6373 	if (ctx->names == NULL) {
6374 		ctx->reported_bdevs = 0;
6375 		populate_namespaces_cb(ctx, 0);
6376 		return;
6377 	}
6378 
6379 	/*
6380 	 * Report the new bdevs that were created in this call.
6381 	 * There can be more than one bdev per NVMe controller.
6382 	 */
6383 	j = 0;
6384 
6385 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6386 
6387 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6388 	while (nvme_ns != NULL) {
6389 		nvme_bdev = nvme_ns->bdev;
6390 		if (j < ctx->max_bdevs) {
6391 			ctx->names[j] = nvme_bdev->disk.name;
6392 			j++;
6393 		} else {
6394 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
6395 
6396 			NVME_CTRLR_ERRLOG(nvme_ctrlr,
6397 					  "Maximum number of namespaces supported per NVMe controller is %du. "
6398 					  "Unable to return all names of created bdevs\n",
6399 					  ctx->max_bdevs);
6400 			ctx->reported_bdevs = 0;
6401 			populate_namespaces_cb(ctx, -ERANGE);
6402 			return;
6403 		}
6404 
6405 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6406 	}
6407 
6408 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6409 
6410 	ctx->reported_bdevs = j;
6411 	populate_namespaces_cb(ctx, 0);
6412 }
6413 
6414 static int
6415 bdev_nvme_check_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6416 			       struct spdk_nvme_ctrlr *new_ctrlr,
6417 			       struct spdk_nvme_transport_id *trid)
6418 {
6419 	struct nvme_path_id *tmp_trid;
6420 
6421 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6422 		NVME_CTRLR_ERRLOG(nvme_ctrlr, "PCIe failover is not supported.\n");
6423 		return -ENOTSUP;
6424 	}
6425 
6426 	/* Currently we only support failover to the same transport type. */
6427 	if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
6428 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6429 				   "Failover from trtype: %s to a different trtype: %s is not supported currently\n",
6430 				   spdk_nvme_transport_id_trtype_str(nvme_ctrlr->active_path_id->trid.trtype),
6431 				   spdk_nvme_transport_id_trtype_str(trid->trtype));
6432 		return -EINVAL;
6433 	}
6434 
6435 
6436 	/* Currently we only support failover to the same NQN. */
6437 	if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
6438 		NVME_CTRLR_WARNLOG(nvme_ctrlr,
6439 				   "Failover from subnqn: %s to a different subnqn: %s is not supported currently\n",
6440 				   nvme_ctrlr->active_path_id->trid.subnqn, trid->subnqn);
6441 		return -EINVAL;
6442 	}
6443 
6444 	/* Skip all the other checks if we've already registered this path. */
6445 	TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
6446 		if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
6447 			NVME_CTRLR_WARNLOG(nvme_ctrlr, "This path (traddr: %s subnqn: %s) is already registered\n",
6448 					   trid->traddr, trid->subnqn);
6449 			return -EALREADY;
6450 		}
6451 	}
6452 
6453 	return 0;
6454 }
6455 
6456 static int
6457 bdev_nvme_check_secondary_namespace(struct nvme_ctrlr *nvme_ctrlr,
6458 				    struct spdk_nvme_ctrlr *new_ctrlr)
6459 {
6460 	struct nvme_ns *nvme_ns;
6461 	struct spdk_nvme_ns *new_ns;
6462 
6463 	nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
6464 	while (nvme_ns != NULL) {
6465 		new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
6466 		assert(new_ns != NULL);
6467 
6468 		if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
6469 			return -EINVAL;
6470 		}
6471 
6472 		nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
6473 	}
6474 
6475 	return 0;
6476 }
6477 
6478 static int
6479 _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6480 			      struct spdk_nvme_transport_id *trid)
6481 {
6482 	struct nvme_path_id *active_id, *new_trid, *tmp_trid;
6483 
6484 	new_trid = calloc(1, sizeof(*new_trid));
6485 	if (new_trid == NULL) {
6486 		return -ENOMEM;
6487 	}
6488 	new_trid->trid = *trid;
6489 
6490 	active_id = nvme_ctrlr->active_path_id;
6491 	assert(active_id != NULL);
6492 	assert(active_id == TAILQ_FIRST(&nvme_ctrlr->trids));
6493 
6494 	/* Skip the active trid not to replace it until it is failed. */
6495 	tmp_trid = TAILQ_NEXT(active_id, link);
6496 	if (tmp_trid == NULL) {
6497 		goto add_tail;
6498 	}
6499 
6500 	/* It means the trid is faled if its last failed time is non-zero.
6501 	 * Insert the new alternate trid before any failed trid.
6502 	 */
6503 	TAILQ_FOREACH_FROM(tmp_trid, &nvme_ctrlr->trids, link) {
6504 		if (tmp_trid->last_failed_tsc != 0) {
6505 			TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
6506 			return 0;
6507 		}
6508 	}
6509 
6510 add_tail:
6511 	TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
6512 	return 0;
6513 }
6514 
6515 /* This is the case that a secondary path is added to an existing
6516  * nvme_ctrlr for failover. After checking if it can access the same
6517  * namespaces as the primary path, it is disconnected until failover occurs.
6518  */
6519 static int
6520 bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
6521 			     struct spdk_nvme_ctrlr *new_ctrlr,
6522 			     struct spdk_nvme_transport_id *trid)
6523 {
6524 	int rc;
6525 
6526 	assert(nvme_ctrlr != NULL);
6527 
6528 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6529 
6530 	rc = bdev_nvme_check_secondary_trid(nvme_ctrlr, new_ctrlr, trid);
6531 	if (rc != 0) {
6532 		goto exit;
6533 	}
6534 
6535 	rc = bdev_nvme_check_secondary_namespace(nvme_ctrlr, new_ctrlr);
6536 	if (rc != 0) {
6537 		goto exit;
6538 	}
6539 
6540 	rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
6541 
6542 exit:
6543 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6544 
6545 	spdk_nvme_detach(new_ctrlr);
6546 
6547 	return rc;
6548 }
6549 
6550 static void
6551 connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6552 		  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
6553 {
6554 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6555 	struct nvme_async_probe_ctx *ctx;
6556 	int rc;
6557 
6558 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6559 	ctx->ctrlr_attached = true;
6560 
6561 	rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
6562 	if (rc != 0) {
6563 		ctx->reported_bdevs = 0;
6564 		populate_namespaces_cb(ctx, rc);
6565 	}
6566 }
6567 
6568 
6569 static void
6570 connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
6571 			struct spdk_nvme_ctrlr *ctrlr,
6572 			const struct spdk_nvme_ctrlr_opts *opts)
6573 {
6574 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
6575 	struct nvme_ctrlr *nvme_ctrlr;
6576 	struct nvme_async_probe_ctx *ctx;
6577 	int rc;
6578 
6579 	ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
6580 	ctx->ctrlr_attached = true;
6581 
6582 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6583 	if (nvme_ctrlr) {
6584 		rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
6585 	} else {
6586 		rc = -ENODEV;
6587 	}
6588 
6589 	ctx->reported_bdevs = 0;
6590 	populate_namespaces_cb(ctx, rc);
6591 }
6592 
6593 static int
6594 bdev_nvme_async_poll(void *arg)
6595 {
6596 	struct nvme_async_probe_ctx	*ctx = arg;
6597 	int				rc;
6598 
6599 	rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
6600 	if (spdk_unlikely(rc != -EAGAIN)) {
6601 		ctx->probe_done = true;
6602 		spdk_poller_unregister(&ctx->poller);
6603 		if (!ctx->ctrlr_attached) {
6604 			/* The probe is done, but no controller was attached.
6605 			 * That means we had a failure, so report -EIO back to
6606 			 * the caller (usually the RPC). populate_namespaces_cb()
6607 			 * will take care of freeing the nvme_async_probe_ctx.
6608 			 */
6609 			ctx->reported_bdevs = 0;
6610 			populate_namespaces_cb(ctx, -EIO);
6611 		} else if (ctx->namespaces_populated) {
6612 			/* The namespaces for the attached controller were all
6613 			 * populated and the response was already sent to the
6614 			 * caller (usually the RPC).  So free the context here.
6615 			 */
6616 			free_nvme_async_probe_ctx(ctx);
6617 		}
6618 	}
6619 
6620 	return SPDK_POLLER_BUSY;
6621 }
6622 
6623 static bool
6624 bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
6625 		uint32_t reconnect_delay_sec,
6626 		uint32_t fast_io_fail_timeout_sec)
6627 {
6628 	if (ctrlr_loss_timeout_sec < -1) {
6629 		SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
6630 		return false;
6631 	} else if (ctrlr_loss_timeout_sec == -1) {
6632 		if (reconnect_delay_sec == 0) {
6633 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6634 			return false;
6635 		} else if (fast_io_fail_timeout_sec != 0 &&
6636 			   fast_io_fail_timeout_sec < reconnect_delay_sec) {
6637 			SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
6638 			return false;
6639 		}
6640 	} else if (ctrlr_loss_timeout_sec != 0) {
6641 		if (reconnect_delay_sec == 0) {
6642 			SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
6643 			return false;
6644 		} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6645 			SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
6646 			return false;
6647 		} else if (fast_io_fail_timeout_sec != 0) {
6648 			if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
6649 				SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
6650 				return false;
6651 			} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
6652 				SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
6653 				return false;
6654 			}
6655 		}
6656 	} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
6657 		SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
6658 		return false;
6659 	}
6660 
6661 	return true;
6662 }
6663 
6664 int
6665 spdk_bdev_nvme_create(struct spdk_nvme_transport_id *trid,
6666 		      const char *base_name,
6667 		      const char **names,
6668 		      uint32_t count,
6669 		      spdk_bdev_nvme_create_cb cb_fn,
6670 		      void *cb_ctx,
6671 		      struct spdk_nvme_ctrlr_opts *drv_opts,
6672 		      struct spdk_bdev_nvme_ctrlr_opts *bdev_opts)
6673 {
6674 	struct nvme_probe_skip_entry *entry, *tmp;
6675 	struct nvme_async_probe_ctx *ctx;
6676 	spdk_nvme_attach_cb attach_cb;
6677 	struct nvme_ctrlr *nvme_ctrlr;
6678 	int len;
6679 
6680 	/* TODO expand this check to include both the host and target TRIDs.
6681 	 * Only if both are the same should we fail.
6682 	 */
6683 	if (nvme_ctrlr_get(trid, drv_opts->hostnqn) != NULL) {
6684 		SPDK_ERRLOG("A controller with the provided trid (traddr: %s, hostnqn: %s) "
6685 			    "already exists.\n", trid->traddr, drv_opts->hostnqn);
6686 		return -EEXIST;
6687 	}
6688 
6689 	len = strnlen(base_name, SPDK_CONTROLLER_NAME_MAX);
6690 
6691 	if (len == 0 || len == SPDK_CONTROLLER_NAME_MAX) {
6692 		SPDK_ERRLOG("controller name must be between 1 and %d characters\n", SPDK_CONTROLLER_NAME_MAX - 1);
6693 		return -EINVAL;
6694 	}
6695 
6696 	if (bdev_opts != NULL &&
6697 	    !bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
6698 			    bdev_opts->reconnect_delay_sec,
6699 			    bdev_opts->fast_io_fail_timeout_sec)) {
6700 		return -EINVAL;
6701 	}
6702 
6703 	ctx = calloc(1, sizeof(*ctx));
6704 	if (!ctx) {
6705 		return -ENOMEM;
6706 	}
6707 	ctx->base_name = strdup(base_name);
6708 	if (!ctx->base_name) {
6709 		free(ctx);
6710 		return -ENOMEM;
6711 	}
6712 	ctx->names = names;
6713 	ctx->max_bdevs = count;
6714 	ctx->cb_fn = cb_fn;
6715 	ctx->cb_ctx = cb_ctx;
6716 	ctx->trid = *trid;
6717 
6718 	if (bdev_opts) {
6719 		memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
6720 	} else {
6721 		spdk_bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
6722 	}
6723 
6724 	if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6725 		TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
6726 			if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
6727 				TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
6728 				free(entry);
6729 				break;
6730 			}
6731 		}
6732 	}
6733 
6734 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
6735 	ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
6736 	ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
6737 	ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
6738 	ctx->drv_opts.disable_read_ana_log_page = true;
6739 	ctx->drv_opts.transport_tos = g_opts.transport_tos;
6740 
6741 	if (spdk_interrupt_mode_is_enabled()) {
6742 		if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
6743 			ctx->drv_opts.enable_interrupts = true;
6744 		} else {
6745 			SPDK_ERRLOG("Interrupt mode is only supported with PCIe transport\n");
6746 			free_nvme_async_probe_ctx(ctx);
6747 			return -ENOTSUP;
6748 		}
6749 	}
6750 
6751 	if (ctx->bdev_opts.psk != NULL) {
6752 		ctx->drv_opts.tls_psk = spdk_keyring_get_key(ctx->bdev_opts.psk);
6753 		if (ctx->drv_opts.tls_psk == NULL) {
6754 			SPDK_ERRLOG("Could not load PSK: %s\n", ctx->bdev_opts.psk);
6755 			free_nvme_async_probe_ctx(ctx);
6756 			return -ENOKEY;
6757 		}
6758 	}
6759 
6760 	if (ctx->bdev_opts.dhchap_key != NULL) {
6761 		ctx->drv_opts.dhchap_key = spdk_keyring_get_key(ctx->bdev_opts.dhchap_key);
6762 		if (ctx->drv_opts.dhchap_key == NULL) {
6763 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP key: %s\n",
6764 				    ctx->bdev_opts.dhchap_key);
6765 			free_nvme_async_probe_ctx(ctx);
6766 			return -ENOKEY;
6767 		}
6768 
6769 		ctx->drv_opts.dhchap_digests = g_opts.dhchap_digests;
6770 		ctx->drv_opts.dhchap_dhgroups = g_opts.dhchap_dhgroups;
6771 	}
6772 	if (ctx->bdev_opts.dhchap_ctrlr_key != NULL) {
6773 		ctx->drv_opts.dhchap_ctrlr_key =
6774 			spdk_keyring_get_key(ctx->bdev_opts.dhchap_ctrlr_key);
6775 		if (ctx->drv_opts.dhchap_ctrlr_key == NULL) {
6776 			SPDK_ERRLOG("Could not load DH-HMAC-CHAP controller key: %s\n",
6777 				    ctx->bdev_opts.dhchap_ctrlr_key);
6778 			free_nvme_async_probe_ctx(ctx);
6779 			return -ENOKEY;
6780 		}
6781 	}
6782 
6783 	if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || ctx->bdev_opts.multipath) {
6784 		attach_cb = connect_attach_cb;
6785 	} else {
6786 		attach_cb = connect_set_failover_cb;
6787 	}
6788 
6789 	nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
6790 	if (nvme_ctrlr  && nvme_ctrlr->opts.multipath != ctx->bdev_opts.multipath) {
6791 		/* All controllers with the same name must be configured the same
6792 		 * way, either for multipath or failover. If the configuration doesn't
6793 		 * match - report error.
6794 		 */
6795 		free_nvme_async_probe_ctx(ctx);
6796 		return -EINVAL;
6797 	}
6798 
6799 	ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
6800 	if (ctx->probe_ctx == NULL) {
6801 		SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
6802 		free_nvme_async_probe_ctx(ctx);
6803 		return -ENODEV;
6804 	}
6805 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
6806 
6807 	return 0;
6808 }
6809 
6810 struct bdev_nvme_delete_ctx {
6811 	char                        *name;
6812 	struct nvme_path_id         path_id;
6813 	bdev_nvme_delete_done_fn    delete_done;
6814 	void                        *delete_done_ctx;
6815 	uint64_t                    timeout_ticks;
6816 	struct spdk_poller          *poller;
6817 };
6818 
6819 static void
6820 free_bdev_nvme_delete_ctx(struct bdev_nvme_delete_ctx *ctx)
6821 {
6822 	if (ctx != NULL) {
6823 		free(ctx->name);
6824 		free(ctx);
6825 	}
6826 }
6827 
6828 static bool
6829 nvme_path_id_compare(struct nvme_path_id *p, const struct nvme_path_id *path_id)
6830 {
6831 	if (path_id->trid.trtype != 0) {
6832 		if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
6833 			if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
6834 				return false;
6835 			}
6836 		} else {
6837 			if (path_id->trid.trtype != p->trid.trtype) {
6838 				return false;
6839 			}
6840 		}
6841 	}
6842 
6843 	if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
6844 		if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
6845 			return false;
6846 		}
6847 	}
6848 
6849 	if (path_id->trid.adrfam != 0) {
6850 		if (path_id->trid.adrfam != p->trid.adrfam) {
6851 			return false;
6852 		}
6853 	}
6854 
6855 	if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
6856 		if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
6857 			return false;
6858 		}
6859 	}
6860 
6861 	if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
6862 		if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
6863 			return false;
6864 		}
6865 	}
6866 
6867 	if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
6868 		if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
6869 			return false;
6870 		}
6871 	}
6872 
6873 	if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
6874 		if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
6875 			return false;
6876 		}
6877 	}
6878 
6879 	return true;
6880 }
6881 
6882 static bool
6883 nvme_path_id_exists(const char *name, const struct nvme_path_id *path_id)
6884 {
6885 	struct nvme_bdev_ctrlr  *nbdev_ctrlr;
6886 	struct nvme_ctrlr       *ctrlr;
6887 	struct nvme_path_id     *p;
6888 
6889 	pthread_mutex_lock(&g_bdev_nvme_mutex);
6890 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
6891 	if (!nbdev_ctrlr) {
6892 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
6893 		return false;
6894 	}
6895 
6896 	TAILQ_FOREACH(ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
6897 		pthread_mutex_lock(&ctrlr->mutex);
6898 		TAILQ_FOREACH(p, &ctrlr->trids, link) {
6899 			if (nvme_path_id_compare(p, path_id)) {
6900 				pthread_mutex_unlock(&ctrlr->mutex);
6901 				pthread_mutex_unlock(&g_bdev_nvme_mutex);
6902 				return true;
6903 			}
6904 		}
6905 		pthread_mutex_unlock(&ctrlr->mutex);
6906 	}
6907 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
6908 
6909 	return false;
6910 }
6911 
6912 static int
6913 bdev_nvme_delete_complete_poll(void *arg)
6914 {
6915 	struct bdev_nvme_delete_ctx     *ctx = arg;
6916 	int                             rc = 0;
6917 
6918 	if (nvme_path_id_exists(ctx->name, &ctx->path_id)) {
6919 		if (ctx->timeout_ticks > spdk_get_ticks()) {
6920 			return SPDK_POLLER_BUSY;
6921 		}
6922 
6923 		SPDK_ERRLOG("NVMe path '%s' still exists after delete\n", ctx->name);
6924 		rc = -ETIMEDOUT;
6925 	}
6926 
6927 	spdk_poller_unregister(&ctx->poller);
6928 
6929 	ctx->delete_done(ctx->delete_done_ctx, rc);
6930 	free_bdev_nvme_delete_ctx(ctx);
6931 
6932 	return SPDK_POLLER_BUSY;
6933 }
6934 
6935 static int
6936 _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, const struct nvme_path_id *path_id)
6937 {
6938 	struct nvme_path_id	*p, *t;
6939 	spdk_msg_fn		msg_fn;
6940 	int			rc = -ENXIO;
6941 
6942 	pthread_mutex_lock(&nvme_ctrlr->mutex);
6943 
6944 	TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
6945 		if (p == TAILQ_FIRST(&nvme_ctrlr->trids)) {
6946 			break;
6947 		}
6948 
6949 		if (!nvme_path_id_compare(p, path_id)) {
6950 			continue;
6951 		}
6952 
6953 		/* We are not using the specified path. */
6954 		TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
6955 		free(p);
6956 		rc = 0;
6957 	}
6958 
6959 	if (p == NULL || !nvme_path_id_compare(p, path_id)) {
6960 		pthread_mutex_unlock(&nvme_ctrlr->mutex);
6961 		return rc;
6962 	}
6963 
6964 	/* If we made it here, then this path is a match! Now we need to remove it. */
6965 
6966 	/* This is the active path in use right now. The active path is always the first in the list. */
6967 	assert(p == nvme_ctrlr->active_path_id);
6968 
6969 	if (!TAILQ_NEXT(p, link)) {
6970 		/* The current path is the only path. */
6971 		msg_fn = _nvme_ctrlr_destruct;
6972 		rc = bdev_nvme_delete_ctrlr_unsafe(nvme_ctrlr, false);
6973 	} else {
6974 		/* There is an alternative path. */
6975 		msg_fn = _bdev_nvme_reset_ctrlr;
6976 		rc = bdev_nvme_failover_ctrlr_unsafe(nvme_ctrlr, true);
6977 	}
6978 
6979 	pthread_mutex_unlock(&nvme_ctrlr->mutex);
6980 
6981 	if (rc == 0) {
6982 		spdk_thread_send_msg(nvme_ctrlr->thread, msg_fn, nvme_ctrlr);
6983 	} else if (rc == -EALREADY) {
6984 		rc = 0;
6985 	}
6986 
6987 	return rc;
6988 }
6989 
6990 int
6991 bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id,
6992 		 bdev_nvme_delete_done_fn delete_done, void *delete_done_ctx)
6993 {
6994 	struct nvme_bdev_ctrlr		*nbdev_ctrlr;
6995 	struct nvme_ctrlr		*nvme_ctrlr, *tmp_nvme_ctrlr;
6996 	struct bdev_nvme_delete_ctx     *ctx = NULL;
6997 	int				rc = -ENXIO, _rc;
6998 
6999 	if (name == NULL || path_id == NULL) {
7000 		rc = -EINVAL;
7001 		goto exit;
7002 	}
7003 
7004 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7005 
7006 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
7007 	if (nbdev_ctrlr == NULL) {
7008 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7009 
7010 		SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
7011 		rc = -ENODEV;
7012 		goto exit;
7013 	}
7014 
7015 	TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
7016 		_rc = _bdev_nvme_delete(nvme_ctrlr, path_id);
7017 		if (_rc < 0 && _rc != -ENXIO) {
7018 			pthread_mutex_unlock(&g_bdev_nvme_mutex);
7019 			rc = _rc;
7020 			goto exit;
7021 		} else if (_rc == 0) {
7022 			/* We traverse all remaining nvme_ctrlrs even if one nvme_ctrlr
7023 			 * was deleted successfully. To remember the successful deletion,
7024 			 * overwrite rc only if _rc is zero.
7025 			 */
7026 			rc = 0;
7027 		}
7028 	}
7029 
7030 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7031 
7032 	if (rc != 0 || delete_done == NULL) {
7033 		goto exit;
7034 	}
7035 
7036 	ctx = calloc(1, sizeof(*ctx));
7037 	if (ctx == NULL) {
7038 		SPDK_ERRLOG("Failed to allocate context for bdev_nvme_delete\n");
7039 		rc = -ENOMEM;
7040 		goto exit;
7041 	}
7042 
7043 	ctx->name = strdup(name);
7044 	if (ctx->name == NULL) {
7045 		SPDK_ERRLOG("Failed to copy controller name for deletion\n");
7046 		rc = -ENOMEM;
7047 		goto exit;
7048 	}
7049 
7050 	ctx->delete_done = delete_done;
7051 	ctx->delete_done_ctx = delete_done_ctx;
7052 	ctx->path_id = *path_id;
7053 	ctx->timeout_ticks = spdk_get_ticks() + 10 * spdk_get_ticks_hz();
7054 	ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_delete_complete_poll, ctx, 1000);
7055 	if (ctx->poller == NULL) {
7056 		SPDK_ERRLOG("Failed to register bdev_nvme_delete poller\n");
7057 		rc = -ENOMEM;
7058 		goto exit;
7059 	}
7060 
7061 exit:
7062 	if (rc != 0) {
7063 		free_bdev_nvme_delete_ctx(ctx);
7064 	}
7065 
7066 	return rc;
7067 }
7068 
7069 #define DISCOVERY_INFOLOG(ctx, format, ...) \
7070 	SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7071 
7072 #define DISCOVERY_ERRLOG(ctx, format, ...) \
7073 	SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
7074 
7075 struct discovery_entry_ctx {
7076 	char						name[128];
7077 	struct spdk_nvme_transport_id			trid;
7078 	struct spdk_nvme_ctrlr_opts			drv_opts;
7079 	struct spdk_nvmf_discovery_log_page_entry	entry;
7080 	TAILQ_ENTRY(discovery_entry_ctx)		tailq;
7081 	struct discovery_ctx				*ctx;
7082 };
7083 
7084 struct discovery_ctx {
7085 	char					*name;
7086 	spdk_bdev_nvme_start_discovery_fn	start_cb_fn;
7087 	spdk_bdev_nvme_stop_discovery_fn	stop_cb_fn;
7088 	void					*cb_ctx;
7089 	struct spdk_nvme_probe_ctx		*probe_ctx;
7090 	struct spdk_nvme_detach_ctx		*detach_ctx;
7091 	struct spdk_nvme_ctrlr			*ctrlr;
7092 	struct spdk_nvme_transport_id		trid;
7093 	struct discovery_entry_ctx		*entry_ctx_in_use;
7094 	struct spdk_poller			*poller;
7095 	struct spdk_nvme_ctrlr_opts		drv_opts;
7096 	struct spdk_bdev_nvme_ctrlr_opts	bdev_opts;
7097 	struct spdk_nvmf_discovery_log_page	*log_page;
7098 	TAILQ_ENTRY(discovery_ctx)		tailq;
7099 	TAILQ_HEAD(, discovery_entry_ctx)	nvm_entry_ctxs;
7100 	TAILQ_HEAD(, discovery_entry_ctx)	discovery_entry_ctxs;
7101 	int					rc;
7102 	bool					wait_for_attach;
7103 	uint64_t				timeout_ticks;
7104 	/* Denotes that the discovery service is being started. We're waiting
7105 	 * for the initial connection to the discovery controller to be
7106 	 * established and attach discovered NVM ctrlrs.
7107 	 */
7108 	bool					initializing;
7109 	/* Denotes if a discovery is currently in progress for this context.
7110 	 * That includes connecting to newly discovered subsystems.  Used to
7111 	 * ensure we do not start a new discovery until an existing one is
7112 	 * complete.
7113 	 */
7114 	bool					in_progress;
7115 
7116 	/* Denotes if another discovery is needed after the one in progress
7117 	 * completes.  Set when we receive an AER completion while a discovery
7118 	 * is already in progress.
7119 	 */
7120 	bool					pending;
7121 
7122 	/* Signal to the discovery context poller that it should stop the
7123 	 * discovery service, including detaching from the current discovery
7124 	 * controller.
7125 	 */
7126 	bool					stop;
7127 
7128 	struct spdk_thread			*calling_thread;
7129 	uint32_t				index;
7130 	uint32_t				attach_in_progress;
7131 	char					*hostnqn;
7132 
7133 	/* Denotes if the discovery service was started by the mdns discovery.
7134 	 */
7135 	bool					from_mdns_discovery_service;
7136 };
7137 
7138 TAILQ_HEAD(discovery_ctxs, discovery_ctx);
7139 static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
7140 
7141 static void get_discovery_log_page(struct discovery_ctx *ctx);
7142 
7143 static void
7144 free_discovery_ctx(struct discovery_ctx *ctx)
7145 {
7146 	free(ctx->log_page);
7147 	free(ctx->hostnqn);
7148 	free(ctx->name);
7149 	free(ctx);
7150 }
7151 
7152 static void
7153 discovery_complete(struct discovery_ctx *ctx)
7154 {
7155 	ctx->initializing = false;
7156 	ctx->in_progress = false;
7157 	if (ctx->pending) {
7158 		ctx->pending = false;
7159 		get_discovery_log_page(ctx);
7160 	}
7161 }
7162 
7163 static void
7164 build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
7165 			       struct spdk_nvmf_discovery_log_page_entry *entry)
7166 {
7167 	char *space;
7168 
7169 	trid->trtype = entry->trtype;
7170 	trid->adrfam = entry->adrfam;
7171 	memcpy(trid->traddr, entry->traddr, sizeof(entry->traddr));
7172 	memcpy(trid->trsvcid, entry->trsvcid, sizeof(entry->trsvcid));
7173 	/* Because the source buffer (entry->subnqn) is longer than trid->subnqn, and
7174 	 * before call to this function trid->subnqn is zeroed out, we need
7175 	 * to copy sizeof(trid->subnqn) minus one byte to make sure the last character
7176 	 * remains 0. Then we can shorten the string (replace ' ' with 0) if required
7177 	 */
7178 	memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn) - 1);
7179 
7180 	/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
7181 	 * But the log page entries typically pad them with spaces, not zeroes.
7182 	 * So add a NULL terminator to each of these fields at the appropriate
7183 	 * location.
7184 	 */
7185 	space = strchr(trid->traddr, ' ');
7186 	if (space) {
7187 		*space = 0;
7188 	}
7189 	space = strchr(trid->trsvcid, ' ');
7190 	if (space) {
7191 		*space = 0;
7192 	}
7193 	space = strchr(trid->subnqn, ' ');
7194 	if (space) {
7195 		*space = 0;
7196 	}
7197 }
7198 
7199 static void
7200 _stop_discovery(void *_ctx)
7201 {
7202 	struct discovery_ctx *ctx = _ctx;
7203 
7204 	if (ctx->attach_in_progress > 0) {
7205 		spdk_thread_send_msg(spdk_get_thread(), _stop_discovery, ctx);
7206 		return;
7207 	}
7208 
7209 	ctx->stop = true;
7210 
7211 	while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
7212 		struct discovery_entry_ctx *entry_ctx;
7213 		struct nvme_path_id path = {};
7214 
7215 		entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
7216 		path.trid = entry_ctx->trid;
7217 		bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7218 		TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7219 		free(entry_ctx);
7220 	}
7221 
7222 	while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
7223 		struct discovery_entry_ctx *entry_ctx;
7224 
7225 		entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7226 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7227 		free(entry_ctx);
7228 	}
7229 
7230 	free(ctx->entry_ctx_in_use);
7231 	ctx->entry_ctx_in_use = NULL;
7232 }
7233 
7234 static void
7235 stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7236 {
7237 	ctx->stop_cb_fn = cb_fn;
7238 	ctx->cb_ctx = cb_ctx;
7239 
7240 	if (ctx->attach_in_progress > 0) {
7241 		DISCOVERY_INFOLOG(ctx, "stopping discovery with attach_in_progress: %"PRIu32"\n",
7242 				  ctx->attach_in_progress);
7243 	}
7244 
7245 	_stop_discovery(ctx);
7246 }
7247 
7248 static void
7249 remove_discovery_entry(struct nvme_ctrlr *nvme_ctrlr)
7250 {
7251 	struct discovery_ctx *d_ctx;
7252 	struct nvme_path_id *path_id;
7253 	struct spdk_nvme_transport_id trid = {};
7254 	struct discovery_entry_ctx *entry_ctx, *tmp;
7255 
7256 	path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
7257 
7258 	TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7259 		TAILQ_FOREACH_SAFE(entry_ctx, &d_ctx->nvm_entry_ctxs, tailq, tmp) {
7260 			build_trid_from_log_page_entry(&trid, &entry_ctx->entry);
7261 			if (spdk_nvme_transport_id_compare(&trid, &path_id->trid) != 0) {
7262 				continue;
7263 			}
7264 
7265 			TAILQ_REMOVE(&d_ctx->nvm_entry_ctxs, entry_ctx, tailq);
7266 			free(entry_ctx);
7267 			DISCOVERY_INFOLOG(d_ctx, "Remove discovery entry: %s:%s:%s\n",
7268 					  trid.subnqn, trid.traddr, trid.trsvcid);
7269 
7270 			/* Fail discovery ctrlr to force reattach attempt */
7271 			spdk_nvme_ctrlr_fail(d_ctx->ctrlr);
7272 		}
7273 	}
7274 }
7275 
7276 static void
7277 discovery_remove_controllers(struct discovery_ctx *ctx)
7278 {
7279 	struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
7280 	struct discovery_entry_ctx *entry_ctx, *tmp;
7281 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7282 	struct spdk_nvme_transport_id old_trid = {};
7283 	uint64_t numrec, i;
7284 	bool found;
7285 
7286 	numrec = from_le64(&log_page->numrec);
7287 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
7288 		found = false;
7289 		old_entry = &entry_ctx->entry;
7290 		build_trid_from_log_page_entry(&old_trid, old_entry);
7291 		for (i = 0; i < numrec; i++) {
7292 			new_entry = &log_page->entries[i];
7293 			if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
7294 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
7295 						  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7296 				found = true;
7297 				break;
7298 			}
7299 		}
7300 		if (!found) {
7301 			struct nvme_path_id path = {};
7302 
7303 			DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
7304 					  old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
7305 
7306 			path.trid = entry_ctx->trid;
7307 			bdev_nvme_delete(entry_ctx->name, &path, NULL, NULL);
7308 			TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
7309 			free(entry_ctx);
7310 		}
7311 	}
7312 	free(log_page);
7313 	ctx->log_page = NULL;
7314 	discovery_complete(ctx);
7315 }
7316 
7317 static void
7318 complete_discovery_start(struct discovery_ctx *ctx, int status)
7319 {
7320 	ctx->timeout_ticks = 0;
7321 	ctx->rc = status;
7322 	if (ctx->start_cb_fn) {
7323 		ctx->start_cb_fn(ctx->cb_ctx, status);
7324 		ctx->start_cb_fn = NULL;
7325 		ctx->cb_ctx = NULL;
7326 	}
7327 }
7328 
7329 static void
7330 discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
7331 {
7332 	struct discovery_entry_ctx *entry_ctx = cb_ctx;
7333 	struct discovery_ctx *ctx = entry_ctx->ctx;
7334 
7335 	DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
7336 	ctx->attach_in_progress--;
7337 	if (ctx->attach_in_progress == 0) {
7338 		complete_discovery_start(ctx, ctx->rc);
7339 		if (ctx->initializing && ctx->rc != 0) {
7340 			DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
7341 			stop_discovery(ctx, NULL, ctx->cb_ctx);
7342 		} else {
7343 			discovery_remove_controllers(ctx);
7344 		}
7345 	}
7346 }
7347 
7348 static struct discovery_entry_ctx *
7349 create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
7350 {
7351 	struct discovery_entry_ctx *new_ctx;
7352 
7353 	new_ctx = calloc(1, sizeof(*new_ctx));
7354 	if (new_ctx == NULL) {
7355 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7356 		return NULL;
7357 	}
7358 
7359 	new_ctx->ctx = ctx;
7360 	memcpy(&new_ctx->trid, trid, sizeof(*trid));
7361 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7362 	snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7363 	return new_ctx;
7364 }
7365 
7366 static void
7367 discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
7368 		      struct spdk_nvmf_discovery_log_page *log_page)
7369 {
7370 	struct discovery_ctx *ctx = cb_arg;
7371 	struct discovery_entry_ctx *entry_ctx, *tmp;
7372 	struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
7373 	uint64_t numrec, i;
7374 	bool found;
7375 
7376 	if (rc || spdk_nvme_cpl_is_error(cpl)) {
7377 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7378 		return;
7379 	}
7380 
7381 	ctx->log_page = log_page;
7382 	assert(ctx->attach_in_progress == 0);
7383 	numrec = from_le64(&log_page->numrec);
7384 	TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
7385 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
7386 		free(entry_ctx);
7387 	}
7388 	for (i = 0; i < numrec; i++) {
7389 		found = false;
7390 		new_entry = &log_page->entries[i];
7391 		if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY_CURRENT ||
7392 		    new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
7393 			struct discovery_entry_ctx *new_ctx;
7394 			struct spdk_nvme_transport_id trid = {};
7395 
7396 			build_trid_from_log_page_entry(&trid, new_entry);
7397 			new_ctx = create_discovery_entry_ctx(ctx, &trid);
7398 			if (new_ctx == NULL) {
7399 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7400 				break;
7401 			}
7402 
7403 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
7404 			continue;
7405 		}
7406 		TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
7407 			old_entry = &entry_ctx->entry;
7408 			if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
7409 				found = true;
7410 				break;
7411 			}
7412 		}
7413 		if (!found) {
7414 			struct discovery_entry_ctx *subnqn_ctx = NULL, *new_ctx;
7415 			struct discovery_ctx *d_ctx;
7416 
7417 			TAILQ_FOREACH(d_ctx, &g_discovery_ctxs, tailq) {
7418 				TAILQ_FOREACH(subnqn_ctx, &d_ctx->nvm_entry_ctxs, tailq) {
7419 					if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
7420 						    sizeof(new_entry->subnqn))) {
7421 						break;
7422 					}
7423 				}
7424 				if (subnqn_ctx) {
7425 					break;
7426 				}
7427 			}
7428 
7429 			new_ctx = calloc(1, sizeof(*new_ctx));
7430 			if (new_ctx == NULL) {
7431 				DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7432 				break;
7433 			}
7434 
7435 			new_ctx->ctx = ctx;
7436 			memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
7437 			build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
7438 			if (subnqn_ctx) {
7439 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
7440 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
7441 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7442 						  new_ctx->name);
7443 			} else {
7444 				snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
7445 				DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
7446 						  new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
7447 						  new_ctx->name);
7448 			}
7449 			spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
7450 			snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
7451 			rc = spdk_bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
7452 						   discovery_attach_controller_done, new_ctx,
7453 						   &new_ctx->drv_opts, &ctx->bdev_opts);
7454 			if (rc == 0) {
7455 				TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
7456 				ctx->attach_in_progress++;
7457 			} else {
7458 				DISCOVERY_ERRLOG(ctx, "spdk_bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
7459 			}
7460 		}
7461 	}
7462 
7463 	if (ctx->attach_in_progress == 0) {
7464 		discovery_remove_controllers(ctx);
7465 	}
7466 }
7467 
7468 static void
7469 get_discovery_log_page(struct discovery_ctx *ctx)
7470 {
7471 	int rc;
7472 
7473 	assert(ctx->in_progress == false);
7474 	ctx->in_progress = true;
7475 	rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
7476 	if (rc != 0) {
7477 		DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
7478 	}
7479 	DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
7480 }
7481 
7482 static void
7483 discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
7484 {
7485 	struct discovery_ctx *ctx = arg;
7486 	uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
7487 
7488 	if (spdk_nvme_cpl_is_error(cpl)) {
7489 		DISCOVERY_ERRLOG(ctx, "aer failed\n");
7490 		return;
7491 	}
7492 
7493 	if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
7494 		DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
7495 		return;
7496 	}
7497 
7498 	DISCOVERY_INFOLOG(ctx, "got aer\n");
7499 	if (ctx->in_progress) {
7500 		ctx->pending = true;
7501 		return;
7502 	}
7503 
7504 	get_discovery_log_page(ctx);
7505 }
7506 
7507 static void
7508 discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
7509 		    struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
7510 {
7511 	struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
7512 	struct discovery_ctx *ctx;
7513 
7514 	ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
7515 
7516 	DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
7517 	ctx->probe_ctx = NULL;
7518 	ctx->ctrlr = ctrlr;
7519 
7520 	if (ctx->rc != 0) {
7521 		DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
7522 				 ctx->rc);
7523 		return;
7524 	}
7525 
7526 	spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
7527 }
7528 
7529 static int
7530 discovery_poller(void *arg)
7531 {
7532 	struct discovery_ctx *ctx = arg;
7533 	struct spdk_nvme_transport_id *trid;
7534 	int rc;
7535 
7536 	if (ctx->detach_ctx) {
7537 		rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
7538 		if (rc != -EAGAIN) {
7539 			ctx->detach_ctx = NULL;
7540 			ctx->ctrlr = NULL;
7541 		}
7542 	} else if (ctx->stop) {
7543 		if (ctx->ctrlr != NULL) {
7544 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7545 			if (rc == 0) {
7546 				return SPDK_POLLER_BUSY;
7547 			}
7548 			DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7549 		}
7550 		spdk_poller_unregister(&ctx->poller);
7551 		TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7552 		assert(ctx->start_cb_fn == NULL);
7553 		if (ctx->stop_cb_fn != NULL) {
7554 			ctx->stop_cb_fn(ctx->cb_ctx);
7555 		}
7556 		free_discovery_ctx(ctx);
7557 	} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
7558 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7559 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7560 			assert(ctx->initializing);
7561 			spdk_poller_unregister(&ctx->poller);
7562 			TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
7563 			complete_discovery_start(ctx, -ETIMEDOUT);
7564 			stop_discovery(ctx, NULL, NULL);
7565 			free_discovery_ctx(ctx);
7566 			return SPDK_POLLER_BUSY;
7567 		}
7568 
7569 		assert(ctx->entry_ctx_in_use == NULL);
7570 		ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
7571 		TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7572 		trid = &ctx->entry_ctx_in_use->trid;
7573 
7574 		/* All controllers must be configured explicitely either for multipath or failover.
7575 		 * While discovery use multipath mode, we need to set this in bdev options as well.
7576 		 */
7577 		ctx->bdev_opts.multipath = true;
7578 
7579 		ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
7580 		if (ctx->probe_ctx) {
7581 			spdk_poller_unregister(&ctx->poller);
7582 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
7583 		} else {
7584 			DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
7585 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7586 			ctx->entry_ctx_in_use = NULL;
7587 		}
7588 	} else if (ctx->probe_ctx) {
7589 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7590 			DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
7591 			complete_discovery_start(ctx, -ETIMEDOUT);
7592 			return SPDK_POLLER_BUSY;
7593 		}
7594 
7595 		rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
7596 		if (rc != -EAGAIN) {
7597 			if (ctx->rc != 0) {
7598 				assert(ctx->initializing);
7599 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7600 			} else {
7601 				assert(rc == 0);
7602 				DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
7603 				ctx->rc = rc;
7604 				get_discovery_log_page(ctx);
7605 			}
7606 		}
7607 	} else {
7608 		if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
7609 			DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
7610 			complete_discovery_start(ctx, -ETIMEDOUT);
7611 			/* We need to wait until all NVM ctrlrs are attached before we stop the
7612 			 * discovery service to make sure we don't detach a ctrlr that is still
7613 			 * being attached.
7614 			 */
7615 			if (ctx->attach_in_progress == 0) {
7616 				stop_discovery(ctx, NULL, ctx->cb_ctx);
7617 				return SPDK_POLLER_BUSY;
7618 			}
7619 		}
7620 
7621 		rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
7622 		if (rc < 0) {
7623 			spdk_poller_unregister(&ctx->poller);
7624 			ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7625 			TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
7626 			ctx->entry_ctx_in_use = NULL;
7627 
7628 			rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
7629 			if (rc != 0) {
7630 				DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
7631 				ctx->ctrlr = NULL;
7632 			}
7633 		}
7634 	}
7635 
7636 	return SPDK_POLLER_BUSY;
7637 }
7638 
7639 static void
7640 start_discovery_poller(void *arg)
7641 {
7642 	struct discovery_ctx *ctx = arg;
7643 
7644 	TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
7645 	ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
7646 }
7647 
7648 int
7649 bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
7650 			  const char *base_name,
7651 			  struct spdk_nvme_ctrlr_opts *drv_opts,
7652 			  struct spdk_bdev_nvme_ctrlr_opts *bdev_opts,
7653 			  uint64_t attach_timeout,
7654 			  bool from_mdns,
7655 			  spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
7656 {
7657 	struct discovery_ctx *ctx;
7658 	struct discovery_entry_ctx *discovery_entry_ctx;
7659 
7660 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
7661 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7662 		if (strcmp(ctx->name, base_name) == 0) {
7663 			return -EEXIST;
7664 		}
7665 
7666 		if (ctx->entry_ctx_in_use != NULL) {
7667 			if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
7668 				return -EEXIST;
7669 			}
7670 		}
7671 
7672 		TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
7673 			if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
7674 				return -EEXIST;
7675 			}
7676 		}
7677 	}
7678 
7679 	ctx = calloc(1, sizeof(*ctx));
7680 	if (ctx == NULL) {
7681 		return -ENOMEM;
7682 	}
7683 
7684 	ctx->name = strdup(base_name);
7685 	if (ctx->name == NULL) {
7686 		free_discovery_ctx(ctx);
7687 		return -ENOMEM;
7688 	}
7689 	memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
7690 	memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
7691 	ctx->from_mdns_discovery_service = from_mdns;
7692 	ctx->bdev_opts.from_discovery_service = true;
7693 	ctx->calling_thread = spdk_get_thread();
7694 	ctx->start_cb_fn = cb_fn;
7695 	ctx->cb_ctx = cb_ctx;
7696 	ctx->initializing = true;
7697 	if (ctx->start_cb_fn) {
7698 		/* We can use this when dumping json to denote if this RPC parameter
7699 		 * was specified or not.
7700 		 */
7701 		ctx->wait_for_attach = true;
7702 	}
7703 	if (attach_timeout != 0) {
7704 		ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
7705 				     spdk_get_ticks_hz() / 1000ull;
7706 	}
7707 	TAILQ_INIT(&ctx->nvm_entry_ctxs);
7708 	TAILQ_INIT(&ctx->discovery_entry_ctxs);
7709 	memcpy(&ctx->trid, trid, sizeof(*trid));
7710 	/* Even if user did not specify hostnqn, we can still strdup("\0"); */
7711 	ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
7712 	if (ctx->hostnqn == NULL) {
7713 		free_discovery_ctx(ctx);
7714 		return -ENOMEM;
7715 	}
7716 	discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
7717 	if (discovery_entry_ctx == NULL) {
7718 		DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
7719 		free_discovery_ctx(ctx);
7720 		return -ENOMEM;
7721 	}
7722 
7723 	TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
7724 	spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
7725 	return 0;
7726 }
7727 
7728 int
7729 bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
7730 {
7731 	struct discovery_ctx *ctx;
7732 
7733 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7734 		if (strcmp(name, ctx->name) == 0) {
7735 			if (ctx->stop) {
7736 				return -EALREADY;
7737 			}
7738 			/* If we're still starting the discovery service and ->rc is non-zero, we're
7739 			 * going to stop it as soon as we can
7740 			 */
7741 			if (ctx->initializing && ctx->rc != 0) {
7742 				return -EALREADY;
7743 			}
7744 			stop_discovery(ctx, cb_fn, cb_ctx);
7745 			return 0;
7746 		}
7747 	}
7748 
7749 	return -ENOENT;
7750 }
7751 
7752 static int
7753 bdev_nvme_library_init(void)
7754 {
7755 	g_bdev_nvme_init_thread = spdk_get_thread();
7756 
7757 	spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
7758 				bdev_nvme_destroy_poll_group_cb,
7759 				sizeof(struct nvme_poll_group),  "nvme_poll_groups");
7760 
7761 	return 0;
7762 }
7763 
7764 static void
7765 bdev_nvme_fini_destruct_ctrlrs(void)
7766 {
7767 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
7768 	struct nvme_ctrlr *nvme_ctrlr;
7769 
7770 	pthread_mutex_lock(&g_bdev_nvme_mutex);
7771 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
7772 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
7773 			pthread_mutex_lock(&nvme_ctrlr->mutex);
7774 			if (nvme_ctrlr->destruct) {
7775 				/* This controller's destruction was already started
7776 				 * before the application started shutting down
7777 				 */
7778 				pthread_mutex_unlock(&nvme_ctrlr->mutex);
7779 				continue;
7780 			}
7781 			nvme_ctrlr->destruct = true;
7782 			pthread_mutex_unlock(&nvme_ctrlr->mutex);
7783 
7784 			spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
7785 					     nvme_ctrlr);
7786 		}
7787 	}
7788 
7789 	g_bdev_nvme_module_finish = true;
7790 	if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
7791 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
7792 		spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
7793 		spdk_bdev_module_fini_done();
7794 		return;
7795 	}
7796 
7797 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
7798 }
7799 
7800 static void
7801 check_discovery_fini(void *arg)
7802 {
7803 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7804 		bdev_nvme_fini_destruct_ctrlrs();
7805 	}
7806 }
7807 
7808 static void
7809 bdev_nvme_library_fini(void)
7810 {
7811 	struct nvme_probe_skip_entry *entry, *entry_tmp;
7812 	struct discovery_ctx *ctx;
7813 
7814 	spdk_poller_unregister(&g_hotplug_poller);
7815 	free(g_hotplug_probe_ctx);
7816 	g_hotplug_probe_ctx = NULL;
7817 
7818 	TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
7819 		TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
7820 		free(entry);
7821 	}
7822 
7823 	assert(spdk_get_thread() == g_bdev_nvme_init_thread);
7824 	if (TAILQ_EMPTY(&g_discovery_ctxs)) {
7825 		bdev_nvme_fini_destruct_ctrlrs();
7826 	} else {
7827 		TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
7828 			stop_discovery(ctx, check_discovery_fini, NULL);
7829 		}
7830 	}
7831 }
7832 
7833 static void
7834 bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
7835 {
7836 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7837 	struct spdk_bdev *bdev = bdev_io->bdev;
7838 	struct spdk_dif_ctx dif_ctx;
7839 	struct spdk_dif_error err_blk = {};
7840 	int rc;
7841 	struct spdk_dif_ctx_init_ext_opts dif_opts;
7842 
7843 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
7844 	dif_opts.dif_pi_format = bdev->dif_pi_format;
7845 	rc = spdk_dif_ctx_init(&dif_ctx,
7846 			       bdev->blocklen, bdev->md_len, bdev->md_interleave,
7847 			       bdev->dif_is_head_of_md, bdev->dif_type,
7848 			       bdev_io->u.bdev.dif_check_flags,
7849 			       bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0, &dif_opts);
7850 	if (rc != 0) {
7851 		SPDK_ERRLOG("Initialization of DIF context failed\n");
7852 		return;
7853 	}
7854 
7855 	if (bdev->md_interleave) {
7856 		rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7857 				     bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7858 	} else {
7859 		struct iovec md_iov = {
7860 			.iov_base	= bdev_io->u.bdev.md_buf,
7861 			.iov_len	= bdev_io->u.bdev.num_blocks * bdev->md_len,
7862 		};
7863 
7864 		rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
7865 				     &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
7866 	}
7867 
7868 	if (rc != 0) {
7869 		SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
7870 			    err_blk.err_type, err_blk.err_offset);
7871 	} else {
7872 		SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
7873 	}
7874 }
7875 
7876 static void
7877 bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7878 {
7879 	struct nvme_bdev_io *bio = ref;
7880 
7881 	if (spdk_nvme_cpl_is_success(cpl)) {
7882 		/* Run PI verification for read data buffer. */
7883 		bdev_nvme_verify_pi_error(bio);
7884 	}
7885 
7886 	/* Return original completion status */
7887 	bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7888 }
7889 
7890 static void
7891 bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7892 {
7893 	struct nvme_bdev_io *bio = ref;
7894 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7895 	int ret;
7896 
7897 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7898 		SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
7899 			    cpl->status.sct, cpl->status.sc);
7900 
7901 		/* Save completion status to use after verifying PI error. */
7902 		bio->cpl = *cpl;
7903 
7904 		if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
7905 			/* Read without PI checking to verify PI error. */
7906 			ret = bdev_nvme_no_pi_readv(bio,
7907 						    bdev_io->u.bdev.iovs,
7908 						    bdev_io->u.bdev.iovcnt,
7909 						    bdev_io->u.bdev.md_buf,
7910 						    bdev_io->u.bdev.num_blocks,
7911 						    bdev_io->u.bdev.offset_blocks);
7912 			if (ret == 0) {
7913 				return;
7914 			}
7915 		}
7916 	}
7917 
7918 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7919 }
7920 
7921 static void
7922 bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7923 {
7924 	struct nvme_bdev_io *bio = ref;
7925 
7926 	if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
7927 		SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
7928 			    cpl->status.sct, cpl->status.sc);
7929 		/* Run PI verification for write data buffer if PI error is detected. */
7930 		bdev_nvme_verify_pi_error(bio);
7931 	}
7932 
7933 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7934 }
7935 
7936 static void
7937 bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
7938 {
7939 	struct nvme_bdev_io *bio = ref;
7940 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
7941 
7942 	/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
7943 	 * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
7944 	 */
7945 	bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
7946 
7947 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7948 		SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
7949 			    cpl->status.sct, cpl->status.sc);
7950 		/* Run PI verification for zone append data buffer if PI error is detected. */
7951 		bdev_nvme_verify_pi_error(bio);
7952 	}
7953 
7954 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7955 }
7956 
7957 static void
7958 bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7959 {
7960 	struct nvme_bdev_io *bio = ref;
7961 
7962 	if (spdk_nvme_cpl_is_pi_error(cpl)) {
7963 		SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
7964 			    cpl->status.sct, cpl->status.sc);
7965 		/* Run PI verification for compare data buffer if PI error is detected. */
7966 		bdev_nvme_verify_pi_error(bio);
7967 	}
7968 
7969 	bdev_nvme_io_complete_nvme_status(bio, cpl);
7970 }
7971 
7972 static void
7973 bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
7974 {
7975 	struct nvme_bdev_io *bio = ref;
7976 
7977 	/* Compare operation completion */
7978 	if (!bio->first_fused_completed) {
7979 		/* Save compare result for write callback */
7980 		bio->cpl = *cpl;
7981 		bio->first_fused_completed = true;
7982 		return;
7983 	}
7984 
7985 	/* Write operation completion */
7986 	if (spdk_nvme_cpl_is_error(&bio->cpl)) {
7987 		/* If bio->cpl is already an error, it means the compare operation failed.  In that case,
7988 		 * complete the IO with the compare operation's status.
7989 		 */
7990 		if (!spdk_nvme_cpl_is_error(cpl)) {
7991 			SPDK_ERRLOG("Unexpected write success after compare failure.\n");
7992 		}
7993 
7994 		bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
7995 	} else {
7996 		bdev_nvme_io_complete_nvme_status(bio, cpl);
7997 	}
7998 }
7999 
8000 static void
8001 bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
8002 {
8003 	struct nvme_bdev_io *bio = ref;
8004 
8005 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8006 }
8007 
8008 static int
8009 fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
8010 {
8011 	switch (desc->zt) {
8012 	case SPDK_NVME_ZONE_TYPE_SEQWR:
8013 		info->type = SPDK_BDEV_ZONE_TYPE_SEQWR;
8014 		break;
8015 	default:
8016 		SPDK_ERRLOG("Invalid zone type: %#x in zone report\n", desc->zt);
8017 		return -EIO;
8018 	}
8019 
8020 	switch (desc->zs) {
8021 	case SPDK_NVME_ZONE_STATE_EMPTY:
8022 		info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
8023 		break;
8024 	case SPDK_NVME_ZONE_STATE_IOPEN:
8025 		info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
8026 		break;
8027 	case SPDK_NVME_ZONE_STATE_EOPEN:
8028 		info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
8029 		break;
8030 	case SPDK_NVME_ZONE_STATE_CLOSED:
8031 		info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
8032 		break;
8033 	case SPDK_NVME_ZONE_STATE_RONLY:
8034 		info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
8035 		break;
8036 	case SPDK_NVME_ZONE_STATE_FULL:
8037 		info->state = SPDK_BDEV_ZONE_STATE_FULL;
8038 		break;
8039 	case SPDK_NVME_ZONE_STATE_OFFLINE:
8040 		info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
8041 		break;
8042 	default:
8043 		SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
8044 		return -EIO;
8045 	}
8046 
8047 	info->zone_id = desc->zslba;
8048 	info->write_pointer = desc->wp;
8049 	info->capacity = desc->zcap;
8050 
8051 	return 0;
8052 }
8053 
8054 static void
8055 bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
8056 {
8057 	struct nvme_bdev_io *bio = ref;
8058 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8059 	uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
8060 	uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
8061 	struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
8062 	uint64_t max_zones_per_buf, i;
8063 	uint32_t zone_report_bufsize;
8064 	struct spdk_nvme_ns *ns;
8065 	struct spdk_nvme_qpair *qpair;
8066 	int ret;
8067 
8068 	if (spdk_nvme_cpl_is_error(cpl)) {
8069 		goto out_complete_io_nvme_cpl;
8070 	}
8071 
8072 	if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
8073 		ret = -ENXIO;
8074 		goto out_complete_io_ret;
8075 	}
8076 
8077 	ns = bio->io_path->nvme_ns->ns;
8078 	qpair = bio->io_path->qpair->qpair;
8079 
8080 	zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8081 	max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
8082 			    sizeof(bio->zone_report_buf->descs[0]);
8083 
8084 	if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
8085 		ret = -EINVAL;
8086 		goto out_complete_io_ret;
8087 	}
8088 
8089 	if (!bio->zone_report_buf->nr_zones) {
8090 		ret = -EINVAL;
8091 		goto out_complete_io_ret;
8092 	}
8093 
8094 	for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
8095 		ret = fill_zone_from_report(&info[bio->handled_zones],
8096 					    &bio->zone_report_buf->descs[i]);
8097 		if (ret) {
8098 			goto out_complete_io_ret;
8099 		}
8100 		bio->handled_zones++;
8101 	}
8102 
8103 	if (bio->handled_zones < zones_to_copy) {
8104 		uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8105 		uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
8106 
8107 		memset(bio->zone_report_buf, 0, zone_report_bufsize);
8108 		ret = spdk_nvme_zns_report_zones(ns, qpair,
8109 						 bio->zone_report_buf, zone_report_bufsize,
8110 						 slba, SPDK_NVME_ZRA_LIST_ALL, true,
8111 						 bdev_nvme_get_zone_info_done, bio);
8112 		if (!ret) {
8113 			return;
8114 		} else {
8115 			goto out_complete_io_ret;
8116 		}
8117 	}
8118 
8119 out_complete_io_nvme_cpl:
8120 	free(bio->zone_report_buf);
8121 	bio->zone_report_buf = NULL;
8122 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8123 	return;
8124 
8125 out_complete_io_ret:
8126 	free(bio->zone_report_buf);
8127 	bio->zone_report_buf = NULL;
8128 	bdev_nvme_io_complete(bio, ret);
8129 }
8130 
8131 static void
8132 bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
8133 {
8134 	struct nvme_bdev_io *bio = ref;
8135 
8136 	bdev_nvme_io_complete_nvme_status(bio, cpl);
8137 }
8138 
8139 static void
8140 bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
8141 {
8142 	struct nvme_bdev_io *bio = ctx;
8143 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8144 	const struct spdk_nvme_cpl *cpl = &bio->cpl;
8145 
8146 	assert(bdev_nvme_io_type_is_admin(bdev_io->type));
8147 
8148 	__bdev_nvme_io_complete(bdev_io, 0, cpl);
8149 }
8150 
8151 static void
8152 bdev_nvme_abort_complete(void *ctx)
8153 {
8154 	struct nvme_bdev_io *bio = ctx;
8155 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8156 
8157 	if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
8158 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
8159 	} else {
8160 		__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
8161 	}
8162 }
8163 
8164 static void
8165 bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
8166 {
8167 	struct nvme_bdev_io *bio = ref;
8168 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8169 
8170 	bio->cpl = *cpl;
8171 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_nvme_abort_complete, bio);
8172 }
8173 
8174 static void
8175 bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
8176 {
8177 	struct nvme_bdev_io *bio = ref;
8178 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8179 
8180 	bio->cpl = *cpl;
8181 	spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
8182 			     bdev_nvme_admin_passthru_complete_nvme_status, bio);
8183 }
8184 
8185 static void
8186 bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
8187 {
8188 	struct nvme_bdev_io *bio = ref;
8189 	struct iovec *iov;
8190 
8191 	bio->iov_offset = sgl_offset;
8192 	for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
8193 		iov = &bio->iovs[bio->iovpos];
8194 		if (bio->iov_offset < iov->iov_len) {
8195 			break;
8196 		}
8197 
8198 		bio->iov_offset -= iov->iov_len;
8199 	}
8200 }
8201 
8202 static int
8203 bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
8204 {
8205 	struct nvme_bdev_io *bio = ref;
8206 	struct iovec *iov;
8207 
8208 	assert(bio->iovpos < bio->iovcnt);
8209 
8210 	iov = &bio->iovs[bio->iovpos];
8211 
8212 	*address = iov->iov_base;
8213 	*length = iov->iov_len;
8214 
8215 	if (bio->iov_offset) {
8216 		assert(bio->iov_offset <= iov->iov_len);
8217 		*address += bio->iov_offset;
8218 		*length -= bio->iov_offset;
8219 	}
8220 
8221 	bio->iov_offset += *length;
8222 	if (bio->iov_offset == iov->iov_len) {
8223 		bio->iovpos++;
8224 		bio->iov_offset = 0;
8225 	}
8226 
8227 	return 0;
8228 }
8229 
8230 static void
8231 bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
8232 {
8233 	struct nvme_bdev_io *bio = ref;
8234 	struct iovec *iov;
8235 
8236 	bio->fused_iov_offset = sgl_offset;
8237 	for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
8238 		iov = &bio->fused_iovs[bio->fused_iovpos];
8239 		if (bio->fused_iov_offset < iov->iov_len) {
8240 			break;
8241 		}
8242 
8243 		bio->fused_iov_offset -= iov->iov_len;
8244 	}
8245 }
8246 
8247 static int
8248 bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
8249 {
8250 	struct nvme_bdev_io *bio = ref;
8251 	struct iovec *iov;
8252 
8253 	assert(bio->fused_iovpos < bio->fused_iovcnt);
8254 
8255 	iov = &bio->fused_iovs[bio->fused_iovpos];
8256 
8257 	*address = iov->iov_base;
8258 	*length = iov->iov_len;
8259 
8260 	if (bio->fused_iov_offset) {
8261 		assert(bio->fused_iov_offset <= iov->iov_len);
8262 		*address += bio->fused_iov_offset;
8263 		*length -= bio->fused_iov_offset;
8264 	}
8265 
8266 	bio->fused_iov_offset += *length;
8267 	if (bio->fused_iov_offset == iov->iov_len) {
8268 		bio->fused_iovpos++;
8269 		bio->fused_iov_offset = 0;
8270 	}
8271 
8272 	return 0;
8273 }
8274 
8275 static int
8276 bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8277 		      void *md, uint64_t lba_count, uint64_t lba)
8278 {
8279 	int rc;
8280 
8281 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
8282 		      lba_count, lba);
8283 
8284 	bio->iovs = iov;
8285 	bio->iovcnt = iovcnt;
8286 	bio->iovpos = 0;
8287 	bio->iov_offset = 0;
8288 
8289 	rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
8290 					    bio->io_path->qpair->qpair,
8291 					    lba, lba_count,
8292 					    bdev_nvme_no_pi_readv_done, bio, 0,
8293 					    bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8294 					    md, 0, 0);
8295 
8296 	if (rc != 0 && rc != -ENOMEM) {
8297 		SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
8298 	}
8299 	return rc;
8300 }
8301 
8302 static int
8303 bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8304 		void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8305 		struct spdk_memory_domain *domain, void *domain_ctx,
8306 		struct spdk_accel_sequence *seq)
8307 {
8308 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8309 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8310 	int rc;
8311 
8312 	SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8313 		      lba_count, lba);
8314 
8315 	bio->iovs = iov;
8316 	bio->iovcnt = iovcnt;
8317 	bio->iovpos = 0;
8318 	bio->iov_offset = 0;
8319 
8320 	if (domain != NULL || seq != NULL) {
8321 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8322 		bio->ext_opts.memory_domain = domain;
8323 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8324 		bio->ext_opts.io_flags = flags;
8325 		bio->ext_opts.metadata = md;
8326 		bio->ext_opts.accel_sequence = seq;
8327 
8328 		if (iovcnt == 1) {
8329 			rc = spdk_nvme_ns_cmd_read_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_readv_done,
8330 						       bio, &bio->ext_opts);
8331 		} else {
8332 			rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
8333 							bdev_nvme_readv_done, bio,
8334 							bdev_nvme_queued_reset_sgl,
8335 							bdev_nvme_queued_next_sge,
8336 							&bio->ext_opts);
8337 		}
8338 	} else if (iovcnt == 1) {
8339 		rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base,
8340 						   md, lba, lba_count, bdev_nvme_readv_done,
8341 						   bio, flags, 0, 0);
8342 	} else {
8343 		rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
8344 						    bdev_nvme_readv_done, bio, flags,
8345 						    bdev_nvme_queued_reset_sgl,
8346 						    bdev_nvme_queued_next_sge, md, 0, 0);
8347 	}
8348 
8349 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8350 		SPDK_ERRLOG("readv failed: rc = %d\n", rc);
8351 	}
8352 	return rc;
8353 }
8354 
8355 static int
8356 bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8357 		 void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
8358 		 struct spdk_memory_domain *domain, void *domain_ctx,
8359 		 struct spdk_accel_sequence *seq,
8360 		 union spdk_bdev_nvme_cdw12 cdw12, union spdk_bdev_nvme_cdw13 cdw13)
8361 {
8362 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8363 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8364 	int rc;
8365 
8366 	SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8367 		      lba_count, lba);
8368 
8369 	bio->iovs = iov;
8370 	bio->iovcnt = iovcnt;
8371 	bio->iovpos = 0;
8372 	bio->iov_offset = 0;
8373 
8374 	if (domain != NULL || seq != NULL) {
8375 		bio->ext_opts.size = SPDK_SIZEOF(&bio->ext_opts, accel_sequence);
8376 		bio->ext_opts.memory_domain = domain;
8377 		bio->ext_opts.memory_domain_ctx = domain_ctx;
8378 		bio->ext_opts.io_flags = flags | SPDK_NVME_IO_FLAGS_DIRECTIVE(cdw12.write.dtype);
8379 		bio->ext_opts.cdw13 = cdw13.raw;
8380 		bio->ext_opts.metadata = md;
8381 		bio->ext_opts.accel_sequence = seq;
8382 
8383 		if (iovcnt == 1) {
8384 			rc = spdk_nvme_ns_cmd_write_ext(ns, qpair, iov[0].iov_base, lba, lba_count, bdev_nvme_writev_done,
8385 							bio, &bio->ext_opts);
8386 		} else {
8387 			rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
8388 							 bdev_nvme_writev_done, bio,
8389 							 bdev_nvme_queued_reset_sgl,
8390 							 bdev_nvme_queued_next_sge,
8391 							 &bio->ext_opts);
8392 		}
8393 	} else if (iovcnt == 1) {
8394 		rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base,
8395 						    md, lba, lba_count, bdev_nvme_writev_done,
8396 						    bio, flags, 0, 0);
8397 	} else {
8398 		rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8399 						     bdev_nvme_writev_done, bio, flags,
8400 						     bdev_nvme_queued_reset_sgl,
8401 						     bdev_nvme_queued_next_sge, md, 0, 0);
8402 	}
8403 
8404 	if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
8405 		SPDK_ERRLOG("writev failed: rc = %d\n", rc);
8406 	}
8407 	return rc;
8408 }
8409 
8410 static int
8411 bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8412 		       void *md, uint64_t lba_count, uint64_t zslba,
8413 		       uint32_t flags)
8414 {
8415 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8416 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8417 	int rc;
8418 
8419 	SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
8420 		      lba_count, zslba);
8421 
8422 	bio->iovs = iov;
8423 	bio->iovcnt = iovcnt;
8424 	bio->iovpos = 0;
8425 	bio->iov_offset = 0;
8426 
8427 	if (iovcnt == 1) {
8428 		rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
8429 						       lba_count,
8430 						       bdev_nvme_zone_appendv_done, bio,
8431 						       flags,
8432 						       0, 0);
8433 	} else {
8434 		rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
8435 							bdev_nvme_zone_appendv_done, bio, flags,
8436 							bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8437 							md, 0, 0);
8438 	}
8439 
8440 	if (rc != 0 && rc != -ENOMEM) {
8441 		SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
8442 	}
8443 	return rc;
8444 }
8445 
8446 static int
8447 bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
8448 		   void *md, uint64_t lba_count, uint64_t lba,
8449 		   uint32_t flags)
8450 {
8451 	int rc;
8452 
8453 	SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8454 		      lba_count, lba);
8455 
8456 	bio->iovs = iov;
8457 	bio->iovcnt = iovcnt;
8458 	bio->iovpos = 0;
8459 	bio->iov_offset = 0;
8460 
8461 	rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
8462 					       bio->io_path->qpair->qpair,
8463 					       lba, lba_count,
8464 					       bdev_nvme_comparev_done, bio, flags,
8465 					       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
8466 					       md, 0, 0);
8467 
8468 	if (rc != 0 && rc != -ENOMEM) {
8469 		SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
8470 	}
8471 	return rc;
8472 }
8473 
8474 static int
8475 bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
8476 			      struct iovec *write_iov, int write_iovcnt,
8477 			      void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
8478 {
8479 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8480 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8481 	struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
8482 	int rc;
8483 
8484 	SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
8485 		      lba_count, lba);
8486 
8487 	bio->iovs = cmp_iov;
8488 	bio->iovcnt = cmp_iovcnt;
8489 	bio->iovpos = 0;
8490 	bio->iov_offset = 0;
8491 	bio->fused_iovs = write_iov;
8492 	bio->fused_iovcnt = write_iovcnt;
8493 	bio->fused_iovpos = 0;
8494 	bio->fused_iov_offset = 0;
8495 
8496 	if (bdev_io->num_retries == 0) {
8497 		bio->first_fused_submitted = false;
8498 		bio->first_fused_completed = false;
8499 	}
8500 
8501 	if (!bio->first_fused_submitted) {
8502 		flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8503 		memset(&bio->cpl, 0, sizeof(bio->cpl));
8504 
8505 		rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
8506 						       bdev_nvme_comparev_and_writev_done, bio, flags,
8507 						       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
8508 		if (rc == 0) {
8509 			bio->first_fused_submitted = true;
8510 			flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
8511 		} else {
8512 			if (rc != -ENOMEM) {
8513 				SPDK_ERRLOG("compare failed: rc = %d\n", rc);
8514 			}
8515 			return rc;
8516 		}
8517 	}
8518 
8519 	flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
8520 
8521 	rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
8522 					     bdev_nvme_comparev_and_writev_done, bio, flags,
8523 					     bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
8524 	if (rc != 0 && rc != -ENOMEM) {
8525 		SPDK_ERRLOG("write failed: rc = %d\n", rc);
8526 		rc = 0;
8527 	}
8528 
8529 	return rc;
8530 }
8531 
8532 static int
8533 bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8534 {
8535 	struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
8536 	struct spdk_nvme_dsm_range *range;
8537 	uint64_t offset, remaining;
8538 	uint64_t num_ranges_u64;
8539 	uint16_t num_ranges;
8540 	int rc;
8541 
8542 	num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
8543 			 SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8544 	if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
8545 		SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
8546 		return -EINVAL;
8547 	}
8548 	num_ranges = (uint16_t)num_ranges_u64;
8549 
8550 	offset = offset_blocks;
8551 	remaining = num_blocks;
8552 	range = &dsm_ranges[0];
8553 
8554 	/* Fill max-size ranges until the remaining blocks fit into one range */
8555 	while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
8556 		range->attributes.raw = 0;
8557 		range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8558 		range->starting_lba = offset;
8559 
8560 		offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8561 		remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
8562 		range++;
8563 	}
8564 
8565 	/* Final range describes the remaining blocks */
8566 	range->attributes.raw = 0;
8567 	range->length = remaining;
8568 	range->starting_lba = offset;
8569 
8570 	rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
8571 			bio->io_path->qpair->qpair,
8572 			SPDK_NVME_DSM_ATTR_DEALLOCATE,
8573 			dsm_ranges, num_ranges,
8574 			bdev_nvme_queued_done, bio);
8575 
8576 	return rc;
8577 }
8578 
8579 static int
8580 bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
8581 {
8582 	if (num_blocks > UINT16_MAX + 1) {
8583 		SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
8584 		return -EINVAL;
8585 	}
8586 
8587 	return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
8588 					     bio->io_path->qpair->qpair,
8589 					     offset_blocks, num_blocks,
8590 					     bdev_nvme_queued_done, bio,
8591 					     0);
8592 }
8593 
8594 static int
8595 bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
8596 			struct spdk_bdev_zone_info *info)
8597 {
8598 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8599 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8600 	uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
8601 	uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
8602 	uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
8603 
8604 	if (zone_id % zone_size != 0) {
8605 		return -EINVAL;
8606 	}
8607 
8608 	if (num_zones > total_zones || !num_zones) {
8609 		return -EINVAL;
8610 	}
8611 
8612 	assert(!bio->zone_report_buf);
8613 	bio->zone_report_buf = calloc(1, zone_report_bufsize);
8614 	if (!bio->zone_report_buf) {
8615 		return -ENOMEM;
8616 	}
8617 
8618 	bio->handled_zones = 0;
8619 
8620 	return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
8621 					  zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
8622 					  bdev_nvme_get_zone_info_done, bio);
8623 }
8624 
8625 static int
8626 bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
8627 			  enum spdk_bdev_zone_action action)
8628 {
8629 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8630 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8631 
8632 	switch (action) {
8633 	case SPDK_BDEV_ZONE_CLOSE:
8634 		return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
8635 						bdev_nvme_zone_management_done, bio);
8636 	case SPDK_BDEV_ZONE_FINISH:
8637 		return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
8638 						 bdev_nvme_zone_management_done, bio);
8639 	case SPDK_BDEV_ZONE_OPEN:
8640 		return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
8641 					       bdev_nvme_zone_management_done, bio);
8642 	case SPDK_BDEV_ZONE_RESET:
8643 		return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
8644 						bdev_nvme_zone_management_done, bio);
8645 	case SPDK_BDEV_ZONE_OFFLINE:
8646 		return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
8647 						  bdev_nvme_zone_management_done, bio);
8648 	default:
8649 		return -EINVAL;
8650 	}
8651 }
8652 
8653 static void
8654 bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8655 			 struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
8656 {
8657 	struct nvme_io_path *io_path;
8658 	struct nvme_ctrlr *nvme_ctrlr;
8659 	uint32_t max_xfer_size;
8660 	int rc = -ENXIO;
8661 
8662 	/* Choose the first ctrlr which is not failed. */
8663 	STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8664 		nvme_ctrlr = io_path->qpair->ctrlr;
8665 
8666 		/* We should skip any unavailable nvme_ctrlr rather than checking
8667 		 * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
8668 		 */
8669 		if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
8670 			continue;
8671 		}
8672 
8673 		max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
8674 
8675 		if (nbytes > max_xfer_size) {
8676 			SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8677 			rc = -EINVAL;
8678 			goto err;
8679 		}
8680 
8681 		rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
8682 						   bdev_nvme_admin_passthru_done, bio);
8683 		if (rc == 0) {
8684 			return;
8685 		}
8686 	}
8687 
8688 err:
8689 	bdev_nvme_admin_complete(bio, rc);
8690 }
8691 
8692 static int
8693 bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8694 		      void *buf, size_t nbytes)
8695 {
8696 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8697 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8698 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8699 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8700 
8701 	if (nbytes > max_xfer_size) {
8702 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8703 		return -EINVAL;
8704 	}
8705 
8706 	/*
8707 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8708 	 * so fill it out automatically.
8709 	 */
8710 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8711 
8712 	return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
8713 					  (uint32_t)nbytes, bdev_nvme_queued_done, bio);
8714 }
8715 
8716 static int
8717 bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
8718 			 void *buf, size_t nbytes, void *md_buf, size_t md_len)
8719 {
8720 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8721 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8722 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8723 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8724 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8725 
8726 	if (nbytes > max_xfer_size) {
8727 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8728 		return -EINVAL;
8729 	}
8730 
8731 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8732 		SPDK_ERRLOG("invalid meta data buffer size\n");
8733 		return -EINVAL;
8734 	}
8735 
8736 	/*
8737 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
8738 	 * so fill it out automatically.
8739 	 */
8740 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8741 
8742 	return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
8743 			(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
8744 }
8745 
8746 static int
8747 bdev_nvme_iov_passthru_md(struct nvme_bdev_io *bio,
8748 			  struct spdk_nvme_cmd *cmd, struct iovec *iov, int iovcnt,
8749 			  size_t nbytes, void *md_buf, size_t md_len)
8750 {
8751 	struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
8752 	struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
8753 	size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
8754 	uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
8755 	struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
8756 
8757 	bio->iovs = iov;
8758 	bio->iovcnt = iovcnt;
8759 	bio->iovpos = 0;
8760 	bio->iov_offset = 0;
8761 
8762 	if (nbytes > max_xfer_size) {
8763 		SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
8764 		return -EINVAL;
8765 	}
8766 
8767 	if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
8768 		SPDK_ERRLOG("invalid meta data buffer size\n");
8769 		return -EINVAL;
8770 	}
8771 
8772 	/*
8773 	 * Each NVMe bdev is a specific namespace, and all NVMe I/O commands
8774 	 * require a nsid, so fill it out automatically.
8775 	 */
8776 	cmd->nsid = spdk_nvme_ns_get_id(ns);
8777 
8778 	return spdk_nvme_ctrlr_cmd_iov_raw_with_md(
8779 		       ctrlr, qpair, cmd, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio,
8780 		       bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge);
8781 }
8782 
8783 static void
8784 bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
8785 		struct nvme_bdev_io *bio_to_abort)
8786 {
8787 	struct nvme_io_path *io_path;
8788 	int rc = 0;
8789 
8790 	rc = bdev_nvme_abort_retry_io(nbdev_ch, bio_to_abort);
8791 	if (rc == 0) {
8792 		bdev_nvme_admin_complete(bio, 0);
8793 		return;
8794 	}
8795 
8796 	io_path = bio_to_abort->io_path;
8797 	if (io_path != NULL) {
8798 		rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8799 						   io_path->qpair->qpair,
8800 						   bio_to_abort,
8801 						   bdev_nvme_abort_done, bio);
8802 	} else {
8803 		STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
8804 			rc = spdk_nvme_ctrlr_cmd_abort_ext(io_path->qpair->ctrlr->ctrlr,
8805 							   NULL,
8806 							   bio_to_abort,
8807 							   bdev_nvme_abort_done, bio);
8808 
8809 			if (rc != -ENOENT) {
8810 				break;
8811 			}
8812 		}
8813 	}
8814 
8815 	if (rc != 0) {
8816 		/* If no command was found or there was any error, complete the abort
8817 		 * request with failure.
8818 		 */
8819 		bdev_nvme_admin_complete(bio, rc);
8820 	}
8821 }
8822 
8823 static int
8824 bdev_nvme_copy(struct nvme_bdev_io *bio, uint64_t dst_offset_blocks, uint64_t src_offset_blocks,
8825 	       uint64_t num_blocks)
8826 {
8827 	struct spdk_nvme_scc_source_range range = {
8828 		.slba = src_offset_blocks,
8829 		.nlb = num_blocks - 1
8830 	};
8831 
8832 	return spdk_nvme_ns_cmd_copy(bio->io_path->nvme_ns->ns,
8833 				     bio->io_path->qpair->qpair,
8834 				     &range, 1, dst_offset_blocks,
8835 				     bdev_nvme_queued_done, bio);
8836 }
8837 
8838 static void
8839 bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
8840 {
8841 	const char *action;
8842 	uint32_t i;
8843 
8844 	if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
8845 		action = "reset";
8846 	} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
8847 		action = "abort";
8848 	} else {
8849 		action = "none";
8850 	}
8851 
8852 	spdk_json_write_object_begin(w);
8853 
8854 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
8855 
8856 	spdk_json_write_named_object_begin(w, "params");
8857 	spdk_json_write_named_string(w, "action_on_timeout", action);
8858 	spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
8859 	spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
8860 	spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
8861 	spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
8862 	spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
8863 	spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
8864 	spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
8865 	spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
8866 	spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
8867 	spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
8868 	spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
8869 	spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
8870 	spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
8871 	spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
8872 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
8873 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
8874 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
8875 	spdk_json_write_named_bool(w, "disable_auto_failback", g_opts.disable_auto_failback);
8876 	spdk_json_write_named_bool(w, "generate_uuids", g_opts.generate_uuids);
8877 	spdk_json_write_named_uint8(w, "transport_tos", g_opts.transport_tos);
8878 	spdk_json_write_named_bool(w, "nvme_error_stat", g_opts.nvme_error_stat);
8879 	spdk_json_write_named_uint32(w, "rdma_srq_size", g_opts.rdma_srq_size);
8880 	spdk_json_write_named_bool(w, "io_path_stat", g_opts.io_path_stat);
8881 	spdk_json_write_named_bool(w, "allow_accel_sequence", g_opts.allow_accel_sequence);
8882 	spdk_json_write_named_uint32(w, "rdma_max_cq_size", g_opts.rdma_max_cq_size);
8883 	spdk_json_write_named_uint16(w, "rdma_cm_event_timeout_ms", g_opts.rdma_cm_event_timeout_ms);
8884 	spdk_json_write_named_array_begin(w, "dhchap_digests");
8885 	for (i = 0; i < 32; ++i) {
8886 		if (g_opts.dhchap_digests & SPDK_BIT(i)) {
8887 			spdk_json_write_string(w, spdk_nvme_dhchap_get_digest_name(i));
8888 		}
8889 	}
8890 	spdk_json_write_array_end(w);
8891 	spdk_json_write_named_array_begin(w, "dhchap_dhgroups");
8892 	for (i = 0; i < 32; ++i) {
8893 		if (g_opts.dhchap_dhgroups & SPDK_BIT(i)) {
8894 			spdk_json_write_string(w, spdk_nvme_dhchap_get_dhgroup_name(i));
8895 		}
8896 	}
8897 
8898 	spdk_json_write_array_end(w);
8899 	spdk_json_write_named_bool(w, "rdma_umr_per_io", g_opts.rdma_umr_per_io);
8900 	spdk_json_write_object_end(w);
8901 
8902 	spdk_json_write_object_end(w);
8903 }
8904 
8905 static void
8906 bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
8907 {
8908 	struct spdk_nvme_transport_id trid;
8909 
8910 	spdk_json_write_object_begin(w);
8911 
8912 	spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
8913 
8914 	spdk_json_write_named_object_begin(w, "params");
8915 	spdk_json_write_named_string(w, "name", ctx->name);
8916 	spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
8917 
8918 	trid = ctx->trid;
8919 	memset(trid.subnqn, 0, sizeof(trid.subnqn));
8920 	nvme_bdev_dump_trid_json(&trid, w);
8921 
8922 	spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
8923 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
8924 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
8925 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8926 				     ctx->bdev_opts.fast_io_fail_timeout_sec);
8927 	spdk_json_write_object_end(w);
8928 
8929 	spdk_json_write_object_end(w);
8930 }
8931 
8932 #ifdef SPDK_CONFIG_NVME_CUSE
8933 static void
8934 nvme_ctrlr_cuse_config_json(struct spdk_json_write_ctx *w,
8935 			    struct nvme_ctrlr *nvme_ctrlr)
8936 {
8937 	size_t cuse_name_size = 128;
8938 	char cuse_name[cuse_name_size];
8939 
8940 	if (spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr,
8941 					  cuse_name, &cuse_name_size) != 0) {
8942 		return;
8943 	}
8944 
8945 	spdk_json_write_object_begin(w);
8946 
8947 	spdk_json_write_named_string(w, "method", "bdev_nvme_cuse_register");
8948 
8949 	spdk_json_write_named_object_begin(w, "params");
8950 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8951 	spdk_json_write_object_end(w);
8952 
8953 	spdk_json_write_object_end(w);
8954 }
8955 #endif
8956 
8957 static void
8958 nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
8959 		       struct nvme_ctrlr *nvme_ctrlr,
8960 		       struct nvme_path_id *path_id)
8961 {
8962 	struct spdk_nvme_transport_id	*trid;
8963 	const struct spdk_nvme_ctrlr_opts *opts;
8964 
8965 	if (nvme_ctrlr->opts.from_discovery_service) {
8966 		/* Do not emit an RPC for this - it will be implicitly
8967 		 * covered by a separate bdev_nvme_start_discovery or
8968 		 * bdev_nvme_start_mdns_discovery RPC.
8969 		 */
8970 		return;
8971 	}
8972 
8973 	trid = &path_id->trid;
8974 
8975 	spdk_json_write_object_begin(w);
8976 
8977 	spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
8978 
8979 	spdk_json_write_named_object_begin(w, "params");
8980 	spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
8981 	nvme_bdev_dump_trid_json(trid, w);
8982 	spdk_json_write_named_bool(w, "prchk_reftag",
8983 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
8984 	spdk_json_write_named_bool(w, "prchk_guard",
8985 				   (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
8986 	spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
8987 	spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
8988 	spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
8989 				     nvme_ctrlr->opts.fast_io_fail_timeout_sec);
8990 	if (nvme_ctrlr->psk != NULL) {
8991 		spdk_json_write_named_string(w, "psk", spdk_key_get_name(nvme_ctrlr->psk));
8992 	}
8993 	if (nvme_ctrlr->dhchap_key != NULL) {
8994 		spdk_json_write_named_string(w, "dhchap_key",
8995 					     spdk_key_get_name(nvme_ctrlr->dhchap_key));
8996 	}
8997 	if (nvme_ctrlr->dhchap_ctrlr_key != NULL) {
8998 		spdk_json_write_named_string(w, "dhchap_ctrlr_key",
8999 					     spdk_key_get_name(nvme_ctrlr->dhchap_ctrlr_key));
9000 	}
9001 	opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
9002 	spdk_json_write_named_string(w, "hostnqn", opts->hostnqn);
9003 	spdk_json_write_named_bool(w, "hdgst", opts->header_digest);
9004 	spdk_json_write_named_bool(w, "ddgst", opts->data_digest);
9005 	if (opts->src_addr[0] != '\0') {
9006 		spdk_json_write_named_string(w, "hostaddr", opts->src_addr);
9007 	}
9008 	if (opts->src_svcid[0] != '\0') {
9009 		spdk_json_write_named_string(w, "hostsvcid", opts->src_svcid);
9010 	}
9011 
9012 	if (nvme_ctrlr->opts.multipath) {
9013 		spdk_json_write_named_string(w, "multipath", "multipath");
9014 	}
9015 	spdk_json_write_object_end(w);
9016 
9017 	spdk_json_write_object_end(w);
9018 }
9019 
9020 static void
9021 bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
9022 {
9023 	spdk_json_write_object_begin(w);
9024 	spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
9025 
9026 	spdk_json_write_named_object_begin(w, "params");
9027 	spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
9028 	spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
9029 	spdk_json_write_object_end(w);
9030 
9031 	spdk_json_write_object_end(w);
9032 }
9033 
9034 static int
9035 bdev_nvme_config_json(struct spdk_json_write_ctx *w)
9036 {
9037 	struct nvme_bdev_ctrlr	*nbdev_ctrlr;
9038 	struct nvme_ctrlr	*nvme_ctrlr;
9039 	struct discovery_ctx	*ctx;
9040 	struct nvme_path_id	*path_id;
9041 
9042 	bdev_nvme_opts_config_json(w);
9043 
9044 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9045 
9046 	TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
9047 		TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
9048 			path_id = nvme_ctrlr->active_path_id;
9049 			assert(path_id == TAILQ_FIRST(&nvme_ctrlr->trids));
9050 			nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9051 
9052 			path_id = TAILQ_NEXT(path_id, link);
9053 			while (path_id != NULL) {
9054 				nvme_ctrlr_config_json(w, nvme_ctrlr, path_id);
9055 				path_id = TAILQ_NEXT(path_id, link);
9056 			}
9057 
9058 #ifdef SPDK_CONFIG_NVME_CUSE
9059 			nvme_ctrlr_cuse_config_json(w, nvme_ctrlr);
9060 #endif
9061 		}
9062 	}
9063 
9064 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9065 		if (!ctx->from_mdns_discovery_service) {
9066 			bdev_nvme_discovery_config_json(w, ctx);
9067 		}
9068 	}
9069 
9070 	bdev_nvme_mdns_discovery_config_json(w);
9071 
9072 	/* Dump as last parameter to give all NVMe bdevs chance to be constructed
9073 	 * before enabling hotplug poller.
9074 	 */
9075 	bdev_nvme_hotplug_config_json(w);
9076 
9077 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9078 	return 0;
9079 }
9080 
9081 struct spdk_nvme_ctrlr *
9082 bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
9083 {
9084 	struct nvme_bdev *nbdev;
9085 	struct nvme_ns *nvme_ns;
9086 
9087 	if (!bdev || bdev->module != &nvme_if) {
9088 		return NULL;
9089 	}
9090 
9091 	nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
9092 	nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
9093 	assert(nvme_ns != NULL);
9094 
9095 	return nvme_ns->ctrlr->ctrlr;
9096 }
9097 
9098 static bool
9099 nvme_io_path_is_current(struct nvme_io_path *io_path)
9100 {
9101 	const struct nvme_bdev_channel *nbdev_ch;
9102 	bool current;
9103 
9104 	if (!nvme_io_path_is_available(io_path)) {
9105 		return false;
9106 	}
9107 
9108 	nbdev_ch = io_path->nbdev_ch;
9109 	if (nbdev_ch == NULL) {
9110 		current = false;
9111 	} else if (nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE) {
9112 		struct nvme_io_path *optimized_io_path = NULL;
9113 
9114 		STAILQ_FOREACH(optimized_io_path, &nbdev_ch->io_path_list, stailq) {
9115 			if (optimized_io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) {
9116 				break;
9117 			}
9118 		}
9119 
9120 		/* A non-optimized path is only current if there are no optimized paths. */
9121 		current = (io_path->nvme_ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE) ||
9122 			  (optimized_io_path == NULL);
9123 	} else {
9124 		if (nbdev_ch->current_io_path) {
9125 			current = (io_path == nbdev_ch->current_io_path);
9126 		} else {
9127 			struct nvme_io_path *first_path;
9128 
9129 			/* We arrived here as there are no optimized paths for active-passive
9130 			 * mode. Check if this io_path is the first one available on the list.
9131 			 */
9132 			current = false;
9133 			STAILQ_FOREACH(first_path, &nbdev_ch->io_path_list, stailq) {
9134 				if (nvme_io_path_is_available(first_path)) {
9135 					current = (io_path == first_path);
9136 					break;
9137 				}
9138 			}
9139 		}
9140 	}
9141 
9142 	return current;
9143 }
9144 
9145 static struct nvme_ctrlr *
9146 bdev_nvme_next_ctrlr_unsafe(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *prev)
9147 {
9148 	struct nvme_ctrlr *next;
9149 
9150 	/* Must be called under g_bdev_nvme_mutex */
9151 	next = prev != NULL ? TAILQ_NEXT(prev, tailq) : TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
9152 	while (next != NULL) {
9153 		/* ref can be 0 when the ctrlr was released, but hasn't been detached yet */
9154 		pthread_mutex_lock(&next->mutex);
9155 		if (next->ref > 0) {
9156 			next->ref++;
9157 			pthread_mutex_unlock(&next->mutex);
9158 			return next;
9159 		}
9160 
9161 		pthread_mutex_unlock(&next->mutex);
9162 		next = TAILQ_NEXT(next, tailq);
9163 	}
9164 
9165 	return NULL;
9166 }
9167 
9168 struct bdev_nvme_set_keys_ctx {
9169 	struct nvme_ctrlr	*nctrlr;
9170 	struct spdk_key		*dhchap_key;
9171 	struct spdk_key		*dhchap_ctrlr_key;
9172 	struct spdk_thread	*thread;
9173 	bdev_nvme_set_keys_cb	cb_fn;
9174 	void			*cb_ctx;
9175 	int			status;
9176 };
9177 
9178 static void
9179 bdev_nvme_free_set_keys_ctx(struct bdev_nvme_set_keys_ctx *ctx)
9180 {
9181 	if (ctx == NULL) {
9182 		return;
9183 	}
9184 
9185 	spdk_keyring_put_key(ctx->dhchap_key);
9186 	spdk_keyring_put_key(ctx->dhchap_ctrlr_key);
9187 	free(ctx);
9188 }
9189 
9190 static void
9191 _bdev_nvme_set_keys_done(void *_ctx)
9192 {
9193 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9194 
9195 	ctx->cb_fn(ctx->cb_ctx, ctx->status);
9196 
9197 	if (ctx->nctrlr != NULL) {
9198 		nvme_ctrlr_put_ref(ctx->nctrlr);
9199 	}
9200 	bdev_nvme_free_set_keys_ctx(ctx);
9201 }
9202 
9203 static void
9204 bdev_nvme_set_keys_done(struct bdev_nvme_set_keys_ctx *ctx, int status)
9205 {
9206 	ctx->status = status;
9207 	spdk_thread_exec_msg(ctx->thread, _bdev_nvme_set_keys_done, ctx);
9208 }
9209 
9210 static void bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx);
9211 
9212 static void
9213 bdev_nvme_authenticate_ctrlr_continue(struct bdev_nvme_set_keys_ctx *ctx)
9214 {
9215 	struct nvme_ctrlr *next;
9216 
9217 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9218 	next = bdev_nvme_next_ctrlr_unsafe(NULL, ctx->nctrlr);
9219 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9220 
9221 	nvme_ctrlr_put_ref(ctx->nctrlr);
9222 	ctx->nctrlr = next;
9223 
9224 	if (next == NULL) {
9225 		bdev_nvme_set_keys_done(ctx, 0);
9226 	} else {
9227 		bdev_nvme_authenticate_ctrlr(ctx);
9228 	}
9229 }
9230 
9231 static void
9232 bdev_nvme_authenticate_qpairs_done(struct spdk_io_channel_iter *i, int status)
9233 {
9234 	struct bdev_nvme_set_keys_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
9235 
9236 	if (status != 0) {
9237 		bdev_nvme_set_keys_done(ctx, status);
9238 		return;
9239 	}
9240 	bdev_nvme_authenticate_ctrlr_continue(ctx);
9241 }
9242 
9243 static void
9244 bdev_nvme_authenticate_qpair_done(void *ctx, int status)
9245 {
9246 	spdk_for_each_channel_continue(ctx, status);
9247 }
9248 
9249 static void
9250 bdev_nvme_authenticate_qpair(struct spdk_io_channel_iter *i)
9251 {
9252 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
9253 	struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
9254 	struct nvme_qpair *qpair = ctrlr_ch->qpair;
9255 	int rc;
9256 
9257 	if (!nvme_qpair_is_connected(qpair)) {
9258 		spdk_for_each_channel_continue(i, 0);
9259 		return;
9260 	}
9261 
9262 	rc = spdk_nvme_qpair_authenticate(qpair->qpair, bdev_nvme_authenticate_qpair_done, i);
9263 	if (rc != 0) {
9264 		spdk_for_each_channel_continue(i, rc);
9265 	}
9266 }
9267 
9268 static void
9269 bdev_nvme_authenticate_ctrlr_done(void *_ctx, int status)
9270 {
9271 	struct bdev_nvme_set_keys_ctx *ctx = _ctx;
9272 
9273 	if (status != 0) {
9274 		bdev_nvme_set_keys_done(ctx, status);
9275 		return;
9276 	}
9277 
9278 	spdk_for_each_channel(ctx->nctrlr, bdev_nvme_authenticate_qpair, ctx,
9279 			      bdev_nvme_authenticate_qpairs_done);
9280 }
9281 
9282 static void
9283 bdev_nvme_authenticate_ctrlr(struct bdev_nvme_set_keys_ctx *ctx)
9284 {
9285 	struct spdk_nvme_ctrlr_key_opts opts = {};
9286 	struct nvme_ctrlr *nctrlr = ctx->nctrlr;
9287 	int rc;
9288 
9289 	opts.size = SPDK_SIZEOF(&opts, dhchap_ctrlr_key);
9290 	opts.dhchap_key = ctx->dhchap_key;
9291 	opts.dhchap_ctrlr_key = ctx->dhchap_ctrlr_key;
9292 	rc = spdk_nvme_ctrlr_set_keys(nctrlr->ctrlr, &opts);
9293 	if (rc != 0) {
9294 		bdev_nvme_set_keys_done(ctx, rc);
9295 		return;
9296 	}
9297 
9298 	if (ctx->dhchap_key != NULL) {
9299 		rc = spdk_nvme_ctrlr_authenticate(nctrlr->ctrlr,
9300 						  bdev_nvme_authenticate_ctrlr_done, ctx);
9301 		if (rc != 0) {
9302 			bdev_nvme_set_keys_done(ctx, rc);
9303 		}
9304 	} else {
9305 		bdev_nvme_authenticate_ctrlr_continue(ctx);
9306 	}
9307 }
9308 
9309 int
9310 bdev_nvme_set_keys(const char *name, const char *dhchap_key, const char *dhchap_ctrlr_key,
9311 		   bdev_nvme_set_keys_cb cb_fn, void *cb_ctx)
9312 {
9313 	struct bdev_nvme_set_keys_ctx *ctx;
9314 	struct nvme_bdev_ctrlr *nbdev_ctrlr;
9315 	struct nvme_ctrlr *nctrlr;
9316 
9317 	ctx = calloc(1, sizeof(*ctx));
9318 	if (ctx == NULL) {
9319 		return -ENOMEM;
9320 	}
9321 
9322 	if (dhchap_key != NULL) {
9323 		ctx->dhchap_key = spdk_keyring_get_key(dhchap_key);
9324 		if (ctx->dhchap_key == NULL) {
9325 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_key, name);
9326 			bdev_nvme_free_set_keys_ctx(ctx);
9327 			return -ENOKEY;
9328 		}
9329 	}
9330 	if (dhchap_ctrlr_key != NULL) {
9331 		ctx->dhchap_ctrlr_key = spdk_keyring_get_key(dhchap_ctrlr_key);
9332 		if (ctx->dhchap_ctrlr_key == NULL) {
9333 			SPDK_ERRLOG("Could not find key %s for bdev %s\n", dhchap_ctrlr_key, name);
9334 			bdev_nvme_free_set_keys_ctx(ctx);
9335 			return -ENOKEY;
9336 		}
9337 	}
9338 
9339 	pthread_mutex_lock(&g_bdev_nvme_mutex);
9340 	nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
9341 	if (nbdev_ctrlr == NULL) {
9342 		SPDK_ERRLOG("Could not find bdev_ctrlr %s\n", name);
9343 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9344 		bdev_nvme_free_set_keys_ctx(ctx);
9345 		return -ENODEV;
9346 	}
9347 	nctrlr = bdev_nvme_next_ctrlr_unsafe(nbdev_ctrlr, NULL);
9348 	if (nctrlr == NULL) {
9349 		SPDK_ERRLOG("Could not find any nvme_ctrlrs on bdev_ctrlr %s\n", name);
9350 		pthread_mutex_unlock(&g_bdev_nvme_mutex);
9351 		bdev_nvme_free_set_keys_ctx(ctx);
9352 		return -ENODEV;
9353 	}
9354 	pthread_mutex_unlock(&g_bdev_nvme_mutex);
9355 
9356 	ctx->nctrlr = nctrlr;
9357 	ctx->cb_fn = cb_fn;
9358 	ctx->cb_ctx = cb_ctx;
9359 	ctx->thread = spdk_get_thread();
9360 
9361 	bdev_nvme_authenticate_ctrlr(ctx);
9362 
9363 	return 0;
9364 }
9365 
9366 void
9367 nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
9368 {
9369 	struct nvme_ns *nvme_ns = io_path->nvme_ns;
9370 	struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
9371 	const struct spdk_nvme_ctrlr_data *cdata;
9372 	const struct spdk_nvme_transport_id *trid;
9373 	const char *adrfam_str;
9374 
9375 	spdk_json_write_object_begin(w);
9376 
9377 	spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
9378 
9379 	cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
9380 	trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
9381 
9382 	spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
9383 	spdk_json_write_named_bool(w, "current", nvme_io_path_is_current(io_path));
9384 	spdk_json_write_named_bool(w, "connected", nvme_qpair_is_connected(io_path->qpair));
9385 	spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
9386 
9387 	spdk_json_write_named_object_begin(w, "transport");
9388 	spdk_json_write_named_string(w, "trtype", trid->trstring);
9389 	spdk_json_write_named_string(w, "traddr", trid->traddr);
9390 	if (trid->trsvcid[0] != '\0') {
9391 		spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
9392 	}
9393 	adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
9394 	if (adrfam_str) {
9395 		spdk_json_write_named_string(w, "adrfam", adrfam_str);
9396 	}
9397 	spdk_json_write_object_end(w);
9398 
9399 	spdk_json_write_object_end(w);
9400 }
9401 
9402 void
9403 bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
9404 {
9405 	struct discovery_ctx *ctx;
9406 	struct discovery_entry_ctx *entry_ctx;
9407 
9408 	spdk_json_write_array_begin(w);
9409 	TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
9410 		spdk_json_write_object_begin(w);
9411 		spdk_json_write_named_string(w, "name", ctx->name);
9412 
9413 		spdk_json_write_named_object_begin(w, "trid");
9414 		nvme_bdev_dump_trid_json(&ctx->trid, w);
9415 		spdk_json_write_object_end(w);
9416 
9417 		spdk_json_write_named_array_begin(w, "referrals");
9418 		TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
9419 			spdk_json_write_object_begin(w);
9420 			spdk_json_write_named_object_begin(w, "trid");
9421 			nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
9422 			spdk_json_write_object_end(w);
9423 			spdk_json_write_object_end(w);
9424 		}
9425 		spdk_json_write_array_end(w);
9426 
9427 		spdk_json_write_object_end(w);
9428 	}
9429 	spdk_json_write_array_end(w);
9430 }
9431 
9432 SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
9433 
9434 static void
9435 bdev_nvme_trace(void)
9436 {
9437 	struct spdk_trace_tpoint_opts opts[] = {
9438 		{
9439 			"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
9440 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 1,
9441 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9442 		},
9443 		{
9444 			"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
9445 			OWNER_TYPE_NONE, OBJECT_BDEV_NVME_IO, 0,
9446 			{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
9447 		}
9448 	};
9449 
9450 
9451 	spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
9452 	spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
9453 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9454 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
9455 	spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9456 	spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
9457 }
9458 SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
9459