xref: /netbsd-src/sys/dev/pci/if_ti.c (revision a45b31c789d9db42923a5da581d570ba494b40e7)
1 /* $NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UDP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring descriptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $");
85 
86 #include "opt_inet.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 
115 #include <sys/bus.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120 
121 #include <dev/pci/if_tireg.h>
122 
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static const struct ti_type ti_devs[] = {
131 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
132 		"Alteon AceNIC 1000BASE-SX Ethernet" },
133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 		"Alteon AceNIC 1000BASE-T Ethernet" },
135 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 		"Netgear GA620 1000BASE-SX Ethernet" },
139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 		"Netgear GA620 1000BASE-T Ethernet" },
141 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX,
144 		"Farallon PN9000SX Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static const struct ti_type *ti_type_match(struct pci_attach_args *);
149 static int ti_probe(device_t, cfdata_t, void *);
150 static void ti_attach(device_t, device_t, void *);
151 static bool ti_shutdown(device_t, int);
152 static void ti_txeof_tigon1(struct ti_softc *);
153 static void ti_txeof_tigon2(struct ti_softc *);
154 static void ti_rxeof(struct ti_softc *);
155 
156 static void ti_stats_update(struct ti_softc *);
157 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
158 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
159 
160 static int ti_intr(void *);
161 static void ti_start(struct ifnet *);
162 static int ti_ioctl(struct ifnet *, u_long, void *);
163 static void ti_init(void *);
164 static void ti_init2(struct ti_softc *);
165 static void ti_stop(struct ti_softc *);
166 static void ti_watchdog(struct ifnet *);
167 static int ti_ifmedia_upd(struct ifnet *);
168 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
169 
170 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
171 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
172 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
173 
174 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
175 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
176 static void ti_setmulti(struct ti_softc *);
177 
178 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
179 static void ti_loadfw(struct ti_softc *);
180 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
181 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
182 static void ti_handle_events(struct ti_softc *);
183 static int ti_alloc_jumbo_mem(struct ti_softc *);
184 static void *ti_jalloc(struct ti_softc *);
185 static void ti_jfree(struct mbuf *, void *, size_t, void *);
186 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
187 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
188 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
189 static int ti_init_rx_ring_std(struct ti_softc *);
190 static void ti_free_rx_ring_std(struct ti_softc *);
191 static int ti_init_rx_ring_jumbo(struct ti_softc *);
192 static void ti_free_rx_ring_jumbo(struct ti_softc *);
193 static int ti_init_rx_ring_mini(struct ti_softc *);
194 static void ti_free_rx_ring_mini(struct ti_softc *);
195 static void ti_free_tx_ring(struct ti_softc *);
196 static int ti_init_tx_ring(struct ti_softc *);
197 
198 static int ti_64bitslot_war(struct ti_softc *);
199 static int ti_chipinit(struct ti_softc *);
200 static int ti_gibinit(struct ti_softc *);
201 
202 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
203 
204 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
205     ti_probe, ti_attach, NULL, NULL);
206 
207 /*
208  * Send an instruction or address to the EEPROM, check for ACK.
209  */
210 static uint32_t
211 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
212 {
213 	int i, ack = 0;
214 
215 	/*
216 	 * Make sure we're in TX mode.
217 	 */
218 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
219 
220 	/*
221 	 * Feed in each bit and strobe the clock.
222 	 */
223 	for (i = 0x80; i; i >>= 1) {
224 		if (byte & i) {
225 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 		} else {
227 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
228 		}
229 		DELAY(1);
230 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 		DELAY(1);
232 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
233 	}
234 
235 	/*
236 	 * Turn off TX mode.
237 	 */
238 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239 
240 	/*
241 	 * Check for ack.
242 	 */
243 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
245 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 
247 	return (ack);
248 }
249 
250 /*
251  * Read a byte of data stored in the EEPROM at address 'addr.'
252  * We have to send two address bytes since the EEPROM can hold
253  * more than 256 bytes of data.
254  */
255 static uint8_t
256 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
257 {
258 	int		i;
259 	uint8_t		byte = 0;
260 
261 	EEPROM_START();
262 
263 	/*
264 	 * Send write control code to EEPROM.
265 	 */
266 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
267 		printf("%s: failed to send write command, status: %x\n",
268 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
269 		return (1);
270 	}
271 
272 	/*
273 	 * Send first byte of address of byte we want to read.
274 	 */
275 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
276 		printf("%s: failed to send address, status: %x\n",
277 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
278 		return (1);
279 	}
280 	/*
281 	 * Send second byte address of byte we want to read.
282 	 */
283 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
284 		printf("%s: failed to send address, status: %x\n",
285 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 		return (1);
287 	}
288 
289 	EEPROM_STOP();
290 	EEPROM_START();
291 	/*
292 	 * Send read control code to EEPROM.
293 	 */
294 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
295 		printf("%s: failed to send read command, status: %x\n",
296 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return (1);
298 	}
299 
300 	/*
301 	 * Start reading bits from EEPROM.
302 	 */
303 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
304 	for (i = 0x80; i; i >>= 1) {
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
308 			byte |= i;
309 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310 		DELAY(1);
311 	}
312 
313 	EEPROM_STOP();
314 
315 	/*
316 	 * No ACK generated for read, so just return byte.
317 	 */
318 
319 	*dest = byte;
320 
321 	return (0);
322 }
323 
324 /*
325  * Read a sequence of bytes from the EEPROM.
326  */
327 static int
328 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
329 {
330 	char *dest = destv;
331 	int err = 0, i;
332 	uint8_t byte = 0;
333 
334 	for (i = 0; i < cnt; i++) {
335 		err = ti_eeprom_getbyte(sc, off + i, &byte);
336 		if (err)
337 			break;
338 		*(dest + i) = byte;
339 	}
340 
341 	return (err ? 1 : 0);
342 }
343 
344 /*
345  * NIC memory access function. Can be used to either clear a section
346  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
347  */
348 static void
349 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
350 {
351 	int			segptr, segsize, cnt;
352 	const void		*ptr;
353 
354 	segptr = addr;
355 	cnt = len;
356 	ptr = xbuf;
357 
358 	while (cnt) {
359 		if (cnt < TI_WINLEN)
360 			segsize = cnt;
361 		else
362 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
363 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
364 		if (xbuf == NULL) {
365 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
366 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
367 			    segsize / 4);
368 		} else {
369 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
370 			bus_space_write_region_stream_4(sc->ti_btag,
371 			    sc->ti_bhandle,
372 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
373 			    (const uint32_t *)ptr, segsize / 4);
374 #else
375 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
376 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
377 			    (const uint32_t *)ptr, segsize / 4);
378 #endif
379 			ptr = (const char *)ptr + segsize;
380 		}
381 		segptr += segsize;
382 		cnt -= segsize;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Load firmware image into the NIC. Check that the firmware revision
390  * is acceptable and see if we want the firmware for the Tigon 1 or
391  * Tigon 2.
392  */
393 static void
394 ti_loadfw(struct ti_softc *sc)
395 {
396 	switch (sc->ti_hwrev) {
397 	case TI_HWREV_TIGON:
398 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
399 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
400 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
401 			printf("%s: firmware revision mismatch; want "
402 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
403 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
404 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
405 			    tigonFwReleaseMinor, tigonFwReleaseFix);
406 			return;
407 		}
408 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
409 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
410 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
411 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
412 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
413 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
414 		break;
415 	case TI_HWREV_TIGON_II:
416 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
417 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
418 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
419 			printf("%s: firmware revision mismatch; want "
420 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
421 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
422 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
423 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
424 			return;
425 		}
426 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
427 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
428 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
429 		    tigon2FwRodata);
430 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
431 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
432 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
433 		break;
434 	default:
435 		printf("%s: can't load firmware: unknown hardware rev\n",
436 		    device_xname(sc->sc_dev));
437 		break;
438 	}
439 
440 	return;
441 }
442 
443 /*
444  * Send the NIC a command via the command ring.
445  */
446 static void
447 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
448 {
449 	uint32_t		index;
450 
451 	index = sc->ti_cmd_saved_prodidx;
452 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
453 	TI_INC(index, TI_CMD_RING_CNT);
454 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
455 	sc->ti_cmd_saved_prodidx = index;
456 }
457 
458 /*
459  * Send the NIC an extended command. The 'len' parameter specifies the
460  * number of command slots to include after the initial command.
461  */
462 static void
463 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
464 {
465 	char		*arg = argv;
466 	uint32_t	index;
467 	int		i;
468 
469 	index = sc->ti_cmd_saved_prodidx;
470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
471 	TI_INC(index, TI_CMD_RING_CNT);
472 	for (i = 0; i < len; i++) {
473 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
474 		    *(uint32_t *)(&arg[i * 4]));
475 		TI_INC(index, TI_CMD_RING_CNT);
476 	}
477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
478 	sc->ti_cmd_saved_prodidx = index;
479 }
480 
481 /*
482  * Handle events that have triggered interrupts.
483  */
484 static void
485 ti_handle_events(struct ti_softc *sc)
486 {
487 	struct ti_event_desc	*e;
488 
489 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
490 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
491 		switch (TI_EVENT_EVENT(e)) {
492 		case TI_EV_LINKSTAT_CHANGED:
493 			sc->ti_linkstat = TI_EVENT_CODE(e);
494 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
495 				printf("%s: 10/100 link up\n",
496 				       device_xname(sc->sc_dev));
497 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
498 				printf("%s: gigabit link up\n",
499 				       device_xname(sc->sc_dev));
500 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
501 				printf("%s: link down\n",
502 				       device_xname(sc->sc_dev));
503 			break;
504 		case TI_EV_ERROR:
505 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
506 				printf("%s: invalid command\n",
507 				       device_xname(sc->sc_dev));
508 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
509 				printf("%s: unknown command\n",
510 				       device_xname(sc->sc_dev));
511 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
512 				printf("%s: bad config data\n",
513 				       device_xname(sc->sc_dev));
514 			break;
515 		case TI_EV_FIRMWARE_UP:
516 			ti_init2(sc);
517 			break;
518 		case TI_EV_STATS_UPDATED:
519 			ti_stats_update(sc);
520 			break;
521 		case TI_EV_RESET_JUMBO_RING:
522 		case TI_EV_MCAST_UPDATED:
523 			/* Who cares. */
524 			break;
525 		default:
526 			printf("%s: unknown event: %d\n",
527 			    device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
528 			break;
529 		}
530 		/* Advance the consumer index. */
531 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
532 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
533 	}
534 
535 	return;
536 }
537 
538 /*
539  * Memory management for the jumbo receive ring is a pain in the
540  * butt. We need to allocate at least 9018 bytes of space per frame,
541  * _and_ it has to be contiguous (unless you use the extended
542  * jumbo descriptor format). Using malloc() all the time won't
543  * work: malloc() allocates memory in powers of two, which means we
544  * would end up wasting a considerable amount of space by allocating
545  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
546  * to do our own memory management.
547  *
548  * The driver needs to allocate a contiguous chunk of memory at boot
549  * time. We then chop this up ourselves into 9K pieces and use them
550  * as external mbuf storage.
551  *
552  * One issue here is how much memory to allocate. The jumbo ring has
553  * 256 slots in it, but at 9K per slot than can consume over 2MB of
554  * RAM. This is a bit much, especially considering we also need
555  * RAM for the standard ring and mini ring (on the Tigon 2). To
556  * save space, we only actually allocate enough memory for 64 slots
557  * by default, which works out to between 500 and 600K. This can
558  * be tuned by changing a #define in if_tireg.h.
559  */
560 
561 static int
562 ti_alloc_jumbo_mem(struct ti_softc *sc)
563 {
564 	char *ptr;
565 	int i;
566 	struct ti_jpool_entry	*entry;
567 	bus_dma_segment_t dmaseg;
568 	int error, dmanseg;
569 
570 	/* Grab a big chunk o' storage. */
571 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
572 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
573 	    BUS_DMA_NOWAIT)) != 0) {
574 		aprint_error_dev(sc->sc_dev,
575 		    "can't allocate jumbo buffer, error = %d\n", error);
576 		return (error);
577 	}
578 
579 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
580 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
581 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
582 		aprint_error_dev(sc->sc_dev,
583 		    "can't map jumbo buffer, error = %d\n", error);
584 		return (error);
585 	}
586 
587 	if ((error = bus_dmamap_create(sc->sc_dmat,
588 	    TI_JMEM, 1,
589 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
590 	    &sc->jumbo_dmamap)) != 0) {
591 		aprint_error_dev(sc->sc_dev,
592 		    "can't create jumbo buffer DMA map, error = %d\n", error);
593 		return (error);
594 	}
595 
596 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
597 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
598 	    BUS_DMA_NOWAIT)) != 0) {
599 		aprint_error_dev(sc->sc_dev,
600 		    "can't load jumbo buffer DMA map, error = %d\n", error);
601 		return (error);
602 	}
603 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
604 
605 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
606 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
607 
608 	/*
609 	 * Now divide it up into 9K pieces and save the addresses
610 	 * in an array.
611 	 */
612 	ptr = sc->ti_cdata.ti_jumbo_buf;
613 	for (i = 0; i < TI_JSLOTS; i++) {
614 		sc->ti_cdata.ti_jslots[i] = ptr;
615 		ptr += TI_JLEN;
616 		entry = malloc(sizeof(struct ti_jpool_entry),
617 			       M_DEVBUF, M_WAITOK);
618 		entry->slot = i;
619 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
620 				    jpool_entries);
621 	}
622 
623 	return (0);
624 }
625 
626 /*
627  * Allocate a jumbo buffer.
628  */
629 static void *
630 ti_jalloc(struct ti_softc *sc)
631 {
632 	struct ti_jpool_entry	*entry;
633 
634 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
635 
636 	if (entry == NULL) {
637 		printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
638 		return (NULL);
639 	}
640 
641 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
642 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
643 
644 	return (sc->ti_cdata.ti_jslots[entry->slot]);
645 }
646 
647 /*
648  * Release a jumbo buffer.
649  */
650 static void
651 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
652 {
653 	struct ti_softc		*sc;
654 	int			i, s;
655 	struct ti_jpool_entry	*entry;
656 
657 	/* Extract the softc struct pointer. */
658 	sc = (struct ti_softc *)arg;
659 
660 	if (sc == NULL)
661 		panic("ti_jfree: didn't get softc pointer!");
662 
663 	/* calculate the slot this buffer belongs to */
664 
665 	i = ((char *)tbuf
666 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
667 
668 	if ((i < 0) || (i >= TI_JSLOTS))
669 		panic("ti_jfree: asked to free buffer that we don't manage!");
670 
671 	s = splvm();
672 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
673 	if (entry == NULL)
674 		panic("ti_jfree: buffer not in use!");
675 	entry->slot = i;
676 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
677 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
678 
679 	if (__predict_true(m != NULL))
680 		pool_cache_put(mb_cache, m);
681 	splx(s);
682 }
683 
684 
685 /*
686  * Initialize a standard receive ring descriptor.
687  */
688 static int
689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
690 {
691 	struct mbuf		*m_new = NULL;
692 	struct ti_rx_desc	*r;
693 	int error;
694 
695 	if (dmamap == NULL) {
696 		/* if (m) panic() */
697 
698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
699 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
700 					       &dmamap)) != 0) {
701 			aprint_error_dev(sc->sc_dev,
702 			    "can't create recv map, error = %d\n", error);
703 			return (ENOMEM);
704 		}
705 	}
706 	sc->std_dmamap[i] = dmamap;
707 
708 	if (m == NULL) {
709 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
710 		if (m_new == NULL) {
711 			aprint_error_dev(sc->sc_dev,
712 			    "mbuf allocation failed -- packet dropped!\n");
713 			return (ENOBUFS);
714 		}
715 
716 		MCLGET(m_new, M_DONTWAIT);
717 		if (!(m_new->m_flags & M_EXT)) {
718 			aprint_error_dev(sc->sc_dev,
719 			    "cluster allocation failed -- packet dropped!\n");
720 			m_freem(m_new);
721 			return (ENOBUFS);
722 		}
723 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
724 		m_adj(m_new, ETHER_ALIGN);
725 
726 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
727 				mtod(m_new, void *), m_new->m_len, NULL,
728 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
729 			aprint_error_dev(sc->sc_dev,
730 			    "can't load recv map, error = %d\n", error);
731 			m_freem(m_new);
732 			return (ENOMEM);
733 		}
734 	} else {
735 		m_new = m;
736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
737 		m_new->m_data = m_new->m_ext.ext_buf;
738 		m_adj(m_new, ETHER_ALIGN);
739 
740 		/* reuse the dmamap */
741 	}
742 
743 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
744 	r = &sc->ti_rdata->ti_rx_std_ring[i];
745 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
746 	r->ti_type = TI_BDTYPE_RECV_BD;
747 	r->ti_flags = 0;
748 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
749 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
750 	if (sc->ethercom.ec_if.if_capenable &
751 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
752 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
753 	r->ti_len = m_new->m_len; /* == ds_len */
754 	r->ti_idx = i;
755 
756 	return (0);
757 }
758 
759 /*
760  * Initialize a mini receive ring descriptor. This only applies to
761  * the Tigon 2.
762  */
763 static int
764 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
765 {
766 	struct mbuf		*m_new = NULL;
767 	struct ti_rx_desc	*r;
768 	int error;
769 
770 	if (dmamap == NULL) {
771 		/* if (m) panic() */
772 
773 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
774 					       MHLEN, 0, BUS_DMA_NOWAIT,
775 					       &dmamap)) != 0) {
776 			aprint_error_dev(sc->sc_dev,
777 			    "can't create recv map, error = %d\n", error);
778 			return (ENOMEM);
779 		}
780 	}
781 	sc->mini_dmamap[i] = dmamap;
782 
783 	if (m == NULL) {
784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
785 		if (m_new == NULL) {
786 			aprint_error_dev(sc->sc_dev,
787 			    "mbuf allocation failed -- packet dropped!\n");
788 			return (ENOBUFS);
789 		}
790 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
791 		m_adj(m_new, ETHER_ALIGN);
792 
793 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
794 				mtod(m_new, void *), m_new->m_len, NULL,
795 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
796 			aprint_error_dev(sc->sc_dev,
797 			    "can't load recv map, error = %d\n", error);
798 			m_freem(m_new);
799 			return (ENOMEM);
800 		}
801 	} else {
802 		m_new = m;
803 		m_new->m_data = m_new->m_pktdat;
804 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
805 		m_adj(m_new, ETHER_ALIGN);
806 
807 		/* reuse the dmamap */
808 	}
809 
810 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
811 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
812 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
813 	r->ti_type = TI_BDTYPE_RECV_BD;
814 	r->ti_flags = TI_BDFLAG_MINI_RING;
815 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
816 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
817 	if (sc->ethercom.ec_if.if_capenable &
818 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
819 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
820 	r->ti_len = m_new->m_len; /* == ds_len */
821 	r->ti_idx = i;
822 
823 	return (0);
824 }
825 
826 /*
827  * Initialize a jumbo receive ring descriptor. This allocates
828  * a jumbo buffer from the pool managed internally by the driver.
829  */
830 static int
831 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
832 {
833 	struct mbuf		*m_new = NULL;
834 	struct ti_rx_desc	*r;
835 
836 	if (m == NULL) {
837 		void *		tbuf = NULL;
838 
839 		/* Allocate the mbuf. */
840 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
841 		if (m_new == NULL) {
842 			aprint_error_dev(sc->sc_dev,
843 			    "mbuf allocation failed -- packet dropped!\n");
844 			return (ENOBUFS);
845 		}
846 
847 		/* Allocate the jumbo buffer */
848 		tbuf = ti_jalloc(sc);
849 		if (tbuf == NULL) {
850 			m_freem(m_new);
851 			aprint_error_dev(sc->sc_dev,
852 			    "jumbo allocation failed -- packet dropped!\n");
853 			return (ENOBUFS);
854 		}
855 
856 		/* Attach the buffer to the mbuf. */
857 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
858 		    M_DEVBUF, ti_jfree, sc);
859 		m_new->m_flags |= M_EXT_RW;
860 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
861 	} else {
862 		m_new = m;
863 		m_new->m_data = m_new->m_ext.ext_buf;
864 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
865 	}
866 
867 	m_adj(m_new, ETHER_ALIGN);
868 	/* Set up the descriptor. */
869 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
870 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
871 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
872 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
873 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
874 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
875 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
876 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
877 	if (sc->ethercom.ec_if.if_capenable &
878 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
879 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
880 	r->ti_len = m_new->m_len;
881 	r->ti_idx = i;
882 
883 	return (0);
884 }
885 
886 /*
887  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
888  * that's 1MB or memory, which is a lot. For now, we fill only the first
889  * 256 ring entries and hope that our CPU is fast enough to keep up with
890  * the NIC.
891  */
892 static int
893 ti_init_rx_ring_std(struct ti_softc *sc)
894 {
895 	int		i;
896 	struct ti_cmd_desc	cmd;
897 
898 	for (i = 0; i < TI_SSLOTS; i++) {
899 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
900 			return (ENOBUFS);
901 	}
902 
903 	TI_UPDATE_STDPROD(sc, i - 1);
904 	sc->ti_std = i - 1;
905 
906 	return (0);
907 }
908 
909 static void
910 ti_free_rx_ring_std(struct ti_softc *sc)
911 {
912 	int		i;
913 
914 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
915 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
916 			/* if (sc->std_dmamap[i] == 0) panic() */
917 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
918 			sc->std_dmamap[i] = 0;
919 
920 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
921 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
922 		}
923 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
924 		    sizeof(struct ti_rx_desc));
925 	}
926 
927 	return;
928 }
929 
930 static int
931 ti_init_rx_ring_jumbo(struct ti_softc *sc)
932 {
933 	int		i;
934 	struct ti_cmd_desc	cmd;
935 
936 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
937 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
938 			return (ENOBUFS);
939 	}
940 
941 	TI_UPDATE_JUMBOPROD(sc, i - 1);
942 	sc->ti_jumbo = i - 1;
943 
944 	return (0);
945 }
946 
947 static void
948 ti_free_rx_ring_jumbo(struct ti_softc *sc)
949 {
950 	int		i;
951 
952 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
953 		m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
954 		sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
955 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
956 		    sizeof(struct ti_rx_desc));
957 	}
958 
959 	return;
960 }
961 
962 static int
963 ti_init_rx_ring_mini(struct ti_softc *sc)
964 {
965 	int		i;
966 
967 	for (i = 0; i < TI_MSLOTS; i++) {
968 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
969 			return (ENOBUFS);
970 	}
971 
972 	TI_UPDATE_MINIPROD(sc, i - 1);
973 	sc->ti_mini = i - 1;
974 
975 	return (0);
976 }
977 
978 static void
979 ti_free_rx_ring_mini(struct ti_softc *sc)
980 {
981 	int		i;
982 
983 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
984 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
985 			/* if (sc->mini_dmamap[i] == 0) panic() */
986 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
987 			sc->mini_dmamap[i] = 0;
988 
989 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
990 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
991 		}
992 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
993 		    sizeof(struct ti_rx_desc));
994 	}
995 
996 	return;
997 }
998 
999 static void
1000 ti_free_tx_ring(struct ti_softc *sc)
1001 {
1002 	int		i;
1003 	struct txdmamap_pool_entry *dma;
1004 
1005 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1006 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1007 			dma = sc->txdma[i];
1008 			KDASSERT(dma != NULL);
1009 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
1010 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1011 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
1012 
1013 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1014 					    link);
1015 			sc->txdma[i] = NULL;
1016 
1017 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1018 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1019 		}
1020 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1021 		    sizeof(struct ti_tx_desc));
1022 	}
1023 
1024 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1025 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1026 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1027 		free(dma, M_DEVBUF);
1028 	}
1029 
1030 	return;
1031 }
1032 
1033 static int
1034 ti_init_tx_ring(struct ti_softc *sc)
1035 {
1036 	int i, error;
1037 	bus_dmamap_t dmamap;
1038 	struct txdmamap_pool_entry *dma;
1039 
1040 	sc->ti_txcnt = 0;
1041 	sc->ti_tx_saved_considx = 0;
1042 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1043 
1044 	SIMPLEQ_INIT(&sc->txdma_list);
1045 	for (i = 0; i < TI_RSLOTS; i++) {
1046 		/* I've seen mbufs with 30 fragments. */
1047 		if ((error = bus_dmamap_create(sc->sc_dmat,
1048 			    ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1049 			    BUS_DMA_NOWAIT, &dmamap)) != 0) {
1050 			aprint_error_dev(sc->sc_dev,
1051 			    "can't create tx map, error = %d\n", error);
1052 			return (ENOMEM);
1053 		}
1054 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1055 		if (!dma) {
1056 			aprint_error_dev(sc->sc_dev,
1057 			    "can't alloc txdmamap_pool_entry\n");
1058 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1059 			return (ENOMEM);
1060 		}
1061 		dma->dmamap = dmamap;
1062 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1063 	}
1064 
1065 	return (0);
1066 }
1067 
1068 /*
1069  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1070  * but we have to support the old way too so that Tigon 1 cards will
1071  * work.
1072  */
1073 static void
1074 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1075 {
1076 	struct ti_cmd_desc	cmd;
1077 	uint16_t		*m;
1078 	uint32_t		ext[2] = {0, 0};
1079 
1080 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1081 
1082 	switch (sc->ti_hwrev) {
1083 	case TI_HWREV_TIGON:
1084 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1085 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1086 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1087 		break;
1088 	case TI_HWREV_TIGON_II:
1089 		ext[0] = htons(m[0]);
1090 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1091 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1092 		break;
1093 	default:
1094 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1095 		break;
1096 	}
1097 
1098 	return;
1099 }
1100 
1101 static void
1102 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1103 {
1104 	struct ti_cmd_desc	cmd;
1105 	uint16_t		*m;
1106 	uint32_t		ext[2] = {0, 0};
1107 
1108 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1109 
1110 	switch (sc->ti_hwrev) {
1111 	case TI_HWREV_TIGON:
1112 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1113 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1114 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1115 		break;
1116 	case TI_HWREV_TIGON_II:
1117 		ext[0] = htons(m[0]);
1118 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1119 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1120 		break;
1121 	default:
1122 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1123 		break;
1124 	}
1125 
1126 	return;
1127 }
1128 
1129 /*
1130  * Configure the Tigon's multicast address filter.
1131  *
1132  * The actual multicast table management is a bit of a pain, thanks to
1133  * slight brain damage on the part of both Alteon and us. With our
1134  * multicast code, we are only alerted when the multicast address table
1135  * changes and at that point we only have the current list of addresses:
1136  * we only know the current state, not the previous state, so we don't
1137  * actually know what addresses were removed or added. The firmware has
1138  * state, but we can't get our grubby mits on it, and there is no 'delete
1139  * all multicast addresses' command. Hence, we have to maintain our own
1140  * state so we know what addresses have been programmed into the NIC at
1141  * any given time.
1142  */
1143 static void
1144 ti_setmulti(struct ti_softc *sc)
1145 {
1146 	struct ethercom		*ec = &sc->ethercom;
1147 	struct ifnet		*ifp = &ec->ec_if;
1148 	struct ti_cmd_desc	cmd;
1149 	struct ti_mc_entry	*mc;
1150 	uint32_t		intrs;
1151 	struct ether_multi	*enm;
1152 	struct ether_multistep	step;
1153 
1154 	/* Disable interrupts. */
1155 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1156 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1157 
1158 	/* First, zot all the existing filters. */
1159 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1160 		ti_del_mcast(sc, &mc->mc_addr);
1161 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1162 		free(mc, M_DEVBUF);
1163 	}
1164 
1165 	/*
1166 	 * Remember all multicast addresses so that we can delete them
1167 	 * later.  Punt if there is a range of addresses or memory shortage.
1168 	 */
1169 	ETHER_LOCK(ec);
1170 	ETHER_FIRST_MULTI(step, ec, enm);
1171 	while (enm != NULL) {
1172 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1173 		    ETHER_ADDR_LEN) != 0) {
1174 			ETHER_UNLOCK(ec);
1175 			goto allmulti;
1176 		}
1177 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1178 		    M_NOWAIT)) == NULL) {
1179 			ETHER_UNLOCK(ec);
1180 			goto allmulti;
1181 		}
1182 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1183 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1184 		ETHER_NEXT_MULTI(step, enm);
1185 	}
1186 	ETHER_UNLOCK(ec);
1187 
1188 	/* Accept only programmed multicast addresses */
1189 	ifp->if_flags &= ~IFF_ALLMULTI;
1190 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1191 
1192 	/* Now program new ones. */
1193 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1194 		ti_add_mcast(sc, &mc->mc_addr);
1195 
1196 	/* Re-enable interrupts. */
1197 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1198 
1199 	return;
1200 
1201 allmulti:
1202 	/* No need to keep individual multicast addresses */
1203 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1204 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1205 		free(mc, M_DEVBUF);
1206 	}
1207 
1208 	/* Accept all multicast addresses */
1209 	ifp->if_flags |= IFF_ALLMULTI;
1210 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1211 
1212 	/* Re-enable interrupts. */
1213 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1214 }
1215 
1216 /*
1217  * Check to see if the BIOS has configured us for a 64 bit slot when
1218  * we aren't actually in one. If we detect this condition, we can work
1219  * around it on the Tigon 2 by setting a bit in the PCI state register,
1220  * but for the Tigon 1 we must give up and abort the interface attach.
1221  */
1222 static int
1223 ti_64bitslot_war(struct ti_softc *sc)
1224 {
1225 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1226 		CSR_WRITE_4(sc, 0x600, 0);
1227 		CSR_WRITE_4(sc, 0x604, 0);
1228 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1229 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1230 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1231 				return (EINVAL);
1232 			else {
1233 				TI_SETBIT(sc, TI_PCI_STATE,
1234 				    TI_PCISTATE_32BIT_BUS);
1235 				return (0);
1236 			}
1237 		}
1238 	}
1239 
1240 	return (0);
1241 }
1242 
1243 /*
1244  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1245  * self-test results.
1246  */
1247 static int
1248 ti_chipinit(struct ti_softc *sc)
1249 {
1250 	uint32_t	cacheline;
1251 	uint32_t	pci_writemax = 0;
1252 	uint32_t	rev;
1253 
1254 	/* Initialize link to down state. */
1255 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1256 
1257 	/* Set endianness before we access any non-PCI registers. */
1258 #if BYTE_ORDER == BIG_ENDIAN
1259 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1260 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1261 #else
1262 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1263 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1264 #endif
1265 
1266 	/* Check the ROM failed bit to see if self-tests passed. */
1267 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1268 		printf("%s: board self-diagnostics failed!\n",
1269 		       device_xname(sc->sc_dev));
1270 		return (ENODEV);
1271 	}
1272 
1273 	/* Halt the CPU. */
1274 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1275 
1276 	/* Figure out the hardware revision. */
1277 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1278 	switch (rev) {
1279 	case TI_REV_TIGON_I:
1280 		sc->ti_hwrev = TI_HWREV_TIGON;
1281 		break;
1282 	case TI_REV_TIGON_II:
1283 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1284 		break;
1285 	default:
1286 		printf("%s: unsupported chip revision 0x%x\n",
1287 		    device_xname(sc->sc_dev), rev);
1288 		return (ENODEV);
1289 	}
1290 
1291 	/* Do special setup for Tigon 2. */
1292 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1293 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1294 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1295 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1296 	}
1297 
1298 	/* Set up the PCI state register. */
1299 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1300 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1301 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1302 	}
1303 
1304 	/* Clear the read/write max DMA parameters. */
1305 	TI_CLRBIT(sc, TI_PCI_STATE,
1306 	    (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
1307 
1308 	/* Get cache line size. */
1309 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1310 
1311 	/*
1312 	 * If the system has set enabled the PCI memory write
1313 	 * and invalidate command in the command register, set
1314 	 * the write max parameter accordingly. This is necessary
1315 	 * to use MWI with the Tigon 2.
1316 	 */
1317 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1318 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1319 		switch (cacheline) {
1320 		case 1:
1321 		case 4:
1322 		case 8:
1323 		case 16:
1324 		case 32:
1325 		case 64:
1326 			break;
1327 		default:
1328 		/* Disable PCI memory write and invalidate. */
1329 			if (bootverbose)
1330 				printf("%s: cache line size %d not "
1331 				    "supported; disabling PCI MWI\n",
1332 				    device_xname(sc->sc_dev), cacheline);
1333 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1334 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1335 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1336 			break;
1337 		}
1338 	}
1339 
1340 #ifdef __brokenalpha__
1341 	/*
1342 	 * From the Alteon sample driver:
1343 	 * Must insure that we do not cross an 8K (bytes) boundary
1344 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1345 	 * restriction on some ALPHA platforms with early revision
1346 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1347 	 */
1348 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
1349 #else
1350 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1351 #endif
1352 
1353 	/* This sets the min dma param all the way up (0xff). */
1354 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1355 
1356 	/* Configure DMA variables. */
1357 #if BYTE_ORDER == BIG_ENDIAN
1358 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1359 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1360 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1361 	    TI_OPMODE_DONT_FRAG_JUMBO);
1362 #else
1363 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
1364 	    TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
1365 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
1366 #endif
1367 
1368 	/*
1369 	 * Only allow 1 DMA channel to be active at a time.
1370 	 * I don't think this is a good idea, but without it
1371 	 * the firmware racks up lots of nicDmaReadRingFull
1372 	 * errors.
1373 	 * Incompatible with hardware assisted checksums.
1374 	 */
1375 	if ((sc->ethercom.ec_if.if_capenable &
1376 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1377 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1378 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1379 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1380 
1381 	/* Recommended settings from Tigon manual. */
1382 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1383 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1384 
1385 	if (ti_64bitslot_war(sc)) {
1386 		printf("%s: bios thinks we're in a 64 bit slot, "
1387 		    "but we aren't", device_xname(sc->sc_dev));
1388 		return (EINVAL);
1389 	}
1390 
1391 	return (0);
1392 }
1393 
1394 /*
1395  * Initialize the general information block and firmware, and
1396  * start the CPU(s) running.
1397  */
1398 static int
1399 ti_gibinit(struct ti_softc *sc)
1400 {
1401 	struct ti_rcb		*rcb;
1402 	int			i;
1403 	struct ifnet		*ifp;
1404 
1405 	ifp = &sc->ethercom.ec_if;
1406 
1407 	/* Disable interrupts for now. */
1408 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1409 
1410 	/* Tell the chip where to find the general information block. */
1411 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1412 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1413 
1414 	/* Load the firmware into SRAM. */
1415 	ti_loadfw(sc);
1416 
1417 	/* Set up the contents of the general info and ring control blocks. */
1418 
1419 	/* Set up the event ring and producer pointer. */
1420 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1421 
1422 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1423 	rcb->ti_flags = 0;
1424 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1425 	    TI_CDEVPRODADDR(sc);
1426 
1427 	sc->ti_ev_prodidx.ti_idx = 0;
1428 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1429 	sc->ti_ev_saved_considx = 0;
1430 
1431 	/* Set up the command ring and producer mailbox. */
1432 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1433 
1434 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1435 	rcb->ti_flags = 0;
1436 	rcb->ti_max_len = 0;
1437 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1438 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1439 	}
1440 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1441 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1442 	sc->ti_cmd_saved_prodidx = 0;
1443 
1444 	/*
1445 	 * Assign the address of the stats refresh buffer.
1446 	 * We re-use the current stats buffer for this to
1447 	 * conserve memory.
1448 	 */
1449 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1450 	    TI_CDSTATSADDR(sc);
1451 
1452 	/* Set up the standard receive ring. */
1453 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1454 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1455 	rcb->ti_max_len = ETHER_MAX_LEN;
1456 	rcb->ti_flags = 0;
1457 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1458 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1459 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1460 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1461 	if (VLAN_ATTACHED(&sc->ethercom))
1462 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1463 
1464 	/* Set up the jumbo receive ring. */
1465 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1466 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1467 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1468 	rcb->ti_flags = 0;
1469 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1470 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1471 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1472 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1473 	if (VLAN_ATTACHED(&sc->ethercom))
1474 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1475 
1476 	/*
1477 	 * Set up the mini ring. Only activated on the
1478 	 * Tigon 2 but the slot in the config block is
1479 	 * still there on the Tigon 1.
1480 	 */
1481 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1482 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1483 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1484 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1485 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1486 	else
1487 		rcb->ti_flags = 0;
1488 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1489 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1490 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1491 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1492 	if (VLAN_ATTACHED(&sc->ethercom))
1493 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1494 
1495 	/*
1496 	 * Set up the receive return ring.
1497 	 */
1498 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1499 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1500 	rcb->ti_flags = 0;
1501 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1502 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1503 	    TI_CDRTNPRODADDR(sc);
1504 
1505 	/*
1506 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1507 	 * of putting the transmit ring in the host's address space and
1508 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1509 	 * memory and accessing it through the shared memory region. We
1510 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1511 	 * so we have to revert to the shared memory scheme if we detect
1512 	 * a Tigon 1 chip.
1513 	 */
1514 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1515 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1516 		sc->ti_tx_ring_nic =
1517 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1518 	}
1519 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1520 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1521 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1522 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1523 		rcb->ti_flags = 0;
1524 	else
1525 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1526 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1527 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1528 	/*
1529 	 * When we get the packet, there is a pseudo-header seed already
1530 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1531 	 * compute the pseudo-header checksum again!
1532 	 */
1533 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
1534 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1535 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1536 	if (VLAN_ATTACHED(&sc->ethercom))
1537 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1538 	rcb->ti_max_len = TI_TX_RING_CNT;
1539 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1540 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1541 	else
1542 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1543 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1544 	    TI_CDTXCONSADDR(sc);
1545 
1546 	/*
1547 	 * We're done frobbing the General Information Block.  Sync
1548 	 * it.  Note we take care of the first stats sync here, as
1549 	 * well.
1550 	 */
1551 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1552 
1553 	/* Set up tuneables */
1554 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1555 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1556 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1557 		    (sc->ti_rx_coal_ticks / 10));
1558 	else
1559 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1560 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1561 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1562 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1563 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1564 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1565 
1566 	/* Turn interrupts on. */
1567 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1568 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1569 
1570 	/* Start CPU. */
1571 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
1572 
1573 	return (0);
1574 }
1575 
1576 /*
1577  * look for id in the device list, returning the first match
1578  */
1579 static const struct ti_type *
1580 ti_type_match(struct pci_attach_args *pa)
1581 {
1582 	const struct ti_type	      *t;
1583 
1584 	t = ti_devs;
1585 	while (t->ti_name != NULL) {
1586 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1587 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1588 			return (t);
1589 		}
1590 		t++;
1591 	}
1592 
1593 	return (NULL);
1594 }
1595 
1596 /*
1597  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1598  * against our list and return its name if we find a match.
1599  */
1600 static int
1601 ti_probe(device_t parent, cfdata_t match, void *aux)
1602 {
1603 	struct pci_attach_args	*pa = aux;
1604 	const struct ti_type	*t;
1605 
1606 	t = ti_type_match(pa);
1607 
1608 	return ((t == NULL) ? 0 : 1);
1609 }
1610 
1611 static void
1612 ti_attach(device_t parent, device_t self, void *aux)
1613 {
1614 	uint32_t		command;
1615 	struct ifnet		*ifp;
1616 	struct ti_softc		*sc;
1617 	uint8_t eaddr[ETHER_ADDR_LEN];
1618 	struct pci_attach_args *pa = aux;
1619 	pci_chipset_tag_t pc = pa->pa_pc;
1620 	pci_intr_handle_t ih;
1621 	const char *intrstr = NULL;
1622 	bus_dma_segment_t dmaseg;
1623 	int error, dmanseg, nolinear;
1624 	const struct ti_type		*t;
1625 	char intrbuf[PCI_INTRSTR_LEN];
1626 
1627 	t = ti_type_match(pa);
1628 	if (t == NULL) {
1629 		aprint_error("ti_attach: were did the card go ?\n");
1630 		return;
1631 	}
1632 
1633 	aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1634 	    PCI_REVISION(pa->pa_class));
1635 
1636 	sc = device_private(self);
1637 	sc->sc_dev = self;
1638 
1639 	/*
1640 	 * Map control/status registers.
1641 	 */
1642 	nolinear = 0;
1643 	if (pci_mapreg_map(pa, 0x10,
1644 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1645 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1646 	    NULL, NULL)) {
1647 		nolinear = 1;
1648 		if (pci_mapreg_map(pa, 0x10,
1649 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1650 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1651 			aprint_error_dev(self, "can't map memory space\n");
1652 			return;
1653 		}
1654 	}
1655 	if (nolinear == 0)
1656 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1657 	else
1658 		sc->ti_vhandle = NULL;
1659 
1660 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1661 	command |= PCI_COMMAND_MASTER_ENABLE;
1662 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1663 
1664 	/* Allocate interrupt */
1665 	if (pci_intr_map(pa, &ih)) {
1666 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1667 		return;
1668 	}
1669 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1670 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
1671 	    device_xname(self));
1672 	if (sc->sc_ih == NULL) {
1673 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1674 		if (intrstr != NULL)
1675 			aprint_error(" at %s", intrstr);
1676 		aprint_error("\n");
1677 		return;
1678 	}
1679 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1680 
1681 	if (ti_chipinit(sc)) {
1682 		aprint_error_dev(self, "chip initialization failed\n");
1683 		goto fail2;
1684 	}
1685 
1686 	/*
1687 	 * Deal with some chip diffrences.
1688 	 */
1689 	switch (sc->ti_hwrev) {
1690 	case TI_HWREV_TIGON:
1691 		sc->sc_tx_encap = ti_encap_tigon1;
1692 		sc->sc_tx_eof = ti_txeof_tigon1;
1693 		if (nolinear == 1)
1694 			aprint_error_dev(self,
1695 			    "memory space not mapped linear\n");
1696 		break;
1697 
1698 	case TI_HWREV_TIGON_II:
1699 		sc->sc_tx_encap = ti_encap_tigon2;
1700 		sc->sc_tx_eof = ti_txeof_tigon2;
1701 		break;
1702 
1703 	default:
1704 		aprint_error_dev(self, "Unknown chip version: %d\n",
1705 		    sc->ti_hwrev);
1706 		goto fail2;
1707 	}
1708 
1709 	/* Zero out the NIC's on-board SRAM. */
1710 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1711 
1712 	/* Init again -- zeroing memory may have clobbered some registers. */
1713 	if (ti_chipinit(sc)) {
1714 		aprint_error_dev(self, "chip initialization failed\n");
1715 		goto fail2;
1716 	}
1717 
1718 	/*
1719 	 * Get station address from the EEPROM. Note: the manual states
1720 	 * that the MAC address is at offset 0x8c, however the data is
1721 	 * stored as two longwords (since that's how it's loaded into
1722 	 * the NIC). This means the MAC address is actually preceded
1723 	 * by two zero bytes. We need to skip over those.
1724 	 */
1725 	if (ti_read_eeprom(sc, (void *)&eaddr,
1726 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1727 		aprint_error_dev(self, "failed to read station address\n");
1728 		goto fail2;
1729 	}
1730 
1731 	/*
1732 	 * A Tigon chip was detected. Inform the world.
1733 	 */
1734 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1735 
1736 	sc->sc_dmat = pa->pa_dmat;
1737 
1738 	/* Allocate the general information block and ring buffers. */
1739 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1740 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1741 	    BUS_DMA_NOWAIT)) != 0) {
1742 		aprint_error_dev(self,
1743 		    "can't allocate ring buffer, error = %d\n", error);
1744 		goto fail2;
1745 	}
1746 
1747 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1748 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1749 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1750 		aprint_error_dev(self,
1751 		    "can't map ring buffer, error = %d\n", error);
1752 		goto fail2;
1753 	}
1754 
1755 	if ((error = bus_dmamap_create(sc->sc_dmat,
1756 	    sizeof(struct ti_ring_data), 1,
1757 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1758 	    &sc->info_dmamap)) != 0) {
1759 		aprint_error_dev(self,
1760 		    "can't create ring buffer DMA map, error = %d\n", error);
1761 		goto fail2;
1762 	}
1763 
1764 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1765 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1766 	    BUS_DMA_NOWAIT)) != 0) {
1767 		aprint_error_dev(self,
1768 		    "can't load ring buffer DMA map, error = %d\n", error);
1769 		goto fail2;
1770 	}
1771 
1772 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1773 
1774 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1775 
1776 	/* Try to allocate memory for jumbo buffers. */
1777 	if (ti_alloc_jumbo_mem(sc)) {
1778 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
1779 		goto fail2;
1780 	}
1781 
1782 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1783 
1784 	/*
1785 	 * We really need a better way to tell a 1000baseT card
1786 	 * from a 1000baseSX one, since in theory there could be
1787 	 * OEMed 1000baseT cards from lame vendors who aren't
1788 	 * clever enough to change the PCI ID. For the moment
1789 	 * though, the AceNIC is the only copper card available.
1790 	 */
1791 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1792 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1793 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1794 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1795 		sc->ti_copper = 1;
1796 	else
1797 		sc->ti_copper = 0;
1798 
1799 	/* Set default tuneable values. */
1800 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1801 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1802 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1803 	sc->ti_rx_max_coal_bds = 64;
1804 	sc->ti_tx_max_coal_bds = 128;
1805 	sc->ti_tx_buf_ratio = 21;
1806 
1807 	/* Set up ifnet structure */
1808 	ifp = &sc->ethercom.ec_if;
1809 	ifp->if_softc = sc;
1810 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1811 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1812 	ifp->if_ioctl = ti_ioctl;
1813 	ifp->if_start = ti_start;
1814 	ifp->if_watchdog = ti_watchdog;
1815 	IFQ_SET_READY(&ifp->if_snd);
1816 
1817 #if 0
1818 	/*
1819 	 * XXX This is not really correct -- we don't necessarily
1820 	 * XXX want to queue up as many as we can transmit at the
1821 	 * XXX upper layer like that.  Someone with a board should
1822 	 * XXX check to see how this affects performance.
1823 	 */
1824 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1825 #endif
1826 
1827 	/*
1828 	 * We can support 802.1Q VLAN-sized frames.
1829 	 */
1830 	sc->ethercom.ec_capabilities |=
1831 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1832 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1833 
1834 	/*
1835 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1836 	 */
1837 	ifp->if_capabilities |=
1838 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1839 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1840 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1841 
1842 	/* Set up ifmedia support. */
1843 	sc->ethercom.ec_ifmedia = &sc->ifmedia;
1844 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1845 	if (sc->ti_copper) {
1846 		/*
1847 		 * Copper cards allow manual 10/100 mode selection,
1848 		 * but not manual 1000baseT mode selection. Why?
1849 		 * Because currently there's no way to specify the
1850 		 * master/slave setting through the firmware interface,
1851 		 * so Alteon decided to just bag it and handle it
1852 		 * via autonegotiation.
1853 		 */
1854 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
1855 		ifmedia_add(&sc->ifmedia,
1856 		    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1857 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
1858 		ifmedia_add(&sc->ifmedia,
1859 		    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1860 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1861 		ifmedia_add(&sc->ifmedia,
1862 		    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1863 	} else {
1864 		/* Fiber cards don't support 10/100 modes. */
1865 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
1866 		ifmedia_add(&sc->ifmedia,
1867 		    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1868 	}
1869 	ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1870 	ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
1871 
1872 	/*
1873 	 * Call MI attach routines.
1874 	 */
1875 	if_attach(ifp);
1876 	if_deferred_start_init(ifp, NULL);
1877 	ether_ifattach(ifp, eaddr);
1878 
1879 	/*
1880 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1881 	 * doing do could allow DMA to corrupt kernel memory during the
1882 	 * reboot before the driver initializes.
1883 	 */
1884 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1885 		pmf_class_network_register(self, ifp);
1886 	else
1887 		aprint_error_dev(self, "couldn't establish power handler\n");
1888 
1889 	return;
1890 fail2:
1891 	pci_intr_disestablish(pc, sc->sc_ih);
1892 	return;
1893 }
1894 
1895 /*
1896  * Frame reception handling. This is called if there's a frame
1897  * on the receive return list.
1898  *
1899  * Note: we have to be able to handle three possibilities here:
1900  * 1) the frame is from the mini receive ring (can only happen)
1901  *    on Tigon 2 boards)
1902  * 2) the frame is from the jumbo receive ring
1903  * 3) the frame is from the standard receive ring
1904  */
1905 
1906 static void
1907 ti_rxeof(struct ti_softc *sc)
1908 {
1909 	struct ifnet		*ifp;
1910 	struct ti_cmd_desc	cmd;
1911 
1912 	ifp = &sc->ethercom.ec_if;
1913 
1914 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1915 		struct ti_rx_desc	*cur_rx;
1916 		uint32_t		rxidx;
1917 		struct mbuf		*m = NULL;
1918 		struct ether_header	*eh;
1919 		bus_dmamap_t dmamap;
1920 
1921 		cur_rx =
1922 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1923 		rxidx = cur_rx->ti_idx;
1924 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1925 
1926 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1927 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1928 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1929 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1930 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1931 				if_statinc(ifp, if_ierrors);
1932 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1933 				continue;
1934 			}
1935 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1936 			    == ENOBUFS) {
1937 				if_statinc(ifp, if_ierrors);
1938 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1939 				continue;
1940 			}
1941 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1942 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1943 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1944 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1945 			dmamap = sc->mini_dmamap[rxidx];
1946 			sc->mini_dmamap[rxidx] = 0;
1947 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1948 				if_statinc(ifp, if_ierrors);
1949 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1950 				continue;
1951 			}
1952 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1953 			    == ENOBUFS) {
1954 				if_statinc(ifp, if_ierrors);
1955 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1956 				continue;
1957 			}
1958 		} else {
1959 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1960 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1961 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1962 			dmamap = sc->std_dmamap[rxidx];
1963 			sc->std_dmamap[rxidx] = 0;
1964 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1965 				if_statinc(ifp, if_ierrors);
1966 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1967 				continue;
1968 			}
1969 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1970 			    == ENOBUFS) {
1971 				if_statinc(ifp, if_ierrors);
1972 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1973 				continue;
1974 			}
1975 		}
1976 
1977 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1978 		m_set_rcvif(m, ifp);
1979 
1980 		eh = mtod(m, struct ether_header *);
1981 		switch (ntohs(eh->ether_type)) {
1982 #ifdef INET
1983 		case ETHERTYPE_IP:
1984 		    {
1985 			struct ip *ip = (struct ip *) (eh + 1);
1986 
1987 			/*
1988 			 * Note the Tigon firmware does not invert
1989 			 * the checksum for us, hence the XOR.
1990 			 */
1991 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1992 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1993 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1994 			/*
1995 			 * ntohs() the constant so the compiler can
1996 			 * optimize...
1997 			 *
1998 			 * XXX Figure out a sane way to deal with
1999 			 * fragmented packets.
2000 			 */
2001 			if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
2002 				switch (ip->ip_p) {
2003 				case IPPROTO_TCP:
2004 					m->m_pkthdr.csum_data =
2005 					    cur_rx->ti_tcp_udp_cksum;
2006 					m->m_pkthdr.csum_flags |=
2007 					    M_CSUM_TCPv4 | M_CSUM_DATA;
2008 					break;
2009 				case IPPROTO_UDP:
2010 					m->m_pkthdr.csum_data =
2011 					    cur_rx->ti_tcp_udp_cksum;
2012 					m->m_pkthdr.csum_flags |=
2013 					    M_CSUM_UDPv4 | M_CSUM_DATA;
2014 					break;
2015 				default:
2016 					/* Nothing */;
2017 				}
2018 			}
2019 			break;
2020 		    }
2021 #endif
2022 		default:
2023 			/* Nothing. */
2024 			break;
2025 		}
2026 
2027 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG)
2028 			vlan_set_tag(m, cur_rx->ti_vlan_tag);
2029 
2030 		if_percpuq_enqueue(ifp->if_percpuq, m);
2031 	}
2032 
2033 	/* Only necessary on the Tigon 1. */
2034 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2035 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2036 		    sc->ti_rx_saved_considx);
2037 
2038 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2039 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2040 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2041 }
2042 
2043 static void
2044 ti_txeof_tigon1(struct ti_softc *sc)
2045 {
2046 	struct ti_tx_desc	*cur_tx = NULL;
2047 	struct ifnet		*ifp;
2048 	struct txdmamap_pool_entry *dma;
2049 
2050 	ifp = &sc->ethercom.ec_if;
2051 
2052 	/*
2053 	 * Go through our tx ring and free mbufs for those
2054 	 * frames that have been sent.
2055 	 */
2056 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2057 		uint32_t	idx = 0;
2058 
2059 		idx = sc->ti_tx_saved_considx;
2060 		if (idx > 383)
2061 			CSR_WRITE_4(sc, TI_WINBASE,
2062 			    TI_TX_RING_BASE + 6144);
2063 		else if (idx > 255)
2064 			CSR_WRITE_4(sc, TI_WINBASE,
2065 			    TI_TX_RING_BASE + 4096);
2066 		else if (idx > 127)
2067 			CSR_WRITE_4(sc, TI_WINBASE,
2068 			    TI_TX_RING_BASE + 2048);
2069 		else
2070 			CSR_WRITE_4(sc, TI_WINBASE,
2071 			    TI_TX_RING_BASE);
2072 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2073 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2074 			if_statinc(ifp, if_opackets);
2075 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2076 			dma = sc->txdma[idx];
2077 			KDASSERT(dma != NULL);
2078 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2079 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2080 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2081 
2082 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2083 			sc->txdma[idx] = NULL;
2084 
2085 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2086 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2087 		}
2088 		sc->ti_txcnt--;
2089 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2090 		ifp->if_timer = 0;
2091 	}
2092 
2093 	if (cur_tx != NULL)
2094 		ifp->if_flags &= ~IFF_OACTIVE;
2095 }
2096 
2097 static void
2098 ti_txeof_tigon2(struct ti_softc *sc)
2099 {
2100 	struct ti_tx_desc	*cur_tx = NULL;
2101 	struct ifnet		*ifp;
2102 	struct txdmamap_pool_entry *dma;
2103 	int firstidx, cnt;
2104 
2105 	ifp = &sc->ethercom.ec_if;
2106 
2107 	/*
2108 	 * Go through our tx ring and free mbufs for those
2109 	 * frames that have been sent.
2110 	 */
2111 	firstidx = sc->ti_tx_saved_considx;
2112 	cnt = 0;
2113 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2114 		uint32_t	idx = 0;
2115 
2116 		idx = sc->ti_tx_saved_considx;
2117 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2118 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2119 			if_statinc(ifp, if_opackets);
2120 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2121 			dma = sc->txdma[idx];
2122 			KDASSERT(dma != NULL);
2123 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2124 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2125 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2126 
2127 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2128 			sc->txdma[idx] = NULL;
2129 
2130 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2131 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2132 		}
2133 		cnt++;
2134 		sc->ti_txcnt--;
2135 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2136 		ifp->if_timer = 0;
2137 	}
2138 
2139 	if (cnt != 0)
2140 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2141 
2142 	if (cur_tx != NULL)
2143 		ifp->if_flags &= ~IFF_OACTIVE;
2144 }
2145 
2146 static int
2147 ti_intr(void *xsc)
2148 {
2149 	struct ti_softc	*sc;
2150 	struct ifnet	*ifp;
2151 
2152 	sc = xsc;
2153 	ifp = &sc->ethercom.ec_if;
2154 
2155 #ifdef notdef
2156 	/* Avoid this for now -- checking this register is expensive. */
2157 	/* Make sure this is really our interrupt. */
2158 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2159 		return (0);
2160 #endif
2161 
2162 	/* Ack interrupt and stop others from occurring. */
2163 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2164 
2165 	if (ifp->if_flags & IFF_RUNNING) {
2166 		/* Check RX return ring producer/consumer */
2167 		ti_rxeof(sc);
2168 
2169 		/* Check TX ring producer/consumer */
2170 		(*sc->sc_tx_eof)(sc);
2171 	}
2172 
2173 	ti_handle_events(sc);
2174 
2175 	/* Re-enable interrupts. */
2176 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2177 
2178 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2179 		if_schedule_deferred_start(ifp);
2180 
2181 	return (1);
2182 }
2183 
2184 static void
2185 ti_stats_update(struct ti_softc *sc)
2186 {
2187 	struct ifnet *ifp = &sc->ethercom.ec_if;
2188 
2189 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2190 
2191 	uint64_t collisions =
2192 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2193 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2194 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2195 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
2196 	if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
2197 	sc->ti_if_collisions = collisions;
2198 
2199 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2200 }
2201 
2202 /*
2203  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2204  * pointers to descriptors.
2205  */
2206 static int
2207 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2208 {
2209 	struct ti_tx_desc	*f = NULL;
2210 	uint32_t		frag, cur, cnt = 0;
2211 	struct txdmamap_pool_entry *dma;
2212 	bus_dmamap_t dmamap;
2213 	int error, i;
2214 	uint16_t csum_flags = 0;
2215 
2216 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2217 	if (dma == NULL) {
2218 		return ENOMEM;
2219 	}
2220 	dmamap = dma->dmamap;
2221 
2222 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2223 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2224 	if (error) {
2225 		struct mbuf *m;
2226 		int j = 0;
2227 		for (m = m_head; m; m = m->m_next)
2228 			j++;
2229 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2230 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2231 		return (ENOMEM);
2232 	}
2233 
2234 	cur = frag = *txidx;
2235 
2236 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2237 		/* IP header checksum field must be 0! */
2238 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2239 	}
2240 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2241 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2242 
2243 	/* XXX fragmented packet checksum capability? */
2244 
2245 	/*
2246 	 * Start packing the mbufs in this chain into
2247 	 * the fragment pointers. Stop when we run out
2248 	 * of fragments or hit the end of the mbuf chain.
2249 	 */
2250 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2251 		if (frag > 383)
2252 			CSR_WRITE_4(sc, TI_WINBASE,
2253 			    TI_TX_RING_BASE + 6144);
2254 		else if (frag > 255)
2255 			CSR_WRITE_4(sc, TI_WINBASE,
2256 			    TI_TX_RING_BASE + 4096);
2257 		else if (frag > 127)
2258 			CSR_WRITE_4(sc, TI_WINBASE,
2259 			    TI_TX_RING_BASE + 2048);
2260 		else
2261 			CSR_WRITE_4(sc, TI_WINBASE,
2262 			    TI_TX_RING_BASE);
2263 		f = &sc->ti_tx_ring_nic[frag % 128];
2264 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2265 			break;
2266 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2267 		f->ti_len = dmamap->dm_segs[i].ds_len;
2268 		f->ti_flags = csum_flags;
2269 		if (vlan_has_tag(m_head)) {
2270 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2271 			f->ti_vlan_tag = vlan_get_tag(m_head);
2272 		} else {
2273 			f->ti_vlan_tag = 0;
2274 		}
2275 		/*
2276 		 * Sanity check: avoid coming within 16 descriptors
2277 		 * of the end of the ring.
2278 		 */
2279 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2280 			return (ENOBUFS);
2281 		cur = frag;
2282 		TI_INC(frag, TI_TX_RING_CNT);
2283 		cnt++;
2284 	}
2285 
2286 	if (i < dmamap->dm_nsegs)
2287 		return (ENOBUFS);
2288 
2289 	if (frag == sc->ti_tx_saved_considx)
2290 		return (ENOBUFS);
2291 
2292 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2293 	    TI_BDFLAG_END;
2294 
2295 	/* Sync the packet's DMA map. */
2296 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2297 	    BUS_DMASYNC_PREWRITE);
2298 
2299 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2300 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2301 	sc->txdma[cur] = dma;
2302 	sc->ti_txcnt += cnt;
2303 
2304 	*txidx = frag;
2305 
2306 	return (0);
2307 }
2308 
2309 static int
2310 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2311 {
2312 	struct ti_tx_desc	*f = NULL;
2313 	uint32_t		frag, firstfrag, cur, cnt = 0;
2314 	struct txdmamap_pool_entry *dma;
2315 	bus_dmamap_t dmamap;
2316 	int error, i;
2317 	uint16_t csum_flags = 0;
2318 
2319 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2320 	if (dma == NULL) {
2321 		return ENOMEM;
2322 	}
2323 	dmamap = dma->dmamap;
2324 
2325 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2326 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2327 	if (error) {
2328 		struct mbuf *m;
2329 		int j = 0;
2330 		for (m = m_head; m; m = m->m_next)
2331 			j++;
2332 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2333 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2334 		return (ENOMEM);
2335 	}
2336 
2337 	cur = firstfrag = frag = *txidx;
2338 
2339 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2340 		/* IP header checksum field must be 0! */
2341 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2342 	}
2343 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2344 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2345 
2346 	/* XXX fragmented packet checksum capability? */
2347 
2348 	/*
2349 	 * Start packing the mbufs in this chain into
2350 	 * the fragment pointers. Stop when we run out
2351 	 * of fragments or hit the end of the mbuf chain.
2352 	 */
2353 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2354 		f = &sc->ti_rdata->ti_tx_ring[frag];
2355 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2356 			break;
2357 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2358 		f->ti_len = dmamap->dm_segs[i].ds_len;
2359 		f->ti_flags = csum_flags;
2360 		if (vlan_has_tag(m_head)) {
2361 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2362 			f->ti_vlan_tag = vlan_get_tag(m_head);
2363 		} else {
2364 			f->ti_vlan_tag = 0;
2365 		}
2366 		/*
2367 		 * Sanity check: avoid coming within 16 descriptors
2368 		 * of the end of the ring.
2369 		 */
2370 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2371 			return (ENOBUFS);
2372 		cur = frag;
2373 		TI_INC(frag, TI_TX_RING_CNT);
2374 		cnt++;
2375 	}
2376 
2377 	if (i < dmamap->dm_nsegs)
2378 		return (ENOBUFS);
2379 
2380 	if (frag == sc->ti_tx_saved_considx)
2381 		return (ENOBUFS);
2382 
2383 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2384 
2385 	/* Sync the packet's DMA map. */
2386 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2387 	    BUS_DMASYNC_PREWRITE);
2388 
2389 	/* Sync the descriptors we are using. */
2390 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2391 
2392 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2393 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2394 	sc->txdma[cur] = dma;
2395 	sc->ti_txcnt += cnt;
2396 
2397 	*txidx = frag;
2398 
2399 	return (0);
2400 }
2401 
2402 /*
2403  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2404  * to the mbuf data regions directly in the transmit descriptors.
2405  */
2406 static void
2407 ti_start(struct ifnet *ifp)
2408 {
2409 	struct ti_softc	*sc;
2410 	struct mbuf	*m_head = NULL;
2411 	uint32_t	prodidx = 0;
2412 
2413 	sc = ifp->if_softc;
2414 
2415 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2416 
2417 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2418 		IFQ_POLL(&ifp->if_snd, m_head);
2419 		if (m_head == NULL)
2420 			break;
2421 
2422 		/*
2423 		 * Pack the data into the transmit ring. If we
2424 		 * don't have room, set the OACTIVE flag and wait
2425 		 * for the NIC to drain the ring.
2426 		 */
2427 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2428 			ifp->if_flags |= IFF_OACTIVE;
2429 			break;
2430 		}
2431 
2432 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2433 
2434 		/*
2435 		 * If there's a BPF listener, bounce a copy of this frame
2436 		 * to him.
2437 		 */
2438 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2439 	}
2440 
2441 	/* Transmit */
2442 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2443 
2444 	/* Set a timeout in case the chip goes out to lunch. */
2445 	ifp->if_timer = 5;
2446 }
2447 
2448 static void
2449 ti_init(void *xsc)
2450 {
2451 	struct ti_softc		*sc = xsc;
2452 	int			s;
2453 
2454 	s = splnet();
2455 
2456 	/* Cancel pending I/O and flush buffers. */
2457 	ti_stop(sc);
2458 
2459 	/* Init the gen info block, ring control blocks and firmware. */
2460 	if (ti_gibinit(sc)) {
2461 		aprint_error_dev(sc->sc_dev, "initialization failure\n");
2462 		splx(s);
2463 		return;
2464 	}
2465 
2466 	splx(s);
2467 }
2468 
2469 static void
2470 ti_init2(struct ti_softc *sc)
2471 {
2472 	struct ti_cmd_desc	cmd;
2473 	struct ifnet		*ifp;
2474 	const uint8_t		*m;
2475 	struct ifmedia		*ifm;
2476 	int			tmp;
2477 
2478 	ifp = &sc->ethercom.ec_if;
2479 
2480 	/* Specify MTU and interface index. */
2481 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2482 
2483 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2484 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2485 		tmp += ETHER_VLAN_ENCAP_LEN;
2486 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2487 
2488 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2489 
2490 	/* Load our MAC address. */
2491 	m = (const uint8_t *)CLLADDR(ifp->if_sadl);
2492 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2493 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2494 		    | (m[4] << 8) | m[5]);
2495 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2496 
2497 	/* Enable or disable promiscuous mode as needed. */
2498 	if (ifp->if_flags & IFF_PROMISC) {
2499 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2500 	} else {
2501 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2502 	}
2503 
2504 	/* Program multicast filter. */
2505 	ti_setmulti(sc);
2506 
2507 	/*
2508 	 * If this is a Tigon 1, we should tell the
2509 	 * firmware to use software packet filtering.
2510 	 */
2511 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2512 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2513 	}
2514 
2515 	/* Init RX ring. */
2516 	ti_init_rx_ring_std(sc);
2517 
2518 	/* Init jumbo RX ring. */
2519 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2520 		ti_init_rx_ring_jumbo(sc);
2521 
2522 	/*
2523 	 * If this is a Tigon 2, we can also configure the
2524 	 * mini ring.
2525 	 */
2526 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2527 		ti_init_rx_ring_mini(sc);
2528 
2529 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2530 	sc->ti_rx_saved_considx = 0;
2531 
2532 	/* Init TX ring. */
2533 	ti_init_tx_ring(sc);
2534 
2535 	/* Tell firmware we're alive. */
2536 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2537 
2538 	/* Enable host interrupts. */
2539 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2540 
2541 	ifp->if_flags |= IFF_RUNNING;
2542 	ifp->if_flags &= ~IFF_OACTIVE;
2543 
2544 	/*
2545 	 * Make sure to set media properly. We have to do this
2546 	 * here since we have to issue commands in order to set
2547 	 * the link negotiation and we can't issue commands until
2548 	 * the firmware is running.
2549 	 */
2550 	ifm = &sc->ifmedia;
2551 	tmp = ifm->ifm_media;
2552 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2553 	ti_ifmedia_upd(ifp);
2554 	ifm->ifm_media = tmp;
2555 }
2556 
2557 /*
2558  * Set media options.
2559  */
2560 static int
2561 ti_ifmedia_upd(struct ifnet *ifp)
2562 {
2563 	struct ti_softc		*sc;
2564 	struct ifmedia		*ifm;
2565 	struct ti_cmd_desc	cmd;
2566 
2567 	sc = ifp->if_softc;
2568 	ifm = &sc->ifmedia;
2569 
2570 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2571 		return (EINVAL);
2572 
2573 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2574 	case IFM_AUTO:
2575 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2576 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2577 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2578 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2579 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2580 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
2581 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2582 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2583 		break;
2584 	case IFM_1000_SX:
2585 	case IFM_1000_T:
2586 		if ((ifm->ifm_media & IFM_FDX) != 0) {
2587 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2588 			    TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
2589 			    | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2590 		} else {
2591 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2592 			    TI_GLNK_PREF | TI_GLNK_1000MB |
2593 			    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2594 		}
2595 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2596 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2597 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2598 		break;
2599 	case IFM_100_FX:
2600 	case IFM_10_FL:
2601 	case IFM_100_TX:
2602 	case IFM_10_T:
2603 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2604 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2605 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2606 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2607 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2608 		} else {
2609 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2610 		}
2611 		if ((ifm->ifm_media & IFM_FDX) != 0) {
2612 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2613 		} else {
2614 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2615 		}
2616 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2617 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2618 		break;
2619 	}
2620 
2621 	sc->ethercom.ec_if.if_baudrate =
2622 	    ifmedia_baudrate(ifm->ifm_media);
2623 
2624 	return (0);
2625 }
2626 
2627 /*
2628  * Report current media status.
2629  */
2630 static void
2631 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2632 {
2633 	struct ti_softc		*sc;
2634 	uint32_t		media = 0;
2635 
2636 	sc = ifp->if_softc;
2637 
2638 	ifmr->ifm_status = IFM_AVALID;
2639 	ifmr->ifm_active = IFM_ETHER;
2640 
2641 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2642 		return;
2643 
2644 	ifmr->ifm_status |= IFM_ACTIVE;
2645 
2646 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2647 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2648 		if (sc->ti_copper)
2649 			ifmr->ifm_active |= IFM_1000_T;
2650 		else
2651 			ifmr->ifm_active |= IFM_1000_SX;
2652 		if (media & TI_GLNK_FULL_DUPLEX)
2653 			ifmr->ifm_active |= IFM_FDX;
2654 		else
2655 			ifmr->ifm_active |= IFM_HDX;
2656 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2657 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2658 		if (sc->ti_copper) {
2659 			if (media & TI_LNK_100MB)
2660 				ifmr->ifm_active |= IFM_100_TX;
2661 			if (media & TI_LNK_10MB)
2662 				ifmr->ifm_active |= IFM_10_T;
2663 		} else {
2664 			if (media & TI_LNK_100MB)
2665 				ifmr->ifm_active |= IFM_100_FX;
2666 			if (media & TI_LNK_10MB)
2667 				ifmr->ifm_active |= IFM_10_FL;
2668 		}
2669 		if (media & TI_LNK_FULL_DUPLEX)
2670 			ifmr->ifm_active |= IFM_FDX;
2671 		if (media & TI_LNK_HALF_DUPLEX)
2672 			ifmr->ifm_active |= IFM_HDX;
2673 	}
2674 
2675 	sc->ethercom.ec_if.if_baudrate =
2676 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2677 }
2678 
2679 static int
2680 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2681 {
2682 	struct ifaddr *ifa = (struct ifaddr *)data;
2683 	struct ti_softc *sc = ifp->if_softc;
2684 
2685 	if ((ifp->if_flags & IFF_UP) == 0) {
2686 		ifp->if_flags |= IFF_UP;
2687 		ti_init(sc);
2688 	}
2689 
2690 	switch (cmd) {
2691 	case SIOCINITIFADDR:
2692 
2693 		switch (ifa->ifa_addr->sa_family) {
2694 #ifdef INET
2695 		case AF_INET:
2696 			arp_ifinit(ifp, ifa);
2697 			break;
2698 #endif
2699 		default:
2700 			break;
2701 		}
2702 		break;
2703 
2704 	default:
2705 		return (EINVAL);
2706 	}
2707 
2708 	return (0);
2709 }
2710 
2711 static int
2712 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2713 {
2714 	struct ti_softc		*sc = ifp->if_softc;
2715 	struct ifreq		*ifr = (struct ifreq *)data;
2716 	int			s, error = 0;
2717 	struct ti_cmd_desc	cmd;
2718 
2719 	s = splnet();
2720 
2721 	switch (command) {
2722 	case SIOCINITIFADDR:
2723 		error = ti_ether_ioctl(ifp, command, data);
2724 		break;
2725 	case SIOCSIFMTU:
2726 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2727 			error = EINVAL;
2728 		else if ((error = ifioctl_common(ifp, command, data))
2729 		    == ENETRESET) {
2730 			ti_init(sc);
2731 			error = 0;
2732 		}
2733 		break;
2734 	case SIOCSIFFLAGS:
2735 		if ((error = ifioctl_common(ifp, command, data)) != 0)
2736 			break;
2737 		if (ifp->if_flags & IFF_UP) {
2738 			/*
2739 			 * If only the state of the PROMISC flag changed,
2740 			 * then just use the 'set promisc mode' command
2741 			 * instead of reinitializing the entire NIC. Doing
2742 			 * a full re-init means reloading the firmware and
2743 			 * waiting for it to start up, which may take a
2744 			 * second or two.
2745 			 */
2746 			if (ifp->if_flags & IFF_RUNNING &&
2747 			    ifp->if_flags & IFF_PROMISC &&
2748 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2749 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2750 				    TI_CMD_CODE_PROMISC_ENB, 0);
2751 			} else if (ifp->if_flags & IFF_RUNNING &&
2752 			    !(ifp->if_flags & IFF_PROMISC) &&
2753 			    sc->ti_if_flags & IFF_PROMISC) {
2754 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2755 				    TI_CMD_CODE_PROMISC_DIS, 0);
2756 			} else
2757 				ti_init(sc);
2758 		} else {
2759 			if (ifp->if_flags & IFF_RUNNING) {
2760 				ti_stop(sc);
2761 			}
2762 		}
2763 		sc->ti_if_flags = ifp->if_flags;
2764 		error = 0;
2765 		break;
2766 	default:
2767 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2768 			break;
2769 
2770 		error = 0;
2771 
2772 		if (command == SIOCSIFCAP)
2773 			ti_init(sc);
2774 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2775 			;
2776 		else if (ifp->if_flags & IFF_RUNNING)
2777 			ti_setmulti(sc);
2778 		break;
2779 	}
2780 
2781 	(void)splx(s);
2782 
2783 	return (error);
2784 }
2785 
2786 static void
2787 ti_watchdog(struct ifnet *ifp)
2788 {
2789 	struct ti_softc		*sc;
2790 
2791 	sc = ifp->if_softc;
2792 
2793 	aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2794 	ti_stop(sc);
2795 	ti_init(sc);
2796 
2797 	if_statinc(ifp, if_oerrors);
2798 }
2799 
2800 /*
2801  * Stop the adapter and free any mbufs allocated to the
2802  * RX and TX lists.
2803  */
2804 static void
2805 ti_stop(struct ti_softc *sc)
2806 {
2807 	struct ifnet		*ifp;
2808 	struct ti_cmd_desc	cmd;
2809 
2810 	ifp = &sc->ethercom.ec_if;
2811 
2812 	/* Disable host interrupts. */
2813 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2814 	/*
2815 	 * Tell firmware we're shutting down.
2816 	 */
2817 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2818 
2819 	/* Halt and reinitialize. */
2820 	ti_chipinit(sc);
2821 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2822 	ti_chipinit(sc);
2823 
2824 	/* Free the RX lists. */
2825 	ti_free_rx_ring_std(sc);
2826 
2827 	/* Free jumbo RX list. */
2828 	ti_free_rx_ring_jumbo(sc);
2829 
2830 	/* Free mini RX list. */
2831 	ti_free_rx_ring_mini(sc);
2832 
2833 	/* Free TX buffers. */
2834 	ti_free_tx_ring(sc);
2835 
2836 	sc->ti_ev_prodidx.ti_idx = 0;
2837 	sc->ti_return_prodidx.ti_idx = 0;
2838 	sc->ti_tx_considx.ti_idx = 0;
2839 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2840 
2841 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2842 }
2843 
2844 /*
2845  * Stop all chip I/O so that the kernel's probe routines don't
2846  * get confused by errant DMAs when rebooting.
2847  */
2848 static bool
2849 ti_shutdown(device_t self, int howto)
2850 {
2851 	struct ti_softc *sc;
2852 
2853 	sc = device_private(self);
2854 	ti_chipinit(sc);
2855 
2856 	return true;
2857 }
2858