xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
82 
83 using namespace llvm;
84 using namespace jumpthreading;
85 
86 #define DEBUG_TYPE "jump-threading"
87 
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds,   "Number of terminators folded");
90 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
91 
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94           cl::desc("Max block size to duplicate for jump threading"),
95           cl::init(6), cl::Hidden);
96 
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99   "jump-threading-implication-search-threshold",
100   cl::desc("The number of predecessors to search for a stronger "
101            "condition to use to thread over a weaker condition"),
102   cl::init(3), cl::Hidden);
103 
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105     "print-lvi-after-jump-threading",
106     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107     cl::Hidden);
108 
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110     "jump-threading-freeze-select-cond",
111     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112     cl::Hidden);
113 
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115     "jump-threading-across-loop-headers",
116     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117     cl::init(false), cl::Hidden);
118 
119 
120 namespace {
121 
122   /// This pass performs 'jump threading', which looks at blocks that have
123   /// multiple predecessors and multiple successors.  If one or more of the
124   /// predecessors of the block can be proven to always jump to one of the
125   /// successors, we forward the edge from the predecessor to the successor by
126   /// duplicating the contents of this block.
127   ///
128   /// An example of when this can occur is code like this:
129   ///
130   ///   if () { ...
131   ///     X = 4;
132   ///   }
133   ///   if (X < 3) {
134   ///
135   /// In this case, the unconditional branch at the end of the first if can be
136   /// revectored to the false side of the second if.
137   class JumpThreading : public FunctionPass {
138     JumpThreadingPass Impl;
139 
140   public:
141     static char ID; // Pass identification
142 
JumpThreading(bool InsertFreezeWhenUnfoldingSelect=false,int T=-1)143     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
146     }
147 
148     bool runOnFunction(Function &F) override;
149 
getAnalysisUsage(AnalysisUsage & AU) const150     void getAnalysisUsage(AnalysisUsage &AU) const override {
151       AU.addRequired<DominatorTreeWrapperPass>();
152       AU.addPreserved<DominatorTreeWrapperPass>();
153       AU.addRequired<AAResultsWrapperPass>();
154       AU.addRequired<LazyValueInfoWrapperPass>();
155       AU.addPreserved<LazyValueInfoWrapperPass>();
156       AU.addPreserved<GlobalsAAWrapperPass>();
157       AU.addRequired<TargetLibraryInfoWrapperPass>();
158       AU.addRequired<TargetTransformInfoWrapperPass>();
159     }
160 
releaseMemory()161     void releaseMemory() override { Impl.releaseMemory(); }
162   };
163 
164 } // end anonymous namespace
165 
166 char JumpThreading::ID = 0;
167 
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169                 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175                 "Jump Threading", false, false)
176 
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179   return new JumpThreading(InsertFr, Threshold);
180 }
181 
JumpThreadingPass(bool InsertFr,int T)182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
185 }
186 
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
191 //
192 //  [Block PredBB]
193 //  [Branch PredBr]
194 //  if (t) {
195 //     Block A;
196 //  } else {
197 //     Block B;
198 //  }
199 //
200 //  [Block BB]
201 //  cond = PN([true, %A], [..., %B]); // PHI node
202 //  [Branch CondBr]
203 //  if (cond) {
204 //    ...  // P(cond == true) = 1%
205 //  }
206 //
207 //  Here we know that when block A is taken, cond must be true, which means
208 //      P(cond == true | A) = 1
209 //
210 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
211 //                               P(cond == true | B) * P(B)
212 //  we get:
213 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
214 //
215 //  which gives us:
216 //     P(A) is less than P(cond == true), i.e.
217 //     P(t == true) <= P(cond == true)
218 //
219 //  In other words, if we know P(cond == true) is unlikely, we know
220 //  that P(t == true) is also unlikely.
221 //
updatePredecessorProfileMetadata(PHINode * PN,BasicBlock * BB)222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224   if (!CondBr)
225     return;
226 
227   uint64_t TrueWeight, FalseWeight;
228   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229     return;
230 
231   if (TrueWeight + FalseWeight == 0)
232     // Zero branch_weights do not give a hint for getting branch probabilities.
233     // Technically it would result in division by zero denominator, which is
234     // TrueWeight + FalseWeight.
235     return;
236 
237   // Returns the outgoing edge of the dominating predecessor block
238   // that leads to the PhiNode's incoming block:
239   auto GetPredOutEdge =
240       [](BasicBlock *IncomingBB,
241          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242     auto *PredBB = IncomingBB;
243     auto *SuccBB = PhiBB;
244     SmallPtrSet<BasicBlock *, 16> Visited;
245     while (true) {
246       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247       if (PredBr && PredBr->isConditional())
248         return {PredBB, SuccBB};
249       Visited.insert(PredBB);
250       auto *SinglePredBB = PredBB->getSinglePredecessor();
251       if (!SinglePredBB)
252         return {nullptr, nullptr};
253 
254       // Stop searching when SinglePredBB has been visited. It means we see
255       // an unreachable loop.
256       if (Visited.count(SinglePredBB))
257         return {nullptr, nullptr};
258 
259       SuccBB = PredBB;
260       PredBB = SinglePredBB;
261     }
262   };
263 
264   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265     Value *PhiOpnd = PN->getIncomingValue(i);
266     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
267 
268     if (!CI || !CI->getType()->isIntegerTy(1))
269       continue;
270 
271     BranchProbability BP =
272         (CI->isOne() ? BranchProbability::getBranchProbability(
273                            TrueWeight, TrueWeight + FalseWeight)
274                      : BranchProbability::getBranchProbability(
275                            FalseWeight, TrueWeight + FalseWeight));
276 
277     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278     if (!PredOutEdge.first)
279       return;
280 
281     BasicBlock *PredBB = PredOutEdge.first;
282     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283     if (!PredBr)
284       return;
285 
286     uint64_t PredTrueWeight, PredFalseWeight;
287     // FIXME: We currently only set the profile data when it is missing.
288     // With PGO, this can be used to refine even existing profile data with
289     // context information. This needs to be done after more performance
290     // testing.
291     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292       continue;
293 
294     // We can not infer anything useful when BP >= 50%, because BP is the
295     // upper bound probability value.
296     if (BP >= BranchProbability(50, 100))
297       continue;
298 
299     SmallVector<uint32_t, 2> Weights;
300     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301       Weights.push_back(BP.getNumerator());
302       Weights.push_back(BP.getCompl().getNumerator());
303     } else {
304       Weights.push_back(BP.getCompl().getNumerator());
305       Weights.push_back(BP.getNumerator());
306     }
307     PredBr->setMetadata(LLVMContext::MD_prof,
308                         MDBuilder(PredBr->getParent()->getContext())
309                             .createBranchWeights(Weights));
310   }
311 }
312 
313 /// runOnFunction - Toplevel algorithm.
runOnFunction(Function & F)314 bool JumpThreading::runOnFunction(Function &F) {
315   if (skipFunction(F))
316     return false;
317   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318   // Jump Threading has no sense for the targets with divergent CF
319   if (TTI->hasBranchDivergence())
320     return false;
321   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326   std::unique_ptr<BlockFrequencyInfo> BFI;
327   std::unique_ptr<BranchProbabilityInfo> BPI;
328   if (F.hasProfileData()) {
329     LoopInfo LI{DominatorTree(F)};
330     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332   }
333 
334   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
335                               std::move(BFI), std::move(BPI));
336   if (PrintLVIAfterJumpThreading) {
337     dbgs() << "LVI for function '" << F.getName() << "':\n";
338     LVI->printLVI(F, DTU.getDomTree(), dbgs());
339   }
340   return Changed;
341 }
342 
run(Function & F,FunctionAnalysisManager & AM)343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344                                          FunctionAnalysisManager &AM) {
345   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346   // Jump Threading has no sense for the targets with divergent CF
347   if (TTI.hasBranchDivergence())
348     return PreservedAnalyses::all();
349   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352   auto &AA = AM.getResult<AAManager>(F);
353   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
354 
355   std::unique_ptr<BlockFrequencyInfo> BFI;
356   std::unique_ptr<BranchProbabilityInfo> BPI;
357   if (F.hasProfileData()) {
358     LoopInfo LI{DominatorTree(F)};
359     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
361   }
362 
363   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
364                          std::move(BFI), std::move(BPI));
365 
366   if (PrintLVIAfterJumpThreading) {
367     dbgs() << "LVI for function '" << F.getName() << "':\n";
368     LVI.printLVI(F, DTU.getDomTree(), dbgs());
369   }
370 
371   if (!Changed)
372     return PreservedAnalyses::all();
373   PreservedAnalyses PA;
374   PA.preserve<DominatorTreeAnalysis>();
375   PA.preserve<LazyValueAnalysis>();
376   return PA;
377 }
378 
runImpl(Function & F,TargetLibraryInfo * TLI_,LazyValueInfo * LVI_,AliasAnalysis * AA_,DomTreeUpdater * DTU_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
380                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
381                                 DomTreeUpdater *DTU_, bool HasProfileData_,
382                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
383                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
384   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
385   TLI = TLI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       // Remove redundant pseudo probes as well.
437       if (Changed)
438         RemoveRedundantDbgInstrs(&BB, true);
439 
440       // Stop processing BB if it's the entry or is now deleted. The following
441       // routines attempt to eliminate BB and locating a suitable replacement
442       // for the entry is non-trivial.
443       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
444         continue;
445 
446       if (pred_empty(&BB)) {
447         // When processBlock makes BB unreachable it doesn't bother to fix up
448         // the instructions in it. We must remove BB to prevent invalid IR.
449         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
450                           << "' with terminator: " << *BB.getTerminator()
451                           << '\n');
452         LoopHeaders.erase(&BB);
453         LVI->eraseBlock(&BB);
454         DeleteDeadBlock(&BB, DTU);
455         Changed = true;
456         continue;
457       }
458 
459       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
460       // is "almost empty", we attempt to merge BB with its sole successor.
461       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
462       if (BI && BI->isUnconditional()) {
463         BasicBlock *Succ = BI->getSuccessor(0);
464         if (
465             // The terminator must be the only non-phi instruction in BB.
466             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
467             // Don't alter Loop headers and latches to ensure another pass can
468             // detect and transform nested loops later.
469             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
470             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
471           RemoveRedundantDbgInstrs(Succ, true);
472           // BB is valid for cleanup here because we passed in DTU. F remains
473           // BB's parent until a DTU->getDomTree() event.
474           LVI->eraseBlock(&BB);
475           Changed = true;
476         }
477       }
478     }
479     EverChanged |= Changed;
480   } while (Changed);
481 
482   LoopHeaders.clear();
483   return EverChanged;
484 }
485 
486 // Replace uses of Cond with ToVal when safe to do so. If all uses are
487 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
488 // because we may incorrectly replace uses when guards/assumes are uses of
489 // of `Cond` and we used the guards/assume to reason about the `Cond` value
490 // at the end of block. RAUW unconditionally replaces all uses
491 // including the guards/assumes themselves and the uses before the
492 // guard/assume.
replaceFoldableUses(Instruction * Cond,Value * ToVal)493 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
494   assert(Cond->getType() == ToVal->getType());
495   auto *BB = Cond->getParent();
496   // We can unconditionally replace all uses in non-local blocks (i.e. uses
497   // strictly dominated by BB), since LVI information is true from the
498   // terminator of BB.
499   replaceNonLocalUsesWith(Cond, ToVal);
500   for (Instruction &I : reverse(*BB)) {
501     // Reached the Cond whose uses we are trying to replace, so there are no
502     // more uses.
503     if (&I == Cond)
504       break;
505     // We only replace uses in instructions that are guaranteed to reach the end
506     // of BB, where we know Cond is ToVal.
507     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
508       break;
509     I.replaceUsesOfWith(Cond, ToVal);
510   }
511   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
512     Cond->eraseFromParent();
513 }
514 
515 /// Return the cost of duplicating a piece of this block from first non-phi
516 /// and before StopAt instruction to thread across it. Stop scanning the block
517 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
getJumpThreadDuplicationCost(BasicBlock * BB,Instruction * StopAt,unsigned Threshold)518 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
519                                              Instruction *StopAt,
520                                              unsigned Threshold) {
521   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
522   /// Ignore PHI nodes, these will be flattened when duplication happens.
523   BasicBlock::const_iterator I(BB->getFirstNonPHI());
524 
525   // FIXME: THREADING will delete values that are just used to compute the
526   // branch, so they shouldn't count against the duplication cost.
527 
528   unsigned Bonus = 0;
529   if (BB->getTerminator() == StopAt) {
530     // Threading through a switch statement is particularly profitable.  If this
531     // block ends in a switch, decrease its cost to make it more likely to
532     // happen.
533     if (isa<SwitchInst>(StopAt))
534       Bonus = 6;
535 
536     // The same holds for indirect branches, but slightly more so.
537     if (isa<IndirectBrInst>(StopAt))
538       Bonus = 8;
539   }
540 
541   // Bump the threshold up so the early exit from the loop doesn't skip the
542   // terminator-based Size adjustment at the end.
543   Threshold += Bonus;
544 
545   // Sum up the cost of each instruction until we get to the terminator.  Don't
546   // include the terminator because the copy won't include it.
547   unsigned Size = 0;
548   for (; &*I != StopAt; ++I) {
549 
550     // Stop scanning the block if we've reached the threshold.
551     if (Size > Threshold)
552       return Size;
553 
554     // Debugger intrinsics don't incur code size.
555     if (isa<DbgInfoIntrinsic>(I)) continue;
556 
557     // Pseudo-probes don't incur code size.
558     if (isa<PseudoProbeInst>(I))
559       continue;
560 
561     // If this is a pointer->pointer bitcast, it is free.
562     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
563       continue;
564 
565     // Freeze instruction is free, too.
566     if (isa<FreezeInst>(I))
567       continue;
568 
569     // Bail out if this instruction gives back a token type, it is not possible
570     // to duplicate it if it is used outside this BB.
571     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
572       return ~0U;
573 
574     // All other instructions count for at least one unit.
575     ++Size;
576 
577     // Calls are more expensive.  If they are non-intrinsic calls, we model them
578     // as having cost of 4.  If they are a non-vector intrinsic, we model them
579     // as having cost of 2 total, and if they are a vector intrinsic, we model
580     // them as having cost 1.
581     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
582       if (CI->cannotDuplicate() || CI->isConvergent())
583         // Blocks with NoDuplicate are modelled as having infinite cost, so they
584         // are never duplicated.
585         return ~0U;
586       else if (!isa<IntrinsicInst>(CI))
587         Size += 3;
588       else if (!CI->getType()->isVectorTy())
589         Size += 1;
590     }
591   }
592 
593   return Size > Bonus ? Size - Bonus : 0;
594 }
595 
596 /// findLoopHeaders - We do not want jump threading to turn proper loop
597 /// structures into irreducible loops.  Doing this breaks up the loop nesting
598 /// hierarchy and pessimizes later transformations.  To prevent this from
599 /// happening, we first have to find the loop headers.  Here we approximate this
600 /// by finding targets of backedges in the CFG.
601 ///
602 /// Note that there definitely are cases when we want to allow threading of
603 /// edges across a loop header.  For example, threading a jump from outside the
604 /// loop (the preheader) to an exit block of the loop is definitely profitable.
605 /// It is also almost always profitable to thread backedges from within the loop
606 /// to exit blocks, and is often profitable to thread backedges to other blocks
607 /// within the loop (forming a nested loop).  This simple analysis is not rich
608 /// enough to track all of these properties and keep it up-to-date as the CFG
609 /// mutates, so we don't allow any of these transformations.
findLoopHeaders(Function & F)610 void JumpThreadingPass::findLoopHeaders(Function &F) {
611   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
612   FindFunctionBackedges(F, Edges);
613 
614   for (const auto &Edge : Edges)
615     LoopHeaders.insert(Edge.second);
616 }
617 
618 /// getKnownConstant - Helper method to determine if we can thread over a
619 /// terminator with the given value as its condition, and if so what value to
620 /// use for that. What kind of value this is depends on whether we want an
621 /// integer or a block address, but an undef is always accepted.
622 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)623 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
624   if (!Val)
625     return nullptr;
626 
627   // Undef is "known" enough.
628   if (UndefValue *U = dyn_cast<UndefValue>(Val))
629     return U;
630 
631   if (Preference == WantBlockAddress)
632     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
633 
634   return dyn_cast<ConstantInt>(Val);
635 }
636 
637 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
638 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
639 /// in any of our predecessors.  If so, return the known list of value and pred
640 /// BB in the result vector.
641 ///
642 /// This returns true if there were any known values.
computeValueKnownInPredecessorsImpl(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,DenseSet<Value * > & RecursionSet,Instruction * CxtI)643 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
644     Value *V, BasicBlock *BB, PredValueInfo &Result,
645     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
646     Instruction *CxtI) {
647   // This method walks up use-def chains recursively.  Because of this, we could
648   // get into an infinite loop going around loops in the use-def chain.  To
649   // prevent this, keep track of what (value, block) pairs we've already visited
650   // and terminate the search if we loop back to them
651   if (!RecursionSet.insert(V).second)
652     return false;
653 
654   // If V is a constant, then it is known in all predecessors.
655   if (Constant *KC = getKnownConstant(V, Preference)) {
656     for (BasicBlock *Pred : predecessors(BB))
657       Result.emplace_back(KC, Pred);
658 
659     return !Result.empty();
660   }
661 
662   // If V is a non-instruction value, or an instruction in a different block,
663   // then it can't be derived from a PHI.
664   Instruction *I = dyn_cast<Instruction>(V);
665   if (!I || I->getParent() != BB) {
666 
667     // Okay, if this is a live-in value, see if it has a known value at the end
668     // of any of our predecessors.
669     //
670     // FIXME: This should be an edge property, not a block end property.
671     /// TODO: Per PR2563, we could infer value range information about a
672     /// predecessor based on its terminator.
673     //
674     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
675     // "I" is a non-local compare-with-a-constant instruction.  This would be
676     // able to handle value inequalities better, for example if the compare is
677     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
678     // Perhaps getConstantOnEdge should be smart enough to do this?
679     for (BasicBlock *P : predecessors(BB)) {
680       // If the value is known by LazyValueInfo to be a constant in a
681       // predecessor, use that information to try to thread this block.
682       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
683       if (Constant *KC = getKnownConstant(PredCst, Preference))
684         Result.emplace_back(KC, P);
685     }
686 
687     return !Result.empty();
688   }
689 
690   /// If I is a PHI node, then we know the incoming values for any constants.
691   if (PHINode *PN = dyn_cast<PHINode>(I)) {
692     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
693       Value *InVal = PN->getIncomingValue(i);
694       if (Constant *KC = getKnownConstant(InVal, Preference)) {
695         Result.emplace_back(KC, PN->getIncomingBlock(i));
696       } else {
697         Constant *CI = LVI->getConstantOnEdge(InVal,
698                                               PN->getIncomingBlock(i),
699                                               BB, CxtI);
700         if (Constant *KC = getKnownConstant(CI, Preference))
701           Result.emplace_back(KC, PN->getIncomingBlock(i));
702       }
703     }
704 
705     return !Result.empty();
706   }
707 
708   // Handle Cast instructions.
709   if (CastInst *CI = dyn_cast<CastInst>(I)) {
710     Value *Source = CI->getOperand(0);
711     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
712                                         RecursionSet, CxtI);
713     if (Result.empty())
714       return false;
715 
716     // Convert the known values.
717     for (auto &R : Result)
718       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
719 
720     return true;
721   }
722 
723   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
724     Value *Source = FI->getOperand(0);
725     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
726                                         RecursionSet, CxtI);
727 
728     erase_if(Result, [](auto &Pair) {
729       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
730     });
731 
732     return !Result.empty();
733   }
734 
735   // Handle some boolean conditions.
736   if (I->getType()->getPrimitiveSizeInBits() == 1) {
737     using namespace PatternMatch;
738 
739     assert(Preference == WantInteger && "One-bit non-integer type?");
740     // X | true -> true
741     // X & false -> false
742     Value *Op0, *Op1;
743     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
744         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
745       PredValueInfoTy LHSVals, RHSVals;
746 
747       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
748                                           RecursionSet, CxtI);
749       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
750                                           RecursionSet, CxtI);
751 
752       if (LHSVals.empty() && RHSVals.empty())
753         return false;
754 
755       ConstantInt *InterestingVal;
756       if (match(I, m_LogicalOr()))
757         InterestingVal = ConstantInt::getTrue(I->getContext());
758       else
759         InterestingVal = ConstantInt::getFalse(I->getContext());
760 
761       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
762 
763       // Scan for the sentinel.  If we find an undef, force it to the
764       // interesting value: x|undef -> true and x&undef -> false.
765       for (const auto &LHSVal : LHSVals)
766         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
767           Result.emplace_back(InterestingVal, LHSVal.second);
768           LHSKnownBBs.insert(LHSVal.second);
769         }
770       for (const auto &RHSVal : RHSVals)
771         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
772           // If we already inferred a value for this block on the LHS, don't
773           // re-add it.
774           if (!LHSKnownBBs.count(RHSVal.second))
775             Result.emplace_back(InterestingVal, RHSVal.second);
776         }
777 
778       return !Result.empty();
779     }
780 
781     // Handle the NOT form of XOR.
782     if (I->getOpcode() == Instruction::Xor &&
783         isa<ConstantInt>(I->getOperand(1)) &&
784         cast<ConstantInt>(I->getOperand(1))->isOne()) {
785       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
786                                           WantInteger, RecursionSet, CxtI);
787       if (Result.empty())
788         return false;
789 
790       // Invert the known values.
791       for (auto &R : Result)
792         R.first = ConstantExpr::getNot(R.first);
793 
794       return true;
795     }
796 
797   // Try to simplify some other binary operator values.
798   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
799     assert(Preference != WantBlockAddress
800             && "A binary operator creating a block address?");
801     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
802       PredValueInfoTy LHSVals;
803       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
804                                           WantInteger, RecursionSet, CxtI);
805 
806       // Try to use constant folding to simplify the binary operator.
807       for (const auto &LHSVal : LHSVals) {
808         Constant *V = LHSVal.first;
809         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
810 
811         if (Constant *KC = getKnownConstant(Folded, WantInteger))
812           Result.emplace_back(KC, LHSVal.second);
813       }
814     }
815 
816     return !Result.empty();
817   }
818 
819   // Handle compare with phi operand, where the PHI is defined in this block.
820   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
821     assert(Preference == WantInteger && "Compares only produce integers");
822     Type *CmpType = Cmp->getType();
823     Value *CmpLHS = Cmp->getOperand(0);
824     Value *CmpRHS = Cmp->getOperand(1);
825     CmpInst::Predicate Pred = Cmp->getPredicate();
826 
827     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
828     if (!PN)
829       PN = dyn_cast<PHINode>(CmpRHS);
830     if (PN && PN->getParent() == BB) {
831       const DataLayout &DL = PN->getModule()->getDataLayout();
832       // We can do this simplification if any comparisons fold to true or false.
833       // See if any do.
834       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
835         BasicBlock *PredBB = PN->getIncomingBlock(i);
836         Value *LHS, *RHS;
837         if (PN == CmpLHS) {
838           LHS = PN->getIncomingValue(i);
839           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
840         } else {
841           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
842           RHS = PN->getIncomingValue(i);
843         }
844         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
845         if (!Res) {
846           if (!isa<Constant>(RHS))
847             continue;
848 
849           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
850           auto LHSInst = dyn_cast<Instruction>(LHS);
851           if (LHSInst && LHSInst->getParent() == BB)
852             continue;
853 
854           LazyValueInfo::Tristate
855             ResT = LVI->getPredicateOnEdge(Pred, LHS,
856                                            cast<Constant>(RHS), PredBB, BB,
857                                            CxtI ? CxtI : Cmp);
858           if (ResT == LazyValueInfo::Unknown)
859             continue;
860           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
861         }
862 
863         if (Constant *KC = getKnownConstant(Res, WantInteger))
864           Result.emplace_back(KC, PredBB);
865       }
866 
867       return !Result.empty();
868     }
869 
870     // If comparing a live-in value against a constant, see if we know the
871     // live-in value on any predecessors.
872     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
873       Constant *CmpConst = cast<Constant>(CmpRHS);
874 
875       if (!isa<Instruction>(CmpLHS) ||
876           cast<Instruction>(CmpLHS)->getParent() != BB) {
877         for (BasicBlock *P : predecessors(BB)) {
878           // If the value is known by LazyValueInfo to be a constant in a
879           // predecessor, use that information to try to thread this block.
880           LazyValueInfo::Tristate Res =
881             LVI->getPredicateOnEdge(Pred, CmpLHS,
882                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
883           if (Res == LazyValueInfo::Unknown)
884             continue;
885 
886           Constant *ResC = ConstantInt::get(CmpType, Res);
887           Result.emplace_back(ResC, P);
888         }
889 
890         return !Result.empty();
891       }
892 
893       // InstCombine can fold some forms of constant range checks into
894       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
895       // x as a live-in.
896       {
897         using namespace PatternMatch;
898 
899         Value *AddLHS;
900         ConstantInt *AddConst;
901         if (isa<ConstantInt>(CmpConst) &&
902             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
903           if (!isa<Instruction>(AddLHS) ||
904               cast<Instruction>(AddLHS)->getParent() != BB) {
905             for (BasicBlock *P : predecessors(BB)) {
906               // If the value is known by LazyValueInfo to be a ConstantRange in
907               // a predecessor, use that information to try to thread this
908               // block.
909               ConstantRange CR = LVI->getConstantRangeOnEdge(
910                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
911               // Propagate the range through the addition.
912               CR = CR.add(AddConst->getValue());
913 
914               // Get the range where the compare returns true.
915               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
916                   Pred, cast<ConstantInt>(CmpConst)->getValue());
917 
918               Constant *ResC;
919               if (CmpRange.contains(CR))
920                 ResC = ConstantInt::getTrue(CmpType);
921               else if (CmpRange.inverse().contains(CR))
922                 ResC = ConstantInt::getFalse(CmpType);
923               else
924                 continue;
925 
926               Result.emplace_back(ResC, P);
927             }
928 
929             return !Result.empty();
930           }
931         }
932       }
933 
934       // Try to find a constant value for the LHS of a comparison,
935       // and evaluate it statically if we can.
936       PredValueInfoTy LHSVals;
937       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
938                                           WantInteger, RecursionSet, CxtI);
939 
940       for (const auto &LHSVal : LHSVals) {
941         Constant *V = LHSVal.first;
942         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
943         if (Constant *KC = getKnownConstant(Folded, WantInteger))
944           Result.emplace_back(KC, LHSVal.second);
945       }
946 
947       return !Result.empty();
948     }
949   }
950 
951   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
952     // Handle select instructions where at least one operand is a known constant
953     // and we can figure out the condition value for any predecessor block.
954     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
955     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
956     PredValueInfoTy Conds;
957     if ((TrueVal || FalseVal) &&
958         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
959                                             WantInteger, RecursionSet, CxtI)) {
960       for (auto &C : Conds) {
961         Constant *Cond = C.first;
962 
963         // Figure out what value to use for the condition.
964         bool KnownCond;
965         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
966           // A known boolean.
967           KnownCond = CI->isOne();
968         } else {
969           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
970           // Either operand will do, so be sure to pick the one that's a known
971           // constant.
972           // FIXME: Do this more cleverly if both values are known constants?
973           KnownCond = (TrueVal != nullptr);
974         }
975 
976         // See if the select has a known constant value for this predecessor.
977         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
978           Result.emplace_back(Val, C.second);
979       }
980 
981       return !Result.empty();
982     }
983   }
984 
985   // If all else fails, see if LVI can figure out a constant value for us.
986   assert(CxtI->getParent() == BB && "CxtI should be in BB");
987   Constant *CI = LVI->getConstant(V, CxtI);
988   if (Constant *KC = getKnownConstant(CI, Preference)) {
989     for (BasicBlock *Pred : predecessors(BB))
990       Result.emplace_back(KC, Pred);
991   }
992 
993   return !Result.empty();
994 }
995 
996 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
997 /// in an undefined jump, decide which block is best to revector to.
998 ///
999 /// Since we can pick an arbitrary destination, we pick the successor with the
1000 /// fewest predecessors.  This should reduce the in-degree of the others.
getBestDestForJumpOnUndef(BasicBlock * BB)1001 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1002   Instruction *BBTerm = BB->getTerminator();
1003   unsigned MinSucc = 0;
1004   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1005   // Compute the successor with the minimum number of predecessors.
1006   unsigned MinNumPreds = pred_size(TestBB);
1007   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1008     TestBB = BBTerm->getSuccessor(i);
1009     unsigned NumPreds = pred_size(TestBB);
1010     if (NumPreds < MinNumPreds) {
1011       MinSucc = i;
1012       MinNumPreds = NumPreds;
1013     }
1014   }
1015 
1016   return MinSucc;
1017 }
1018 
hasAddressTakenAndUsed(BasicBlock * BB)1019 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1020   if (!BB->hasAddressTaken()) return false;
1021 
1022   // If the block has its address taken, it may be a tree of dead constants
1023   // hanging off of it.  These shouldn't keep the block alive.
1024   BlockAddress *BA = BlockAddress::get(BB);
1025   BA->removeDeadConstantUsers();
1026   return !BA->use_empty();
1027 }
1028 
1029 /// processBlock - If there are any predecessors whose control can be threaded
1030 /// through to a successor, transform them now.
processBlock(BasicBlock * BB)1031 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1032   // If the block is trivially dead, just return and let the caller nuke it.
1033   // This simplifies other transformations.
1034   if (DTU->isBBPendingDeletion(BB) ||
1035       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1036     return false;
1037 
1038   // If this block has a single predecessor, and if that pred has a single
1039   // successor, merge the blocks.  This encourages recursive jump threading
1040   // because now the condition in this block can be threaded through
1041   // predecessors of our predecessor block.
1042   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1043     return true;
1044 
1045   if (tryToUnfoldSelectInCurrBB(BB))
1046     return true;
1047 
1048   // Look if we can propagate guards to predecessors.
1049   if (HasGuards && processGuards(BB))
1050     return true;
1051 
1052   // What kind of constant we're looking for.
1053   ConstantPreference Preference = WantInteger;
1054 
1055   // Look to see if the terminator is a conditional branch, switch or indirect
1056   // branch, if not we can't thread it.
1057   Value *Condition;
1058   Instruction *Terminator = BB->getTerminator();
1059   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1060     // Can't thread an unconditional jump.
1061     if (BI->isUnconditional()) return false;
1062     Condition = BI->getCondition();
1063   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1064     Condition = SI->getCondition();
1065   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1066     // Can't thread indirect branch with no successors.
1067     if (IB->getNumSuccessors() == 0) return false;
1068     Condition = IB->getAddress()->stripPointerCasts();
1069     Preference = WantBlockAddress;
1070   } else {
1071     return false; // Must be an invoke or callbr.
1072   }
1073 
1074   // Keep track if we constant folded the condition in this invocation.
1075   bool ConstantFolded = false;
1076 
1077   // Run constant folding to see if we can reduce the condition to a simple
1078   // constant.
1079   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1080     Value *SimpleVal =
1081         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1082     if (SimpleVal) {
1083       I->replaceAllUsesWith(SimpleVal);
1084       if (isInstructionTriviallyDead(I, TLI))
1085         I->eraseFromParent();
1086       Condition = SimpleVal;
1087       ConstantFolded = true;
1088     }
1089   }
1090 
1091   // If the terminator is branching on an undef or freeze undef, we can pick any
1092   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1093   auto *FI = dyn_cast<FreezeInst>(Condition);
1094   if (isa<UndefValue>(Condition) ||
1095       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1096     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1097     std::vector<DominatorTree::UpdateType> Updates;
1098 
1099     // Fold the branch/switch.
1100     Instruction *BBTerm = BB->getTerminator();
1101     Updates.reserve(BBTerm->getNumSuccessors());
1102     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1103       if (i == BestSucc) continue;
1104       BasicBlock *Succ = BBTerm->getSuccessor(i);
1105       Succ->removePredecessor(BB, true);
1106       Updates.push_back({DominatorTree::Delete, BB, Succ});
1107     }
1108 
1109     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1110                       << "' folding undef terminator: " << *BBTerm << '\n');
1111     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1112     ++NumFolds;
1113     BBTerm->eraseFromParent();
1114     DTU->applyUpdatesPermissive(Updates);
1115     if (FI)
1116       FI->eraseFromParent();
1117     return true;
1118   }
1119 
1120   // If the terminator of this block is branching on a constant, simplify the
1121   // terminator to an unconditional branch.  This can occur due to threading in
1122   // other blocks.
1123   if (getKnownConstant(Condition, Preference)) {
1124     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1125                       << "' folding terminator: " << *BB->getTerminator()
1126                       << '\n');
1127     ++NumFolds;
1128     ConstantFoldTerminator(BB, true, nullptr, DTU);
1129     if (HasProfileData)
1130       BPI->eraseBlock(BB);
1131     return true;
1132   }
1133 
1134   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1135 
1136   // All the rest of our checks depend on the condition being an instruction.
1137   if (!CondInst) {
1138     // FIXME: Unify this with code below.
1139     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1140       return true;
1141     return ConstantFolded;
1142   }
1143 
1144   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1145     // If we're branching on a conditional, LVI might be able to determine
1146     // it's value at the branch instruction.  We only handle comparisons
1147     // against a constant at this time.
1148     // TODO: This should be extended to handle switches as well.
1149     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1150     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1151     if (CondBr && CondConst) {
1152       // We should have returned as soon as we turn a conditional branch to
1153       // unconditional. Because its no longer interesting as far as jump
1154       // threading is concerned.
1155       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1156 
1157       LazyValueInfo::Tristate Ret =
1158           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1159                               CondConst, CondBr, /*UseBlockValue=*/false);
1160       if (Ret != LazyValueInfo::Unknown) {
1161         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1162         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1163         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1164         ToRemoveSucc->removePredecessor(BB, true);
1165         BranchInst *UncondBr =
1166           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1167         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1168         ++NumFolds;
1169         CondBr->eraseFromParent();
1170         if (CondCmp->use_empty())
1171           CondCmp->eraseFromParent();
1172         // We can safely replace *some* uses of the CondInst if it has
1173         // exactly one value as returned by LVI. RAUW is incorrect in the
1174         // presence of guards and assumes, that have the `Cond` as the use. This
1175         // is because we use the guards/assume to reason about the `Cond` value
1176         // at the end of block, but RAUW unconditionally replaces all uses
1177         // including the guards/assumes themselves and the uses before the
1178         // guard/assume.
1179         else if (CondCmp->getParent() == BB) {
1180           auto *CI = Ret == LazyValueInfo::True ?
1181             ConstantInt::getTrue(CondCmp->getType()) :
1182             ConstantInt::getFalse(CondCmp->getType());
1183           replaceFoldableUses(CondCmp, CI);
1184         }
1185         DTU->applyUpdatesPermissive(
1186             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1187         if (HasProfileData)
1188           BPI->eraseBlock(BB);
1189         return true;
1190       }
1191 
1192       // We did not manage to simplify this branch, try to see whether
1193       // CondCmp depends on a known phi-select pattern.
1194       if (tryToUnfoldSelect(CondCmp, BB))
1195         return true;
1196     }
1197   }
1198 
1199   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1200     if (tryToUnfoldSelect(SI, BB))
1201       return true;
1202 
1203   // Check for some cases that are worth simplifying.  Right now we want to look
1204   // for loads that are used by a switch or by the condition for the branch.  If
1205   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1206   // which can then be used to thread the values.
1207   Value *SimplifyValue = CondInst;
1208 
1209   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1210     // Look into freeze's operand
1211     SimplifyValue = FI->getOperand(0);
1212 
1213   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1214     if (isa<Constant>(CondCmp->getOperand(1)))
1215       SimplifyValue = CondCmp->getOperand(0);
1216 
1217   // TODO: There are other places where load PRE would be profitable, such as
1218   // more complex comparisons.
1219   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1220     if (simplifyPartiallyRedundantLoad(LoadI))
1221       return true;
1222 
1223   // Before threading, try to propagate profile data backwards:
1224   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1225     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1226       updatePredecessorProfileMetadata(PN, BB);
1227 
1228   // Handle a variety of cases where we are branching on something derived from
1229   // a PHI node in the current block.  If we can prove that any predecessors
1230   // compute a predictable value based on a PHI node, thread those predecessors.
1231   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1232     return true;
1233 
1234   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1235   // the current block, see if we can simplify.
1236   PHINode *PN = dyn_cast<PHINode>(
1237       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1238                                 : CondInst);
1239 
1240   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1241     return processBranchOnPHI(PN);
1242 
1243   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1244   if (CondInst->getOpcode() == Instruction::Xor &&
1245       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1246     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1247 
1248   // Search for a stronger dominating condition that can be used to simplify a
1249   // conditional branch leaving BB.
1250   if (processImpliedCondition(BB))
1251     return true;
1252 
1253   return false;
1254 }
1255 
processImpliedCondition(BasicBlock * BB)1256 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1257   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1258   if (!BI || !BI->isConditional())
1259     return false;
1260 
1261   Value *Cond = BI->getCondition();
1262   BasicBlock *CurrentBB = BB;
1263   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1264   unsigned Iter = 0;
1265 
1266   auto &DL = BB->getModule()->getDataLayout();
1267 
1268   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1269     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1270     if (!PBI || !PBI->isConditional())
1271       return false;
1272     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1273       return false;
1274 
1275     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1276     Optional<bool> Implication =
1277         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1278     if (Implication) {
1279       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1280       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1281       RemoveSucc->removePredecessor(BB);
1282       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1283       UncondBI->setDebugLoc(BI->getDebugLoc());
1284       ++NumFolds;
1285       BI->eraseFromParent();
1286       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1287       if (HasProfileData)
1288         BPI->eraseBlock(BB);
1289       return true;
1290     }
1291     CurrentBB = CurrentPred;
1292     CurrentPred = CurrentBB->getSinglePredecessor();
1293   }
1294 
1295   return false;
1296 }
1297 
1298 /// Return true if Op is an instruction defined in the given block.
isOpDefinedInBlock(Value * Op,BasicBlock * BB)1299 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1300   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1301     if (OpInst->getParent() == BB)
1302       return true;
1303   return false;
1304 }
1305 
1306 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1307 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1308 /// This is an important optimization that encourages jump threading, and needs
1309 /// to be run interlaced with other jump threading tasks.
simplifyPartiallyRedundantLoad(LoadInst * LoadI)1310 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1311   // Don't hack volatile and ordered loads.
1312   if (!LoadI->isUnordered()) return false;
1313 
1314   // If the load is defined in a block with exactly one predecessor, it can't be
1315   // partially redundant.
1316   BasicBlock *LoadBB = LoadI->getParent();
1317   if (LoadBB->getSinglePredecessor())
1318     return false;
1319 
1320   // If the load is defined in an EH pad, it can't be partially redundant,
1321   // because the edges between the invoke and the EH pad cannot have other
1322   // instructions between them.
1323   if (LoadBB->isEHPad())
1324     return false;
1325 
1326   Value *LoadedPtr = LoadI->getOperand(0);
1327 
1328   // If the loaded operand is defined in the LoadBB and its not a phi,
1329   // it can't be available in predecessors.
1330   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1331     return false;
1332 
1333   // Scan a few instructions up from the load, to see if it is obviously live at
1334   // the entry to its block.
1335   BasicBlock::iterator BBIt(LoadI);
1336   bool IsLoadCSE;
1337   if (Value *AvailableVal = FindAvailableLoadedValue(
1338           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1339     // If the value of the load is locally available within the block, just use
1340     // it.  This frequently occurs for reg2mem'd allocas.
1341 
1342     if (IsLoadCSE) {
1343       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1344       combineMetadataForCSE(NLoadI, LoadI, false);
1345     };
1346 
1347     // If the returned value is the load itself, replace with an undef. This can
1348     // only happen in dead loops.
1349     if (AvailableVal == LoadI)
1350       AvailableVal = UndefValue::get(LoadI->getType());
1351     if (AvailableVal->getType() != LoadI->getType())
1352       AvailableVal = CastInst::CreateBitOrPointerCast(
1353           AvailableVal, LoadI->getType(), "", LoadI);
1354     LoadI->replaceAllUsesWith(AvailableVal);
1355     LoadI->eraseFromParent();
1356     return true;
1357   }
1358 
1359   // Otherwise, if we scanned the whole block and got to the top of the block,
1360   // we know the block is locally transparent to the load.  If not, something
1361   // might clobber its value.
1362   if (BBIt != LoadBB->begin())
1363     return false;
1364 
1365   // If all of the loads and stores that feed the value have the same AA tags,
1366   // then we can propagate them onto any newly inserted loads.
1367   AAMDNodes AATags;
1368   LoadI->getAAMetadata(AATags);
1369 
1370   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1371 
1372   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1373 
1374   AvailablePredsTy AvailablePreds;
1375   BasicBlock *OneUnavailablePred = nullptr;
1376   SmallVector<LoadInst*, 8> CSELoads;
1377 
1378   // If we got here, the loaded value is transparent through to the start of the
1379   // block.  Check to see if it is available in any of the predecessor blocks.
1380   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1381     // If we already scanned this predecessor, skip it.
1382     if (!PredsScanned.insert(PredBB).second)
1383       continue;
1384 
1385     BBIt = PredBB->end();
1386     unsigned NumScanedInst = 0;
1387     Value *PredAvailable = nullptr;
1388     // NOTE: We don't CSE load that is volatile or anything stronger than
1389     // unordered, that should have been checked when we entered the function.
1390     assert(LoadI->isUnordered() &&
1391            "Attempting to CSE volatile or atomic loads");
1392     // If this is a load on a phi pointer, phi-translate it and search
1393     // for available load/store to the pointer in predecessors.
1394     Type *AccessTy = LoadI->getType();
1395     const auto &DL = LoadI->getModule()->getDataLayout();
1396     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1397                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1398                        AATags);
1399     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1400                                               PredBB, BBIt, DefMaxInstsToScan,
1401                                               AA, &IsLoadCSE, &NumScanedInst);
1402 
1403     // If PredBB has a single predecessor, continue scanning through the
1404     // single predecessor.
1405     BasicBlock *SinglePredBB = PredBB;
1406     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1407            NumScanedInst < DefMaxInstsToScan) {
1408       SinglePredBB = SinglePredBB->getSinglePredecessor();
1409       if (SinglePredBB) {
1410         BBIt = SinglePredBB->end();
1411         PredAvailable = findAvailablePtrLoadStore(
1412             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1413             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1414             &NumScanedInst);
1415       }
1416     }
1417 
1418     if (!PredAvailable) {
1419       OneUnavailablePred = PredBB;
1420       continue;
1421     }
1422 
1423     if (IsLoadCSE)
1424       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1425 
1426     // If so, this load is partially redundant.  Remember this info so that we
1427     // can create a PHI node.
1428     AvailablePreds.emplace_back(PredBB, PredAvailable);
1429   }
1430 
1431   // If the loaded value isn't available in any predecessor, it isn't partially
1432   // redundant.
1433   if (AvailablePreds.empty()) return false;
1434 
1435   // Okay, the loaded value is available in at least one (and maybe all!)
1436   // predecessors.  If the value is unavailable in more than one unique
1437   // predecessor, we want to insert a merge block for those common predecessors.
1438   // This ensures that we only have to insert one reload, thus not increasing
1439   // code size.
1440   BasicBlock *UnavailablePred = nullptr;
1441 
1442   // If the value is unavailable in one of predecessors, we will end up
1443   // inserting a new instruction into them. It is only valid if all the
1444   // instructions before LoadI are guaranteed to pass execution to its
1445   // successor, or if LoadI is safe to speculate.
1446   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1447   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1448   // It requires domination tree analysis, so for this simple case it is an
1449   // overkill.
1450   if (PredsScanned.size() != AvailablePreds.size() &&
1451       !isSafeToSpeculativelyExecute(LoadI))
1452     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1453       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1454         return false;
1455 
1456   // If there is exactly one predecessor where the value is unavailable, the
1457   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1458   // unconditional branch, we know that it isn't a critical edge.
1459   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1460       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1461     UnavailablePred = OneUnavailablePred;
1462   } else if (PredsScanned.size() != AvailablePreds.size()) {
1463     // Otherwise, we had multiple unavailable predecessors or we had a critical
1464     // edge from the one.
1465     SmallVector<BasicBlock*, 8> PredsToSplit;
1466     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1467 
1468     for (const auto &AvailablePred : AvailablePreds)
1469       AvailablePredSet.insert(AvailablePred.first);
1470 
1471     // Add all the unavailable predecessors to the PredsToSplit list.
1472     for (BasicBlock *P : predecessors(LoadBB)) {
1473       // If the predecessor is an indirect goto, we can't split the edge.
1474       // Same for CallBr.
1475       if (isa<IndirectBrInst>(P->getTerminator()) ||
1476           isa<CallBrInst>(P->getTerminator()))
1477         return false;
1478 
1479       if (!AvailablePredSet.count(P))
1480         PredsToSplit.push_back(P);
1481     }
1482 
1483     // Split them out to their own block.
1484     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1485   }
1486 
1487   // If the value isn't available in all predecessors, then there will be
1488   // exactly one where it isn't available.  Insert a load on that edge and add
1489   // it to the AvailablePreds list.
1490   if (UnavailablePred) {
1491     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1492            "Can't handle critical edge here!");
1493     LoadInst *NewVal = new LoadInst(
1494         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1495         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1496         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1497         UnavailablePred->getTerminator());
1498     NewVal->setDebugLoc(LoadI->getDebugLoc());
1499     if (AATags)
1500       NewVal->setAAMetadata(AATags);
1501 
1502     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1503   }
1504 
1505   // Now we know that each predecessor of this block has a value in
1506   // AvailablePreds, sort them for efficient access as we're walking the preds.
1507   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1508 
1509   // Create a PHI node at the start of the block for the PRE'd load value.
1510   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1511   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1512                                 &LoadBB->front());
1513   PN->takeName(LoadI);
1514   PN->setDebugLoc(LoadI->getDebugLoc());
1515 
1516   // Insert new entries into the PHI for each predecessor.  A single block may
1517   // have multiple entries here.
1518   for (pred_iterator PI = PB; PI != PE; ++PI) {
1519     BasicBlock *P = *PI;
1520     AvailablePredsTy::iterator I =
1521         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1522 
1523     assert(I != AvailablePreds.end() && I->first == P &&
1524            "Didn't find entry for predecessor!");
1525 
1526     // If we have an available predecessor but it requires casting, insert the
1527     // cast in the predecessor and use the cast. Note that we have to update the
1528     // AvailablePreds vector as we go so that all of the PHI entries for this
1529     // predecessor use the same bitcast.
1530     Value *&PredV = I->second;
1531     if (PredV->getType() != LoadI->getType())
1532       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1533                                                P->getTerminator());
1534 
1535     PN->addIncoming(PredV, I->first);
1536   }
1537 
1538   for (LoadInst *PredLoadI : CSELoads) {
1539     combineMetadataForCSE(PredLoadI, LoadI, true);
1540   }
1541 
1542   LoadI->replaceAllUsesWith(PN);
1543   LoadI->eraseFromParent();
1544 
1545   return true;
1546 }
1547 
1548 /// findMostPopularDest - The specified list contains multiple possible
1549 /// threadable destinations.  Pick the one that occurs the most frequently in
1550 /// the list.
1551 static BasicBlock *
findMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1552 findMostPopularDest(BasicBlock *BB,
1553                     const SmallVectorImpl<std::pair<BasicBlock *,
1554                                           BasicBlock *>> &PredToDestList) {
1555   assert(!PredToDestList.empty());
1556 
1557   // Determine popularity.  If there are multiple possible destinations, we
1558   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1559   // blocks with known and real destinations to threading undef.  We'll handle
1560   // them later if interesting.
1561   MapVector<BasicBlock *, unsigned> DestPopularity;
1562 
1563   // Populate DestPopularity with the successors in the order they appear in the
1564   // successor list.  This way, we ensure determinism by iterating it in the
1565   // same order in std::max_element below.  We map nullptr to 0 so that we can
1566   // return nullptr when PredToDestList contains nullptr only.
1567   DestPopularity[nullptr] = 0;
1568   for (auto *SuccBB : successors(BB))
1569     DestPopularity[SuccBB] = 0;
1570 
1571   for (const auto &PredToDest : PredToDestList)
1572     if (PredToDest.second)
1573       DestPopularity[PredToDest.second]++;
1574 
1575   // Find the most popular dest.
1576   using VT = decltype(DestPopularity)::value_type;
1577   auto MostPopular = std::max_element(
1578       DestPopularity.begin(), DestPopularity.end(),
1579       [](const VT &L, const VT &R) { return L.second < R.second; });
1580 
1581   // Okay, we have finally picked the most popular destination.
1582   return MostPopular->first;
1583 }
1584 
1585 // Try to evaluate the value of V when the control flows from PredPredBB to
1586 // BB->getSinglePredecessor() and then on to BB.
evaluateOnPredecessorEdge(BasicBlock * BB,BasicBlock * PredPredBB,Value * V)1587 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1588                                                        BasicBlock *PredPredBB,
1589                                                        Value *V) {
1590   BasicBlock *PredBB = BB->getSinglePredecessor();
1591   assert(PredBB && "Expected a single predecessor");
1592 
1593   if (Constant *Cst = dyn_cast<Constant>(V)) {
1594     return Cst;
1595   }
1596 
1597   // Consult LVI if V is not an instruction in BB or PredBB.
1598   Instruction *I = dyn_cast<Instruction>(V);
1599   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1600     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1601   }
1602 
1603   // Look into a PHI argument.
1604   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1605     if (PHI->getParent() == PredBB)
1606       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1607     return nullptr;
1608   }
1609 
1610   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1611   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1612     if (CondCmp->getParent() == BB) {
1613       Constant *Op0 =
1614           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1615       Constant *Op1 =
1616           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1617       if (Op0 && Op1) {
1618         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1619       }
1620     }
1621     return nullptr;
1622   }
1623 
1624   return nullptr;
1625 }
1626 
processThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1627 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1628                                                ConstantPreference Preference,
1629                                                Instruction *CxtI) {
1630   // If threading this would thread across a loop header, don't even try to
1631   // thread the edge.
1632   if (LoopHeaders.count(BB))
1633     return false;
1634 
1635   PredValueInfoTy PredValues;
1636   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1637                                        CxtI)) {
1638     // We don't have known values in predecessors.  See if we can thread through
1639     // BB and its sole predecessor.
1640     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1641   }
1642 
1643   assert(!PredValues.empty() &&
1644          "computeValueKnownInPredecessors returned true with no values");
1645 
1646   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1647              for (const auto &PredValue : PredValues) {
1648                dbgs() << "  BB '" << BB->getName()
1649                       << "': FOUND condition = " << *PredValue.first
1650                       << " for pred '" << PredValue.second->getName() << "'.\n";
1651   });
1652 
1653   // Decide what we want to thread through.  Convert our list of known values to
1654   // a list of known destinations for each pred.  This also discards duplicate
1655   // predecessors and keeps track of the undefined inputs (which are represented
1656   // as a null dest in the PredToDestList).
1657   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1658   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1659 
1660   BasicBlock *OnlyDest = nullptr;
1661   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1662   Constant *OnlyVal = nullptr;
1663   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1664 
1665   for (const auto &PredValue : PredValues) {
1666     BasicBlock *Pred = PredValue.second;
1667     if (!SeenPreds.insert(Pred).second)
1668       continue;  // Duplicate predecessor entry.
1669 
1670     Constant *Val = PredValue.first;
1671 
1672     BasicBlock *DestBB;
1673     if (isa<UndefValue>(Val))
1674       DestBB = nullptr;
1675     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1676       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1677       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1678     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1679       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1680       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1681     } else {
1682       assert(isa<IndirectBrInst>(BB->getTerminator())
1683               && "Unexpected terminator");
1684       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1685       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1686     }
1687 
1688     // If we have exactly one destination, remember it for efficiency below.
1689     if (PredToDestList.empty()) {
1690       OnlyDest = DestBB;
1691       OnlyVal = Val;
1692     } else {
1693       if (OnlyDest != DestBB)
1694         OnlyDest = MultipleDestSentinel;
1695       // It possible we have same destination, but different value, e.g. default
1696       // case in switchinst.
1697       if (Val != OnlyVal)
1698         OnlyVal = MultipleVal;
1699     }
1700 
1701     // If the predecessor ends with an indirect goto, we can't change its
1702     // destination. Same for CallBr.
1703     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1704         isa<CallBrInst>(Pred->getTerminator()))
1705       continue;
1706 
1707     PredToDestList.emplace_back(Pred, DestBB);
1708   }
1709 
1710   // If all edges were unthreadable, we fail.
1711   if (PredToDestList.empty())
1712     return false;
1713 
1714   // If all the predecessors go to a single known successor, we want to fold,
1715   // not thread. By doing so, we do not need to duplicate the current block and
1716   // also miss potential opportunities in case we dont/cant duplicate.
1717   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1718     if (BB->hasNPredecessors(PredToDestList.size())) {
1719       bool SeenFirstBranchToOnlyDest = false;
1720       std::vector <DominatorTree::UpdateType> Updates;
1721       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1722       for (BasicBlock *SuccBB : successors(BB)) {
1723         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1724           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1725         } else {
1726           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1727           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1728         }
1729       }
1730 
1731       // Finally update the terminator.
1732       Instruction *Term = BB->getTerminator();
1733       BranchInst::Create(OnlyDest, Term);
1734       ++NumFolds;
1735       Term->eraseFromParent();
1736       DTU->applyUpdatesPermissive(Updates);
1737       if (HasProfileData)
1738         BPI->eraseBlock(BB);
1739 
1740       // If the condition is now dead due to the removal of the old terminator,
1741       // erase it.
1742       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1743         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1744           CondInst->eraseFromParent();
1745         // We can safely replace *some* uses of the CondInst if it has
1746         // exactly one value as returned by LVI. RAUW is incorrect in the
1747         // presence of guards and assumes, that have the `Cond` as the use. This
1748         // is because we use the guards/assume to reason about the `Cond` value
1749         // at the end of block, but RAUW unconditionally replaces all uses
1750         // including the guards/assumes themselves and the uses before the
1751         // guard/assume.
1752         else if (OnlyVal && OnlyVal != MultipleVal &&
1753                  CondInst->getParent() == BB)
1754           replaceFoldableUses(CondInst, OnlyVal);
1755       }
1756       return true;
1757     }
1758   }
1759 
1760   // Determine which is the most common successor.  If we have many inputs and
1761   // this block is a switch, we want to start by threading the batch that goes
1762   // to the most popular destination first.  If we only know about one
1763   // threadable destination (the common case) we can avoid this.
1764   BasicBlock *MostPopularDest = OnlyDest;
1765 
1766   if (MostPopularDest == MultipleDestSentinel) {
1767     // Remove any loop headers from the Dest list, threadEdge conservatively
1768     // won't process them, but we might have other destination that are eligible
1769     // and we still want to process.
1770     erase_if(PredToDestList,
1771              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1772                return LoopHeaders.contains(PredToDest.second);
1773              });
1774 
1775     if (PredToDestList.empty())
1776       return false;
1777 
1778     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1779   }
1780 
1781   // Now that we know what the most popular destination is, factor all
1782   // predecessors that will jump to it into a single predecessor.
1783   SmallVector<BasicBlock*, 16> PredsToFactor;
1784   for (const auto &PredToDest : PredToDestList)
1785     if (PredToDest.second == MostPopularDest) {
1786       BasicBlock *Pred = PredToDest.first;
1787 
1788       // This predecessor may be a switch or something else that has multiple
1789       // edges to the block.  Factor each of these edges by listing them
1790       // according to # occurrences in PredsToFactor.
1791       for (BasicBlock *Succ : successors(Pred))
1792         if (Succ == BB)
1793           PredsToFactor.push_back(Pred);
1794     }
1795 
1796   // If the threadable edges are branching on an undefined value, we get to pick
1797   // the destination that these predecessors should get to.
1798   if (!MostPopularDest)
1799     MostPopularDest = BB->getTerminator()->
1800                             getSuccessor(getBestDestForJumpOnUndef(BB));
1801 
1802   // Ok, try to thread it!
1803   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1804 }
1805 
1806 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1807 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1808 /// simplifications we can do based on inputs to the phi node.
processBranchOnPHI(PHINode * PN)1809 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1810   BasicBlock *BB = PN->getParent();
1811 
1812   // TODO: We could make use of this to do it once for blocks with common PHI
1813   // values.
1814   SmallVector<BasicBlock*, 1> PredBBs;
1815   PredBBs.resize(1);
1816 
1817   // If any of the predecessor blocks end in an unconditional branch, we can
1818   // *duplicate* the conditional branch into that block in order to further
1819   // encourage jump threading and to eliminate cases where we have branch on a
1820   // phi of an icmp (branch on icmp is much better).
1821   // This is still beneficial when a frozen phi is used as the branch condition
1822   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1823   // to br(icmp(freeze ...)).
1824   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1825     BasicBlock *PredBB = PN->getIncomingBlock(i);
1826     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1827       if (PredBr->isUnconditional()) {
1828         PredBBs[0] = PredBB;
1829         // Try to duplicate BB into PredBB.
1830         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1831           return true;
1832       }
1833   }
1834 
1835   return false;
1836 }
1837 
1838 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1839 /// a xor instruction in the current block.  See if there are any
1840 /// simplifications we can do based on inputs to the xor.
processBranchOnXOR(BinaryOperator * BO)1841 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1842   BasicBlock *BB = BO->getParent();
1843 
1844   // If either the LHS or RHS of the xor is a constant, don't do this
1845   // optimization.
1846   if (isa<ConstantInt>(BO->getOperand(0)) ||
1847       isa<ConstantInt>(BO->getOperand(1)))
1848     return false;
1849 
1850   // If the first instruction in BB isn't a phi, we won't be able to infer
1851   // anything special about any particular predecessor.
1852   if (!isa<PHINode>(BB->front()))
1853     return false;
1854 
1855   // If this BB is a landing pad, we won't be able to split the edge into it.
1856   if (BB->isEHPad())
1857     return false;
1858 
1859   // If we have a xor as the branch input to this block, and we know that the
1860   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1861   // the condition into the predecessor and fix that value to true, saving some
1862   // logical ops on that path and encouraging other paths to simplify.
1863   //
1864   // This copies something like this:
1865   //
1866   //  BB:
1867   //    %X = phi i1 [1],  [%X']
1868   //    %Y = icmp eq i32 %A, %B
1869   //    %Z = xor i1 %X, %Y
1870   //    br i1 %Z, ...
1871   //
1872   // Into:
1873   //  BB':
1874   //    %Y = icmp ne i32 %A, %B
1875   //    br i1 %Y, ...
1876 
1877   PredValueInfoTy XorOpValues;
1878   bool isLHS = true;
1879   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1880                                        WantInteger, BO)) {
1881     assert(XorOpValues.empty());
1882     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1883                                          WantInteger, BO))
1884       return false;
1885     isLHS = false;
1886   }
1887 
1888   assert(!XorOpValues.empty() &&
1889          "computeValueKnownInPredecessors returned true with no values");
1890 
1891   // Scan the information to see which is most popular: true or false.  The
1892   // predecessors can be of the set true, false, or undef.
1893   unsigned NumTrue = 0, NumFalse = 0;
1894   for (const auto &XorOpValue : XorOpValues) {
1895     if (isa<UndefValue>(XorOpValue.first))
1896       // Ignore undefs for the count.
1897       continue;
1898     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1899       ++NumFalse;
1900     else
1901       ++NumTrue;
1902   }
1903 
1904   // Determine which value to split on, true, false, or undef if neither.
1905   ConstantInt *SplitVal = nullptr;
1906   if (NumTrue > NumFalse)
1907     SplitVal = ConstantInt::getTrue(BB->getContext());
1908   else if (NumTrue != 0 || NumFalse != 0)
1909     SplitVal = ConstantInt::getFalse(BB->getContext());
1910 
1911   // Collect all of the blocks that this can be folded into so that we can
1912   // factor this once and clone it once.
1913   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1914   for (const auto &XorOpValue : XorOpValues) {
1915     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1916       continue;
1917 
1918     BlocksToFoldInto.push_back(XorOpValue.second);
1919   }
1920 
1921   // If we inferred a value for all of the predecessors, then duplication won't
1922   // help us.  However, we can just replace the LHS or RHS with the constant.
1923   if (BlocksToFoldInto.size() ==
1924       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1925     if (!SplitVal) {
1926       // If all preds provide undef, just nuke the xor, because it is undef too.
1927       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1928       BO->eraseFromParent();
1929     } else if (SplitVal->isZero()) {
1930       // If all preds provide 0, replace the xor with the other input.
1931       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1932       BO->eraseFromParent();
1933     } else {
1934       // If all preds provide 1, set the computed value to 1.
1935       BO->setOperand(!isLHS, SplitVal);
1936     }
1937 
1938     return true;
1939   }
1940 
1941   // If any of predecessors end with an indirect goto, we can't change its
1942   // destination. Same for CallBr.
1943   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1944         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1945                isa<CallBrInst>(Pred->getTerminator());
1946       }))
1947     return false;
1948 
1949   // Try to duplicate BB into PredBB.
1950   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1951 }
1952 
1953 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1954 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1955 /// NewPred using the entries from OldPred (suitably mapped).
addPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1956 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1957                                             BasicBlock *OldPred,
1958                                             BasicBlock *NewPred,
1959                                      DenseMap<Instruction*, Value*> &ValueMap) {
1960   for (PHINode &PN : PHIBB->phis()) {
1961     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1962     // DestBlock.
1963     Value *IV = PN.getIncomingValueForBlock(OldPred);
1964 
1965     // Remap the value if necessary.
1966     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1967       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1968       if (I != ValueMap.end())
1969         IV = I->second;
1970     }
1971 
1972     PN.addIncoming(IV, NewPred);
1973   }
1974 }
1975 
1976 /// Merge basic block BB into its sole predecessor if possible.
maybeMergeBasicBlockIntoOnlyPred(BasicBlock * BB)1977 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1978   BasicBlock *SinglePred = BB->getSinglePredecessor();
1979   if (!SinglePred)
1980     return false;
1981 
1982   const Instruction *TI = SinglePred->getTerminator();
1983   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1984       SinglePred == BB || hasAddressTakenAndUsed(BB))
1985     return false;
1986 
1987   // If SinglePred was a loop header, BB becomes one.
1988   if (LoopHeaders.erase(SinglePred))
1989     LoopHeaders.insert(BB);
1990 
1991   LVI->eraseBlock(SinglePred);
1992   MergeBasicBlockIntoOnlyPred(BB, DTU);
1993 
1994   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1995   // BB code within one basic block `BB`), we need to invalidate the LVI
1996   // information associated with BB, because the LVI information need not be
1997   // true for all of BB after the merge. For example,
1998   // Before the merge, LVI info and code is as follows:
1999   // SinglePred: <LVI info1 for %p val>
2000   // %y = use of %p
2001   // call @exit() // need not transfer execution to successor.
2002   // assume(%p) // from this point on %p is true
2003   // br label %BB
2004   // BB: <LVI info2 for %p val, i.e. %p is true>
2005   // %x = use of %p
2006   // br label exit
2007   //
2008   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2009   // (info2 and info1 respectively). After the merge and the deletion of the
2010   // LVI info1 for SinglePred. We have the following code:
2011   // BB: <LVI info2 for %p val>
2012   // %y = use of %p
2013   // call @exit()
2014   // assume(%p)
2015   // %x = use of %p <-- LVI info2 is correct from here onwards.
2016   // br label exit
2017   // LVI info2 for BB is incorrect at the beginning of BB.
2018 
2019   // Invalidate LVI information for BB if the LVI is not provably true for
2020   // all of BB.
2021   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2022     LVI->eraseBlock(BB);
2023   return true;
2024 }
2025 
2026 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2027 /// ValueMapping maps old values in BB to new ones in NewBB.
updateSSA(BasicBlock * BB,BasicBlock * NewBB,DenseMap<Instruction *,Value * > & ValueMapping)2028 void JumpThreadingPass::updateSSA(
2029     BasicBlock *BB, BasicBlock *NewBB,
2030     DenseMap<Instruction *, Value *> &ValueMapping) {
2031   // If there were values defined in BB that are used outside the block, then we
2032   // now have to update all uses of the value to use either the original value,
2033   // the cloned value, or some PHI derived value.  This can require arbitrary
2034   // PHI insertion, of which we are prepared to do, clean these up now.
2035   SSAUpdater SSAUpdate;
2036   SmallVector<Use *, 16> UsesToRename;
2037 
2038   for (Instruction &I : *BB) {
2039     // Scan all uses of this instruction to see if it is used outside of its
2040     // block, and if so, record them in UsesToRename.
2041     for (Use &U : I.uses()) {
2042       Instruction *User = cast<Instruction>(U.getUser());
2043       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2044         if (UserPN->getIncomingBlock(U) == BB)
2045           continue;
2046       } else if (User->getParent() == BB)
2047         continue;
2048 
2049       UsesToRename.push_back(&U);
2050     }
2051 
2052     // If there are no uses outside the block, we're done with this instruction.
2053     if (UsesToRename.empty())
2054       continue;
2055     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2056 
2057     // We found a use of I outside of BB.  Rename all uses of I that are outside
2058     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2059     // with the two values we know.
2060     SSAUpdate.Initialize(I.getType(), I.getName());
2061     SSAUpdate.AddAvailableValue(BB, &I);
2062     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2063 
2064     while (!UsesToRename.empty())
2065       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2066     LLVM_DEBUG(dbgs() << "\n");
2067   }
2068 }
2069 
2070 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2071 /// arguments that come from PredBB.  Return the map from the variables in the
2072 /// source basic block to the variables in the newly created basic block.
2073 DenseMap<Instruction *, Value *>
cloneInstructions(BasicBlock::iterator BI,BasicBlock::iterator BE,BasicBlock * NewBB,BasicBlock * PredBB)2074 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2075                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2076                                      BasicBlock *PredBB) {
2077   // We are going to have to map operands from the source basic block to the new
2078   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2079   // block, evaluate them to account for entry from PredBB.
2080   DenseMap<Instruction *, Value *> ValueMapping;
2081 
2082   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2083   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2084   // might need to rewrite the operand of the cloned phi.
2085   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2086     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2087     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2088     ValueMapping[PN] = NewPN;
2089   }
2090 
2091   // Clone noalias scope declarations in the threaded block. When threading a
2092   // loop exit, we would otherwise end up with two idential scope declarations
2093   // visible at the same time.
2094   SmallVector<MDNode *> NoAliasScopes;
2095   DenseMap<MDNode *, MDNode *> ClonedScopes;
2096   LLVMContext &Context = PredBB->getContext();
2097   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2098   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2099 
2100   // Clone the non-phi instructions of the source basic block into NewBB,
2101   // keeping track of the mapping and using it to remap operands in the cloned
2102   // instructions.
2103   for (; BI != BE; ++BI) {
2104     Instruction *New = BI->clone();
2105     New->setName(BI->getName());
2106     NewBB->getInstList().push_back(New);
2107     ValueMapping[&*BI] = New;
2108     adaptNoAliasScopes(New, ClonedScopes, Context);
2109 
2110     // Remap operands to patch up intra-block references.
2111     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2112       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2113         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2114         if (I != ValueMapping.end())
2115           New->setOperand(i, I->second);
2116       }
2117   }
2118 
2119   return ValueMapping;
2120 }
2121 
2122 /// Attempt to thread through two successive basic blocks.
maybethreadThroughTwoBasicBlocks(BasicBlock * BB,Value * Cond)2123 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2124                                                          Value *Cond) {
2125   // Consider:
2126   //
2127   // PredBB:
2128   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2129   //   %tobool = icmp eq i32 %cond, 0
2130   //   br i1 %tobool, label %BB, label ...
2131   //
2132   // BB:
2133   //   %cmp = icmp eq i32* %var, null
2134   //   br i1 %cmp, label ..., label ...
2135   //
2136   // We don't know the value of %var at BB even if we know which incoming edge
2137   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2138   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2139   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2140 
2141   // Require that BB end with a Branch for simplicity.
2142   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2143   if (!CondBr)
2144     return false;
2145 
2146   // BB must have exactly one predecessor.
2147   BasicBlock *PredBB = BB->getSinglePredecessor();
2148   if (!PredBB)
2149     return false;
2150 
2151   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2152   // unconditional branch, we should be merging PredBB and BB instead. For
2153   // simplicity, we don't deal with a switch.
2154   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2155   if (!PredBBBranch || PredBBBranch->isUnconditional())
2156     return false;
2157 
2158   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2159   // PredBB.
2160   if (PredBB->getSinglePredecessor())
2161     return false;
2162 
2163   // Don't thread through PredBB if it contains a successor edge to itself, in
2164   // which case we would infinite loop.  Suppose we are threading an edge from
2165   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2166   // successor edge to itself.  If we allowed jump threading in this case, we
2167   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2168   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2169   // with another jump threading opportunity from PredBB.thread through PredBB
2170   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2171   // would keep peeling one iteration from PredBB.
2172   if (llvm::is_contained(successors(PredBB), PredBB))
2173     return false;
2174 
2175   // Don't thread across a loop header.
2176   if (LoopHeaders.count(PredBB))
2177     return false;
2178 
2179   // Avoid complication with duplicating EH pads.
2180   if (PredBB->isEHPad())
2181     return false;
2182 
2183   // Find a predecessor that we can thread.  For simplicity, we only consider a
2184   // successor edge out of BB to which we thread exactly one incoming edge into
2185   // PredBB.
2186   unsigned ZeroCount = 0;
2187   unsigned OneCount = 0;
2188   BasicBlock *ZeroPred = nullptr;
2189   BasicBlock *OnePred = nullptr;
2190   for (BasicBlock *P : predecessors(PredBB)) {
2191     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2192             evaluateOnPredecessorEdge(BB, P, Cond))) {
2193       if (CI->isZero()) {
2194         ZeroCount++;
2195         ZeroPred = P;
2196       } else if (CI->isOne()) {
2197         OneCount++;
2198         OnePred = P;
2199       }
2200     }
2201   }
2202 
2203   // Disregard complicated cases where we have to thread multiple edges.
2204   BasicBlock *PredPredBB;
2205   if (ZeroCount == 1) {
2206     PredPredBB = ZeroPred;
2207   } else if (OneCount == 1) {
2208     PredPredBB = OnePred;
2209   } else {
2210     return false;
2211   }
2212 
2213   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2214 
2215   // If threading to the same block as we come from, we would infinite loop.
2216   if (SuccBB == BB) {
2217     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2218                       << "' - would thread to self!\n");
2219     return false;
2220   }
2221 
2222   // If threading this would thread across a loop header, don't thread the edge.
2223   // See the comments above findLoopHeaders for justifications and caveats.
2224   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2225     LLVM_DEBUG({
2226       bool BBIsHeader = LoopHeaders.count(BB);
2227       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2228       dbgs() << "  Not threading across "
2229              << (BBIsHeader ? "loop header BB '" : "block BB '")
2230              << BB->getName() << "' to dest "
2231              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2232              << SuccBB->getName()
2233              << "' - it might create an irreducible loop!\n";
2234     });
2235     return false;
2236   }
2237 
2238   // Compute the cost of duplicating BB and PredBB.
2239   unsigned BBCost =
2240       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2241   unsigned PredBBCost = getJumpThreadDuplicationCost(
2242       PredBB, PredBB->getTerminator(), BBDupThreshold);
2243 
2244   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2245   // individually before checking their sum because getJumpThreadDuplicationCost
2246   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2247   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2248       BBCost + PredBBCost > BBDupThreshold) {
2249     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2250                       << "' - Cost is too high: " << PredBBCost
2251                       << " for PredBB, " << BBCost << "for BB\n");
2252     return false;
2253   }
2254 
2255   // Now we are ready to duplicate PredBB.
2256   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2257   return true;
2258 }
2259 
threadThroughTwoBasicBlocks(BasicBlock * PredPredBB,BasicBlock * PredBB,BasicBlock * BB,BasicBlock * SuccBB)2260 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2261                                                     BasicBlock *PredBB,
2262                                                     BasicBlock *BB,
2263                                                     BasicBlock *SuccBB) {
2264   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2265                     << BB->getName() << "'\n");
2266 
2267   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2268   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2269 
2270   BasicBlock *NewBB =
2271       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2272                          PredBB->getParent(), PredBB);
2273   NewBB->moveAfter(PredBB);
2274 
2275   // Set the block frequency of NewBB.
2276   if (HasProfileData) {
2277     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2278                      BPI->getEdgeProbability(PredPredBB, PredBB);
2279     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2280   }
2281 
2282   // We are going to have to map operands from the original BB block to the new
2283   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2284   // to account for entry from PredPredBB.
2285   DenseMap<Instruction *, Value *> ValueMapping =
2286       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2287 
2288   // Copy the edge probabilities from PredBB to NewBB.
2289   if (HasProfileData)
2290     BPI->copyEdgeProbabilities(PredBB, NewBB);
2291 
2292   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2293   // This eliminates predecessors from PredPredBB, which requires us to simplify
2294   // any PHI nodes in PredBB.
2295   Instruction *PredPredTerm = PredPredBB->getTerminator();
2296   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2297     if (PredPredTerm->getSuccessor(i) == PredBB) {
2298       PredBB->removePredecessor(PredPredBB, true);
2299       PredPredTerm->setSuccessor(i, NewBB);
2300     }
2301 
2302   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2303                                   ValueMapping);
2304   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2305                                   ValueMapping);
2306 
2307   DTU->applyUpdatesPermissive(
2308       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2309        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2310        {DominatorTree::Insert, PredPredBB, NewBB},
2311        {DominatorTree::Delete, PredPredBB, PredBB}});
2312 
2313   updateSSA(PredBB, NewBB, ValueMapping);
2314 
2315   // Clean up things like PHI nodes with single operands, dead instructions,
2316   // etc.
2317   SimplifyInstructionsInBlock(NewBB, TLI);
2318   SimplifyInstructionsInBlock(PredBB, TLI);
2319 
2320   SmallVector<BasicBlock *, 1> PredsToFactor;
2321   PredsToFactor.push_back(NewBB);
2322   threadEdge(BB, PredsToFactor, SuccBB);
2323 }
2324 
2325 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
tryThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2326 bool JumpThreadingPass::tryThreadEdge(
2327     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2328     BasicBlock *SuccBB) {
2329   // If threading to the same block as we come from, we would infinite loop.
2330   if (SuccBB == BB) {
2331     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2332                       << "' - would thread to self!\n");
2333     return false;
2334   }
2335 
2336   // If threading this would thread across a loop header, don't thread the edge.
2337   // See the comments above findLoopHeaders for justifications and caveats.
2338   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2339     LLVM_DEBUG({
2340       bool BBIsHeader = LoopHeaders.count(BB);
2341       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2342       dbgs() << "  Not threading across "
2343           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2344           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2345           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2346     });
2347     return false;
2348   }
2349 
2350   unsigned JumpThreadCost =
2351       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2352   if (JumpThreadCost > BBDupThreshold) {
2353     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2354                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2355     return false;
2356   }
2357 
2358   threadEdge(BB, PredBBs, SuccBB);
2359   return true;
2360 }
2361 
2362 /// threadEdge - We have decided that it is safe and profitable to factor the
2363 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2364 /// across BB.  Transform the IR to reflect this change.
threadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2365 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2366                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2367                                    BasicBlock *SuccBB) {
2368   assert(SuccBB != BB && "Don't create an infinite loop");
2369 
2370   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2371          "Don't thread across loop headers");
2372 
2373   // And finally, do it!  Start by factoring the predecessors if needed.
2374   BasicBlock *PredBB;
2375   if (PredBBs.size() == 1)
2376     PredBB = PredBBs[0];
2377   else {
2378     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2379                       << " common predecessors.\n");
2380     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2381   }
2382 
2383   // And finally, do it!
2384   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2385                     << "' to '" << SuccBB->getName()
2386                     << ", across block:\n    " << *BB << "\n");
2387 
2388   LVI->threadEdge(PredBB, BB, SuccBB);
2389 
2390   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2391                                          BB->getName()+".thread",
2392                                          BB->getParent(), BB);
2393   NewBB->moveAfter(PredBB);
2394 
2395   // Set the block frequency of NewBB.
2396   if (HasProfileData) {
2397     auto NewBBFreq =
2398         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2399     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2400   }
2401 
2402   // Copy all the instructions from BB to NewBB except the terminator.
2403   DenseMap<Instruction *, Value *> ValueMapping =
2404       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2405 
2406   // We didn't copy the terminator from BB over to NewBB, because there is now
2407   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2408   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2409   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2410 
2411   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2412   // PHI nodes for NewBB now.
2413   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2414 
2415   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2416   // eliminates predecessors from BB, which requires us to simplify any PHI
2417   // nodes in BB.
2418   Instruction *PredTerm = PredBB->getTerminator();
2419   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2420     if (PredTerm->getSuccessor(i) == BB) {
2421       BB->removePredecessor(PredBB, true);
2422       PredTerm->setSuccessor(i, NewBB);
2423     }
2424 
2425   // Enqueue required DT updates.
2426   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2427                                {DominatorTree::Insert, PredBB, NewBB},
2428                                {DominatorTree::Delete, PredBB, BB}});
2429 
2430   updateSSA(BB, NewBB, ValueMapping);
2431 
2432   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2433   // over the new instructions and zap any that are constants or dead.  This
2434   // frequently happens because of phi translation.
2435   SimplifyInstructionsInBlock(NewBB, TLI);
2436 
2437   // Update the edge weight from BB to SuccBB, which should be less than before.
2438   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2439 
2440   // Threaded an edge!
2441   ++NumThreads;
2442 }
2443 
2444 /// Create a new basic block that will be the predecessor of BB and successor of
2445 /// all blocks in Preds. When profile data is available, update the frequency of
2446 /// this new block.
splitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)2447 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2448                                                ArrayRef<BasicBlock *> Preds,
2449                                                const char *Suffix) {
2450   SmallVector<BasicBlock *, 2> NewBBs;
2451 
2452   // Collect the frequencies of all predecessors of BB, which will be used to
2453   // update the edge weight of the result of splitting predecessors.
2454   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2455   if (HasProfileData)
2456     for (auto Pred : Preds)
2457       FreqMap.insert(std::make_pair(
2458           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2459 
2460   // In the case when BB is a LandingPad block we create 2 new predecessors
2461   // instead of just one.
2462   if (BB->isLandingPad()) {
2463     std::string NewName = std::string(Suffix) + ".split-lp";
2464     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2465   } else {
2466     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2467   }
2468 
2469   std::vector<DominatorTree::UpdateType> Updates;
2470   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2471   for (auto NewBB : NewBBs) {
2472     BlockFrequency NewBBFreq(0);
2473     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2474     for (auto Pred : predecessors(NewBB)) {
2475       Updates.push_back({DominatorTree::Delete, Pred, BB});
2476       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2477       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2478         NewBBFreq += FreqMap.lookup(Pred);
2479     }
2480     if (HasProfileData) // Apply the summed frequency to NewBB.
2481       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2482   }
2483 
2484   DTU->applyUpdatesPermissive(Updates);
2485   return NewBBs[0];
2486 }
2487 
doesBlockHaveProfileData(BasicBlock * BB)2488 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2489   const Instruction *TI = BB->getTerminator();
2490   assert(TI->getNumSuccessors() > 1 && "not a split");
2491 
2492   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2493   if (!WeightsNode)
2494     return false;
2495 
2496   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2497   if (MDName->getString() != "branch_weights")
2498     return false;
2499 
2500   // Ensure there are weights for all of the successors. Note that the first
2501   // operand to the metadata node is a name, not a weight.
2502   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2503 }
2504 
2505 /// Update the block frequency of BB and branch weight and the metadata on the
2506 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2507 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
updateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)2508 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2509                                                      BasicBlock *BB,
2510                                                      BasicBlock *NewBB,
2511                                                      BasicBlock *SuccBB) {
2512   if (!HasProfileData)
2513     return;
2514 
2515   assert(BFI && BPI && "BFI & BPI should have been created here");
2516 
2517   // As the edge from PredBB to BB is deleted, we have to update the block
2518   // frequency of BB.
2519   auto BBOrigFreq = BFI->getBlockFreq(BB);
2520   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2521   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2522   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2523   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2524 
2525   // Collect updated outgoing edges' frequencies from BB and use them to update
2526   // edge probabilities.
2527   SmallVector<uint64_t, 4> BBSuccFreq;
2528   for (BasicBlock *Succ : successors(BB)) {
2529     auto SuccFreq = (Succ == SuccBB)
2530                         ? BB2SuccBBFreq - NewBBFreq
2531                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2532     BBSuccFreq.push_back(SuccFreq.getFrequency());
2533   }
2534 
2535   uint64_t MaxBBSuccFreq =
2536       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2537 
2538   SmallVector<BranchProbability, 4> BBSuccProbs;
2539   if (MaxBBSuccFreq == 0)
2540     BBSuccProbs.assign(BBSuccFreq.size(),
2541                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2542   else {
2543     for (uint64_t Freq : BBSuccFreq)
2544       BBSuccProbs.push_back(
2545           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2546     // Normalize edge probabilities so that they sum up to one.
2547     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2548                                               BBSuccProbs.end());
2549   }
2550 
2551   // Update edge probabilities in BPI.
2552   BPI->setEdgeProbability(BB, BBSuccProbs);
2553 
2554   // Update the profile metadata as well.
2555   //
2556   // Don't do this if the profile of the transformed blocks was statically
2557   // estimated.  (This could occur despite the function having an entry
2558   // frequency in completely cold parts of the CFG.)
2559   //
2560   // In this case we don't want to suggest to subsequent passes that the
2561   // calculated weights are fully consistent.  Consider this graph:
2562   //
2563   //                 check_1
2564   //             50% /  |
2565   //             eq_1   | 50%
2566   //                 \  |
2567   //                 check_2
2568   //             50% /  |
2569   //             eq_2   | 50%
2570   //                 \  |
2571   //                 check_3
2572   //             50% /  |
2573   //             eq_3   | 50%
2574   //                 \  |
2575   //
2576   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2577   // the overall probabilities are inconsistent; the total probability that the
2578   // value is either 1, 2 or 3 is 150%.
2579   //
2580   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2581   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2582   // the loop exit edge.  Then based solely on static estimation we would assume
2583   // the loop was extremely hot.
2584   //
2585   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2586   // shouldn't make edges extremely likely or unlikely based solely on static
2587   // estimation.
2588   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2589     SmallVector<uint32_t, 4> Weights;
2590     for (auto Prob : BBSuccProbs)
2591       Weights.push_back(Prob.getNumerator());
2592 
2593     auto TI = BB->getTerminator();
2594     TI->setMetadata(
2595         LLVMContext::MD_prof,
2596         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2597   }
2598 }
2599 
2600 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2601 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2602 /// If we can duplicate the contents of BB up into PredBB do so now, this
2603 /// improves the odds that the branch will be on an analyzable instruction like
2604 /// a compare.
duplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)2605 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2606     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2607   assert(!PredBBs.empty() && "Can't handle an empty set");
2608 
2609   // If BB is a loop header, then duplicating this block outside the loop would
2610   // cause us to transform this into an irreducible loop, don't do this.
2611   // See the comments above findLoopHeaders for justifications and caveats.
2612   if (LoopHeaders.count(BB)) {
2613     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2614                       << "' into predecessor block '" << PredBBs[0]->getName()
2615                       << "' - it might create an irreducible loop!\n");
2616     return false;
2617   }
2618 
2619   unsigned DuplicationCost =
2620       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2621   if (DuplicationCost > BBDupThreshold) {
2622     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2623                       << "' - Cost is too high: " << DuplicationCost << "\n");
2624     return false;
2625   }
2626 
2627   // And finally, do it!  Start by factoring the predecessors if needed.
2628   std::vector<DominatorTree::UpdateType> Updates;
2629   BasicBlock *PredBB;
2630   if (PredBBs.size() == 1)
2631     PredBB = PredBBs[0];
2632   else {
2633     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2634                       << " common predecessors.\n");
2635     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2636   }
2637   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2638 
2639   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2640   // of PredBB.
2641   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2642                     << "' into end of '" << PredBB->getName()
2643                     << "' to eliminate branch on phi.  Cost: "
2644                     << DuplicationCost << " block is:" << *BB << "\n");
2645 
2646   // Unless PredBB ends with an unconditional branch, split the edge so that we
2647   // can just clone the bits from BB into the end of the new PredBB.
2648   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2649 
2650   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2651     BasicBlock *OldPredBB = PredBB;
2652     PredBB = SplitEdge(OldPredBB, BB);
2653     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2654     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2655     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2656     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2657   }
2658 
2659   // We are going to have to map operands from the original BB block into the
2660   // PredBB block.  Evaluate PHI nodes in BB.
2661   DenseMap<Instruction*, Value*> ValueMapping;
2662 
2663   BasicBlock::iterator BI = BB->begin();
2664   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2665     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2666   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2667   // mapping and using it to remap operands in the cloned instructions.
2668   for (; BI != BB->end(); ++BI) {
2669     Instruction *New = BI->clone();
2670 
2671     // Remap operands to patch up intra-block references.
2672     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2673       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2674         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2675         if (I != ValueMapping.end())
2676           New->setOperand(i, I->second);
2677       }
2678 
2679     // If this instruction can be simplified after the operands are updated,
2680     // just use the simplified value instead.  This frequently happens due to
2681     // phi translation.
2682     if (Value *IV = SimplifyInstruction(
2683             New,
2684             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2685       ValueMapping[&*BI] = IV;
2686       if (!New->mayHaveSideEffects()) {
2687         New->deleteValue();
2688         New = nullptr;
2689       }
2690     } else {
2691       ValueMapping[&*BI] = New;
2692     }
2693     if (New) {
2694       // Otherwise, insert the new instruction into the block.
2695       New->setName(BI->getName());
2696       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2697       // Update Dominance from simplified New instruction operands.
2698       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2699         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2700           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2701     }
2702   }
2703 
2704   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2705   // add entries to the PHI nodes for branch from PredBB now.
2706   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2707   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2708                                   ValueMapping);
2709   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2710                                   ValueMapping);
2711 
2712   updateSSA(BB, PredBB, ValueMapping);
2713 
2714   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2715   // that we nuked.
2716   BB->removePredecessor(PredBB, true);
2717 
2718   // Remove the unconditional branch at the end of the PredBB block.
2719   OldPredBranch->eraseFromParent();
2720   if (HasProfileData)
2721     BPI->copyEdgeProbabilities(BB, PredBB);
2722   DTU->applyUpdatesPermissive(Updates);
2723 
2724   ++NumDupes;
2725   return true;
2726 }
2727 
2728 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2729 // a Select instruction in Pred. BB has other predecessors and SI is used in
2730 // a PHI node in BB. SI has no other use.
2731 // A new basic block, NewBB, is created and SI is converted to compare and
2732 // conditional branch. SI is erased from parent.
unfoldSelectInstr(BasicBlock * Pred,BasicBlock * BB,SelectInst * SI,PHINode * SIUse,unsigned Idx)2733 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2734                                           SelectInst *SI, PHINode *SIUse,
2735                                           unsigned Idx) {
2736   // Expand the select.
2737   //
2738   // Pred --
2739   //  |    v
2740   //  |  NewBB
2741   //  |    |
2742   //  |-----
2743   //  v
2744   // BB
2745   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2746   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2747                                          BB->getParent(), BB);
2748   // Move the unconditional branch to NewBB.
2749   PredTerm->removeFromParent();
2750   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2751   // Create a conditional branch and update PHI nodes.
2752   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2753   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2754   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2755   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2756 
2757   // The select is now dead.
2758   SI->eraseFromParent();
2759   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2760                                {DominatorTree::Insert, Pred, NewBB}});
2761 
2762   // Update any other PHI nodes in BB.
2763   for (BasicBlock::iterator BI = BB->begin();
2764        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2765     if (Phi != SIUse)
2766       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2767 }
2768 
tryToUnfoldSelect(SwitchInst * SI,BasicBlock * BB)2769 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2770   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2771 
2772   if (!CondPHI || CondPHI->getParent() != BB)
2773     return false;
2774 
2775   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2776     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2777     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2778 
2779     // The second and third condition can be potentially relaxed. Currently
2780     // the conditions help to simplify the code and allow us to reuse existing
2781     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2782     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2783       continue;
2784 
2785     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2786     if (!PredTerm || !PredTerm->isUnconditional())
2787       continue;
2788 
2789     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2790     return true;
2791   }
2792   return false;
2793 }
2794 
2795 /// tryToUnfoldSelect - Look for blocks of the form
2796 /// bb1:
2797 ///   %a = select
2798 ///   br bb2
2799 ///
2800 /// bb2:
2801 ///   %p = phi [%a, %bb1] ...
2802 ///   %c = icmp %p
2803 ///   br i1 %c
2804 ///
2805 /// And expand the select into a branch structure if one of its arms allows %c
2806 /// to be folded. This later enables threading from bb1 over bb2.
tryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)2807 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2808   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2809   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2810   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2811 
2812   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2813       CondLHS->getParent() != BB)
2814     return false;
2815 
2816   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2817     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2818     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2819 
2820     // Look if one of the incoming values is a select in the corresponding
2821     // predecessor.
2822     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2823       continue;
2824 
2825     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2826     if (!PredTerm || !PredTerm->isUnconditional())
2827       continue;
2828 
2829     // Now check if one of the select values would allow us to constant fold the
2830     // terminator in BB. We don't do the transform if both sides fold, those
2831     // cases will be threaded in any case.
2832     LazyValueInfo::Tristate LHSFolds =
2833         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2834                                 CondRHS, Pred, BB, CondCmp);
2835     LazyValueInfo::Tristate RHSFolds =
2836         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2837                                 CondRHS, Pred, BB, CondCmp);
2838     if ((LHSFolds != LazyValueInfo::Unknown ||
2839          RHSFolds != LazyValueInfo::Unknown) &&
2840         LHSFolds != RHSFolds) {
2841       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2842       return true;
2843     }
2844   }
2845   return false;
2846 }
2847 
2848 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2849 /// same BB in the form
2850 /// bb:
2851 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2852 ///   %s = select %p, trueval, falseval
2853 ///
2854 /// or
2855 ///
2856 /// bb:
2857 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2858 ///   %c = cmp %p, 0
2859 ///   %s = select %c, trueval, falseval
2860 ///
2861 /// And expand the select into a branch structure. This later enables
2862 /// jump-threading over bb in this pass.
2863 ///
2864 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2865 /// select if the associated PHI has at least one constant.  If the unfolded
2866 /// select is not jump-threaded, it will be folded again in the later
2867 /// optimizations.
tryToUnfoldSelectInCurrBB(BasicBlock * BB)2868 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2869   // This transform would reduce the quality of msan diagnostics.
2870   // Disable this transform under MemorySanitizer.
2871   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2872     return false;
2873 
2874   // If threading this would thread across a loop header, don't thread the edge.
2875   // See the comments above findLoopHeaders for justifications and caveats.
2876   if (LoopHeaders.count(BB))
2877     return false;
2878 
2879   for (BasicBlock::iterator BI = BB->begin();
2880        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2881     // Look for a Phi having at least one constant incoming value.
2882     if (llvm::all_of(PN->incoming_values(),
2883                      [](Value *V) { return !isa<ConstantInt>(V); }))
2884       continue;
2885 
2886     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2887       using namespace PatternMatch;
2888 
2889       // Check if SI is in BB and use V as condition.
2890       if (SI->getParent() != BB)
2891         return false;
2892       Value *Cond = SI->getCondition();
2893       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2894       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2895     };
2896 
2897     SelectInst *SI = nullptr;
2898     for (Use &U : PN->uses()) {
2899       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2900         // Look for a ICmp in BB that compares PN with a constant and is the
2901         // condition of a Select.
2902         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2903             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2904           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2905             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2906               SI = SelectI;
2907               break;
2908             }
2909       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2910         // Look for a Select in BB that uses PN as condition.
2911         if (isUnfoldCandidate(SelectI, U.get())) {
2912           SI = SelectI;
2913           break;
2914         }
2915       }
2916     }
2917 
2918     if (!SI)
2919       continue;
2920     // Expand the select.
2921     Value *Cond = SI->getCondition();
2922     if (InsertFreezeWhenUnfoldingSelect &&
2923         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2924                                           &DTU->getDomTree()))
2925       Cond = new FreezeInst(Cond, "cond.fr", SI);
2926     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2927     BasicBlock *SplitBB = SI->getParent();
2928     BasicBlock *NewBB = Term->getParent();
2929     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2930     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2931     NewPN->addIncoming(SI->getFalseValue(), BB);
2932     SI->replaceAllUsesWith(NewPN);
2933     SI->eraseFromParent();
2934     // NewBB and SplitBB are newly created blocks which require insertion.
2935     std::vector<DominatorTree::UpdateType> Updates;
2936     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2937     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2938     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2939     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2940     // BB's successors were moved to SplitBB, update DTU accordingly.
2941     for (auto *Succ : successors(SplitBB)) {
2942       Updates.push_back({DominatorTree::Delete, BB, Succ});
2943       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2944     }
2945     DTU->applyUpdatesPermissive(Updates);
2946     return true;
2947   }
2948   return false;
2949 }
2950 
2951 /// Try to propagate a guard from the current BB into one of its predecessors
2952 /// in case if another branch of execution implies that the condition of this
2953 /// guard is always true. Currently we only process the simplest case that
2954 /// looks like:
2955 ///
2956 /// Start:
2957 ///   %cond = ...
2958 ///   br i1 %cond, label %T1, label %F1
2959 /// T1:
2960 ///   br label %Merge
2961 /// F1:
2962 ///   br label %Merge
2963 /// Merge:
2964 ///   %condGuard = ...
2965 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2966 ///
2967 /// And cond either implies condGuard or !condGuard. In this case all the
2968 /// instructions before the guard can be duplicated in both branches, and the
2969 /// guard is then threaded to one of them.
processGuards(BasicBlock * BB)2970 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2971   using namespace PatternMatch;
2972 
2973   // We only want to deal with two predecessors.
2974   BasicBlock *Pred1, *Pred2;
2975   auto PI = pred_begin(BB), PE = pred_end(BB);
2976   if (PI == PE)
2977     return false;
2978   Pred1 = *PI++;
2979   if (PI == PE)
2980     return false;
2981   Pred2 = *PI++;
2982   if (PI != PE)
2983     return false;
2984   if (Pred1 == Pred2)
2985     return false;
2986 
2987   // Try to thread one of the guards of the block.
2988   // TODO: Look up deeper than to immediate predecessor?
2989   auto *Parent = Pred1->getSinglePredecessor();
2990   if (!Parent || Parent != Pred2->getSinglePredecessor())
2991     return false;
2992 
2993   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2994     for (auto &I : *BB)
2995       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2996         return true;
2997 
2998   return false;
2999 }
3000 
3001 /// Try to propagate the guard from BB which is the lower block of a diamond
3002 /// to one of its branches, in case if diamond's condition implies guard's
3003 /// condition.
threadGuard(BasicBlock * BB,IntrinsicInst * Guard,BranchInst * BI)3004 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3005                                     BranchInst *BI) {
3006   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3007   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3008   Value *GuardCond = Guard->getArgOperand(0);
3009   Value *BranchCond = BI->getCondition();
3010   BasicBlock *TrueDest = BI->getSuccessor(0);
3011   BasicBlock *FalseDest = BI->getSuccessor(1);
3012 
3013   auto &DL = BB->getModule()->getDataLayout();
3014   bool TrueDestIsSafe = false;
3015   bool FalseDestIsSafe = false;
3016 
3017   // True dest is safe if BranchCond => GuardCond.
3018   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3019   if (Impl && *Impl)
3020     TrueDestIsSafe = true;
3021   else {
3022     // False dest is safe if !BranchCond => GuardCond.
3023     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3024     if (Impl && *Impl)
3025       FalseDestIsSafe = true;
3026   }
3027 
3028   if (!TrueDestIsSafe && !FalseDestIsSafe)
3029     return false;
3030 
3031   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3032   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3033 
3034   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3035   Instruction *AfterGuard = Guard->getNextNode();
3036   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3037   if (Cost > BBDupThreshold)
3038     return false;
3039   // Duplicate all instructions before the guard and the guard itself to the
3040   // branch where implication is not proved.
3041   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3042       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3043   assert(GuardedBlock && "Could not create the guarded block?");
3044   // Duplicate all instructions before the guard in the unguarded branch.
3045   // Since we have successfully duplicated the guarded block and this block
3046   // has fewer instructions, we expect it to succeed.
3047   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3048       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3049   assert(UnguardedBlock && "Could not create the unguarded block?");
3050   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3051                     << GuardedBlock->getName() << "\n");
3052   // Some instructions before the guard may still have uses. For them, we need
3053   // to create Phi nodes merging their copies in both guarded and unguarded
3054   // branches. Those instructions that have no uses can be just removed.
3055   SmallVector<Instruction *, 4> ToRemove;
3056   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3057     if (!isa<PHINode>(&*BI))
3058       ToRemove.push_back(&*BI);
3059 
3060   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3061   assert(InsertionPoint && "Empty block?");
3062   // Substitute with Phis & remove.
3063   for (auto *Inst : reverse(ToRemove)) {
3064     if (!Inst->use_empty()) {
3065       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3066       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3067       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3068       NewPN->insertBefore(InsertionPoint);
3069       Inst->replaceAllUsesWith(NewPN);
3070     }
3071     Inst->eraseFromParent();
3072   }
3073   return true;
3074 }
3075