1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
82
83 using namespace llvm;
84 using namespace jumpthreading;
85
86 #define DEBUG_TYPE "jump-threading"
87
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds, "Number of terminators folded");
90 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
91
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94 cl::desc("Max block size to duplicate for jump threading"),
95 cl::init(6), cl::Hidden);
96
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99 "jump-threading-implication-search-threshold",
100 cl::desc("The number of predecessors to search for a stronger "
101 "condition to use to thread over a weaker condition"),
102 cl::init(3), cl::Hidden);
103
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105 "print-lvi-after-jump-threading",
106 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107 cl::Hidden);
108
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110 "jump-threading-freeze-select-cond",
111 cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112 cl::Hidden);
113
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115 "jump-threading-across-loop-headers",
116 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117 cl::init(false), cl::Hidden);
118
119
120 namespace {
121
122 /// This pass performs 'jump threading', which looks at blocks that have
123 /// multiple predecessors and multiple successors. If one or more of the
124 /// predecessors of the block can be proven to always jump to one of the
125 /// successors, we forward the edge from the predecessor to the successor by
126 /// duplicating the contents of this block.
127 ///
128 /// An example of when this can occur is code like this:
129 ///
130 /// if () { ...
131 /// X = 4;
132 /// }
133 /// if (X < 3) {
134 ///
135 /// In this case, the unconditional branch at the end of the first if can be
136 /// revectored to the false side of the second if.
137 class JumpThreading : public FunctionPass {
138 JumpThreadingPass Impl;
139
140 public:
141 static char ID; // Pass identification
142
JumpThreading(bool InsertFreezeWhenUnfoldingSelect=false,int T=-1)143 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
146 }
147
148 bool runOnFunction(Function &F) override;
149
getAnalysisUsage(AnalysisUsage & AU) const150 void getAnalysisUsage(AnalysisUsage &AU) const override {
151 AU.addRequired<DominatorTreeWrapperPass>();
152 AU.addPreserved<DominatorTreeWrapperPass>();
153 AU.addRequired<AAResultsWrapperPass>();
154 AU.addRequired<LazyValueInfoWrapperPass>();
155 AU.addPreserved<LazyValueInfoWrapperPass>();
156 AU.addPreserved<GlobalsAAWrapperPass>();
157 AU.addRequired<TargetLibraryInfoWrapperPass>();
158 AU.addRequired<TargetTransformInfoWrapperPass>();
159 }
160
releaseMemory()161 void releaseMemory() override { Impl.releaseMemory(); }
162 };
163
164 } // end anonymous namespace
165
166 char JumpThreading::ID = 0;
167
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175 "Jump Threading", false, false)
176
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179 return new JumpThreading(InsertFr, Threshold);
180 }
181
JumpThreadingPass(bool InsertFr,int T)182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
185 }
186
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
191 //
192 // [Block PredBB]
193 // [Branch PredBr]
194 // if (t) {
195 // Block A;
196 // } else {
197 // Block B;
198 // }
199 //
200 // [Block BB]
201 // cond = PN([true, %A], [..., %B]); // PHI node
202 // [Branch CondBr]
203 // if (cond) {
204 // ... // P(cond == true) = 1%
205 // }
206 //
207 // Here we know that when block A is taken, cond must be true, which means
208 // P(cond == true | A) = 1
209 //
210 // Given that P(cond == true) = P(cond == true | A) * P(A) +
211 // P(cond == true | B) * P(B)
212 // we get:
213 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
214 //
215 // which gives us:
216 // P(A) is less than P(cond == true), i.e.
217 // P(t == true) <= P(cond == true)
218 //
219 // In other words, if we know P(cond == true) is unlikely, we know
220 // that P(t == true) is also unlikely.
221 //
updatePredecessorProfileMetadata(PHINode * PN,BasicBlock * BB)222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224 if (!CondBr)
225 return;
226
227 uint64_t TrueWeight, FalseWeight;
228 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229 return;
230
231 if (TrueWeight + FalseWeight == 0)
232 // Zero branch_weights do not give a hint for getting branch probabilities.
233 // Technically it would result in division by zero denominator, which is
234 // TrueWeight + FalseWeight.
235 return;
236
237 // Returns the outgoing edge of the dominating predecessor block
238 // that leads to the PhiNode's incoming block:
239 auto GetPredOutEdge =
240 [](BasicBlock *IncomingBB,
241 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242 auto *PredBB = IncomingBB;
243 auto *SuccBB = PhiBB;
244 SmallPtrSet<BasicBlock *, 16> Visited;
245 while (true) {
246 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247 if (PredBr && PredBr->isConditional())
248 return {PredBB, SuccBB};
249 Visited.insert(PredBB);
250 auto *SinglePredBB = PredBB->getSinglePredecessor();
251 if (!SinglePredBB)
252 return {nullptr, nullptr};
253
254 // Stop searching when SinglePredBB has been visited. It means we see
255 // an unreachable loop.
256 if (Visited.count(SinglePredBB))
257 return {nullptr, nullptr};
258
259 SuccBB = PredBB;
260 PredBB = SinglePredBB;
261 }
262 };
263
264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265 Value *PhiOpnd = PN->getIncomingValue(i);
266 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
267
268 if (!CI || !CI->getType()->isIntegerTy(1))
269 continue;
270
271 BranchProbability BP =
272 (CI->isOne() ? BranchProbability::getBranchProbability(
273 TrueWeight, TrueWeight + FalseWeight)
274 : BranchProbability::getBranchProbability(
275 FalseWeight, TrueWeight + FalseWeight));
276
277 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278 if (!PredOutEdge.first)
279 return;
280
281 BasicBlock *PredBB = PredOutEdge.first;
282 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283 if (!PredBr)
284 return;
285
286 uint64_t PredTrueWeight, PredFalseWeight;
287 // FIXME: We currently only set the profile data when it is missing.
288 // With PGO, this can be used to refine even existing profile data with
289 // context information. This needs to be done after more performance
290 // testing.
291 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292 continue;
293
294 // We can not infer anything useful when BP >= 50%, because BP is the
295 // upper bound probability value.
296 if (BP >= BranchProbability(50, 100))
297 continue;
298
299 SmallVector<uint32_t, 2> Weights;
300 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301 Weights.push_back(BP.getNumerator());
302 Weights.push_back(BP.getCompl().getNumerator());
303 } else {
304 Weights.push_back(BP.getCompl().getNumerator());
305 Weights.push_back(BP.getNumerator());
306 }
307 PredBr->setMetadata(LLVMContext::MD_prof,
308 MDBuilder(PredBr->getParent()->getContext())
309 .createBranchWeights(Weights));
310 }
311 }
312
313 /// runOnFunction - Toplevel algorithm.
runOnFunction(Function & F)314 bool JumpThreading::runOnFunction(Function &F) {
315 if (skipFunction(F))
316 return false;
317 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318 // Jump Threading has no sense for the targets with divergent CF
319 if (TTI->hasBranchDivergence())
320 return false;
321 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326 std::unique_ptr<BlockFrequencyInfo> BFI;
327 std::unique_ptr<BranchProbabilityInfo> BPI;
328 if (F.hasProfileData()) {
329 LoopInfo LI{DominatorTree(F)};
330 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332 }
333
334 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
335 std::move(BFI), std::move(BPI));
336 if (PrintLVIAfterJumpThreading) {
337 dbgs() << "LVI for function '" << F.getName() << "':\n";
338 LVI->printLVI(F, DTU.getDomTree(), dbgs());
339 }
340 return Changed;
341 }
342
run(Function & F,FunctionAnalysisManager & AM)343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344 FunctionAnalysisManager &AM) {
345 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346 // Jump Threading has no sense for the targets with divergent CF
347 if (TTI.hasBranchDivergence())
348 return PreservedAnalyses::all();
349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352 auto &AA = AM.getResult<AAManager>(F);
353 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
354
355 std::unique_ptr<BlockFrequencyInfo> BFI;
356 std::unique_ptr<BranchProbabilityInfo> BPI;
357 if (F.hasProfileData()) {
358 LoopInfo LI{DominatorTree(F)};
359 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
361 }
362
363 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
364 std::move(BFI), std::move(BPI));
365
366 if (PrintLVIAfterJumpThreading) {
367 dbgs() << "LVI for function '" << F.getName() << "':\n";
368 LVI.printLVI(F, DTU.getDomTree(), dbgs());
369 }
370
371 if (!Changed)
372 return PreservedAnalyses::all();
373 PreservedAnalyses PA;
374 PA.preserve<DominatorTreeAnalysis>();
375 PA.preserve<LazyValueAnalysis>();
376 return PA;
377 }
378
runImpl(Function & F,TargetLibraryInfo * TLI_,LazyValueInfo * LVI_,AliasAnalysis * AA_,DomTreeUpdater * DTU_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
380 LazyValueInfo *LVI_, AliasAnalysis *AA_,
381 DomTreeUpdater *DTU_, bool HasProfileData_,
382 std::unique_ptr<BlockFrequencyInfo> BFI_,
383 std::unique_ptr<BranchProbabilityInfo> BPI_) {
384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
385 TLI = TLI_;
386 LVI = LVI_;
387 AA = AA_;
388 DTU = DTU_;
389 BFI.reset();
390 BPI.reset();
391 // When profile data is available, we need to update edge weights after
392 // successful jump threading, which requires both BPI and BFI being available.
393 HasProfileData = HasProfileData_;
394 auto *GuardDecl = F.getParent()->getFunction(
395 Intrinsic::getName(Intrinsic::experimental_guard));
396 HasGuards = GuardDecl && !GuardDecl->use_empty();
397 if (HasProfileData) {
398 BPI = std::move(BPI_);
399 BFI = std::move(BFI_);
400 }
401
402 // Reduce the number of instructions duplicated when optimizing strictly for
403 // size.
404 if (BBDuplicateThreshold.getNumOccurrences())
405 BBDupThreshold = BBDuplicateThreshold;
406 else if (F.hasFnAttribute(Attribute::MinSize))
407 BBDupThreshold = 3;
408 else
409 BBDupThreshold = DefaultBBDupThreshold;
410
411 // JumpThreading must not processes blocks unreachable from entry. It's a
412 // waste of compute time and can potentially lead to hangs.
413 SmallPtrSet<BasicBlock *, 16> Unreachable;
414 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416 DominatorTree &DT = DTU->getDomTree();
417 for (auto &BB : F)
418 if (!DT.isReachableFromEntry(&BB))
419 Unreachable.insert(&BB);
420
421 if (!ThreadAcrossLoopHeaders)
422 findLoopHeaders(F);
423
424 bool EverChanged = false;
425 bool Changed;
426 do {
427 Changed = false;
428 for (auto &BB : F) {
429 if (Unreachable.count(&BB))
430 continue;
431 while (processBlock(&BB)) // Thread all of the branches we can over BB.
432 Changed = true;
433
434 // Jump threading may have introduced redundant debug values into BB
435 // which should be removed.
436 // Remove redundant pseudo probes as well.
437 if (Changed)
438 RemoveRedundantDbgInstrs(&BB, true);
439
440 // Stop processing BB if it's the entry or is now deleted. The following
441 // routines attempt to eliminate BB and locating a suitable replacement
442 // for the entry is non-trivial.
443 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
444 continue;
445
446 if (pred_empty(&BB)) {
447 // When processBlock makes BB unreachable it doesn't bother to fix up
448 // the instructions in it. We must remove BB to prevent invalid IR.
449 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
450 << "' with terminator: " << *BB.getTerminator()
451 << '\n');
452 LoopHeaders.erase(&BB);
453 LVI->eraseBlock(&BB);
454 DeleteDeadBlock(&BB, DTU);
455 Changed = true;
456 continue;
457 }
458
459 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
460 // is "almost empty", we attempt to merge BB with its sole successor.
461 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
462 if (BI && BI->isUnconditional()) {
463 BasicBlock *Succ = BI->getSuccessor(0);
464 if (
465 // The terminator must be the only non-phi instruction in BB.
466 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
467 // Don't alter Loop headers and latches to ensure another pass can
468 // detect and transform nested loops later.
469 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
470 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
471 RemoveRedundantDbgInstrs(Succ, true);
472 // BB is valid for cleanup here because we passed in DTU. F remains
473 // BB's parent until a DTU->getDomTree() event.
474 LVI->eraseBlock(&BB);
475 Changed = true;
476 }
477 }
478 }
479 EverChanged |= Changed;
480 } while (Changed);
481
482 LoopHeaders.clear();
483 return EverChanged;
484 }
485
486 // Replace uses of Cond with ToVal when safe to do so. If all uses are
487 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
488 // because we may incorrectly replace uses when guards/assumes are uses of
489 // of `Cond` and we used the guards/assume to reason about the `Cond` value
490 // at the end of block. RAUW unconditionally replaces all uses
491 // including the guards/assumes themselves and the uses before the
492 // guard/assume.
replaceFoldableUses(Instruction * Cond,Value * ToVal)493 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
494 assert(Cond->getType() == ToVal->getType());
495 auto *BB = Cond->getParent();
496 // We can unconditionally replace all uses in non-local blocks (i.e. uses
497 // strictly dominated by BB), since LVI information is true from the
498 // terminator of BB.
499 replaceNonLocalUsesWith(Cond, ToVal);
500 for (Instruction &I : reverse(*BB)) {
501 // Reached the Cond whose uses we are trying to replace, so there are no
502 // more uses.
503 if (&I == Cond)
504 break;
505 // We only replace uses in instructions that are guaranteed to reach the end
506 // of BB, where we know Cond is ToVal.
507 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
508 break;
509 I.replaceUsesOfWith(Cond, ToVal);
510 }
511 if (Cond->use_empty() && !Cond->mayHaveSideEffects())
512 Cond->eraseFromParent();
513 }
514
515 /// Return the cost of duplicating a piece of this block from first non-phi
516 /// and before StopAt instruction to thread across it. Stop scanning the block
517 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
getJumpThreadDuplicationCost(BasicBlock * BB,Instruction * StopAt,unsigned Threshold)518 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
519 Instruction *StopAt,
520 unsigned Threshold) {
521 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
522 /// Ignore PHI nodes, these will be flattened when duplication happens.
523 BasicBlock::const_iterator I(BB->getFirstNonPHI());
524
525 // FIXME: THREADING will delete values that are just used to compute the
526 // branch, so they shouldn't count against the duplication cost.
527
528 unsigned Bonus = 0;
529 if (BB->getTerminator() == StopAt) {
530 // Threading through a switch statement is particularly profitable. If this
531 // block ends in a switch, decrease its cost to make it more likely to
532 // happen.
533 if (isa<SwitchInst>(StopAt))
534 Bonus = 6;
535
536 // The same holds for indirect branches, but slightly more so.
537 if (isa<IndirectBrInst>(StopAt))
538 Bonus = 8;
539 }
540
541 // Bump the threshold up so the early exit from the loop doesn't skip the
542 // terminator-based Size adjustment at the end.
543 Threshold += Bonus;
544
545 // Sum up the cost of each instruction until we get to the terminator. Don't
546 // include the terminator because the copy won't include it.
547 unsigned Size = 0;
548 for (; &*I != StopAt; ++I) {
549
550 // Stop scanning the block if we've reached the threshold.
551 if (Size > Threshold)
552 return Size;
553
554 // Debugger intrinsics don't incur code size.
555 if (isa<DbgInfoIntrinsic>(I)) continue;
556
557 // Pseudo-probes don't incur code size.
558 if (isa<PseudoProbeInst>(I))
559 continue;
560
561 // If this is a pointer->pointer bitcast, it is free.
562 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
563 continue;
564
565 // Freeze instruction is free, too.
566 if (isa<FreezeInst>(I))
567 continue;
568
569 // Bail out if this instruction gives back a token type, it is not possible
570 // to duplicate it if it is used outside this BB.
571 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
572 return ~0U;
573
574 // All other instructions count for at least one unit.
575 ++Size;
576
577 // Calls are more expensive. If they are non-intrinsic calls, we model them
578 // as having cost of 4. If they are a non-vector intrinsic, we model them
579 // as having cost of 2 total, and if they are a vector intrinsic, we model
580 // them as having cost 1.
581 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
582 if (CI->cannotDuplicate() || CI->isConvergent())
583 // Blocks with NoDuplicate are modelled as having infinite cost, so they
584 // are never duplicated.
585 return ~0U;
586 else if (!isa<IntrinsicInst>(CI))
587 Size += 3;
588 else if (!CI->getType()->isVectorTy())
589 Size += 1;
590 }
591 }
592
593 return Size > Bonus ? Size - Bonus : 0;
594 }
595
596 /// findLoopHeaders - We do not want jump threading to turn proper loop
597 /// structures into irreducible loops. Doing this breaks up the loop nesting
598 /// hierarchy and pessimizes later transformations. To prevent this from
599 /// happening, we first have to find the loop headers. Here we approximate this
600 /// by finding targets of backedges in the CFG.
601 ///
602 /// Note that there definitely are cases when we want to allow threading of
603 /// edges across a loop header. For example, threading a jump from outside the
604 /// loop (the preheader) to an exit block of the loop is definitely profitable.
605 /// It is also almost always profitable to thread backedges from within the loop
606 /// to exit blocks, and is often profitable to thread backedges to other blocks
607 /// within the loop (forming a nested loop). This simple analysis is not rich
608 /// enough to track all of these properties and keep it up-to-date as the CFG
609 /// mutates, so we don't allow any of these transformations.
findLoopHeaders(Function & F)610 void JumpThreadingPass::findLoopHeaders(Function &F) {
611 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
612 FindFunctionBackedges(F, Edges);
613
614 for (const auto &Edge : Edges)
615 LoopHeaders.insert(Edge.second);
616 }
617
618 /// getKnownConstant - Helper method to determine if we can thread over a
619 /// terminator with the given value as its condition, and if so what value to
620 /// use for that. What kind of value this is depends on whether we want an
621 /// integer or a block address, but an undef is always accepted.
622 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)623 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
624 if (!Val)
625 return nullptr;
626
627 // Undef is "known" enough.
628 if (UndefValue *U = dyn_cast<UndefValue>(Val))
629 return U;
630
631 if (Preference == WantBlockAddress)
632 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
633
634 return dyn_cast<ConstantInt>(Val);
635 }
636
637 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
638 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
639 /// in any of our predecessors. If so, return the known list of value and pred
640 /// BB in the result vector.
641 ///
642 /// This returns true if there were any known values.
computeValueKnownInPredecessorsImpl(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,DenseSet<Value * > & RecursionSet,Instruction * CxtI)643 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
644 Value *V, BasicBlock *BB, PredValueInfo &Result,
645 ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
646 Instruction *CxtI) {
647 // This method walks up use-def chains recursively. Because of this, we could
648 // get into an infinite loop going around loops in the use-def chain. To
649 // prevent this, keep track of what (value, block) pairs we've already visited
650 // and terminate the search if we loop back to them
651 if (!RecursionSet.insert(V).second)
652 return false;
653
654 // If V is a constant, then it is known in all predecessors.
655 if (Constant *KC = getKnownConstant(V, Preference)) {
656 for (BasicBlock *Pred : predecessors(BB))
657 Result.emplace_back(KC, Pred);
658
659 return !Result.empty();
660 }
661
662 // If V is a non-instruction value, or an instruction in a different block,
663 // then it can't be derived from a PHI.
664 Instruction *I = dyn_cast<Instruction>(V);
665 if (!I || I->getParent() != BB) {
666
667 // Okay, if this is a live-in value, see if it has a known value at the end
668 // of any of our predecessors.
669 //
670 // FIXME: This should be an edge property, not a block end property.
671 /// TODO: Per PR2563, we could infer value range information about a
672 /// predecessor based on its terminator.
673 //
674 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
675 // "I" is a non-local compare-with-a-constant instruction. This would be
676 // able to handle value inequalities better, for example if the compare is
677 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
678 // Perhaps getConstantOnEdge should be smart enough to do this?
679 for (BasicBlock *P : predecessors(BB)) {
680 // If the value is known by LazyValueInfo to be a constant in a
681 // predecessor, use that information to try to thread this block.
682 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
683 if (Constant *KC = getKnownConstant(PredCst, Preference))
684 Result.emplace_back(KC, P);
685 }
686
687 return !Result.empty();
688 }
689
690 /// If I is a PHI node, then we know the incoming values for any constants.
691 if (PHINode *PN = dyn_cast<PHINode>(I)) {
692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
693 Value *InVal = PN->getIncomingValue(i);
694 if (Constant *KC = getKnownConstant(InVal, Preference)) {
695 Result.emplace_back(KC, PN->getIncomingBlock(i));
696 } else {
697 Constant *CI = LVI->getConstantOnEdge(InVal,
698 PN->getIncomingBlock(i),
699 BB, CxtI);
700 if (Constant *KC = getKnownConstant(CI, Preference))
701 Result.emplace_back(KC, PN->getIncomingBlock(i));
702 }
703 }
704
705 return !Result.empty();
706 }
707
708 // Handle Cast instructions.
709 if (CastInst *CI = dyn_cast<CastInst>(I)) {
710 Value *Source = CI->getOperand(0);
711 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
712 RecursionSet, CxtI);
713 if (Result.empty())
714 return false;
715
716 // Convert the known values.
717 for (auto &R : Result)
718 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
719
720 return true;
721 }
722
723 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
724 Value *Source = FI->getOperand(0);
725 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
726 RecursionSet, CxtI);
727
728 erase_if(Result, [](auto &Pair) {
729 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
730 });
731
732 return !Result.empty();
733 }
734
735 // Handle some boolean conditions.
736 if (I->getType()->getPrimitiveSizeInBits() == 1) {
737 using namespace PatternMatch;
738
739 assert(Preference == WantInteger && "One-bit non-integer type?");
740 // X | true -> true
741 // X & false -> false
742 Value *Op0, *Op1;
743 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
744 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
745 PredValueInfoTy LHSVals, RHSVals;
746
747 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
748 RecursionSet, CxtI);
749 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
750 RecursionSet, CxtI);
751
752 if (LHSVals.empty() && RHSVals.empty())
753 return false;
754
755 ConstantInt *InterestingVal;
756 if (match(I, m_LogicalOr()))
757 InterestingVal = ConstantInt::getTrue(I->getContext());
758 else
759 InterestingVal = ConstantInt::getFalse(I->getContext());
760
761 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
762
763 // Scan for the sentinel. If we find an undef, force it to the
764 // interesting value: x|undef -> true and x&undef -> false.
765 for (const auto &LHSVal : LHSVals)
766 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
767 Result.emplace_back(InterestingVal, LHSVal.second);
768 LHSKnownBBs.insert(LHSVal.second);
769 }
770 for (const auto &RHSVal : RHSVals)
771 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
772 // If we already inferred a value for this block on the LHS, don't
773 // re-add it.
774 if (!LHSKnownBBs.count(RHSVal.second))
775 Result.emplace_back(InterestingVal, RHSVal.second);
776 }
777
778 return !Result.empty();
779 }
780
781 // Handle the NOT form of XOR.
782 if (I->getOpcode() == Instruction::Xor &&
783 isa<ConstantInt>(I->getOperand(1)) &&
784 cast<ConstantInt>(I->getOperand(1))->isOne()) {
785 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
786 WantInteger, RecursionSet, CxtI);
787 if (Result.empty())
788 return false;
789
790 // Invert the known values.
791 for (auto &R : Result)
792 R.first = ConstantExpr::getNot(R.first);
793
794 return true;
795 }
796
797 // Try to simplify some other binary operator values.
798 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
799 assert(Preference != WantBlockAddress
800 && "A binary operator creating a block address?");
801 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
802 PredValueInfoTy LHSVals;
803 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
804 WantInteger, RecursionSet, CxtI);
805
806 // Try to use constant folding to simplify the binary operator.
807 for (const auto &LHSVal : LHSVals) {
808 Constant *V = LHSVal.first;
809 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
810
811 if (Constant *KC = getKnownConstant(Folded, WantInteger))
812 Result.emplace_back(KC, LHSVal.second);
813 }
814 }
815
816 return !Result.empty();
817 }
818
819 // Handle compare with phi operand, where the PHI is defined in this block.
820 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
821 assert(Preference == WantInteger && "Compares only produce integers");
822 Type *CmpType = Cmp->getType();
823 Value *CmpLHS = Cmp->getOperand(0);
824 Value *CmpRHS = Cmp->getOperand(1);
825 CmpInst::Predicate Pred = Cmp->getPredicate();
826
827 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
828 if (!PN)
829 PN = dyn_cast<PHINode>(CmpRHS);
830 if (PN && PN->getParent() == BB) {
831 const DataLayout &DL = PN->getModule()->getDataLayout();
832 // We can do this simplification if any comparisons fold to true or false.
833 // See if any do.
834 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
835 BasicBlock *PredBB = PN->getIncomingBlock(i);
836 Value *LHS, *RHS;
837 if (PN == CmpLHS) {
838 LHS = PN->getIncomingValue(i);
839 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
840 } else {
841 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
842 RHS = PN->getIncomingValue(i);
843 }
844 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
845 if (!Res) {
846 if (!isa<Constant>(RHS))
847 continue;
848
849 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
850 auto LHSInst = dyn_cast<Instruction>(LHS);
851 if (LHSInst && LHSInst->getParent() == BB)
852 continue;
853
854 LazyValueInfo::Tristate
855 ResT = LVI->getPredicateOnEdge(Pred, LHS,
856 cast<Constant>(RHS), PredBB, BB,
857 CxtI ? CxtI : Cmp);
858 if (ResT == LazyValueInfo::Unknown)
859 continue;
860 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
861 }
862
863 if (Constant *KC = getKnownConstant(Res, WantInteger))
864 Result.emplace_back(KC, PredBB);
865 }
866
867 return !Result.empty();
868 }
869
870 // If comparing a live-in value against a constant, see if we know the
871 // live-in value on any predecessors.
872 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
873 Constant *CmpConst = cast<Constant>(CmpRHS);
874
875 if (!isa<Instruction>(CmpLHS) ||
876 cast<Instruction>(CmpLHS)->getParent() != BB) {
877 for (BasicBlock *P : predecessors(BB)) {
878 // If the value is known by LazyValueInfo to be a constant in a
879 // predecessor, use that information to try to thread this block.
880 LazyValueInfo::Tristate Res =
881 LVI->getPredicateOnEdge(Pred, CmpLHS,
882 CmpConst, P, BB, CxtI ? CxtI : Cmp);
883 if (Res == LazyValueInfo::Unknown)
884 continue;
885
886 Constant *ResC = ConstantInt::get(CmpType, Res);
887 Result.emplace_back(ResC, P);
888 }
889
890 return !Result.empty();
891 }
892
893 // InstCombine can fold some forms of constant range checks into
894 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
895 // x as a live-in.
896 {
897 using namespace PatternMatch;
898
899 Value *AddLHS;
900 ConstantInt *AddConst;
901 if (isa<ConstantInt>(CmpConst) &&
902 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
903 if (!isa<Instruction>(AddLHS) ||
904 cast<Instruction>(AddLHS)->getParent() != BB) {
905 for (BasicBlock *P : predecessors(BB)) {
906 // If the value is known by LazyValueInfo to be a ConstantRange in
907 // a predecessor, use that information to try to thread this
908 // block.
909 ConstantRange CR = LVI->getConstantRangeOnEdge(
910 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
911 // Propagate the range through the addition.
912 CR = CR.add(AddConst->getValue());
913
914 // Get the range where the compare returns true.
915 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
916 Pred, cast<ConstantInt>(CmpConst)->getValue());
917
918 Constant *ResC;
919 if (CmpRange.contains(CR))
920 ResC = ConstantInt::getTrue(CmpType);
921 else if (CmpRange.inverse().contains(CR))
922 ResC = ConstantInt::getFalse(CmpType);
923 else
924 continue;
925
926 Result.emplace_back(ResC, P);
927 }
928
929 return !Result.empty();
930 }
931 }
932 }
933
934 // Try to find a constant value for the LHS of a comparison,
935 // and evaluate it statically if we can.
936 PredValueInfoTy LHSVals;
937 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
938 WantInteger, RecursionSet, CxtI);
939
940 for (const auto &LHSVal : LHSVals) {
941 Constant *V = LHSVal.first;
942 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
943 if (Constant *KC = getKnownConstant(Folded, WantInteger))
944 Result.emplace_back(KC, LHSVal.second);
945 }
946
947 return !Result.empty();
948 }
949 }
950
951 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
952 // Handle select instructions where at least one operand is a known constant
953 // and we can figure out the condition value for any predecessor block.
954 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
955 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
956 PredValueInfoTy Conds;
957 if ((TrueVal || FalseVal) &&
958 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
959 WantInteger, RecursionSet, CxtI)) {
960 for (auto &C : Conds) {
961 Constant *Cond = C.first;
962
963 // Figure out what value to use for the condition.
964 bool KnownCond;
965 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
966 // A known boolean.
967 KnownCond = CI->isOne();
968 } else {
969 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
970 // Either operand will do, so be sure to pick the one that's a known
971 // constant.
972 // FIXME: Do this more cleverly if both values are known constants?
973 KnownCond = (TrueVal != nullptr);
974 }
975
976 // See if the select has a known constant value for this predecessor.
977 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
978 Result.emplace_back(Val, C.second);
979 }
980
981 return !Result.empty();
982 }
983 }
984
985 // If all else fails, see if LVI can figure out a constant value for us.
986 assert(CxtI->getParent() == BB && "CxtI should be in BB");
987 Constant *CI = LVI->getConstant(V, CxtI);
988 if (Constant *KC = getKnownConstant(CI, Preference)) {
989 for (BasicBlock *Pred : predecessors(BB))
990 Result.emplace_back(KC, Pred);
991 }
992
993 return !Result.empty();
994 }
995
996 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
997 /// in an undefined jump, decide which block is best to revector to.
998 ///
999 /// Since we can pick an arbitrary destination, we pick the successor with the
1000 /// fewest predecessors. This should reduce the in-degree of the others.
getBestDestForJumpOnUndef(BasicBlock * BB)1001 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1002 Instruction *BBTerm = BB->getTerminator();
1003 unsigned MinSucc = 0;
1004 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1005 // Compute the successor with the minimum number of predecessors.
1006 unsigned MinNumPreds = pred_size(TestBB);
1007 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1008 TestBB = BBTerm->getSuccessor(i);
1009 unsigned NumPreds = pred_size(TestBB);
1010 if (NumPreds < MinNumPreds) {
1011 MinSucc = i;
1012 MinNumPreds = NumPreds;
1013 }
1014 }
1015
1016 return MinSucc;
1017 }
1018
hasAddressTakenAndUsed(BasicBlock * BB)1019 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1020 if (!BB->hasAddressTaken()) return false;
1021
1022 // If the block has its address taken, it may be a tree of dead constants
1023 // hanging off of it. These shouldn't keep the block alive.
1024 BlockAddress *BA = BlockAddress::get(BB);
1025 BA->removeDeadConstantUsers();
1026 return !BA->use_empty();
1027 }
1028
1029 /// processBlock - If there are any predecessors whose control can be threaded
1030 /// through to a successor, transform them now.
processBlock(BasicBlock * BB)1031 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1032 // If the block is trivially dead, just return and let the caller nuke it.
1033 // This simplifies other transformations.
1034 if (DTU->isBBPendingDeletion(BB) ||
1035 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1036 return false;
1037
1038 // If this block has a single predecessor, and if that pred has a single
1039 // successor, merge the blocks. This encourages recursive jump threading
1040 // because now the condition in this block can be threaded through
1041 // predecessors of our predecessor block.
1042 if (maybeMergeBasicBlockIntoOnlyPred(BB))
1043 return true;
1044
1045 if (tryToUnfoldSelectInCurrBB(BB))
1046 return true;
1047
1048 // Look if we can propagate guards to predecessors.
1049 if (HasGuards && processGuards(BB))
1050 return true;
1051
1052 // What kind of constant we're looking for.
1053 ConstantPreference Preference = WantInteger;
1054
1055 // Look to see if the terminator is a conditional branch, switch or indirect
1056 // branch, if not we can't thread it.
1057 Value *Condition;
1058 Instruction *Terminator = BB->getTerminator();
1059 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1060 // Can't thread an unconditional jump.
1061 if (BI->isUnconditional()) return false;
1062 Condition = BI->getCondition();
1063 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1064 Condition = SI->getCondition();
1065 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1066 // Can't thread indirect branch with no successors.
1067 if (IB->getNumSuccessors() == 0) return false;
1068 Condition = IB->getAddress()->stripPointerCasts();
1069 Preference = WantBlockAddress;
1070 } else {
1071 return false; // Must be an invoke or callbr.
1072 }
1073
1074 // Keep track if we constant folded the condition in this invocation.
1075 bool ConstantFolded = false;
1076
1077 // Run constant folding to see if we can reduce the condition to a simple
1078 // constant.
1079 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1080 Value *SimpleVal =
1081 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1082 if (SimpleVal) {
1083 I->replaceAllUsesWith(SimpleVal);
1084 if (isInstructionTriviallyDead(I, TLI))
1085 I->eraseFromParent();
1086 Condition = SimpleVal;
1087 ConstantFolded = true;
1088 }
1089 }
1090
1091 // If the terminator is branching on an undef or freeze undef, we can pick any
1092 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1093 auto *FI = dyn_cast<FreezeInst>(Condition);
1094 if (isa<UndefValue>(Condition) ||
1095 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1096 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1097 std::vector<DominatorTree::UpdateType> Updates;
1098
1099 // Fold the branch/switch.
1100 Instruction *BBTerm = BB->getTerminator();
1101 Updates.reserve(BBTerm->getNumSuccessors());
1102 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1103 if (i == BestSucc) continue;
1104 BasicBlock *Succ = BBTerm->getSuccessor(i);
1105 Succ->removePredecessor(BB, true);
1106 Updates.push_back({DominatorTree::Delete, BB, Succ});
1107 }
1108
1109 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1110 << "' folding undef terminator: " << *BBTerm << '\n');
1111 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1112 ++NumFolds;
1113 BBTerm->eraseFromParent();
1114 DTU->applyUpdatesPermissive(Updates);
1115 if (FI)
1116 FI->eraseFromParent();
1117 return true;
1118 }
1119
1120 // If the terminator of this block is branching on a constant, simplify the
1121 // terminator to an unconditional branch. This can occur due to threading in
1122 // other blocks.
1123 if (getKnownConstant(Condition, Preference)) {
1124 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1125 << "' folding terminator: " << *BB->getTerminator()
1126 << '\n');
1127 ++NumFolds;
1128 ConstantFoldTerminator(BB, true, nullptr, DTU);
1129 if (HasProfileData)
1130 BPI->eraseBlock(BB);
1131 return true;
1132 }
1133
1134 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1135
1136 // All the rest of our checks depend on the condition being an instruction.
1137 if (!CondInst) {
1138 // FIXME: Unify this with code below.
1139 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1140 return true;
1141 return ConstantFolded;
1142 }
1143
1144 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1145 // If we're branching on a conditional, LVI might be able to determine
1146 // it's value at the branch instruction. We only handle comparisons
1147 // against a constant at this time.
1148 // TODO: This should be extended to handle switches as well.
1149 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1150 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1151 if (CondBr && CondConst) {
1152 // We should have returned as soon as we turn a conditional branch to
1153 // unconditional. Because its no longer interesting as far as jump
1154 // threading is concerned.
1155 assert(CondBr->isConditional() && "Threading on unconditional terminator");
1156
1157 LazyValueInfo::Tristate Ret =
1158 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1159 CondConst, CondBr, /*UseBlockValue=*/false);
1160 if (Ret != LazyValueInfo::Unknown) {
1161 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1162 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1163 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1164 ToRemoveSucc->removePredecessor(BB, true);
1165 BranchInst *UncondBr =
1166 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1167 UncondBr->setDebugLoc(CondBr->getDebugLoc());
1168 ++NumFolds;
1169 CondBr->eraseFromParent();
1170 if (CondCmp->use_empty())
1171 CondCmp->eraseFromParent();
1172 // We can safely replace *some* uses of the CondInst if it has
1173 // exactly one value as returned by LVI. RAUW is incorrect in the
1174 // presence of guards and assumes, that have the `Cond` as the use. This
1175 // is because we use the guards/assume to reason about the `Cond` value
1176 // at the end of block, but RAUW unconditionally replaces all uses
1177 // including the guards/assumes themselves and the uses before the
1178 // guard/assume.
1179 else if (CondCmp->getParent() == BB) {
1180 auto *CI = Ret == LazyValueInfo::True ?
1181 ConstantInt::getTrue(CondCmp->getType()) :
1182 ConstantInt::getFalse(CondCmp->getType());
1183 replaceFoldableUses(CondCmp, CI);
1184 }
1185 DTU->applyUpdatesPermissive(
1186 {{DominatorTree::Delete, BB, ToRemoveSucc}});
1187 if (HasProfileData)
1188 BPI->eraseBlock(BB);
1189 return true;
1190 }
1191
1192 // We did not manage to simplify this branch, try to see whether
1193 // CondCmp depends on a known phi-select pattern.
1194 if (tryToUnfoldSelect(CondCmp, BB))
1195 return true;
1196 }
1197 }
1198
1199 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1200 if (tryToUnfoldSelect(SI, BB))
1201 return true;
1202
1203 // Check for some cases that are worth simplifying. Right now we want to look
1204 // for loads that are used by a switch or by the condition for the branch. If
1205 // we see one, check to see if it's partially redundant. If so, insert a PHI
1206 // which can then be used to thread the values.
1207 Value *SimplifyValue = CondInst;
1208
1209 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1210 // Look into freeze's operand
1211 SimplifyValue = FI->getOperand(0);
1212
1213 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1214 if (isa<Constant>(CondCmp->getOperand(1)))
1215 SimplifyValue = CondCmp->getOperand(0);
1216
1217 // TODO: There are other places where load PRE would be profitable, such as
1218 // more complex comparisons.
1219 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1220 if (simplifyPartiallyRedundantLoad(LoadI))
1221 return true;
1222
1223 // Before threading, try to propagate profile data backwards:
1224 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1225 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1226 updatePredecessorProfileMetadata(PN, BB);
1227
1228 // Handle a variety of cases where we are branching on something derived from
1229 // a PHI node in the current block. If we can prove that any predecessors
1230 // compute a predictable value based on a PHI node, thread those predecessors.
1231 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1232 return true;
1233
1234 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1235 // the current block, see if we can simplify.
1236 PHINode *PN = dyn_cast<PHINode>(
1237 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1238 : CondInst);
1239
1240 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1241 return processBranchOnPHI(PN);
1242
1243 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1244 if (CondInst->getOpcode() == Instruction::Xor &&
1245 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1246 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1247
1248 // Search for a stronger dominating condition that can be used to simplify a
1249 // conditional branch leaving BB.
1250 if (processImpliedCondition(BB))
1251 return true;
1252
1253 return false;
1254 }
1255
processImpliedCondition(BasicBlock * BB)1256 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1257 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1258 if (!BI || !BI->isConditional())
1259 return false;
1260
1261 Value *Cond = BI->getCondition();
1262 BasicBlock *CurrentBB = BB;
1263 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1264 unsigned Iter = 0;
1265
1266 auto &DL = BB->getModule()->getDataLayout();
1267
1268 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1269 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1270 if (!PBI || !PBI->isConditional())
1271 return false;
1272 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1273 return false;
1274
1275 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1276 Optional<bool> Implication =
1277 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1278 if (Implication) {
1279 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1280 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1281 RemoveSucc->removePredecessor(BB);
1282 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1283 UncondBI->setDebugLoc(BI->getDebugLoc());
1284 ++NumFolds;
1285 BI->eraseFromParent();
1286 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1287 if (HasProfileData)
1288 BPI->eraseBlock(BB);
1289 return true;
1290 }
1291 CurrentBB = CurrentPred;
1292 CurrentPred = CurrentBB->getSinglePredecessor();
1293 }
1294
1295 return false;
1296 }
1297
1298 /// Return true if Op is an instruction defined in the given block.
isOpDefinedInBlock(Value * Op,BasicBlock * BB)1299 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1300 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1301 if (OpInst->getParent() == BB)
1302 return true;
1303 return false;
1304 }
1305
1306 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1307 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1308 /// This is an important optimization that encourages jump threading, and needs
1309 /// to be run interlaced with other jump threading tasks.
simplifyPartiallyRedundantLoad(LoadInst * LoadI)1310 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1311 // Don't hack volatile and ordered loads.
1312 if (!LoadI->isUnordered()) return false;
1313
1314 // If the load is defined in a block with exactly one predecessor, it can't be
1315 // partially redundant.
1316 BasicBlock *LoadBB = LoadI->getParent();
1317 if (LoadBB->getSinglePredecessor())
1318 return false;
1319
1320 // If the load is defined in an EH pad, it can't be partially redundant,
1321 // because the edges between the invoke and the EH pad cannot have other
1322 // instructions between them.
1323 if (LoadBB->isEHPad())
1324 return false;
1325
1326 Value *LoadedPtr = LoadI->getOperand(0);
1327
1328 // If the loaded operand is defined in the LoadBB and its not a phi,
1329 // it can't be available in predecessors.
1330 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1331 return false;
1332
1333 // Scan a few instructions up from the load, to see if it is obviously live at
1334 // the entry to its block.
1335 BasicBlock::iterator BBIt(LoadI);
1336 bool IsLoadCSE;
1337 if (Value *AvailableVal = FindAvailableLoadedValue(
1338 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1339 // If the value of the load is locally available within the block, just use
1340 // it. This frequently occurs for reg2mem'd allocas.
1341
1342 if (IsLoadCSE) {
1343 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1344 combineMetadataForCSE(NLoadI, LoadI, false);
1345 };
1346
1347 // If the returned value is the load itself, replace with an undef. This can
1348 // only happen in dead loops.
1349 if (AvailableVal == LoadI)
1350 AvailableVal = UndefValue::get(LoadI->getType());
1351 if (AvailableVal->getType() != LoadI->getType())
1352 AvailableVal = CastInst::CreateBitOrPointerCast(
1353 AvailableVal, LoadI->getType(), "", LoadI);
1354 LoadI->replaceAllUsesWith(AvailableVal);
1355 LoadI->eraseFromParent();
1356 return true;
1357 }
1358
1359 // Otherwise, if we scanned the whole block and got to the top of the block,
1360 // we know the block is locally transparent to the load. If not, something
1361 // might clobber its value.
1362 if (BBIt != LoadBB->begin())
1363 return false;
1364
1365 // If all of the loads and stores that feed the value have the same AA tags,
1366 // then we can propagate them onto any newly inserted loads.
1367 AAMDNodes AATags;
1368 LoadI->getAAMetadata(AATags);
1369
1370 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1371
1372 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1373
1374 AvailablePredsTy AvailablePreds;
1375 BasicBlock *OneUnavailablePred = nullptr;
1376 SmallVector<LoadInst*, 8> CSELoads;
1377
1378 // If we got here, the loaded value is transparent through to the start of the
1379 // block. Check to see if it is available in any of the predecessor blocks.
1380 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1381 // If we already scanned this predecessor, skip it.
1382 if (!PredsScanned.insert(PredBB).second)
1383 continue;
1384
1385 BBIt = PredBB->end();
1386 unsigned NumScanedInst = 0;
1387 Value *PredAvailable = nullptr;
1388 // NOTE: We don't CSE load that is volatile or anything stronger than
1389 // unordered, that should have been checked when we entered the function.
1390 assert(LoadI->isUnordered() &&
1391 "Attempting to CSE volatile or atomic loads");
1392 // If this is a load on a phi pointer, phi-translate it and search
1393 // for available load/store to the pointer in predecessors.
1394 Type *AccessTy = LoadI->getType();
1395 const auto &DL = LoadI->getModule()->getDataLayout();
1396 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1397 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1398 AATags);
1399 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1400 PredBB, BBIt, DefMaxInstsToScan,
1401 AA, &IsLoadCSE, &NumScanedInst);
1402
1403 // If PredBB has a single predecessor, continue scanning through the
1404 // single predecessor.
1405 BasicBlock *SinglePredBB = PredBB;
1406 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1407 NumScanedInst < DefMaxInstsToScan) {
1408 SinglePredBB = SinglePredBB->getSinglePredecessor();
1409 if (SinglePredBB) {
1410 BBIt = SinglePredBB->end();
1411 PredAvailable = findAvailablePtrLoadStore(
1412 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1413 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1414 &NumScanedInst);
1415 }
1416 }
1417
1418 if (!PredAvailable) {
1419 OneUnavailablePred = PredBB;
1420 continue;
1421 }
1422
1423 if (IsLoadCSE)
1424 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1425
1426 // If so, this load is partially redundant. Remember this info so that we
1427 // can create a PHI node.
1428 AvailablePreds.emplace_back(PredBB, PredAvailable);
1429 }
1430
1431 // If the loaded value isn't available in any predecessor, it isn't partially
1432 // redundant.
1433 if (AvailablePreds.empty()) return false;
1434
1435 // Okay, the loaded value is available in at least one (and maybe all!)
1436 // predecessors. If the value is unavailable in more than one unique
1437 // predecessor, we want to insert a merge block for those common predecessors.
1438 // This ensures that we only have to insert one reload, thus not increasing
1439 // code size.
1440 BasicBlock *UnavailablePred = nullptr;
1441
1442 // If the value is unavailable in one of predecessors, we will end up
1443 // inserting a new instruction into them. It is only valid if all the
1444 // instructions before LoadI are guaranteed to pass execution to its
1445 // successor, or if LoadI is safe to speculate.
1446 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1447 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1448 // It requires domination tree analysis, so for this simple case it is an
1449 // overkill.
1450 if (PredsScanned.size() != AvailablePreds.size() &&
1451 !isSafeToSpeculativelyExecute(LoadI))
1452 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1453 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1454 return false;
1455
1456 // If there is exactly one predecessor where the value is unavailable, the
1457 // already computed 'OneUnavailablePred' block is it. If it ends in an
1458 // unconditional branch, we know that it isn't a critical edge.
1459 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1460 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1461 UnavailablePred = OneUnavailablePred;
1462 } else if (PredsScanned.size() != AvailablePreds.size()) {
1463 // Otherwise, we had multiple unavailable predecessors or we had a critical
1464 // edge from the one.
1465 SmallVector<BasicBlock*, 8> PredsToSplit;
1466 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1467
1468 for (const auto &AvailablePred : AvailablePreds)
1469 AvailablePredSet.insert(AvailablePred.first);
1470
1471 // Add all the unavailable predecessors to the PredsToSplit list.
1472 for (BasicBlock *P : predecessors(LoadBB)) {
1473 // If the predecessor is an indirect goto, we can't split the edge.
1474 // Same for CallBr.
1475 if (isa<IndirectBrInst>(P->getTerminator()) ||
1476 isa<CallBrInst>(P->getTerminator()))
1477 return false;
1478
1479 if (!AvailablePredSet.count(P))
1480 PredsToSplit.push_back(P);
1481 }
1482
1483 // Split them out to their own block.
1484 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1485 }
1486
1487 // If the value isn't available in all predecessors, then there will be
1488 // exactly one where it isn't available. Insert a load on that edge and add
1489 // it to the AvailablePreds list.
1490 if (UnavailablePred) {
1491 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1492 "Can't handle critical edge here!");
1493 LoadInst *NewVal = new LoadInst(
1494 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1495 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1496 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1497 UnavailablePred->getTerminator());
1498 NewVal->setDebugLoc(LoadI->getDebugLoc());
1499 if (AATags)
1500 NewVal->setAAMetadata(AATags);
1501
1502 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1503 }
1504
1505 // Now we know that each predecessor of this block has a value in
1506 // AvailablePreds, sort them for efficient access as we're walking the preds.
1507 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1508
1509 // Create a PHI node at the start of the block for the PRE'd load value.
1510 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1511 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1512 &LoadBB->front());
1513 PN->takeName(LoadI);
1514 PN->setDebugLoc(LoadI->getDebugLoc());
1515
1516 // Insert new entries into the PHI for each predecessor. A single block may
1517 // have multiple entries here.
1518 for (pred_iterator PI = PB; PI != PE; ++PI) {
1519 BasicBlock *P = *PI;
1520 AvailablePredsTy::iterator I =
1521 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1522
1523 assert(I != AvailablePreds.end() && I->first == P &&
1524 "Didn't find entry for predecessor!");
1525
1526 // If we have an available predecessor but it requires casting, insert the
1527 // cast in the predecessor and use the cast. Note that we have to update the
1528 // AvailablePreds vector as we go so that all of the PHI entries for this
1529 // predecessor use the same bitcast.
1530 Value *&PredV = I->second;
1531 if (PredV->getType() != LoadI->getType())
1532 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1533 P->getTerminator());
1534
1535 PN->addIncoming(PredV, I->first);
1536 }
1537
1538 for (LoadInst *PredLoadI : CSELoads) {
1539 combineMetadataForCSE(PredLoadI, LoadI, true);
1540 }
1541
1542 LoadI->replaceAllUsesWith(PN);
1543 LoadI->eraseFromParent();
1544
1545 return true;
1546 }
1547
1548 /// findMostPopularDest - The specified list contains multiple possible
1549 /// threadable destinations. Pick the one that occurs the most frequently in
1550 /// the list.
1551 static BasicBlock *
findMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1552 findMostPopularDest(BasicBlock *BB,
1553 const SmallVectorImpl<std::pair<BasicBlock *,
1554 BasicBlock *>> &PredToDestList) {
1555 assert(!PredToDestList.empty());
1556
1557 // Determine popularity. If there are multiple possible destinations, we
1558 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1559 // blocks with known and real destinations to threading undef. We'll handle
1560 // them later if interesting.
1561 MapVector<BasicBlock *, unsigned> DestPopularity;
1562
1563 // Populate DestPopularity with the successors in the order they appear in the
1564 // successor list. This way, we ensure determinism by iterating it in the
1565 // same order in std::max_element below. We map nullptr to 0 so that we can
1566 // return nullptr when PredToDestList contains nullptr only.
1567 DestPopularity[nullptr] = 0;
1568 for (auto *SuccBB : successors(BB))
1569 DestPopularity[SuccBB] = 0;
1570
1571 for (const auto &PredToDest : PredToDestList)
1572 if (PredToDest.second)
1573 DestPopularity[PredToDest.second]++;
1574
1575 // Find the most popular dest.
1576 using VT = decltype(DestPopularity)::value_type;
1577 auto MostPopular = std::max_element(
1578 DestPopularity.begin(), DestPopularity.end(),
1579 [](const VT &L, const VT &R) { return L.second < R.second; });
1580
1581 // Okay, we have finally picked the most popular destination.
1582 return MostPopular->first;
1583 }
1584
1585 // Try to evaluate the value of V when the control flows from PredPredBB to
1586 // BB->getSinglePredecessor() and then on to BB.
evaluateOnPredecessorEdge(BasicBlock * BB,BasicBlock * PredPredBB,Value * V)1587 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1588 BasicBlock *PredPredBB,
1589 Value *V) {
1590 BasicBlock *PredBB = BB->getSinglePredecessor();
1591 assert(PredBB && "Expected a single predecessor");
1592
1593 if (Constant *Cst = dyn_cast<Constant>(V)) {
1594 return Cst;
1595 }
1596
1597 // Consult LVI if V is not an instruction in BB or PredBB.
1598 Instruction *I = dyn_cast<Instruction>(V);
1599 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1600 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1601 }
1602
1603 // Look into a PHI argument.
1604 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1605 if (PHI->getParent() == PredBB)
1606 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1607 return nullptr;
1608 }
1609
1610 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1611 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1612 if (CondCmp->getParent() == BB) {
1613 Constant *Op0 =
1614 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1615 Constant *Op1 =
1616 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1617 if (Op0 && Op1) {
1618 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1619 }
1620 }
1621 return nullptr;
1622 }
1623
1624 return nullptr;
1625 }
1626
processThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1627 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1628 ConstantPreference Preference,
1629 Instruction *CxtI) {
1630 // If threading this would thread across a loop header, don't even try to
1631 // thread the edge.
1632 if (LoopHeaders.count(BB))
1633 return false;
1634
1635 PredValueInfoTy PredValues;
1636 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1637 CxtI)) {
1638 // We don't have known values in predecessors. See if we can thread through
1639 // BB and its sole predecessor.
1640 return maybethreadThroughTwoBasicBlocks(BB, Cond);
1641 }
1642
1643 assert(!PredValues.empty() &&
1644 "computeValueKnownInPredecessors returned true with no values");
1645
1646 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1647 for (const auto &PredValue : PredValues) {
1648 dbgs() << " BB '" << BB->getName()
1649 << "': FOUND condition = " << *PredValue.first
1650 << " for pred '" << PredValue.second->getName() << "'.\n";
1651 });
1652
1653 // Decide what we want to thread through. Convert our list of known values to
1654 // a list of known destinations for each pred. This also discards duplicate
1655 // predecessors and keeps track of the undefined inputs (which are represented
1656 // as a null dest in the PredToDestList).
1657 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1658 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1659
1660 BasicBlock *OnlyDest = nullptr;
1661 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1662 Constant *OnlyVal = nullptr;
1663 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1664
1665 for (const auto &PredValue : PredValues) {
1666 BasicBlock *Pred = PredValue.second;
1667 if (!SeenPreds.insert(Pred).second)
1668 continue; // Duplicate predecessor entry.
1669
1670 Constant *Val = PredValue.first;
1671
1672 BasicBlock *DestBB;
1673 if (isa<UndefValue>(Val))
1674 DestBB = nullptr;
1675 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1676 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1677 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1678 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1679 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1680 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1681 } else {
1682 assert(isa<IndirectBrInst>(BB->getTerminator())
1683 && "Unexpected terminator");
1684 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1685 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1686 }
1687
1688 // If we have exactly one destination, remember it for efficiency below.
1689 if (PredToDestList.empty()) {
1690 OnlyDest = DestBB;
1691 OnlyVal = Val;
1692 } else {
1693 if (OnlyDest != DestBB)
1694 OnlyDest = MultipleDestSentinel;
1695 // It possible we have same destination, but different value, e.g. default
1696 // case in switchinst.
1697 if (Val != OnlyVal)
1698 OnlyVal = MultipleVal;
1699 }
1700
1701 // If the predecessor ends with an indirect goto, we can't change its
1702 // destination. Same for CallBr.
1703 if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1704 isa<CallBrInst>(Pred->getTerminator()))
1705 continue;
1706
1707 PredToDestList.emplace_back(Pred, DestBB);
1708 }
1709
1710 // If all edges were unthreadable, we fail.
1711 if (PredToDestList.empty())
1712 return false;
1713
1714 // If all the predecessors go to a single known successor, we want to fold,
1715 // not thread. By doing so, we do not need to duplicate the current block and
1716 // also miss potential opportunities in case we dont/cant duplicate.
1717 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1718 if (BB->hasNPredecessors(PredToDestList.size())) {
1719 bool SeenFirstBranchToOnlyDest = false;
1720 std::vector <DominatorTree::UpdateType> Updates;
1721 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1722 for (BasicBlock *SuccBB : successors(BB)) {
1723 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1724 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1725 } else {
1726 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1727 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1728 }
1729 }
1730
1731 // Finally update the terminator.
1732 Instruction *Term = BB->getTerminator();
1733 BranchInst::Create(OnlyDest, Term);
1734 ++NumFolds;
1735 Term->eraseFromParent();
1736 DTU->applyUpdatesPermissive(Updates);
1737 if (HasProfileData)
1738 BPI->eraseBlock(BB);
1739
1740 // If the condition is now dead due to the removal of the old terminator,
1741 // erase it.
1742 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1743 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1744 CondInst->eraseFromParent();
1745 // We can safely replace *some* uses of the CondInst if it has
1746 // exactly one value as returned by LVI. RAUW is incorrect in the
1747 // presence of guards and assumes, that have the `Cond` as the use. This
1748 // is because we use the guards/assume to reason about the `Cond` value
1749 // at the end of block, but RAUW unconditionally replaces all uses
1750 // including the guards/assumes themselves and the uses before the
1751 // guard/assume.
1752 else if (OnlyVal && OnlyVal != MultipleVal &&
1753 CondInst->getParent() == BB)
1754 replaceFoldableUses(CondInst, OnlyVal);
1755 }
1756 return true;
1757 }
1758 }
1759
1760 // Determine which is the most common successor. If we have many inputs and
1761 // this block is a switch, we want to start by threading the batch that goes
1762 // to the most popular destination first. If we only know about one
1763 // threadable destination (the common case) we can avoid this.
1764 BasicBlock *MostPopularDest = OnlyDest;
1765
1766 if (MostPopularDest == MultipleDestSentinel) {
1767 // Remove any loop headers from the Dest list, threadEdge conservatively
1768 // won't process them, but we might have other destination that are eligible
1769 // and we still want to process.
1770 erase_if(PredToDestList,
1771 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1772 return LoopHeaders.contains(PredToDest.second);
1773 });
1774
1775 if (PredToDestList.empty())
1776 return false;
1777
1778 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1779 }
1780
1781 // Now that we know what the most popular destination is, factor all
1782 // predecessors that will jump to it into a single predecessor.
1783 SmallVector<BasicBlock*, 16> PredsToFactor;
1784 for (const auto &PredToDest : PredToDestList)
1785 if (PredToDest.second == MostPopularDest) {
1786 BasicBlock *Pred = PredToDest.first;
1787
1788 // This predecessor may be a switch or something else that has multiple
1789 // edges to the block. Factor each of these edges by listing them
1790 // according to # occurrences in PredsToFactor.
1791 for (BasicBlock *Succ : successors(Pred))
1792 if (Succ == BB)
1793 PredsToFactor.push_back(Pred);
1794 }
1795
1796 // If the threadable edges are branching on an undefined value, we get to pick
1797 // the destination that these predecessors should get to.
1798 if (!MostPopularDest)
1799 MostPopularDest = BB->getTerminator()->
1800 getSuccessor(getBestDestForJumpOnUndef(BB));
1801
1802 // Ok, try to thread it!
1803 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1804 }
1805
1806 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1807 /// a PHI node (or freeze PHI) in the current block. See if there are any
1808 /// simplifications we can do based on inputs to the phi node.
processBranchOnPHI(PHINode * PN)1809 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1810 BasicBlock *BB = PN->getParent();
1811
1812 // TODO: We could make use of this to do it once for blocks with common PHI
1813 // values.
1814 SmallVector<BasicBlock*, 1> PredBBs;
1815 PredBBs.resize(1);
1816
1817 // If any of the predecessor blocks end in an unconditional branch, we can
1818 // *duplicate* the conditional branch into that block in order to further
1819 // encourage jump threading and to eliminate cases where we have branch on a
1820 // phi of an icmp (branch on icmp is much better).
1821 // This is still beneficial when a frozen phi is used as the branch condition
1822 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1823 // to br(icmp(freeze ...)).
1824 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1825 BasicBlock *PredBB = PN->getIncomingBlock(i);
1826 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1827 if (PredBr->isUnconditional()) {
1828 PredBBs[0] = PredBB;
1829 // Try to duplicate BB into PredBB.
1830 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1831 return true;
1832 }
1833 }
1834
1835 return false;
1836 }
1837
1838 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1839 /// a xor instruction in the current block. See if there are any
1840 /// simplifications we can do based on inputs to the xor.
processBranchOnXOR(BinaryOperator * BO)1841 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1842 BasicBlock *BB = BO->getParent();
1843
1844 // If either the LHS or RHS of the xor is a constant, don't do this
1845 // optimization.
1846 if (isa<ConstantInt>(BO->getOperand(0)) ||
1847 isa<ConstantInt>(BO->getOperand(1)))
1848 return false;
1849
1850 // If the first instruction in BB isn't a phi, we won't be able to infer
1851 // anything special about any particular predecessor.
1852 if (!isa<PHINode>(BB->front()))
1853 return false;
1854
1855 // If this BB is a landing pad, we won't be able to split the edge into it.
1856 if (BB->isEHPad())
1857 return false;
1858
1859 // If we have a xor as the branch input to this block, and we know that the
1860 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1861 // the condition into the predecessor and fix that value to true, saving some
1862 // logical ops on that path and encouraging other paths to simplify.
1863 //
1864 // This copies something like this:
1865 //
1866 // BB:
1867 // %X = phi i1 [1], [%X']
1868 // %Y = icmp eq i32 %A, %B
1869 // %Z = xor i1 %X, %Y
1870 // br i1 %Z, ...
1871 //
1872 // Into:
1873 // BB':
1874 // %Y = icmp ne i32 %A, %B
1875 // br i1 %Y, ...
1876
1877 PredValueInfoTy XorOpValues;
1878 bool isLHS = true;
1879 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1880 WantInteger, BO)) {
1881 assert(XorOpValues.empty());
1882 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1883 WantInteger, BO))
1884 return false;
1885 isLHS = false;
1886 }
1887
1888 assert(!XorOpValues.empty() &&
1889 "computeValueKnownInPredecessors returned true with no values");
1890
1891 // Scan the information to see which is most popular: true or false. The
1892 // predecessors can be of the set true, false, or undef.
1893 unsigned NumTrue = 0, NumFalse = 0;
1894 for (const auto &XorOpValue : XorOpValues) {
1895 if (isa<UndefValue>(XorOpValue.first))
1896 // Ignore undefs for the count.
1897 continue;
1898 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1899 ++NumFalse;
1900 else
1901 ++NumTrue;
1902 }
1903
1904 // Determine which value to split on, true, false, or undef if neither.
1905 ConstantInt *SplitVal = nullptr;
1906 if (NumTrue > NumFalse)
1907 SplitVal = ConstantInt::getTrue(BB->getContext());
1908 else if (NumTrue != 0 || NumFalse != 0)
1909 SplitVal = ConstantInt::getFalse(BB->getContext());
1910
1911 // Collect all of the blocks that this can be folded into so that we can
1912 // factor this once and clone it once.
1913 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1914 for (const auto &XorOpValue : XorOpValues) {
1915 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1916 continue;
1917
1918 BlocksToFoldInto.push_back(XorOpValue.second);
1919 }
1920
1921 // If we inferred a value for all of the predecessors, then duplication won't
1922 // help us. However, we can just replace the LHS or RHS with the constant.
1923 if (BlocksToFoldInto.size() ==
1924 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1925 if (!SplitVal) {
1926 // If all preds provide undef, just nuke the xor, because it is undef too.
1927 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1928 BO->eraseFromParent();
1929 } else if (SplitVal->isZero()) {
1930 // If all preds provide 0, replace the xor with the other input.
1931 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1932 BO->eraseFromParent();
1933 } else {
1934 // If all preds provide 1, set the computed value to 1.
1935 BO->setOperand(!isLHS, SplitVal);
1936 }
1937
1938 return true;
1939 }
1940
1941 // If any of predecessors end with an indirect goto, we can't change its
1942 // destination. Same for CallBr.
1943 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1944 return isa<IndirectBrInst>(Pred->getTerminator()) ||
1945 isa<CallBrInst>(Pred->getTerminator());
1946 }))
1947 return false;
1948
1949 // Try to duplicate BB into PredBB.
1950 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1951 }
1952
1953 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1954 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1955 /// NewPred using the entries from OldPred (suitably mapped).
addPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1956 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1957 BasicBlock *OldPred,
1958 BasicBlock *NewPred,
1959 DenseMap<Instruction*, Value*> &ValueMap) {
1960 for (PHINode &PN : PHIBB->phis()) {
1961 // Ok, we have a PHI node. Figure out what the incoming value was for the
1962 // DestBlock.
1963 Value *IV = PN.getIncomingValueForBlock(OldPred);
1964
1965 // Remap the value if necessary.
1966 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1967 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1968 if (I != ValueMap.end())
1969 IV = I->second;
1970 }
1971
1972 PN.addIncoming(IV, NewPred);
1973 }
1974 }
1975
1976 /// Merge basic block BB into its sole predecessor if possible.
maybeMergeBasicBlockIntoOnlyPred(BasicBlock * BB)1977 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1978 BasicBlock *SinglePred = BB->getSinglePredecessor();
1979 if (!SinglePred)
1980 return false;
1981
1982 const Instruction *TI = SinglePred->getTerminator();
1983 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1984 SinglePred == BB || hasAddressTakenAndUsed(BB))
1985 return false;
1986
1987 // If SinglePred was a loop header, BB becomes one.
1988 if (LoopHeaders.erase(SinglePred))
1989 LoopHeaders.insert(BB);
1990
1991 LVI->eraseBlock(SinglePred);
1992 MergeBasicBlockIntoOnlyPred(BB, DTU);
1993
1994 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1995 // BB code within one basic block `BB`), we need to invalidate the LVI
1996 // information associated with BB, because the LVI information need not be
1997 // true for all of BB after the merge. For example,
1998 // Before the merge, LVI info and code is as follows:
1999 // SinglePred: <LVI info1 for %p val>
2000 // %y = use of %p
2001 // call @exit() // need not transfer execution to successor.
2002 // assume(%p) // from this point on %p is true
2003 // br label %BB
2004 // BB: <LVI info2 for %p val, i.e. %p is true>
2005 // %x = use of %p
2006 // br label exit
2007 //
2008 // Note that this LVI info for blocks BB and SinglPred is correct for %p
2009 // (info2 and info1 respectively). After the merge and the deletion of the
2010 // LVI info1 for SinglePred. We have the following code:
2011 // BB: <LVI info2 for %p val>
2012 // %y = use of %p
2013 // call @exit()
2014 // assume(%p)
2015 // %x = use of %p <-- LVI info2 is correct from here onwards.
2016 // br label exit
2017 // LVI info2 for BB is incorrect at the beginning of BB.
2018
2019 // Invalidate LVI information for BB if the LVI is not provably true for
2020 // all of BB.
2021 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2022 LVI->eraseBlock(BB);
2023 return true;
2024 }
2025
2026 /// Update the SSA form. NewBB contains instructions that are copied from BB.
2027 /// ValueMapping maps old values in BB to new ones in NewBB.
updateSSA(BasicBlock * BB,BasicBlock * NewBB,DenseMap<Instruction *,Value * > & ValueMapping)2028 void JumpThreadingPass::updateSSA(
2029 BasicBlock *BB, BasicBlock *NewBB,
2030 DenseMap<Instruction *, Value *> &ValueMapping) {
2031 // If there were values defined in BB that are used outside the block, then we
2032 // now have to update all uses of the value to use either the original value,
2033 // the cloned value, or some PHI derived value. This can require arbitrary
2034 // PHI insertion, of which we are prepared to do, clean these up now.
2035 SSAUpdater SSAUpdate;
2036 SmallVector<Use *, 16> UsesToRename;
2037
2038 for (Instruction &I : *BB) {
2039 // Scan all uses of this instruction to see if it is used outside of its
2040 // block, and if so, record them in UsesToRename.
2041 for (Use &U : I.uses()) {
2042 Instruction *User = cast<Instruction>(U.getUser());
2043 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2044 if (UserPN->getIncomingBlock(U) == BB)
2045 continue;
2046 } else if (User->getParent() == BB)
2047 continue;
2048
2049 UsesToRename.push_back(&U);
2050 }
2051
2052 // If there are no uses outside the block, we're done with this instruction.
2053 if (UsesToRename.empty())
2054 continue;
2055 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2056
2057 // We found a use of I outside of BB. Rename all uses of I that are outside
2058 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2059 // with the two values we know.
2060 SSAUpdate.Initialize(I.getType(), I.getName());
2061 SSAUpdate.AddAvailableValue(BB, &I);
2062 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2063
2064 while (!UsesToRename.empty())
2065 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2066 LLVM_DEBUG(dbgs() << "\n");
2067 }
2068 }
2069
2070 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2071 /// arguments that come from PredBB. Return the map from the variables in the
2072 /// source basic block to the variables in the newly created basic block.
2073 DenseMap<Instruction *, Value *>
cloneInstructions(BasicBlock::iterator BI,BasicBlock::iterator BE,BasicBlock * NewBB,BasicBlock * PredBB)2074 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2075 BasicBlock::iterator BE, BasicBlock *NewBB,
2076 BasicBlock *PredBB) {
2077 // We are going to have to map operands from the source basic block to the new
2078 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2079 // block, evaluate them to account for entry from PredBB.
2080 DenseMap<Instruction *, Value *> ValueMapping;
2081
2082 // Clone the phi nodes of the source basic block into NewBB. The resulting
2083 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2084 // might need to rewrite the operand of the cloned phi.
2085 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2086 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2087 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2088 ValueMapping[PN] = NewPN;
2089 }
2090
2091 // Clone noalias scope declarations in the threaded block. When threading a
2092 // loop exit, we would otherwise end up with two idential scope declarations
2093 // visible at the same time.
2094 SmallVector<MDNode *> NoAliasScopes;
2095 DenseMap<MDNode *, MDNode *> ClonedScopes;
2096 LLVMContext &Context = PredBB->getContext();
2097 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2098 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2099
2100 // Clone the non-phi instructions of the source basic block into NewBB,
2101 // keeping track of the mapping and using it to remap operands in the cloned
2102 // instructions.
2103 for (; BI != BE; ++BI) {
2104 Instruction *New = BI->clone();
2105 New->setName(BI->getName());
2106 NewBB->getInstList().push_back(New);
2107 ValueMapping[&*BI] = New;
2108 adaptNoAliasScopes(New, ClonedScopes, Context);
2109
2110 // Remap operands to patch up intra-block references.
2111 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2112 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2113 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2114 if (I != ValueMapping.end())
2115 New->setOperand(i, I->second);
2116 }
2117 }
2118
2119 return ValueMapping;
2120 }
2121
2122 /// Attempt to thread through two successive basic blocks.
maybethreadThroughTwoBasicBlocks(BasicBlock * BB,Value * Cond)2123 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2124 Value *Cond) {
2125 // Consider:
2126 //
2127 // PredBB:
2128 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2129 // %tobool = icmp eq i32 %cond, 0
2130 // br i1 %tobool, label %BB, label ...
2131 //
2132 // BB:
2133 // %cmp = icmp eq i32* %var, null
2134 // br i1 %cmp, label ..., label ...
2135 //
2136 // We don't know the value of %var at BB even if we know which incoming edge
2137 // we take to BB. However, once we duplicate PredBB for each of its incoming
2138 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2139 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2140
2141 // Require that BB end with a Branch for simplicity.
2142 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2143 if (!CondBr)
2144 return false;
2145
2146 // BB must have exactly one predecessor.
2147 BasicBlock *PredBB = BB->getSinglePredecessor();
2148 if (!PredBB)
2149 return false;
2150
2151 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2152 // unconditional branch, we should be merging PredBB and BB instead. For
2153 // simplicity, we don't deal with a switch.
2154 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2155 if (!PredBBBranch || PredBBBranch->isUnconditional())
2156 return false;
2157
2158 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2159 // PredBB.
2160 if (PredBB->getSinglePredecessor())
2161 return false;
2162
2163 // Don't thread through PredBB if it contains a successor edge to itself, in
2164 // which case we would infinite loop. Suppose we are threading an edge from
2165 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2166 // successor edge to itself. If we allowed jump threading in this case, we
2167 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2168 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2169 // with another jump threading opportunity from PredBB.thread through PredBB
2170 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2171 // would keep peeling one iteration from PredBB.
2172 if (llvm::is_contained(successors(PredBB), PredBB))
2173 return false;
2174
2175 // Don't thread across a loop header.
2176 if (LoopHeaders.count(PredBB))
2177 return false;
2178
2179 // Avoid complication with duplicating EH pads.
2180 if (PredBB->isEHPad())
2181 return false;
2182
2183 // Find a predecessor that we can thread. For simplicity, we only consider a
2184 // successor edge out of BB to which we thread exactly one incoming edge into
2185 // PredBB.
2186 unsigned ZeroCount = 0;
2187 unsigned OneCount = 0;
2188 BasicBlock *ZeroPred = nullptr;
2189 BasicBlock *OnePred = nullptr;
2190 for (BasicBlock *P : predecessors(PredBB)) {
2191 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2192 evaluateOnPredecessorEdge(BB, P, Cond))) {
2193 if (CI->isZero()) {
2194 ZeroCount++;
2195 ZeroPred = P;
2196 } else if (CI->isOne()) {
2197 OneCount++;
2198 OnePred = P;
2199 }
2200 }
2201 }
2202
2203 // Disregard complicated cases where we have to thread multiple edges.
2204 BasicBlock *PredPredBB;
2205 if (ZeroCount == 1) {
2206 PredPredBB = ZeroPred;
2207 } else if (OneCount == 1) {
2208 PredPredBB = OnePred;
2209 } else {
2210 return false;
2211 }
2212
2213 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2214
2215 // If threading to the same block as we come from, we would infinite loop.
2216 if (SuccBB == BB) {
2217 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2218 << "' - would thread to self!\n");
2219 return false;
2220 }
2221
2222 // If threading this would thread across a loop header, don't thread the edge.
2223 // See the comments above findLoopHeaders for justifications and caveats.
2224 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2225 LLVM_DEBUG({
2226 bool BBIsHeader = LoopHeaders.count(BB);
2227 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2228 dbgs() << " Not threading across "
2229 << (BBIsHeader ? "loop header BB '" : "block BB '")
2230 << BB->getName() << "' to dest "
2231 << (SuccIsHeader ? "loop header BB '" : "block BB '")
2232 << SuccBB->getName()
2233 << "' - it might create an irreducible loop!\n";
2234 });
2235 return false;
2236 }
2237
2238 // Compute the cost of duplicating BB and PredBB.
2239 unsigned BBCost =
2240 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2241 unsigned PredBBCost = getJumpThreadDuplicationCost(
2242 PredBB, PredBB->getTerminator(), BBDupThreshold);
2243
2244 // Give up if costs are too high. We need to check BBCost and PredBBCost
2245 // individually before checking their sum because getJumpThreadDuplicationCost
2246 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2247 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2248 BBCost + PredBBCost > BBDupThreshold) {
2249 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2250 << "' - Cost is too high: " << PredBBCost
2251 << " for PredBB, " << BBCost << "for BB\n");
2252 return false;
2253 }
2254
2255 // Now we are ready to duplicate PredBB.
2256 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2257 return true;
2258 }
2259
threadThroughTwoBasicBlocks(BasicBlock * PredPredBB,BasicBlock * PredBB,BasicBlock * BB,BasicBlock * SuccBB)2260 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2261 BasicBlock *PredBB,
2262 BasicBlock *BB,
2263 BasicBlock *SuccBB) {
2264 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
2265 << BB->getName() << "'\n");
2266
2267 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2268 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2269
2270 BasicBlock *NewBB =
2271 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2272 PredBB->getParent(), PredBB);
2273 NewBB->moveAfter(PredBB);
2274
2275 // Set the block frequency of NewBB.
2276 if (HasProfileData) {
2277 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2278 BPI->getEdgeProbability(PredPredBB, PredBB);
2279 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2280 }
2281
2282 // We are going to have to map operands from the original BB block to the new
2283 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2284 // to account for entry from PredPredBB.
2285 DenseMap<Instruction *, Value *> ValueMapping =
2286 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2287
2288 // Copy the edge probabilities from PredBB to NewBB.
2289 if (HasProfileData)
2290 BPI->copyEdgeProbabilities(PredBB, NewBB);
2291
2292 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2293 // This eliminates predecessors from PredPredBB, which requires us to simplify
2294 // any PHI nodes in PredBB.
2295 Instruction *PredPredTerm = PredPredBB->getTerminator();
2296 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2297 if (PredPredTerm->getSuccessor(i) == PredBB) {
2298 PredBB->removePredecessor(PredPredBB, true);
2299 PredPredTerm->setSuccessor(i, NewBB);
2300 }
2301
2302 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2303 ValueMapping);
2304 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2305 ValueMapping);
2306
2307 DTU->applyUpdatesPermissive(
2308 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2309 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2310 {DominatorTree::Insert, PredPredBB, NewBB},
2311 {DominatorTree::Delete, PredPredBB, PredBB}});
2312
2313 updateSSA(PredBB, NewBB, ValueMapping);
2314
2315 // Clean up things like PHI nodes with single operands, dead instructions,
2316 // etc.
2317 SimplifyInstructionsInBlock(NewBB, TLI);
2318 SimplifyInstructionsInBlock(PredBB, TLI);
2319
2320 SmallVector<BasicBlock *, 1> PredsToFactor;
2321 PredsToFactor.push_back(NewBB);
2322 threadEdge(BB, PredsToFactor, SuccBB);
2323 }
2324
2325 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
tryThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2326 bool JumpThreadingPass::tryThreadEdge(
2327 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2328 BasicBlock *SuccBB) {
2329 // If threading to the same block as we come from, we would infinite loop.
2330 if (SuccBB == BB) {
2331 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2332 << "' - would thread to self!\n");
2333 return false;
2334 }
2335
2336 // If threading this would thread across a loop header, don't thread the edge.
2337 // See the comments above findLoopHeaders for justifications and caveats.
2338 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2339 LLVM_DEBUG({
2340 bool BBIsHeader = LoopHeaders.count(BB);
2341 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2342 dbgs() << " Not threading across "
2343 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2344 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2345 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2346 });
2347 return false;
2348 }
2349
2350 unsigned JumpThreadCost =
2351 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2352 if (JumpThreadCost > BBDupThreshold) {
2353 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2354 << "' - Cost is too high: " << JumpThreadCost << "\n");
2355 return false;
2356 }
2357
2358 threadEdge(BB, PredBBs, SuccBB);
2359 return true;
2360 }
2361
2362 /// threadEdge - We have decided that it is safe and profitable to factor the
2363 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2364 /// across BB. Transform the IR to reflect this change.
threadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2365 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2366 const SmallVectorImpl<BasicBlock *> &PredBBs,
2367 BasicBlock *SuccBB) {
2368 assert(SuccBB != BB && "Don't create an infinite loop");
2369
2370 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2371 "Don't thread across loop headers");
2372
2373 // And finally, do it! Start by factoring the predecessors if needed.
2374 BasicBlock *PredBB;
2375 if (PredBBs.size() == 1)
2376 PredBB = PredBBs[0];
2377 else {
2378 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2379 << " common predecessors.\n");
2380 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2381 }
2382
2383 // And finally, do it!
2384 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
2385 << "' to '" << SuccBB->getName()
2386 << ", across block:\n " << *BB << "\n");
2387
2388 LVI->threadEdge(PredBB, BB, SuccBB);
2389
2390 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2391 BB->getName()+".thread",
2392 BB->getParent(), BB);
2393 NewBB->moveAfter(PredBB);
2394
2395 // Set the block frequency of NewBB.
2396 if (HasProfileData) {
2397 auto NewBBFreq =
2398 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2399 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2400 }
2401
2402 // Copy all the instructions from BB to NewBB except the terminator.
2403 DenseMap<Instruction *, Value *> ValueMapping =
2404 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2405
2406 // We didn't copy the terminator from BB over to NewBB, because there is now
2407 // an unconditional jump to SuccBB. Insert the unconditional jump.
2408 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2409 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2410
2411 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2412 // PHI nodes for NewBB now.
2413 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2414
2415 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2416 // eliminates predecessors from BB, which requires us to simplify any PHI
2417 // nodes in BB.
2418 Instruction *PredTerm = PredBB->getTerminator();
2419 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2420 if (PredTerm->getSuccessor(i) == BB) {
2421 BB->removePredecessor(PredBB, true);
2422 PredTerm->setSuccessor(i, NewBB);
2423 }
2424
2425 // Enqueue required DT updates.
2426 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2427 {DominatorTree::Insert, PredBB, NewBB},
2428 {DominatorTree::Delete, PredBB, BB}});
2429
2430 updateSSA(BB, NewBB, ValueMapping);
2431
2432 // At this point, the IR is fully up to date and consistent. Do a quick scan
2433 // over the new instructions and zap any that are constants or dead. This
2434 // frequently happens because of phi translation.
2435 SimplifyInstructionsInBlock(NewBB, TLI);
2436
2437 // Update the edge weight from BB to SuccBB, which should be less than before.
2438 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2439
2440 // Threaded an edge!
2441 ++NumThreads;
2442 }
2443
2444 /// Create a new basic block that will be the predecessor of BB and successor of
2445 /// all blocks in Preds. When profile data is available, update the frequency of
2446 /// this new block.
splitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)2447 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2448 ArrayRef<BasicBlock *> Preds,
2449 const char *Suffix) {
2450 SmallVector<BasicBlock *, 2> NewBBs;
2451
2452 // Collect the frequencies of all predecessors of BB, which will be used to
2453 // update the edge weight of the result of splitting predecessors.
2454 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2455 if (HasProfileData)
2456 for (auto Pred : Preds)
2457 FreqMap.insert(std::make_pair(
2458 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2459
2460 // In the case when BB is a LandingPad block we create 2 new predecessors
2461 // instead of just one.
2462 if (BB->isLandingPad()) {
2463 std::string NewName = std::string(Suffix) + ".split-lp";
2464 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2465 } else {
2466 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2467 }
2468
2469 std::vector<DominatorTree::UpdateType> Updates;
2470 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2471 for (auto NewBB : NewBBs) {
2472 BlockFrequency NewBBFreq(0);
2473 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2474 for (auto Pred : predecessors(NewBB)) {
2475 Updates.push_back({DominatorTree::Delete, Pred, BB});
2476 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2477 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2478 NewBBFreq += FreqMap.lookup(Pred);
2479 }
2480 if (HasProfileData) // Apply the summed frequency to NewBB.
2481 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2482 }
2483
2484 DTU->applyUpdatesPermissive(Updates);
2485 return NewBBs[0];
2486 }
2487
doesBlockHaveProfileData(BasicBlock * BB)2488 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2489 const Instruction *TI = BB->getTerminator();
2490 assert(TI->getNumSuccessors() > 1 && "not a split");
2491
2492 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2493 if (!WeightsNode)
2494 return false;
2495
2496 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2497 if (MDName->getString() != "branch_weights")
2498 return false;
2499
2500 // Ensure there are weights for all of the successors. Note that the first
2501 // operand to the metadata node is a name, not a weight.
2502 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2503 }
2504
2505 /// Update the block frequency of BB and branch weight and the metadata on the
2506 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2507 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
updateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)2508 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2509 BasicBlock *BB,
2510 BasicBlock *NewBB,
2511 BasicBlock *SuccBB) {
2512 if (!HasProfileData)
2513 return;
2514
2515 assert(BFI && BPI && "BFI & BPI should have been created here");
2516
2517 // As the edge from PredBB to BB is deleted, we have to update the block
2518 // frequency of BB.
2519 auto BBOrigFreq = BFI->getBlockFreq(BB);
2520 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2521 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2522 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2523 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2524
2525 // Collect updated outgoing edges' frequencies from BB and use them to update
2526 // edge probabilities.
2527 SmallVector<uint64_t, 4> BBSuccFreq;
2528 for (BasicBlock *Succ : successors(BB)) {
2529 auto SuccFreq = (Succ == SuccBB)
2530 ? BB2SuccBBFreq - NewBBFreq
2531 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2532 BBSuccFreq.push_back(SuccFreq.getFrequency());
2533 }
2534
2535 uint64_t MaxBBSuccFreq =
2536 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2537
2538 SmallVector<BranchProbability, 4> BBSuccProbs;
2539 if (MaxBBSuccFreq == 0)
2540 BBSuccProbs.assign(BBSuccFreq.size(),
2541 {1, static_cast<unsigned>(BBSuccFreq.size())});
2542 else {
2543 for (uint64_t Freq : BBSuccFreq)
2544 BBSuccProbs.push_back(
2545 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2546 // Normalize edge probabilities so that they sum up to one.
2547 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2548 BBSuccProbs.end());
2549 }
2550
2551 // Update edge probabilities in BPI.
2552 BPI->setEdgeProbability(BB, BBSuccProbs);
2553
2554 // Update the profile metadata as well.
2555 //
2556 // Don't do this if the profile of the transformed blocks was statically
2557 // estimated. (This could occur despite the function having an entry
2558 // frequency in completely cold parts of the CFG.)
2559 //
2560 // In this case we don't want to suggest to subsequent passes that the
2561 // calculated weights are fully consistent. Consider this graph:
2562 //
2563 // check_1
2564 // 50% / |
2565 // eq_1 | 50%
2566 // \ |
2567 // check_2
2568 // 50% / |
2569 // eq_2 | 50%
2570 // \ |
2571 // check_3
2572 // 50% / |
2573 // eq_3 | 50%
2574 // \ |
2575 //
2576 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2577 // the overall probabilities are inconsistent; the total probability that the
2578 // value is either 1, 2 or 3 is 150%.
2579 //
2580 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2581 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2582 // the loop exit edge. Then based solely on static estimation we would assume
2583 // the loop was extremely hot.
2584 //
2585 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2586 // shouldn't make edges extremely likely or unlikely based solely on static
2587 // estimation.
2588 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2589 SmallVector<uint32_t, 4> Weights;
2590 for (auto Prob : BBSuccProbs)
2591 Weights.push_back(Prob.getNumerator());
2592
2593 auto TI = BB->getTerminator();
2594 TI->setMetadata(
2595 LLVMContext::MD_prof,
2596 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2597 }
2598 }
2599
2600 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2601 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2602 /// If we can duplicate the contents of BB up into PredBB do so now, this
2603 /// improves the odds that the branch will be on an analyzable instruction like
2604 /// a compare.
duplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)2605 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2606 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2607 assert(!PredBBs.empty() && "Can't handle an empty set");
2608
2609 // If BB is a loop header, then duplicating this block outside the loop would
2610 // cause us to transform this into an irreducible loop, don't do this.
2611 // See the comments above findLoopHeaders for justifications and caveats.
2612 if (LoopHeaders.count(BB)) {
2613 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2614 << "' into predecessor block '" << PredBBs[0]->getName()
2615 << "' - it might create an irreducible loop!\n");
2616 return false;
2617 }
2618
2619 unsigned DuplicationCost =
2620 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2621 if (DuplicationCost > BBDupThreshold) {
2622 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2623 << "' - Cost is too high: " << DuplicationCost << "\n");
2624 return false;
2625 }
2626
2627 // And finally, do it! Start by factoring the predecessors if needed.
2628 std::vector<DominatorTree::UpdateType> Updates;
2629 BasicBlock *PredBB;
2630 if (PredBBs.size() == 1)
2631 PredBB = PredBBs[0];
2632 else {
2633 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2634 << " common predecessors.\n");
2635 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2636 }
2637 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2638
2639 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2640 // of PredBB.
2641 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2642 << "' into end of '" << PredBB->getName()
2643 << "' to eliminate branch on phi. Cost: "
2644 << DuplicationCost << " block is:" << *BB << "\n");
2645
2646 // Unless PredBB ends with an unconditional branch, split the edge so that we
2647 // can just clone the bits from BB into the end of the new PredBB.
2648 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2649
2650 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2651 BasicBlock *OldPredBB = PredBB;
2652 PredBB = SplitEdge(OldPredBB, BB);
2653 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2654 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2655 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2656 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2657 }
2658
2659 // We are going to have to map operands from the original BB block into the
2660 // PredBB block. Evaluate PHI nodes in BB.
2661 DenseMap<Instruction*, Value*> ValueMapping;
2662
2663 BasicBlock::iterator BI = BB->begin();
2664 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2665 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2666 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2667 // mapping and using it to remap operands in the cloned instructions.
2668 for (; BI != BB->end(); ++BI) {
2669 Instruction *New = BI->clone();
2670
2671 // Remap operands to patch up intra-block references.
2672 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2673 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2674 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2675 if (I != ValueMapping.end())
2676 New->setOperand(i, I->second);
2677 }
2678
2679 // If this instruction can be simplified after the operands are updated,
2680 // just use the simplified value instead. This frequently happens due to
2681 // phi translation.
2682 if (Value *IV = SimplifyInstruction(
2683 New,
2684 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2685 ValueMapping[&*BI] = IV;
2686 if (!New->mayHaveSideEffects()) {
2687 New->deleteValue();
2688 New = nullptr;
2689 }
2690 } else {
2691 ValueMapping[&*BI] = New;
2692 }
2693 if (New) {
2694 // Otherwise, insert the new instruction into the block.
2695 New->setName(BI->getName());
2696 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2697 // Update Dominance from simplified New instruction operands.
2698 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2699 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2700 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2701 }
2702 }
2703
2704 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2705 // add entries to the PHI nodes for branch from PredBB now.
2706 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2707 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2708 ValueMapping);
2709 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2710 ValueMapping);
2711
2712 updateSSA(BB, PredBB, ValueMapping);
2713
2714 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2715 // that we nuked.
2716 BB->removePredecessor(PredBB, true);
2717
2718 // Remove the unconditional branch at the end of the PredBB block.
2719 OldPredBranch->eraseFromParent();
2720 if (HasProfileData)
2721 BPI->copyEdgeProbabilities(BB, PredBB);
2722 DTU->applyUpdatesPermissive(Updates);
2723
2724 ++NumDupes;
2725 return true;
2726 }
2727
2728 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2729 // a Select instruction in Pred. BB has other predecessors and SI is used in
2730 // a PHI node in BB. SI has no other use.
2731 // A new basic block, NewBB, is created and SI is converted to compare and
2732 // conditional branch. SI is erased from parent.
unfoldSelectInstr(BasicBlock * Pred,BasicBlock * BB,SelectInst * SI,PHINode * SIUse,unsigned Idx)2733 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2734 SelectInst *SI, PHINode *SIUse,
2735 unsigned Idx) {
2736 // Expand the select.
2737 //
2738 // Pred --
2739 // | v
2740 // | NewBB
2741 // | |
2742 // |-----
2743 // v
2744 // BB
2745 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2746 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2747 BB->getParent(), BB);
2748 // Move the unconditional branch to NewBB.
2749 PredTerm->removeFromParent();
2750 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2751 // Create a conditional branch and update PHI nodes.
2752 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2753 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2754 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2755 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2756
2757 // The select is now dead.
2758 SI->eraseFromParent();
2759 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2760 {DominatorTree::Insert, Pred, NewBB}});
2761
2762 // Update any other PHI nodes in BB.
2763 for (BasicBlock::iterator BI = BB->begin();
2764 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2765 if (Phi != SIUse)
2766 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2767 }
2768
tryToUnfoldSelect(SwitchInst * SI,BasicBlock * BB)2769 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2770 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2771
2772 if (!CondPHI || CondPHI->getParent() != BB)
2773 return false;
2774
2775 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2776 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2777 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2778
2779 // The second and third condition can be potentially relaxed. Currently
2780 // the conditions help to simplify the code and allow us to reuse existing
2781 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2782 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2783 continue;
2784
2785 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2786 if (!PredTerm || !PredTerm->isUnconditional())
2787 continue;
2788
2789 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2790 return true;
2791 }
2792 return false;
2793 }
2794
2795 /// tryToUnfoldSelect - Look for blocks of the form
2796 /// bb1:
2797 /// %a = select
2798 /// br bb2
2799 ///
2800 /// bb2:
2801 /// %p = phi [%a, %bb1] ...
2802 /// %c = icmp %p
2803 /// br i1 %c
2804 ///
2805 /// And expand the select into a branch structure if one of its arms allows %c
2806 /// to be folded. This later enables threading from bb1 over bb2.
tryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)2807 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2808 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2809 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2810 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2811
2812 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2813 CondLHS->getParent() != BB)
2814 return false;
2815
2816 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2817 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2818 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2819
2820 // Look if one of the incoming values is a select in the corresponding
2821 // predecessor.
2822 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2823 continue;
2824
2825 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2826 if (!PredTerm || !PredTerm->isUnconditional())
2827 continue;
2828
2829 // Now check if one of the select values would allow us to constant fold the
2830 // terminator in BB. We don't do the transform if both sides fold, those
2831 // cases will be threaded in any case.
2832 LazyValueInfo::Tristate LHSFolds =
2833 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2834 CondRHS, Pred, BB, CondCmp);
2835 LazyValueInfo::Tristate RHSFolds =
2836 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2837 CondRHS, Pred, BB, CondCmp);
2838 if ((LHSFolds != LazyValueInfo::Unknown ||
2839 RHSFolds != LazyValueInfo::Unknown) &&
2840 LHSFolds != RHSFolds) {
2841 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2842 return true;
2843 }
2844 }
2845 return false;
2846 }
2847
2848 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2849 /// same BB in the form
2850 /// bb:
2851 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2852 /// %s = select %p, trueval, falseval
2853 ///
2854 /// or
2855 ///
2856 /// bb:
2857 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2858 /// %c = cmp %p, 0
2859 /// %s = select %c, trueval, falseval
2860 ///
2861 /// And expand the select into a branch structure. This later enables
2862 /// jump-threading over bb in this pass.
2863 ///
2864 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2865 /// select if the associated PHI has at least one constant. If the unfolded
2866 /// select is not jump-threaded, it will be folded again in the later
2867 /// optimizations.
tryToUnfoldSelectInCurrBB(BasicBlock * BB)2868 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2869 // This transform would reduce the quality of msan diagnostics.
2870 // Disable this transform under MemorySanitizer.
2871 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2872 return false;
2873
2874 // If threading this would thread across a loop header, don't thread the edge.
2875 // See the comments above findLoopHeaders for justifications and caveats.
2876 if (LoopHeaders.count(BB))
2877 return false;
2878
2879 for (BasicBlock::iterator BI = BB->begin();
2880 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2881 // Look for a Phi having at least one constant incoming value.
2882 if (llvm::all_of(PN->incoming_values(),
2883 [](Value *V) { return !isa<ConstantInt>(V); }))
2884 continue;
2885
2886 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2887 using namespace PatternMatch;
2888
2889 // Check if SI is in BB and use V as condition.
2890 if (SI->getParent() != BB)
2891 return false;
2892 Value *Cond = SI->getCondition();
2893 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2894 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2895 };
2896
2897 SelectInst *SI = nullptr;
2898 for (Use &U : PN->uses()) {
2899 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2900 // Look for a ICmp in BB that compares PN with a constant and is the
2901 // condition of a Select.
2902 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2903 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2904 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2905 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2906 SI = SelectI;
2907 break;
2908 }
2909 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2910 // Look for a Select in BB that uses PN as condition.
2911 if (isUnfoldCandidate(SelectI, U.get())) {
2912 SI = SelectI;
2913 break;
2914 }
2915 }
2916 }
2917
2918 if (!SI)
2919 continue;
2920 // Expand the select.
2921 Value *Cond = SI->getCondition();
2922 if (InsertFreezeWhenUnfoldingSelect &&
2923 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2924 &DTU->getDomTree()))
2925 Cond = new FreezeInst(Cond, "cond.fr", SI);
2926 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2927 BasicBlock *SplitBB = SI->getParent();
2928 BasicBlock *NewBB = Term->getParent();
2929 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2930 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2931 NewPN->addIncoming(SI->getFalseValue(), BB);
2932 SI->replaceAllUsesWith(NewPN);
2933 SI->eraseFromParent();
2934 // NewBB and SplitBB are newly created blocks which require insertion.
2935 std::vector<DominatorTree::UpdateType> Updates;
2936 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2937 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2938 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2939 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2940 // BB's successors were moved to SplitBB, update DTU accordingly.
2941 for (auto *Succ : successors(SplitBB)) {
2942 Updates.push_back({DominatorTree::Delete, BB, Succ});
2943 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2944 }
2945 DTU->applyUpdatesPermissive(Updates);
2946 return true;
2947 }
2948 return false;
2949 }
2950
2951 /// Try to propagate a guard from the current BB into one of its predecessors
2952 /// in case if another branch of execution implies that the condition of this
2953 /// guard is always true. Currently we only process the simplest case that
2954 /// looks like:
2955 ///
2956 /// Start:
2957 /// %cond = ...
2958 /// br i1 %cond, label %T1, label %F1
2959 /// T1:
2960 /// br label %Merge
2961 /// F1:
2962 /// br label %Merge
2963 /// Merge:
2964 /// %condGuard = ...
2965 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2966 ///
2967 /// And cond either implies condGuard or !condGuard. In this case all the
2968 /// instructions before the guard can be duplicated in both branches, and the
2969 /// guard is then threaded to one of them.
processGuards(BasicBlock * BB)2970 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2971 using namespace PatternMatch;
2972
2973 // We only want to deal with two predecessors.
2974 BasicBlock *Pred1, *Pred2;
2975 auto PI = pred_begin(BB), PE = pred_end(BB);
2976 if (PI == PE)
2977 return false;
2978 Pred1 = *PI++;
2979 if (PI == PE)
2980 return false;
2981 Pred2 = *PI++;
2982 if (PI != PE)
2983 return false;
2984 if (Pred1 == Pred2)
2985 return false;
2986
2987 // Try to thread one of the guards of the block.
2988 // TODO: Look up deeper than to immediate predecessor?
2989 auto *Parent = Pred1->getSinglePredecessor();
2990 if (!Parent || Parent != Pred2->getSinglePredecessor())
2991 return false;
2992
2993 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2994 for (auto &I : *BB)
2995 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2996 return true;
2997
2998 return false;
2999 }
3000
3001 /// Try to propagate the guard from BB which is the lower block of a diamond
3002 /// to one of its branches, in case if diamond's condition implies guard's
3003 /// condition.
threadGuard(BasicBlock * BB,IntrinsicInst * Guard,BranchInst * BI)3004 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3005 BranchInst *BI) {
3006 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3007 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3008 Value *GuardCond = Guard->getArgOperand(0);
3009 Value *BranchCond = BI->getCondition();
3010 BasicBlock *TrueDest = BI->getSuccessor(0);
3011 BasicBlock *FalseDest = BI->getSuccessor(1);
3012
3013 auto &DL = BB->getModule()->getDataLayout();
3014 bool TrueDestIsSafe = false;
3015 bool FalseDestIsSafe = false;
3016
3017 // True dest is safe if BranchCond => GuardCond.
3018 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3019 if (Impl && *Impl)
3020 TrueDestIsSafe = true;
3021 else {
3022 // False dest is safe if !BranchCond => GuardCond.
3023 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3024 if (Impl && *Impl)
3025 FalseDestIsSafe = true;
3026 }
3027
3028 if (!TrueDestIsSafe && !FalseDestIsSafe)
3029 return false;
3030
3031 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3032 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3033
3034 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3035 Instruction *AfterGuard = Guard->getNextNode();
3036 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3037 if (Cost > BBDupThreshold)
3038 return false;
3039 // Duplicate all instructions before the guard and the guard itself to the
3040 // branch where implication is not proved.
3041 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3042 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3043 assert(GuardedBlock && "Could not create the guarded block?");
3044 // Duplicate all instructions before the guard in the unguarded branch.
3045 // Since we have successfully duplicated the guarded block and this block
3046 // has fewer instructions, we expect it to succeed.
3047 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3048 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3049 assert(UnguardedBlock && "Could not create the unguarded block?");
3050 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3051 << GuardedBlock->getName() << "\n");
3052 // Some instructions before the guard may still have uses. For them, we need
3053 // to create Phi nodes merging their copies in both guarded and unguarded
3054 // branches. Those instructions that have no uses can be just removed.
3055 SmallVector<Instruction *, 4> ToRemove;
3056 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3057 if (!isa<PHINode>(&*BI))
3058 ToRemove.push_back(&*BI);
3059
3060 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3061 assert(InsertionPoint && "Empty block?");
3062 // Substitute with Phis & remove.
3063 for (auto *Inst : reverse(ToRemove)) {
3064 if (!Inst->use_empty()) {
3065 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3066 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3067 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3068 NewPN->insertBefore(InsertionPoint);
3069 Inst->replaceAllUsesWith(NewPN);
3070 }
3071 Inst->eraseFromParent();
3072 }
3073 return true;
3074 }
3075