1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/PointerIntPair.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 #include <memory>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 #include <vector>
61
62 using namespace clang;
63 using namespace threadSafety;
64
65 // Key method definition
66 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67
68 /// Issue a warning about an invalid lock expression
warnInvalidLock(ThreadSafetyHandler & Handler,const Expr * MutexExp,const NamedDecl * D,const Expr * DeclExp,StringRef Kind)69 static void warnInvalidLock(ThreadSafetyHandler &Handler,
70 const Expr *MutexExp, const NamedDecl *D,
71 const Expr *DeclExp, StringRef Kind) {
72 SourceLocation Loc;
73 if (DeclExp)
74 Loc = DeclExp->getExprLoc();
75
76 // FIXME: add a note about the attribute location in MutexExp or D
77 if (Loc.isValid())
78 Handler.handleInvalidLockExp(Kind, Loc);
79 }
80
81 namespace {
82
83 /// A set of CapabilityExpr objects, which are compiled from thread safety
84 /// attributes on a function.
85 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
86 public:
87 /// Push M onto list, but discard duplicates.
push_back_nodup(const CapabilityExpr & CapE)88 void push_back_nodup(const CapabilityExpr &CapE) {
89 iterator It = std::find_if(begin(), end(),
90 [=](const CapabilityExpr &CapE2) {
91 return CapE.equals(CapE2);
92 });
93 if (It == end())
94 push_back(CapE);
95 }
96 };
97
98 class FactManager;
99 class FactSet;
100
101 /// This is a helper class that stores a fact that is known at a
102 /// particular point in program execution. Currently, a fact is a capability,
103 /// along with additional information, such as where it was acquired, whether
104 /// it is exclusive or shared, etc.
105 ///
106 /// FIXME: this analysis does not currently support re-entrant locking.
107 class FactEntry : public CapabilityExpr {
108 public:
109 /// Where a fact comes from.
110 enum SourceKind {
111 Acquired, ///< The fact has been directly acquired.
112 Asserted, ///< The fact has been asserted to be held.
113 Declared, ///< The fact is assumed to be held by callers.
114 Managed, ///< The fact has been acquired through a scoped capability.
115 };
116
117 private:
118 /// Exclusive or shared.
119 LockKind LKind : 8;
120
121 // How it was acquired.
122 SourceKind Source : 8;
123
124 /// Where it was acquired.
125 SourceLocation AcquireLoc;
126
127 public:
FactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,SourceKind Src)128 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
129 SourceKind Src)
130 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
131 virtual ~FactEntry() = default;
132
kind() const133 LockKind kind() const { return LKind; }
loc() const134 SourceLocation loc() const { return AcquireLoc; }
135
asserted() const136 bool asserted() const { return Source == Asserted; }
declared() const137 bool declared() const { return Source == Declared; }
managed() const138 bool managed() const { return Source == Managed; }
139
140 virtual void
141 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
142 SourceLocation JoinLoc, LockErrorKind LEK,
143 ThreadSafetyHandler &Handler) const = 0;
144 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
145 const FactEntry &entry, ThreadSafetyHandler &Handler,
146 StringRef DiagKind) const = 0;
147 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
148 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
149 bool FullyRemove, ThreadSafetyHandler &Handler,
150 StringRef DiagKind) const = 0;
151
152 // Return true if LKind >= LK, where exclusive > shared
isAtLeast(LockKind LK) const153 bool isAtLeast(LockKind LK) const {
154 return (LKind == LK_Exclusive) || (LK == LK_Shared);
155 }
156 };
157
158 using FactID = unsigned short;
159
160 /// FactManager manages the memory for all facts that are created during
161 /// the analysis of a single routine.
162 class FactManager {
163 private:
164 std::vector<std::unique_ptr<const FactEntry>> Facts;
165
166 public:
newFact(std::unique_ptr<FactEntry> Entry)167 FactID newFact(std::unique_ptr<FactEntry> Entry) {
168 Facts.push_back(std::move(Entry));
169 return static_cast<unsigned short>(Facts.size() - 1);
170 }
171
operator [](FactID F) const172 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
173 };
174
175 /// A FactSet is the set of facts that are known to be true at a
176 /// particular program point. FactSets must be small, because they are
177 /// frequently copied, and are thus implemented as a set of indices into a
178 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
179 /// locks, so we can get away with doing a linear search for lookup. Note
180 /// that a hashtable or map is inappropriate in this case, because lookups
181 /// may involve partial pattern matches, rather than exact matches.
182 class FactSet {
183 private:
184 using FactVec = SmallVector<FactID, 4>;
185
186 FactVec FactIDs;
187
188 public:
189 using iterator = FactVec::iterator;
190 using const_iterator = FactVec::const_iterator;
191
begin()192 iterator begin() { return FactIDs.begin(); }
begin() const193 const_iterator begin() const { return FactIDs.begin(); }
194
end()195 iterator end() { return FactIDs.end(); }
end() const196 const_iterator end() const { return FactIDs.end(); }
197
isEmpty() const198 bool isEmpty() const { return FactIDs.size() == 0; }
199
200 // Return true if the set contains only negative facts
isEmpty(FactManager & FactMan) const201 bool isEmpty(FactManager &FactMan) const {
202 for (const auto FID : *this) {
203 if (!FactMan[FID].negative())
204 return false;
205 }
206 return true;
207 }
208
addLockByID(FactID ID)209 void addLockByID(FactID ID) { FactIDs.push_back(ID); }
210
addLock(FactManager & FM,std::unique_ptr<FactEntry> Entry)211 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
212 FactID F = FM.newFact(std::move(Entry));
213 FactIDs.push_back(F);
214 return F;
215 }
216
removeLock(FactManager & FM,const CapabilityExpr & CapE)217 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
218 unsigned n = FactIDs.size();
219 if (n == 0)
220 return false;
221
222 for (unsigned i = 0; i < n-1; ++i) {
223 if (FM[FactIDs[i]].matches(CapE)) {
224 FactIDs[i] = FactIDs[n-1];
225 FactIDs.pop_back();
226 return true;
227 }
228 }
229 if (FM[FactIDs[n-1]].matches(CapE)) {
230 FactIDs.pop_back();
231 return true;
232 }
233 return false;
234 }
235
findLockIter(FactManager & FM,const CapabilityExpr & CapE)236 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
237 return std::find_if(begin(), end(), [&](FactID ID) {
238 return FM[ID].matches(CapE);
239 });
240 }
241
findLock(FactManager & FM,const CapabilityExpr & CapE) const242 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
243 auto I = std::find_if(begin(), end(), [&](FactID ID) {
244 return FM[ID].matches(CapE);
245 });
246 return I != end() ? &FM[*I] : nullptr;
247 }
248
findLockUniv(FactManager & FM,const CapabilityExpr & CapE) const249 const FactEntry *findLockUniv(FactManager &FM,
250 const CapabilityExpr &CapE) const {
251 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
252 return FM[ID].matchesUniv(CapE);
253 });
254 return I != end() ? &FM[*I] : nullptr;
255 }
256
findPartialMatch(FactManager & FM,const CapabilityExpr & CapE) const257 const FactEntry *findPartialMatch(FactManager &FM,
258 const CapabilityExpr &CapE) const {
259 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
260 return FM[ID].partiallyMatches(CapE);
261 });
262 return I != end() ? &FM[*I] : nullptr;
263 }
264
containsMutexDecl(FactManager & FM,const ValueDecl * Vd) const265 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
266 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
267 return FM[ID].valueDecl() == Vd;
268 });
269 return I != end();
270 }
271 };
272
273 class ThreadSafetyAnalyzer;
274
275 } // namespace
276
277 namespace clang {
278 namespace threadSafety {
279
280 class BeforeSet {
281 private:
282 using BeforeVect = SmallVector<const ValueDecl *, 4>;
283
284 struct BeforeInfo {
285 BeforeVect Vect;
286 int Visited = 0;
287
288 BeforeInfo() = default;
289 BeforeInfo(BeforeInfo &&) = default;
290 };
291
292 using BeforeMap =
293 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
294 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
295
296 public:
297 BeforeSet() = default;
298
299 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
300 ThreadSafetyAnalyzer& Analyzer);
301
302 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
303 ThreadSafetyAnalyzer &Analyzer);
304
305 void checkBeforeAfter(const ValueDecl* Vd,
306 const FactSet& FSet,
307 ThreadSafetyAnalyzer& Analyzer,
308 SourceLocation Loc, StringRef CapKind);
309
310 private:
311 BeforeMap BMap;
312 CycleMap CycMap;
313 };
314
315 } // namespace threadSafety
316 } // namespace clang
317
318 namespace {
319
320 class LocalVariableMap;
321
322 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
323
324 /// A side (entry or exit) of a CFG node.
325 enum CFGBlockSide { CBS_Entry, CBS_Exit };
326
327 /// CFGBlockInfo is a struct which contains all the information that is
328 /// maintained for each block in the CFG. See LocalVariableMap for more
329 /// information about the contexts.
330 struct CFGBlockInfo {
331 // Lockset held at entry to block
332 FactSet EntrySet;
333
334 // Lockset held at exit from block
335 FactSet ExitSet;
336
337 // Context held at entry to block
338 LocalVarContext EntryContext;
339
340 // Context held at exit from block
341 LocalVarContext ExitContext;
342
343 // Location of first statement in block
344 SourceLocation EntryLoc;
345
346 // Location of last statement in block.
347 SourceLocation ExitLoc;
348
349 // Used to replay contexts later
350 unsigned EntryIndex;
351
352 // Is this block reachable?
353 bool Reachable = false;
354
getSet__anon68dfda3c0811::CFGBlockInfo355 const FactSet &getSet(CFGBlockSide Side) const {
356 return Side == CBS_Entry ? EntrySet : ExitSet;
357 }
358
getLocation__anon68dfda3c0811::CFGBlockInfo359 SourceLocation getLocation(CFGBlockSide Side) const {
360 return Side == CBS_Entry ? EntryLoc : ExitLoc;
361 }
362
363 private:
CFGBlockInfo__anon68dfda3c0811::CFGBlockInfo364 CFGBlockInfo(LocalVarContext EmptyCtx)
365 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
366
367 public:
368 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
369 };
370
371 // A LocalVariableMap maintains a map from local variables to their currently
372 // valid definitions. It provides SSA-like functionality when traversing the
373 // CFG. Like SSA, each definition or assignment to a variable is assigned a
374 // unique name (an integer), which acts as the SSA name for that definition.
375 // The total set of names is shared among all CFG basic blocks.
376 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
377 // with their SSA-names. Instead, we compute a Context for each point in the
378 // code, which maps local variables to the appropriate SSA-name. This map
379 // changes with each assignment.
380 //
381 // The map is computed in a single pass over the CFG. Subsequent analyses can
382 // then query the map to find the appropriate Context for a statement, and use
383 // that Context to look up the definitions of variables.
384 class LocalVariableMap {
385 public:
386 using Context = LocalVarContext;
387
388 /// A VarDefinition consists of an expression, representing the value of the
389 /// variable, along with the context in which that expression should be
390 /// interpreted. A reference VarDefinition does not itself contain this
391 /// information, but instead contains a pointer to a previous VarDefinition.
392 struct VarDefinition {
393 public:
394 friend class LocalVariableMap;
395
396 // The original declaration for this variable.
397 const NamedDecl *Dec;
398
399 // The expression for this variable, OR
400 const Expr *Exp = nullptr;
401
402 // Reference to another VarDefinition
403 unsigned Ref = 0;
404
405 // The map with which Exp should be interpreted.
406 Context Ctx;
407
isReference__anon68dfda3c0811::LocalVariableMap::VarDefinition408 bool isReference() { return !Exp; }
409
410 private:
411 // Create ordinary variable definition
VarDefinition__anon68dfda3c0811::LocalVariableMap::VarDefinition412 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
413 : Dec(D), Exp(E), Ctx(C) {}
414
415 // Create reference to previous definition
VarDefinition__anon68dfda3c0811::LocalVariableMap::VarDefinition416 VarDefinition(const NamedDecl *D, unsigned R, Context C)
417 : Dec(D), Ref(R), Ctx(C) {}
418 };
419
420 private:
421 Context::Factory ContextFactory;
422 std::vector<VarDefinition> VarDefinitions;
423 std::vector<unsigned> CtxIndices;
424 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
425
426 public:
LocalVariableMap()427 LocalVariableMap() {
428 // index 0 is a placeholder for undefined variables (aka phi-nodes).
429 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
430 }
431
432 /// Look up a definition, within the given context.
lookup(const NamedDecl * D,Context Ctx)433 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
434 const unsigned *i = Ctx.lookup(D);
435 if (!i)
436 return nullptr;
437 assert(*i < VarDefinitions.size());
438 return &VarDefinitions[*i];
439 }
440
441 /// Look up the definition for D within the given context. Returns
442 /// NULL if the expression is not statically known. If successful, also
443 /// modifies Ctx to hold the context of the return Expr.
lookupExpr(const NamedDecl * D,Context & Ctx)444 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
445 const unsigned *P = Ctx.lookup(D);
446 if (!P)
447 return nullptr;
448
449 unsigned i = *P;
450 while (i > 0) {
451 if (VarDefinitions[i].Exp) {
452 Ctx = VarDefinitions[i].Ctx;
453 return VarDefinitions[i].Exp;
454 }
455 i = VarDefinitions[i].Ref;
456 }
457 return nullptr;
458 }
459
getEmptyContext()460 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
461
462 /// Return the next context after processing S. This function is used by
463 /// clients of the class to get the appropriate context when traversing the
464 /// CFG. It must be called for every assignment or DeclStmt.
getNextContext(unsigned & CtxIndex,const Stmt * S,Context C)465 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
466 if (SavedContexts[CtxIndex+1].first == S) {
467 CtxIndex++;
468 Context Result = SavedContexts[CtxIndex].second;
469 return Result;
470 }
471 return C;
472 }
473
dumpVarDefinitionName(unsigned i)474 void dumpVarDefinitionName(unsigned i) {
475 if (i == 0) {
476 llvm::errs() << "Undefined";
477 return;
478 }
479 const NamedDecl *Dec = VarDefinitions[i].Dec;
480 if (!Dec) {
481 llvm::errs() << "<<NULL>>";
482 return;
483 }
484 Dec->printName(llvm::errs());
485 llvm::errs() << "." << i << " " << ((const void*) Dec);
486 }
487
488 /// Dumps an ASCII representation of the variable map to llvm::errs()
dump()489 void dump() {
490 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
491 const Expr *Exp = VarDefinitions[i].Exp;
492 unsigned Ref = VarDefinitions[i].Ref;
493
494 dumpVarDefinitionName(i);
495 llvm::errs() << " = ";
496 if (Exp) Exp->dump();
497 else {
498 dumpVarDefinitionName(Ref);
499 llvm::errs() << "\n";
500 }
501 }
502 }
503
504 /// Dumps an ASCII representation of a Context to llvm::errs()
dumpContext(Context C)505 void dumpContext(Context C) {
506 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
507 const NamedDecl *D = I.getKey();
508 D->printName(llvm::errs());
509 const unsigned *i = C.lookup(D);
510 llvm::errs() << " -> ";
511 dumpVarDefinitionName(*i);
512 llvm::errs() << "\n";
513 }
514 }
515
516 /// Builds the variable map.
517 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
518 std::vector<CFGBlockInfo> &BlockInfo);
519
520 protected:
521 friend class VarMapBuilder;
522
523 // Get the current context index
getContextIndex()524 unsigned getContextIndex() { return SavedContexts.size()-1; }
525
526 // Save the current context for later replay
saveContext(const Stmt * S,Context C)527 void saveContext(const Stmt *S, Context C) {
528 SavedContexts.push_back(std::make_pair(S, C));
529 }
530
531 // Adds a new definition to the given context, and returns a new context.
532 // This method should be called when declaring a new variable.
addDefinition(const NamedDecl * D,const Expr * Exp,Context Ctx)533 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
534 assert(!Ctx.contains(D));
535 unsigned newID = VarDefinitions.size();
536 Context NewCtx = ContextFactory.add(Ctx, D, newID);
537 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
538 return NewCtx;
539 }
540
541 // Add a new reference to an existing definition.
addReference(const NamedDecl * D,unsigned i,Context Ctx)542 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
543 unsigned newID = VarDefinitions.size();
544 Context NewCtx = ContextFactory.add(Ctx, D, newID);
545 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
546 return NewCtx;
547 }
548
549 // Updates a definition only if that definition is already in the map.
550 // This method should be called when assigning to an existing variable.
updateDefinition(const NamedDecl * D,Expr * Exp,Context Ctx)551 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
552 if (Ctx.contains(D)) {
553 unsigned newID = VarDefinitions.size();
554 Context NewCtx = ContextFactory.remove(Ctx, D);
555 NewCtx = ContextFactory.add(NewCtx, D, newID);
556 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
557 return NewCtx;
558 }
559 return Ctx;
560 }
561
562 // Removes a definition from the context, but keeps the variable name
563 // as a valid variable. The index 0 is a placeholder for cleared definitions.
clearDefinition(const NamedDecl * D,Context Ctx)564 Context clearDefinition(const NamedDecl *D, Context Ctx) {
565 Context NewCtx = Ctx;
566 if (NewCtx.contains(D)) {
567 NewCtx = ContextFactory.remove(NewCtx, D);
568 NewCtx = ContextFactory.add(NewCtx, D, 0);
569 }
570 return NewCtx;
571 }
572
573 // Remove a definition entirely frmo the context.
removeDefinition(const NamedDecl * D,Context Ctx)574 Context removeDefinition(const NamedDecl *D, Context Ctx) {
575 Context NewCtx = Ctx;
576 if (NewCtx.contains(D)) {
577 NewCtx = ContextFactory.remove(NewCtx, D);
578 }
579 return NewCtx;
580 }
581
582 Context intersectContexts(Context C1, Context C2);
583 Context createReferenceContext(Context C);
584 void intersectBackEdge(Context C1, Context C2);
585 };
586
587 } // namespace
588
589 // This has to be defined after LocalVariableMap.
getEmptyBlockInfo(LocalVariableMap & M)590 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
591 return CFGBlockInfo(M.getEmptyContext());
592 }
593
594 namespace {
595
596 /// Visitor which builds a LocalVariableMap
597 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
598 public:
599 LocalVariableMap* VMap;
600 LocalVariableMap::Context Ctx;
601
VarMapBuilder(LocalVariableMap * VM,LocalVariableMap::Context C)602 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
603 : VMap(VM), Ctx(C) {}
604
605 void VisitDeclStmt(const DeclStmt *S);
606 void VisitBinaryOperator(const BinaryOperator *BO);
607 };
608
609 } // namespace
610
611 // Add new local variables to the variable map
VisitDeclStmt(const DeclStmt * S)612 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
613 bool modifiedCtx = false;
614 const DeclGroupRef DGrp = S->getDeclGroup();
615 for (const auto *D : DGrp) {
616 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
617 const Expr *E = VD->getInit();
618
619 // Add local variables with trivial type to the variable map
620 QualType T = VD->getType();
621 if (T.isTrivialType(VD->getASTContext())) {
622 Ctx = VMap->addDefinition(VD, E, Ctx);
623 modifiedCtx = true;
624 }
625 }
626 }
627 if (modifiedCtx)
628 VMap->saveContext(S, Ctx);
629 }
630
631 // Update local variable definitions in variable map
VisitBinaryOperator(const BinaryOperator * BO)632 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
633 if (!BO->isAssignmentOp())
634 return;
635
636 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
637
638 // Update the variable map and current context.
639 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
640 const ValueDecl *VDec = DRE->getDecl();
641 if (Ctx.lookup(VDec)) {
642 if (BO->getOpcode() == BO_Assign)
643 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
644 else
645 // FIXME -- handle compound assignment operators
646 Ctx = VMap->clearDefinition(VDec, Ctx);
647 VMap->saveContext(BO, Ctx);
648 }
649 }
650 }
651
652 // Computes the intersection of two contexts. The intersection is the
653 // set of variables which have the same definition in both contexts;
654 // variables with different definitions are discarded.
655 LocalVariableMap::Context
intersectContexts(Context C1,Context C2)656 LocalVariableMap::intersectContexts(Context C1, Context C2) {
657 Context Result = C1;
658 for (const auto &P : C1) {
659 const NamedDecl *Dec = P.first;
660 const unsigned *i2 = C2.lookup(Dec);
661 if (!i2) // variable doesn't exist on second path
662 Result = removeDefinition(Dec, Result);
663 else if (*i2 != P.second) // variable exists, but has different definition
664 Result = clearDefinition(Dec, Result);
665 }
666 return Result;
667 }
668
669 // For every variable in C, create a new variable that refers to the
670 // definition in C. Return a new context that contains these new variables.
671 // (We use this for a naive implementation of SSA on loop back-edges.)
createReferenceContext(Context C)672 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
673 Context Result = getEmptyContext();
674 for (const auto &P : C)
675 Result = addReference(P.first, P.second, Result);
676 return Result;
677 }
678
679 // This routine also takes the intersection of C1 and C2, but it does so by
680 // altering the VarDefinitions. C1 must be the result of an earlier call to
681 // createReferenceContext.
intersectBackEdge(Context C1,Context C2)682 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
683 for (const auto &P : C1) {
684 unsigned i1 = P.second;
685 VarDefinition *VDef = &VarDefinitions[i1];
686 assert(VDef->isReference());
687
688 const unsigned *i2 = C2.lookup(P.first);
689 if (!i2 || (*i2 != i1))
690 VDef->Ref = 0; // Mark this variable as undefined
691 }
692 }
693
694 // Traverse the CFG in topological order, so all predecessors of a block
695 // (excluding back-edges) are visited before the block itself. At
696 // each point in the code, we calculate a Context, which holds the set of
697 // variable definitions which are visible at that point in execution.
698 // Visible variables are mapped to their definitions using an array that
699 // contains all definitions.
700 //
701 // At join points in the CFG, the set is computed as the intersection of
702 // the incoming sets along each edge, E.g.
703 //
704 // { Context | VarDefinitions }
705 // int x = 0; { x -> x1 | x1 = 0 }
706 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
707 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
708 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
709 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
710 //
711 // This is essentially a simpler and more naive version of the standard SSA
712 // algorithm. Those definitions that remain in the intersection are from blocks
713 // that strictly dominate the current block. We do not bother to insert proper
714 // phi nodes, because they are not used in our analysis; instead, wherever
715 // a phi node would be required, we simply remove that definition from the
716 // context (E.g. x above).
717 //
718 // The initial traversal does not capture back-edges, so those need to be
719 // handled on a separate pass. Whenever the first pass encounters an
720 // incoming back edge, it duplicates the context, creating new definitions
721 // that refer back to the originals. (These correspond to places where SSA
722 // might have to insert a phi node.) On the second pass, these definitions are
723 // set to NULL if the variable has changed on the back-edge (i.e. a phi
724 // node was actually required.) E.g.
725 //
726 // { Context | VarDefinitions }
727 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
728 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
729 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
730 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
traverseCFG(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)731 void LocalVariableMap::traverseCFG(CFG *CFGraph,
732 const PostOrderCFGView *SortedGraph,
733 std::vector<CFGBlockInfo> &BlockInfo) {
734 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
735
736 CtxIndices.resize(CFGraph->getNumBlockIDs());
737
738 for (const auto *CurrBlock : *SortedGraph) {
739 unsigned CurrBlockID = CurrBlock->getBlockID();
740 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
741
742 VisitedBlocks.insert(CurrBlock);
743
744 // Calculate the entry context for the current block
745 bool HasBackEdges = false;
746 bool CtxInit = true;
747 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
748 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
749 // if *PI -> CurrBlock is a back edge, so skip it
750 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
751 HasBackEdges = true;
752 continue;
753 }
754
755 unsigned PrevBlockID = (*PI)->getBlockID();
756 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
757
758 if (CtxInit) {
759 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
760 CtxInit = false;
761 }
762 else {
763 CurrBlockInfo->EntryContext =
764 intersectContexts(CurrBlockInfo->EntryContext,
765 PrevBlockInfo->ExitContext);
766 }
767 }
768
769 // Duplicate the context if we have back-edges, so we can call
770 // intersectBackEdges later.
771 if (HasBackEdges)
772 CurrBlockInfo->EntryContext =
773 createReferenceContext(CurrBlockInfo->EntryContext);
774
775 // Create a starting context index for the current block
776 saveContext(nullptr, CurrBlockInfo->EntryContext);
777 CurrBlockInfo->EntryIndex = getContextIndex();
778
779 // Visit all the statements in the basic block.
780 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
781 for (const auto &BI : *CurrBlock) {
782 switch (BI.getKind()) {
783 case CFGElement::Statement: {
784 CFGStmt CS = BI.castAs<CFGStmt>();
785 VMapBuilder.Visit(CS.getStmt());
786 break;
787 }
788 default:
789 break;
790 }
791 }
792 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
793
794 // Mark variables on back edges as "unknown" if they've been changed.
795 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
796 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
797 // if CurrBlock -> *SI is *not* a back edge
798 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
799 continue;
800
801 CFGBlock *FirstLoopBlock = *SI;
802 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
803 Context LoopEnd = CurrBlockInfo->ExitContext;
804 intersectBackEdge(LoopBegin, LoopEnd);
805 }
806 }
807
808 // Put an extra entry at the end of the indexed context array
809 unsigned exitID = CFGraph->getExit().getBlockID();
810 saveContext(nullptr, BlockInfo[exitID].ExitContext);
811 }
812
813 /// Find the appropriate source locations to use when producing diagnostics for
814 /// each block in the CFG.
findBlockLocations(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)815 static void findBlockLocations(CFG *CFGraph,
816 const PostOrderCFGView *SortedGraph,
817 std::vector<CFGBlockInfo> &BlockInfo) {
818 for (const auto *CurrBlock : *SortedGraph) {
819 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
820
821 // Find the source location of the last statement in the block, if the
822 // block is not empty.
823 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
824 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
825 } else {
826 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
827 BE = CurrBlock->rend(); BI != BE; ++BI) {
828 // FIXME: Handle other CFGElement kinds.
829 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
830 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
831 break;
832 }
833 }
834 }
835
836 if (CurrBlockInfo->ExitLoc.isValid()) {
837 // This block contains at least one statement. Find the source location
838 // of the first statement in the block.
839 for (const auto &BI : *CurrBlock) {
840 // FIXME: Handle other CFGElement kinds.
841 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
842 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
843 break;
844 }
845 }
846 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
847 CurrBlock != &CFGraph->getExit()) {
848 // The block is empty, and has a single predecessor. Use its exit
849 // location.
850 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
851 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
852 }
853 }
854 }
855
856 namespace {
857
858 class LockableFactEntry : public FactEntry {
859 public:
LockableFactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,SourceKind Src=Acquired)860 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
861 SourceKind Src = Acquired)
862 : FactEntry(CE, LK, Loc, Src) {}
863
864 void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const865 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
866 SourceLocation JoinLoc, LockErrorKind LEK,
867 ThreadSafetyHandler &Handler) const override {
868 if (!managed() && !asserted() && !negative() && !isUniversal()) {
869 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
870 LEK);
871 }
872 }
873
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const874 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
875 ThreadSafetyHandler &Handler,
876 StringRef DiagKind) const override {
877 Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
878 }
879
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const880 void handleUnlock(FactSet &FSet, FactManager &FactMan,
881 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
882 bool FullyRemove, ThreadSafetyHandler &Handler,
883 StringRef DiagKind) const override {
884 FSet.removeLock(FactMan, Cp);
885 if (!Cp.negative()) {
886 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
887 !Cp, LK_Exclusive, UnlockLoc));
888 }
889 }
890 };
891
892 class ScopedLockableFactEntry : public FactEntry {
893 private:
894 enum UnderlyingCapabilityKind {
895 UCK_Acquired, ///< Any kind of acquired capability.
896 UCK_ReleasedShared, ///< Shared capability that was released.
897 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
898 };
899
900 using UnderlyingCapability =
901 llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
902
903 SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
904
905 public:
ScopedLockableFactEntry(const CapabilityExpr & CE,SourceLocation Loc)906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908
addLock(const CapabilityExpr & M)909 void addLock(const CapabilityExpr &M) {
910 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
911 }
912
addExclusiveUnlock(const CapabilityExpr & M)913 void addExclusiveUnlock(const CapabilityExpr &M) {
914 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
915 }
916
addSharedUnlock(const CapabilityExpr & M)917 void addSharedUnlock(const CapabilityExpr &M) {
918 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
919 }
920
921 void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923 SourceLocation JoinLoc, LockErrorKind LEK,
924 ThreadSafetyHandler &Handler) const override {
925 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926 const auto *Entry = FSet.findLock(
927 FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
928 if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
929 (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
930 // If this scoped lock manages another mutex, and if the underlying
931 // mutex is still/not held, then warn about the underlying mutex.
932 Handler.handleMutexHeldEndOfScope(
933 "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
934 LEK);
935 }
936 }
937 }
938
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const939 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
940 ThreadSafetyHandler &Handler,
941 StringRef DiagKind) const override {
942 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
943 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
944
945 if (UnderlyingMutex.getInt() == UCK_Acquired)
946 lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
947 DiagKind);
948 else
949 unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
950 }
951 }
952
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const953 void handleUnlock(FactSet &FSet, FactManager &FactMan,
954 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
955 bool FullyRemove, ThreadSafetyHandler &Handler,
956 StringRef DiagKind) const override {
957 assert(!Cp.negative() && "Managing object cannot be negative.");
958 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
959 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
960
961 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
962 // on double unlocking/locking if we're not destroying the scoped object.
963 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
964 if (UnderlyingMutex.getInt() == UCK_Acquired) {
965 unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
966 } else {
967 LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
968 ? LK_Shared
969 : LK_Exclusive;
970 lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
971 }
972 }
973 if (FullyRemove)
974 FSet.removeLock(FactMan, Cp);
975 }
976
977 private:
lock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,LockKind kind,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const978 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
979 LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
980 StringRef DiagKind) const {
981 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
982 if (Handler)
983 Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
984 } else {
985 FSet.removeLock(FactMan, !Cp);
986 FSet.addLock(FactMan,
987 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
988 }
989 }
990
unlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const991 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
992 SourceLocation loc, ThreadSafetyHandler *Handler,
993 StringRef DiagKind) const {
994 if (FSet.findLock(FactMan, Cp)) {
995 FSet.removeLock(FactMan, Cp);
996 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
997 !Cp, LK_Exclusive, loc));
998 } else if (Handler) {
999 SourceLocation PrevLoc;
1000 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1001 PrevLoc = Neg->loc();
1002 Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc);
1003 }
1004 }
1005 };
1006
1007 /// Class which implements the core thread safety analysis routines.
1008 class ThreadSafetyAnalyzer {
1009 friend class BuildLockset;
1010 friend class threadSafety::BeforeSet;
1011
1012 llvm::BumpPtrAllocator Bpa;
1013 threadSafety::til::MemRegionRef Arena;
1014 threadSafety::SExprBuilder SxBuilder;
1015
1016 ThreadSafetyHandler &Handler;
1017 const CXXMethodDecl *CurrentMethod;
1018 LocalVariableMap LocalVarMap;
1019 FactManager FactMan;
1020 std::vector<CFGBlockInfo> BlockInfo;
1021
1022 BeforeSet *GlobalBeforeSet;
1023
1024 public:
ThreadSafetyAnalyzer(ThreadSafetyHandler & H,BeforeSet * Bset)1025 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1026 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1027
1028 bool inCurrentScope(const CapabilityExpr &CapE);
1029
1030 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1031 StringRef DiagKind, bool ReqAttr = false);
1032 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1033 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
1034 StringRef DiagKind);
1035
1036 template <typename AttrType>
1037 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1038 const NamedDecl *D, VarDecl *SelfDecl = nullptr);
1039
1040 template <class AttrType>
1041 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1042 const NamedDecl *D,
1043 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1044 Expr *BrE, bool Neg);
1045
1046 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1047 bool &Negate);
1048
1049 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1050 const CFGBlock* PredBlock,
1051 const CFGBlock *CurrBlock);
1052
1053 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1054 SourceLocation JoinLoc, LockErrorKind LEK1,
1055 LockErrorKind LEK2);
1056
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1)1057 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1058 SourceLocation JoinLoc, LockErrorKind LEK1) {
1059 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1);
1060 }
1061
1062 void runAnalysis(AnalysisDeclContext &AC);
1063 };
1064
1065 } // namespace
1066
1067 /// Process acquired_before and acquired_after attributes on Vd.
insertAttrExprs(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)1068 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1069 ThreadSafetyAnalyzer& Analyzer) {
1070 // Create a new entry for Vd.
1071 BeforeInfo *Info = nullptr;
1072 {
1073 // Keep InfoPtr in its own scope in case BMap is modified later and the
1074 // reference becomes invalid.
1075 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1076 if (!InfoPtr)
1077 InfoPtr.reset(new BeforeInfo());
1078 Info = InfoPtr.get();
1079 }
1080
1081 for (const auto *At : Vd->attrs()) {
1082 switch (At->getKind()) {
1083 case attr::AcquiredBefore: {
1084 const auto *A = cast<AcquiredBeforeAttr>(At);
1085
1086 // Read exprs from the attribute, and add them to BeforeVect.
1087 for (const auto *Arg : A->args()) {
1088 CapabilityExpr Cp =
1089 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1090 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1091 Info->Vect.push_back(Cpvd);
1092 const auto It = BMap.find(Cpvd);
1093 if (It == BMap.end())
1094 insertAttrExprs(Cpvd, Analyzer);
1095 }
1096 }
1097 break;
1098 }
1099 case attr::AcquiredAfter: {
1100 const auto *A = cast<AcquiredAfterAttr>(At);
1101
1102 // Read exprs from the attribute, and add them to BeforeVect.
1103 for (const auto *Arg : A->args()) {
1104 CapabilityExpr Cp =
1105 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1106 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1107 // Get entry for mutex listed in attribute
1108 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1109 ArgInfo->Vect.push_back(Vd);
1110 }
1111 }
1112 break;
1113 }
1114 default:
1115 break;
1116 }
1117 }
1118
1119 return Info;
1120 }
1121
1122 BeforeSet::BeforeInfo *
getBeforeInfoForDecl(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)1123 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1124 ThreadSafetyAnalyzer &Analyzer) {
1125 auto It = BMap.find(Vd);
1126 BeforeInfo *Info = nullptr;
1127 if (It == BMap.end())
1128 Info = insertAttrExprs(Vd, Analyzer);
1129 else
1130 Info = It->second.get();
1131 assert(Info && "BMap contained nullptr?");
1132 return Info;
1133 }
1134
1135 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
checkBeforeAfter(const ValueDecl * StartVd,const FactSet & FSet,ThreadSafetyAnalyzer & Analyzer,SourceLocation Loc,StringRef CapKind)1136 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1137 const FactSet& FSet,
1138 ThreadSafetyAnalyzer& Analyzer,
1139 SourceLocation Loc, StringRef CapKind) {
1140 SmallVector<BeforeInfo*, 8> InfoVect;
1141
1142 // Do a depth-first traversal of Vd.
1143 // Return true if there are cycles.
1144 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1145 if (!Vd)
1146 return false;
1147
1148 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1149
1150 if (Info->Visited == 1)
1151 return true;
1152
1153 if (Info->Visited == 2)
1154 return false;
1155
1156 if (Info->Vect.empty())
1157 return false;
1158
1159 InfoVect.push_back(Info);
1160 Info->Visited = 1;
1161 for (const auto *Vdb : Info->Vect) {
1162 // Exclude mutexes in our immediate before set.
1163 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1164 StringRef L1 = StartVd->getName();
1165 StringRef L2 = Vdb->getName();
1166 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1167 }
1168 // Transitively search other before sets, and warn on cycles.
1169 if (traverse(Vdb)) {
1170 if (CycMap.find(Vd) == CycMap.end()) {
1171 CycMap.insert(std::make_pair(Vd, true));
1172 StringRef L1 = Vd->getName();
1173 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1174 }
1175 }
1176 }
1177 Info->Visited = 2;
1178 return false;
1179 };
1180
1181 traverse(StartVd);
1182
1183 for (auto *Info : InfoVect)
1184 Info->Visited = 0;
1185 }
1186
1187 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
getValueDecl(const Expr * Exp)1188 static const ValueDecl *getValueDecl(const Expr *Exp) {
1189 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1190 return getValueDecl(CE->getSubExpr());
1191
1192 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1193 return DR->getDecl();
1194
1195 if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1196 return ME->getMemberDecl();
1197
1198 return nullptr;
1199 }
1200
1201 namespace {
1202
1203 template <typename Ty>
1204 class has_arg_iterator_range {
1205 using yes = char[1];
1206 using no = char[2];
1207
1208 template <typename Inner>
1209 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1210
1211 template <typename>
1212 static no& test(...);
1213
1214 public:
1215 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1216 };
1217
1218 } // namespace
1219
ClassifyDiagnostic(const CapabilityAttr * A)1220 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1221 return A->getName();
1222 }
1223
ClassifyDiagnostic(QualType VDT)1224 static StringRef ClassifyDiagnostic(QualType VDT) {
1225 // We need to look at the declaration of the type of the value to determine
1226 // which it is. The type should either be a record or a typedef, or a pointer
1227 // or reference thereof.
1228 if (const auto *RT = VDT->getAs<RecordType>()) {
1229 if (const auto *RD = RT->getDecl())
1230 if (const auto *CA = RD->getAttr<CapabilityAttr>())
1231 return ClassifyDiagnostic(CA);
1232 } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1233 if (const auto *TD = TT->getDecl())
1234 if (const auto *CA = TD->getAttr<CapabilityAttr>())
1235 return ClassifyDiagnostic(CA);
1236 } else if (VDT->isPointerType() || VDT->isReferenceType())
1237 return ClassifyDiagnostic(VDT->getPointeeType());
1238
1239 return "mutex";
1240 }
1241
ClassifyDiagnostic(const ValueDecl * VD)1242 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1243 assert(VD && "No ValueDecl passed");
1244
1245 // The ValueDecl is the declaration of a mutex or role (hopefully).
1246 return ClassifyDiagnostic(VD->getType());
1247 }
1248
1249 template <typename AttrTy>
1250 static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)1251 ClassifyDiagnostic(const AttrTy *A) {
1252 if (const ValueDecl *VD = getValueDecl(A->getArg()))
1253 return ClassifyDiagnostic(VD);
1254 return "mutex";
1255 }
1256
1257 template <typename AttrTy>
1258 static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)1259 ClassifyDiagnostic(const AttrTy *A) {
1260 for (const auto *Arg : A->args()) {
1261 if (const ValueDecl *VD = getValueDecl(Arg))
1262 return ClassifyDiagnostic(VD);
1263 }
1264 return "mutex";
1265 }
1266
inCurrentScope(const CapabilityExpr & CapE)1267 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1268 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1269 assert(SExp && "Null expressions should be ignored");
1270
1271 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1272 const ValueDecl *VD = LP->clangDecl();
1273 // Variables defined in a function are always inaccessible.
1274 if (!VD->isDefinedOutsideFunctionOrMethod())
1275 return false;
1276 // For now we consider static class members to be inaccessible.
1277 if (isa<CXXRecordDecl>(VD->getDeclContext()))
1278 return false;
1279 // Global variables are always in scope.
1280 return true;
1281 }
1282
1283 // Members are in scope from methods of the same class.
1284 if (const auto *P = dyn_cast<til::Project>(SExp)) {
1285 if (!CurrentMethod)
1286 return false;
1287 const ValueDecl *VD = P->clangDecl();
1288 return VD->getDeclContext() == CurrentMethod->getDeclContext();
1289 }
1290
1291 return false;
1292 }
1293
1294 /// Add a new lock to the lockset, warning if the lock is already there.
1295 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
addLock(FactSet & FSet,std::unique_ptr<FactEntry> Entry,StringRef DiagKind,bool ReqAttr)1296 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1297 std::unique_ptr<FactEntry> Entry,
1298 StringRef DiagKind, bool ReqAttr) {
1299 if (Entry->shouldIgnore())
1300 return;
1301
1302 if (!ReqAttr && !Entry->negative()) {
1303 // look for the negative capability, and remove it from the fact set.
1304 CapabilityExpr NegC = !*Entry;
1305 const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1306 if (Nen) {
1307 FSet.removeLock(FactMan, NegC);
1308 }
1309 else {
1310 if (inCurrentScope(*Entry) && !Entry->asserted())
1311 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1312 NegC.toString(), Entry->loc());
1313 }
1314 }
1315
1316 // Check before/after constraints
1317 if (Handler.issueBetaWarnings() &&
1318 !Entry->asserted() && !Entry->declared()) {
1319 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1320 Entry->loc(), DiagKind);
1321 }
1322
1323 // FIXME: Don't always warn when we have support for reentrant locks.
1324 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1325 if (!Entry->asserted())
1326 Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
1327 } else {
1328 FSet.addLock(FactMan, std::move(Entry));
1329 }
1330 }
1331
1332 /// Remove a lock from the lockset, warning if the lock is not there.
1333 /// \param UnlockLoc The source location of the unlock (only used in error msg)
removeLock(FactSet & FSet,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,LockKind ReceivedKind,StringRef DiagKind)1334 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1335 SourceLocation UnlockLoc,
1336 bool FullyRemove, LockKind ReceivedKind,
1337 StringRef DiagKind) {
1338 if (Cp.shouldIgnore())
1339 return;
1340
1341 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1342 if (!LDat) {
1343 SourceLocation PrevLoc;
1344 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1345 PrevLoc = Neg->loc();
1346 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc);
1347 return;
1348 }
1349
1350 // Generic lock removal doesn't care about lock kind mismatches, but
1351 // otherwise diagnose when the lock kinds are mismatched.
1352 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1353 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
1354 ReceivedKind, LDat->loc(), UnlockLoc);
1355 }
1356
1357 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1358 DiagKind);
1359 }
1360
1361 /// Extract the list of mutexIDs from the attribute on an expression,
1362 /// and push them onto Mtxs, discarding any duplicates.
1363 template <typename AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,VarDecl * SelfDecl)1364 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1365 const Expr *Exp, const NamedDecl *D,
1366 VarDecl *SelfDecl) {
1367 if (Attr->args_size() == 0) {
1368 // The mutex held is the "this" object.
1369 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1370 if (Cp.isInvalid()) {
1371 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1372 return;
1373 }
1374 //else
1375 if (!Cp.shouldIgnore())
1376 Mtxs.push_back_nodup(Cp);
1377 return;
1378 }
1379
1380 for (const auto *Arg : Attr->args()) {
1381 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1382 if (Cp.isInvalid()) {
1383 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1384 continue;
1385 }
1386 //else
1387 if (!Cp.shouldIgnore())
1388 Mtxs.push_back_nodup(Cp);
1389 }
1390 }
1391
1392 /// Extract the list of mutexIDs from a trylock attribute. If the
1393 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1394 /// any duplicates.
1395 template <class AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,const CFGBlock * PredBlock,const CFGBlock * CurrBlock,Expr * BrE,bool Neg)1396 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1397 const Expr *Exp, const NamedDecl *D,
1398 const CFGBlock *PredBlock,
1399 const CFGBlock *CurrBlock,
1400 Expr *BrE, bool Neg) {
1401 // Find out which branch has the lock
1402 bool branch = false;
1403 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1404 branch = BLE->getValue();
1405 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1406 branch = ILE->getValue().getBoolValue();
1407
1408 int branchnum = branch ? 0 : 1;
1409 if (Neg)
1410 branchnum = !branchnum;
1411
1412 // If we've taken the trylock branch, then add the lock
1413 int i = 0;
1414 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1415 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1416 if (*SI == CurrBlock && i == branchnum)
1417 getMutexIDs(Mtxs, Attr, Exp, D);
1418 }
1419 }
1420
getStaticBooleanValue(Expr * E,bool & TCond)1421 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1422 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1423 TCond = false;
1424 return true;
1425 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1426 TCond = BLE->getValue();
1427 return true;
1428 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1429 TCond = ILE->getValue().getBoolValue();
1430 return true;
1431 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1432 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1433 return false;
1434 }
1435
1436 // If Cond can be traced back to a function call, return the call expression.
1437 // The negate variable should be called with false, and will be set to true
1438 // if the function call is negated, e.g. if (!mu.tryLock(...))
getTrylockCallExpr(const Stmt * Cond,LocalVarContext C,bool & Negate)1439 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1440 LocalVarContext C,
1441 bool &Negate) {
1442 if (!Cond)
1443 return nullptr;
1444
1445 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1446 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1447 return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1448 return CallExp;
1449 }
1450 else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1451 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1452 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1453 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1454 else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1455 return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1456 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1457 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1458 return getTrylockCallExpr(E, C, Negate);
1459 }
1460 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1461 if (UOP->getOpcode() == UO_LNot) {
1462 Negate = !Negate;
1463 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1464 }
1465 return nullptr;
1466 }
1467 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1468 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1469 if (BOP->getOpcode() == BO_NE)
1470 Negate = !Negate;
1471
1472 bool TCond = false;
1473 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1474 if (!TCond) Negate = !Negate;
1475 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1476 }
1477 TCond = false;
1478 if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1479 if (!TCond) Negate = !Negate;
1480 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1481 }
1482 return nullptr;
1483 }
1484 if (BOP->getOpcode() == BO_LAnd) {
1485 // LHS must have been evaluated in a different block.
1486 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1487 }
1488 if (BOP->getOpcode() == BO_LOr)
1489 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1490 return nullptr;
1491 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1492 bool TCond, FCond;
1493 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1494 getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1495 if (TCond && !FCond)
1496 return getTrylockCallExpr(COP->getCond(), C, Negate);
1497 if (!TCond && FCond) {
1498 Negate = !Negate;
1499 return getTrylockCallExpr(COP->getCond(), C, Negate);
1500 }
1501 }
1502 }
1503 return nullptr;
1504 }
1505
1506 /// Find the lockset that holds on the edge between PredBlock
1507 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1508 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
getEdgeLockset(FactSet & Result,const FactSet & ExitSet,const CFGBlock * PredBlock,const CFGBlock * CurrBlock)1509 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1510 const FactSet &ExitSet,
1511 const CFGBlock *PredBlock,
1512 const CFGBlock *CurrBlock) {
1513 Result = ExitSet;
1514
1515 const Stmt *Cond = PredBlock->getTerminatorCondition();
1516 // We don't acquire try-locks on ?: branches, only when its result is used.
1517 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1518 return;
1519
1520 bool Negate = false;
1521 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1522 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1523 StringRef CapDiagKind = "mutex";
1524
1525 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1526 if (!Exp)
1527 return;
1528
1529 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1530 if(!FunDecl || !FunDecl->hasAttrs())
1531 return;
1532
1533 CapExprSet ExclusiveLocksToAdd;
1534 CapExprSet SharedLocksToAdd;
1535
1536 // If the condition is a call to a Trylock function, then grab the attributes
1537 for (const auto *Attr : FunDecl->attrs()) {
1538 switch (Attr->getKind()) {
1539 case attr::TryAcquireCapability: {
1540 auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1541 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1542 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1543 Negate);
1544 CapDiagKind = ClassifyDiagnostic(A);
1545 break;
1546 };
1547 case attr::ExclusiveTrylockFunction: {
1548 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1549 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1550 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1551 CapDiagKind = ClassifyDiagnostic(A);
1552 break;
1553 }
1554 case attr::SharedTrylockFunction: {
1555 const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1556 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1557 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1558 CapDiagKind = ClassifyDiagnostic(A);
1559 break;
1560 }
1561 default:
1562 break;
1563 }
1564 }
1565
1566 // Add and remove locks.
1567 SourceLocation Loc = Exp->getExprLoc();
1568 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1569 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1570 LK_Exclusive, Loc),
1571 CapDiagKind);
1572 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1573 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1574 LK_Shared, Loc),
1575 CapDiagKind);
1576 }
1577
1578 namespace {
1579
1580 /// We use this class to visit different types of expressions in
1581 /// CFGBlocks, and build up the lockset.
1582 /// An expression may cause us to add or remove locks from the lockset, or else
1583 /// output error messages related to missing locks.
1584 /// FIXME: In future, we may be able to not inherit from a visitor.
1585 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1586 friend class ThreadSafetyAnalyzer;
1587
1588 ThreadSafetyAnalyzer *Analyzer;
1589 FactSet FSet;
1590 LocalVariableMap::Context LVarCtx;
1591 unsigned CtxIndex;
1592
1593 // helper functions
1594 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1595 Expr *MutexExp, ProtectedOperationKind POK,
1596 StringRef DiagKind, SourceLocation Loc);
1597 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1598 StringRef DiagKind);
1599
1600 void checkAccess(const Expr *Exp, AccessKind AK,
1601 ProtectedOperationKind POK = POK_VarAccess);
1602 void checkPtAccess(const Expr *Exp, AccessKind AK,
1603 ProtectedOperationKind POK = POK_VarAccess);
1604
1605 void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1606 void examineArguments(const FunctionDecl *FD,
1607 CallExpr::const_arg_iterator ArgBegin,
1608 CallExpr::const_arg_iterator ArgEnd,
1609 bool SkipFirstParam = false);
1610
1611 public:
BuildLockset(ThreadSafetyAnalyzer * Anlzr,CFGBlockInfo & Info)1612 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1613 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1614 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1615
1616 void VisitUnaryOperator(const UnaryOperator *UO);
1617 void VisitBinaryOperator(const BinaryOperator *BO);
1618 void VisitCastExpr(const CastExpr *CE);
1619 void VisitCallExpr(const CallExpr *Exp);
1620 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1621 void VisitDeclStmt(const DeclStmt *S);
1622 };
1623
1624 } // namespace
1625
1626 /// Warn if the LSet does not contain a lock sufficient to protect access
1627 /// of at least the passed in AccessKind.
warnIfMutexNotHeld(const NamedDecl * D,const Expr * Exp,AccessKind AK,Expr * MutexExp,ProtectedOperationKind POK,StringRef DiagKind,SourceLocation Loc)1628 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1629 AccessKind AK, Expr *MutexExp,
1630 ProtectedOperationKind POK,
1631 StringRef DiagKind, SourceLocation Loc) {
1632 LockKind LK = getLockKindFromAccessKind(AK);
1633
1634 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1635 if (Cp.isInvalid()) {
1636 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1637 return;
1638 } else if (Cp.shouldIgnore()) {
1639 return;
1640 }
1641
1642 if (Cp.negative()) {
1643 // Negative capabilities act like locks excluded
1644 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1645 if (LDat) {
1646 Analyzer->Handler.handleFunExcludesLock(
1647 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1648 return;
1649 }
1650
1651 // If this does not refer to a negative capability in the same class,
1652 // then stop here.
1653 if (!Analyzer->inCurrentScope(Cp))
1654 return;
1655
1656 // Otherwise the negative requirement must be propagated to the caller.
1657 LDat = FSet.findLock(Analyzer->FactMan, Cp);
1658 if (!LDat) {
1659 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1660 }
1661 return;
1662 }
1663
1664 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1665 bool NoError = true;
1666 if (!LDat) {
1667 // No exact match found. Look for a partial match.
1668 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1669 if (LDat) {
1670 // Warn that there's no precise match.
1671 std::string PartMatchStr = LDat->toString();
1672 StringRef PartMatchName(PartMatchStr);
1673 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1674 LK, Loc, &PartMatchName);
1675 } else {
1676 // Warn that there's no match at all.
1677 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1678 LK, Loc);
1679 }
1680 NoError = false;
1681 }
1682 // Make sure the mutex we found is the right kind.
1683 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1684 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1685 LK, Loc);
1686 }
1687 }
1688
1689 /// Warn if the LSet contains the given lock.
warnIfMutexHeld(const NamedDecl * D,const Expr * Exp,Expr * MutexExp,StringRef DiagKind)1690 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1691 Expr *MutexExp, StringRef DiagKind) {
1692 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1693 if (Cp.isInvalid()) {
1694 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1695 return;
1696 } else if (Cp.shouldIgnore()) {
1697 return;
1698 }
1699
1700 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1701 if (LDat) {
1702 Analyzer->Handler.handleFunExcludesLock(
1703 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1704 }
1705 }
1706
1707 /// Checks guarded_by and pt_guarded_by attributes.
1708 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1709 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1710 /// Similarly, we check if the access is to an expression that dereferences
1711 /// a pointer marked with pt_guarded_by.
checkAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)1712 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1713 ProtectedOperationKind POK) {
1714 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1715
1716 SourceLocation Loc = Exp->getExprLoc();
1717
1718 // Local variables of reference type cannot be re-assigned;
1719 // map them to their initializer.
1720 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1721 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1722 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1723 if (const auto *E = VD->getInit()) {
1724 // Guard against self-initialization. e.g., int &i = i;
1725 if (E == Exp)
1726 break;
1727 Exp = E;
1728 continue;
1729 }
1730 }
1731 break;
1732 }
1733
1734 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1735 // For dereferences
1736 if (UO->getOpcode() == UO_Deref)
1737 checkPtAccess(UO->getSubExpr(), AK, POK);
1738 return;
1739 }
1740
1741 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1742 checkPtAccess(AE->getLHS(), AK, POK);
1743 return;
1744 }
1745
1746 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1747 if (ME->isArrow())
1748 checkPtAccess(ME->getBase(), AK, POK);
1749 else
1750 checkAccess(ME->getBase(), AK, POK);
1751 }
1752
1753 const ValueDecl *D = getValueDecl(Exp);
1754 if (!D || !D->hasAttrs())
1755 return;
1756
1757 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1758 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1759 }
1760
1761 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1762 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1763 ClassifyDiagnostic(I), Loc);
1764 }
1765
1766 /// Checks pt_guarded_by and pt_guarded_var attributes.
1767 /// POK is the same operationKind that was passed to checkAccess.
checkPtAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)1768 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1769 ProtectedOperationKind POK) {
1770 while (true) {
1771 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1772 Exp = PE->getSubExpr();
1773 continue;
1774 }
1775 if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1776 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1777 // If it's an actual array, and not a pointer, then it's elements
1778 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1779 checkAccess(CE->getSubExpr(), AK, POK);
1780 return;
1781 }
1782 Exp = CE->getSubExpr();
1783 continue;
1784 }
1785 break;
1786 }
1787
1788 // Pass by reference warnings are under a different flag.
1789 ProtectedOperationKind PtPOK = POK_VarDereference;
1790 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1791
1792 const ValueDecl *D = getValueDecl(Exp);
1793 if (!D || !D->hasAttrs())
1794 return;
1795
1796 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1797 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1798 Exp->getExprLoc());
1799
1800 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1801 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1802 ClassifyDiagnostic(I), Exp->getExprLoc());
1803 }
1804
1805 /// Process a function call, method call, constructor call,
1806 /// or destructor call. This involves looking at the attributes on the
1807 /// corresponding function/method/constructor/destructor, issuing warnings,
1808 /// and updating the locksets accordingly.
1809 ///
1810 /// FIXME: For classes annotated with one of the guarded annotations, we need
1811 /// to treat const method calls as reads and non-const method calls as writes,
1812 /// and check that the appropriate locks are held. Non-const method calls with
1813 /// the same signature as const method calls can be also treated as reads.
1814 ///
handleCall(const Expr * Exp,const NamedDecl * D,VarDecl * VD)1815 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1816 VarDecl *VD) {
1817 SourceLocation Loc = Exp->getExprLoc();
1818 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1819 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1820 CapExprSet ScopedReqsAndExcludes;
1821 StringRef CapDiagKind = "mutex";
1822
1823 // Figure out if we're constructing an object of scoped lockable class
1824 bool isScopedVar = false;
1825 if (VD) {
1826 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1827 const CXXRecordDecl* PD = CD->getParent();
1828 if (PD && PD->hasAttr<ScopedLockableAttr>())
1829 isScopedVar = true;
1830 }
1831 }
1832
1833 for(const Attr *At : D->attrs()) {
1834 switch (At->getKind()) {
1835 // When we encounter a lock function, we need to add the lock to our
1836 // lockset.
1837 case attr::AcquireCapability: {
1838 const auto *A = cast<AcquireCapabilityAttr>(At);
1839 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1840 : ExclusiveLocksToAdd,
1841 A, Exp, D, VD);
1842
1843 CapDiagKind = ClassifyDiagnostic(A);
1844 break;
1845 }
1846
1847 // An assert will add a lock to the lockset, but will not generate
1848 // a warning if it is already there, and will not generate a warning
1849 // if it is not removed.
1850 case attr::AssertExclusiveLock: {
1851 const auto *A = cast<AssertExclusiveLockAttr>(At);
1852
1853 CapExprSet AssertLocks;
1854 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1855 for (const auto &AssertLock : AssertLocks)
1856 Analyzer->addLock(
1857 FSet,
1858 std::make_unique<LockableFactEntry>(AssertLock, LK_Exclusive, Loc,
1859 FactEntry::Asserted),
1860 ClassifyDiagnostic(A));
1861 break;
1862 }
1863 case attr::AssertSharedLock: {
1864 const auto *A = cast<AssertSharedLockAttr>(At);
1865
1866 CapExprSet AssertLocks;
1867 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1868 for (const auto &AssertLock : AssertLocks)
1869 Analyzer->addLock(
1870 FSet,
1871 std::make_unique<LockableFactEntry>(AssertLock, LK_Shared, Loc,
1872 FactEntry::Asserted),
1873 ClassifyDiagnostic(A));
1874 break;
1875 }
1876
1877 case attr::AssertCapability: {
1878 const auto *A = cast<AssertCapabilityAttr>(At);
1879 CapExprSet AssertLocks;
1880 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1881 for (const auto &AssertLock : AssertLocks)
1882 Analyzer->addLock(FSet,
1883 std::make_unique<LockableFactEntry>(
1884 AssertLock,
1885 A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1886 FactEntry::Asserted),
1887 ClassifyDiagnostic(A));
1888 break;
1889 }
1890
1891 // When we encounter an unlock function, we need to remove unlocked
1892 // mutexes from the lockset, and flag a warning if they are not there.
1893 case attr::ReleaseCapability: {
1894 const auto *A = cast<ReleaseCapabilityAttr>(At);
1895 if (A->isGeneric())
1896 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1897 else if (A->isShared())
1898 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1899 else
1900 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1901
1902 CapDiagKind = ClassifyDiagnostic(A);
1903 break;
1904 }
1905
1906 case attr::RequiresCapability: {
1907 const auto *A = cast<RequiresCapabilityAttr>(At);
1908 for (auto *Arg : A->args()) {
1909 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1910 POK_FunctionCall, ClassifyDiagnostic(A),
1911 Exp->getExprLoc());
1912 // use for adopting a lock
1913 if (isScopedVar)
1914 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1915 }
1916 break;
1917 }
1918
1919 case attr::LocksExcluded: {
1920 const auto *A = cast<LocksExcludedAttr>(At);
1921 for (auto *Arg : A->args()) {
1922 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1923 // use for deferring a lock
1924 if (isScopedVar)
1925 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1926 }
1927 break;
1928 }
1929
1930 // Ignore attributes unrelated to thread-safety
1931 default:
1932 break;
1933 }
1934 }
1935
1936 // Remove locks first to allow lock upgrading/downgrading.
1937 // FIXME -- should only fully remove if the attribute refers to 'this'.
1938 bool Dtor = isa<CXXDestructorDecl>(D);
1939 for (const auto &M : ExclusiveLocksToRemove)
1940 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1941 for (const auto &M : SharedLocksToRemove)
1942 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1943 for (const auto &M : GenericLocksToRemove)
1944 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1945
1946 // Add locks.
1947 FactEntry::SourceKind Source =
1948 isScopedVar ? FactEntry::Managed : FactEntry::Acquired;
1949 for (const auto &M : ExclusiveLocksToAdd)
1950 Analyzer->addLock(
1951 FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, Loc, Source),
1952 CapDiagKind);
1953 for (const auto &M : SharedLocksToAdd)
1954 Analyzer->addLock(
1955 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source),
1956 CapDiagKind);
1957
1958 if (isScopedVar) {
1959 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1960 SourceLocation MLoc = VD->getLocation();
1961 DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
1962 VD->getLocation());
1963 // FIXME: does this store a pointer to DRE?
1964 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1965
1966 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
1967 for (const auto &M : ExclusiveLocksToAdd)
1968 ScopedEntry->addLock(M);
1969 for (const auto &M : SharedLocksToAdd)
1970 ScopedEntry->addLock(M);
1971 for (const auto &M : ScopedReqsAndExcludes)
1972 ScopedEntry->addLock(M);
1973 for (const auto &M : ExclusiveLocksToRemove)
1974 ScopedEntry->addExclusiveUnlock(M);
1975 for (const auto &M : SharedLocksToRemove)
1976 ScopedEntry->addSharedUnlock(M);
1977 Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
1978 }
1979 }
1980
1981 /// For unary operations which read and write a variable, we need to
1982 /// check whether we hold any required mutexes. Reads are checked in
1983 /// VisitCastExpr.
VisitUnaryOperator(const UnaryOperator * UO)1984 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1985 switch (UO->getOpcode()) {
1986 case UO_PostDec:
1987 case UO_PostInc:
1988 case UO_PreDec:
1989 case UO_PreInc:
1990 checkAccess(UO->getSubExpr(), AK_Written);
1991 break;
1992 default:
1993 break;
1994 }
1995 }
1996
1997 /// For binary operations which assign to a variable (writes), we need to check
1998 /// whether we hold any required mutexes.
1999 /// FIXME: Deal with non-primitive types.
VisitBinaryOperator(const BinaryOperator * BO)2000 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
2001 if (!BO->isAssignmentOp())
2002 return;
2003
2004 // adjust the context
2005 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2006
2007 checkAccess(BO->getLHS(), AK_Written);
2008 }
2009
2010 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2011 /// need to ensure we hold any required mutexes.
2012 /// FIXME: Deal with non-primitive types.
VisitCastExpr(const CastExpr * CE)2013 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
2014 if (CE->getCastKind() != CK_LValueToRValue)
2015 return;
2016 checkAccess(CE->getSubExpr(), AK_Read);
2017 }
2018
examineArguments(const FunctionDecl * FD,CallExpr::const_arg_iterator ArgBegin,CallExpr::const_arg_iterator ArgEnd,bool SkipFirstParam)2019 void BuildLockset::examineArguments(const FunctionDecl *FD,
2020 CallExpr::const_arg_iterator ArgBegin,
2021 CallExpr::const_arg_iterator ArgEnd,
2022 bool SkipFirstParam) {
2023 // Currently we can't do anything if we don't know the function declaration.
2024 if (!FD)
2025 return;
2026
2027 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2028 // only turns off checking within the body of a function, but we also
2029 // use it to turn off checking in arguments to the function. This
2030 // could result in some false negatives, but the alternative is to
2031 // create yet another attribute.
2032 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2033 return;
2034
2035 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2036 auto Param = Params.begin();
2037 if (SkipFirstParam)
2038 ++Param;
2039
2040 // There can be default arguments, so we stop when one iterator is at end().
2041 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2042 ++Param, ++Arg) {
2043 QualType Qt = (*Param)->getType();
2044 if (Qt->isReferenceType())
2045 checkAccess(*Arg, AK_Read, POK_PassByRef);
2046 }
2047 }
2048
VisitCallExpr(const CallExpr * Exp)2049 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2050 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2051 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2052 // ME can be null when calling a method pointer
2053 const CXXMethodDecl *MD = CE->getMethodDecl();
2054
2055 if (ME && MD) {
2056 if (ME->isArrow()) {
2057 // Should perhaps be AK_Written if !MD->isConst().
2058 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2059 } else {
2060 // Should perhaps be AK_Written if !MD->isConst().
2061 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2062 }
2063 }
2064
2065 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2066 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2067 auto OEop = OE->getOperator();
2068 switch (OEop) {
2069 case OO_Equal: {
2070 const Expr *Target = OE->getArg(0);
2071 const Expr *Source = OE->getArg(1);
2072 checkAccess(Target, AK_Written);
2073 checkAccess(Source, AK_Read);
2074 break;
2075 }
2076 case OO_Star:
2077 case OO_Arrow:
2078 case OO_Subscript:
2079 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2080 // Grrr. operator* can be multiplication...
2081 checkPtAccess(OE->getArg(0), AK_Read);
2082 }
2083 LLVM_FALLTHROUGH;
2084 default: {
2085 // TODO: get rid of this, and rely on pass-by-ref instead.
2086 const Expr *Obj = OE->getArg(0);
2087 checkAccess(Obj, AK_Read);
2088 // Check the remaining arguments. For method operators, the first
2089 // argument is the implicit self argument, and doesn't appear in the
2090 // FunctionDecl, but for non-methods it does.
2091 const FunctionDecl *FD = OE->getDirectCallee();
2092 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2093 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2094 break;
2095 }
2096 }
2097 } else {
2098 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2099 }
2100
2101 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2102 if(!D || !D->hasAttrs())
2103 return;
2104 handleCall(Exp, D);
2105 }
2106
VisitCXXConstructExpr(const CXXConstructExpr * Exp)2107 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2108 const CXXConstructorDecl *D = Exp->getConstructor();
2109 if (D && D->isCopyConstructor()) {
2110 const Expr* Source = Exp->getArg(0);
2111 checkAccess(Source, AK_Read);
2112 } else {
2113 examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2114 }
2115 }
2116
2117 static CXXConstructorDecl *
findConstructorForByValueReturn(const CXXRecordDecl * RD)2118 findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2119 // Prefer a move constructor over a copy constructor. If there's more than
2120 // one copy constructor or more than one move constructor, we arbitrarily
2121 // pick the first declared such constructor rather than trying to guess which
2122 // one is more appropriate.
2123 CXXConstructorDecl *CopyCtor = nullptr;
2124 for (auto *Ctor : RD->ctors()) {
2125 if (Ctor->isDeleted())
2126 continue;
2127 if (Ctor->isMoveConstructor())
2128 return Ctor;
2129 if (!CopyCtor && Ctor->isCopyConstructor())
2130 CopyCtor = Ctor;
2131 }
2132 return CopyCtor;
2133 }
2134
buildFakeCtorCall(CXXConstructorDecl * CD,ArrayRef<Expr * > Args,SourceLocation Loc)2135 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2136 SourceLocation Loc) {
2137 ASTContext &Ctx = CD->getASTContext();
2138 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2139 CD, true, Args, false, false, false, false,
2140 CXXConstructExpr::CK_Complete,
2141 SourceRange(Loc, Loc));
2142 }
2143
VisitDeclStmt(const DeclStmt * S)2144 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2145 // adjust the context
2146 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2147
2148 for (auto *D : S->getDeclGroup()) {
2149 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2150 Expr *E = VD->getInit();
2151 if (!E)
2152 continue;
2153 E = E->IgnoreParens();
2154
2155 // handle constructors that involve temporaries
2156 if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2157 E = EWC->getSubExpr()->IgnoreParens();
2158 if (auto *CE = dyn_cast<CastExpr>(E))
2159 if (CE->getCastKind() == CK_NoOp ||
2160 CE->getCastKind() == CK_ConstructorConversion ||
2161 CE->getCastKind() == CK_UserDefinedConversion)
2162 E = CE->getSubExpr()->IgnoreParens();
2163 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2164 E = BTE->getSubExpr()->IgnoreParens();
2165
2166 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2167 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2168 if (!CtorD || !CtorD->hasAttrs())
2169 continue;
2170 handleCall(E, CtorD, VD);
2171 } else if (isa<CallExpr>(E) && E->isRValue()) {
2172 // If the object is initialized by a function call that returns a
2173 // scoped lockable by value, use the attributes on the copy or move
2174 // constructor to figure out what effect that should have on the
2175 // lockset.
2176 // FIXME: Is this really the best way to handle this situation?
2177 auto *RD = E->getType()->getAsCXXRecordDecl();
2178 if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2179 continue;
2180 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2181 if (!CtorD || !CtorD->hasAttrs())
2182 continue;
2183 handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
2184 }
2185 }
2186 }
2187 }
2188
2189 /// Compute the intersection of two locksets and issue warnings for any
2190 /// locks in the symmetric difference.
2191 ///
2192 /// This function is used at a merge point in the CFG when comparing the lockset
2193 /// of each branch being merged. For example, given the following sequence:
2194 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2195 /// are the same. In the event of a difference, we use the intersection of these
2196 /// two locksets at the start of D.
2197 ///
2198 /// \param FSet1 The first lockset.
2199 /// \param FSet2 The second lockset.
2200 /// \param JoinLoc The location of the join point for error reporting
2201 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2202 /// \param LEK2 The error message to report if a mutex is missing from Lset2
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,LockErrorKind LEK2)2203 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2204 const FactSet &FSet2,
2205 SourceLocation JoinLoc,
2206 LockErrorKind LEK1,
2207 LockErrorKind LEK2) {
2208 FactSet FSet1Orig = FSet1;
2209
2210 // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2211 for (const auto &Fact : FSet2) {
2212 const FactEntry &LDat2 = FactMan[Fact];
2213
2214 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, LDat2);
2215 if (Iter1 != FSet1.end()) {
2216 const FactEntry &LDat1 = FactMan[*Iter1];
2217 if (LDat1.kind() != LDat2.kind()) {
2218 Handler.handleExclusiveAndShared("mutex", LDat2.toString(), LDat2.loc(),
2219 LDat1.loc());
2220 if (LEK1 == LEK_LockedSomePredecessors &&
2221 LDat1.kind() != LK_Exclusive) {
2222 // Take the exclusive lock, which is the one in FSet2.
2223 *Iter1 = Fact;
2224 }
2225 } else if (LEK1 == LEK_LockedSomePredecessors && LDat1.asserted() &&
2226 !LDat2.asserted()) {
2227 // The non-asserted lock in FSet2 is the one we want to track.
2228 *Iter1 = Fact;
2229 }
2230 } else {
2231 LDat2.handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2232 Handler);
2233 }
2234 }
2235
2236 // Find locks in FSet1 that are not in FSet2, and remove them.
2237 for (const auto &Fact : FSet1Orig) {
2238 const FactEntry *LDat1 = &FactMan[Fact];
2239 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2240
2241 if (!LDat2) {
2242 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2243 Handler);
2244 if (LEK2 == LEK_LockedSomePredecessors)
2245 FSet1.removeLock(FactMan, *LDat1);
2246 }
2247 }
2248 }
2249
2250 // Return true if block B never continues to its successors.
neverReturns(const CFGBlock * B)2251 static bool neverReturns(const CFGBlock *B) {
2252 if (B->hasNoReturnElement())
2253 return true;
2254 if (B->empty())
2255 return false;
2256
2257 CFGElement Last = B->back();
2258 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2259 if (isa<CXXThrowExpr>(S->getStmt()))
2260 return true;
2261 }
2262 return false;
2263 }
2264
2265 /// Check a function's CFG for thread-safety violations.
2266 ///
2267 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2268 /// at the end of each block, and issue warnings for thread safety violations.
2269 /// Each block in the CFG is traversed exactly once.
runAnalysis(AnalysisDeclContext & AC)2270 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2271 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2272 // For now, we just use the walker to set things up.
2273 threadSafety::CFGWalker walker;
2274 if (!walker.init(AC))
2275 return;
2276
2277 // AC.dumpCFG(true);
2278 // threadSafety::printSCFG(walker);
2279
2280 CFG *CFGraph = walker.getGraph();
2281 const NamedDecl *D = walker.getDecl();
2282 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2283 CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2284
2285 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2286 return;
2287
2288 // FIXME: Do something a bit more intelligent inside constructor and
2289 // destructor code. Constructors and destructors must assume unique access
2290 // to 'this', so checks on member variable access is disabled, but we should
2291 // still enable checks on other objects.
2292 if (isa<CXXConstructorDecl>(D))
2293 return; // Don't check inside constructors.
2294 if (isa<CXXDestructorDecl>(D))
2295 return; // Don't check inside destructors.
2296
2297 Handler.enterFunction(CurrentFunction);
2298
2299 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2300 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2301
2302 // We need to explore the CFG via a "topological" ordering.
2303 // That way, we will be guaranteed to have information about required
2304 // predecessor locksets when exploring a new block.
2305 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2306 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2307
2308 // Mark entry block as reachable
2309 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2310
2311 // Compute SSA names for local variables
2312 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313
2314 // Fill in source locations for all CFGBlocks.
2315 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316
2317 CapExprSet ExclusiveLocksAcquired;
2318 CapExprSet SharedLocksAcquired;
2319 CapExprSet LocksReleased;
2320
2321 // Add locks from exclusive_locks_required and shared_locks_required
2322 // to initial lockset. Also turn off checking for lock and unlock functions.
2323 // FIXME: is there a more intelligent way to check lock/unlock functions?
2324 if (!SortedGraph->empty() && D->hasAttrs()) {
2325 const CFGBlock *FirstBlock = *SortedGraph->begin();
2326 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2327
2328 CapExprSet ExclusiveLocksToAdd;
2329 CapExprSet SharedLocksToAdd;
2330 StringRef CapDiagKind = "mutex";
2331
2332 SourceLocation Loc = D->getLocation();
2333 for (const auto *Attr : D->attrs()) {
2334 Loc = Attr->getLocation();
2335 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2336 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2337 nullptr, D);
2338 CapDiagKind = ClassifyDiagnostic(A);
2339 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2340 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2341 // We must ignore such methods.
2342 if (A->args_size() == 0)
2343 return;
2344 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2345 nullptr, D);
2346 getMutexIDs(LocksReleased, A, nullptr, D);
2347 CapDiagKind = ClassifyDiagnostic(A);
2348 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2349 if (A->args_size() == 0)
2350 return;
2351 getMutexIDs(A->isShared() ? SharedLocksAcquired
2352 : ExclusiveLocksAcquired,
2353 A, nullptr, D);
2354 CapDiagKind = ClassifyDiagnostic(A);
2355 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2356 // Don't try to check trylock functions for now.
2357 return;
2358 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2359 // Don't try to check trylock functions for now.
2360 return;
2361 } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2362 // Don't try to check trylock functions for now.
2363 return;
2364 }
2365 }
2366
2367 // FIXME -- Loc can be wrong here.
2368 for (const auto &Mu : ExclusiveLocksToAdd) {
2369 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2370 FactEntry::Declared);
2371 addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2372 }
2373 for (const auto &Mu : SharedLocksToAdd) {
2374 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2375 FactEntry::Declared);
2376 addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2377 }
2378 }
2379
2380 for (const auto *CurrBlock : *SortedGraph) {
2381 unsigned CurrBlockID = CurrBlock->getBlockID();
2382 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2383
2384 // Use the default initial lockset in case there are no predecessors.
2385 VisitedBlocks.insert(CurrBlock);
2386
2387 // Iterate through the predecessor blocks and warn if the lockset for all
2388 // predecessors is not the same. We take the entry lockset of the current
2389 // block to be the intersection of all previous locksets.
2390 // FIXME: By keeping the intersection, we may output more errors in future
2391 // for a lock which is not in the intersection, but was in the union. We
2392 // may want to also keep the union in future. As an example, let's say
2393 // the intersection contains Mutex L, and the union contains L and M.
2394 // Later we unlock M. At this point, we would output an error because we
2395 // never locked M; although the real error is probably that we forgot to
2396 // lock M on all code paths. Conversely, let's say that later we lock M.
2397 // In this case, we should compare against the intersection instead of the
2398 // union because the real error is probably that we forgot to unlock M on
2399 // all code paths.
2400 bool LocksetInitialized = false;
2401 SmallVector<CFGBlock *, 8> SpecialBlocks;
2402 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2403 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2404 // if *PI -> CurrBlock is a back edge
2405 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2406 continue;
2407
2408 unsigned PrevBlockID = (*PI)->getBlockID();
2409 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2410
2411 // Ignore edges from blocks that can't return.
2412 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2413 continue;
2414
2415 // Okay, we can reach this block from the entry.
2416 CurrBlockInfo->Reachable = true;
2417
2418 // If the previous block ended in a 'continue' or 'break' statement, then
2419 // a difference in locksets is probably due to a bug in that block, rather
2420 // than in some other predecessor. In that case, keep the other
2421 // predecessor's lockset.
2422 if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
2423 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2424 SpecialBlocks.push_back(*PI);
2425 continue;
2426 }
2427 }
2428
2429 FactSet PrevLockset;
2430 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2431
2432 if (!LocksetInitialized) {
2433 CurrBlockInfo->EntrySet = PrevLockset;
2434 LocksetInitialized = true;
2435 } else {
2436 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2437 CurrBlockInfo->EntryLoc,
2438 LEK_LockedSomePredecessors);
2439 }
2440 }
2441
2442 // Skip rest of block if it's not reachable.
2443 if (!CurrBlockInfo->Reachable)
2444 continue;
2445
2446 // Process continue and break blocks. Assume that the lockset for the
2447 // resulting block is unaffected by any discrepancies in them.
2448 for (const auto *PrevBlock : SpecialBlocks) {
2449 unsigned PrevBlockID = PrevBlock->getBlockID();
2450 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2451
2452 if (!LocksetInitialized) {
2453 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2454 LocksetInitialized = true;
2455 } else {
2456 // Determine whether this edge is a loop terminator for diagnostic
2457 // purposes. FIXME: A 'break' statement might be a loop terminator, but
2458 // it might also be part of a switch. Also, a subsequent destructor
2459 // might add to the lockset, in which case the real issue might be a
2460 // double lock on the other path.
2461 const Stmt *Terminator = PrevBlock->getTerminatorStmt();
2462 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2463
2464 FactSet PrevLockset;
2465 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2466 PrevBlock, CurrBlock);
2467
2468 // Do not update EntrySet.
2469 intersectAndWarn(
2470 CurrBlockInfo->EntrySet, PrevLockset, PrevBlockInfo->ExitLoc,
2471 IsLoop ? LEK_LockedSomeLoopIterations : LEK_LockedSomePredecessors);
2472 }
2473 }
2474
2475 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2476
2477 // Visit all the statements in the basic block.
2478 for (const auto &BI : *CurrBlock) {
2479 switch (BI.getKind()) {
2480 case CFGElement::Statement: {
2481 CFGStmt CS = BI.castAs<CFGStmt>();
2482 LocksetBuilder.Visit(CS.getStmt());
2483 break;
2484 }
2485 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2486 case CFGElement::AutomaticObjectDtor: {
2487 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2488 const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2489 if (!DD->hasAttrs())
2490 break;
2491
2492 // Create a dummy expression,
2493 auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2494 DeclRefExpr DRE(VD->getASTContext(), VD, false,
2495 VD->getType().getNonReferenceType(), VK_LValue,
2496 AD.getTriggerStmt()->getEndLoc());
2497 LocksetBuilder.handleCall(&DRE, DD);
2498 break;
2499 }
2500 default:
2501 break;
2502 }
2503 }
2504 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2505
2506 // For every back edge from CurrBlock (the end of the loop) to another block
2507 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2508 // the one held at the beginning of FirstLoopBlock. We can look up the
2509 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2510 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2511 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2512 // if CurrBlock -> *SI is *not* a back edge
2513 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2514 continue;
2515
2516 CFGBlock *FirstLoopBlock = *SI;
2517 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2518 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2519 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, PreLoop->EntryLoc,
2520 LEK_LockedSomeLoopIterations);
2521 }
2522 }
2523
2524 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2525 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
2526
2527 // Skip the final check if the exit block is unreachable.
2528 if (!Final->Reachable)
2529 return;
2530
2531 // By default, we expect all locks held on entry to be held on exit.
2532 FactSet ExpectedExitSet = Initial->EntrySet;
2533
2534 // Adjust the expected exit set by adding or removing locks, as declared
2535 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2536 // issue the appropriate warning.
2537 // FIXME: the location here is not quite right.
2538 for (const auto &Lock : ExclusiveLocksAcquired)
2539 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2540 Lock, LK_Exclusive, D->getLocation()));
2541 for (const auto &Lock : SharedLocksAcquired)
2542 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2543 Lock, LK_Shared, D->getLocation()));
2544 for (const auto &Lock : LocksReleased)
2545 ExpectedExitSet.removeLock(FactMan, Lock);
2546
2547 // FIXME: Should we call this function for all blocks which exit the function?
2548 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2549 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2550
2551 Handler.leaveFunction(CurrentFunction);
2552 }
2553
2554 /// Check a function's CFG for thread-safety violations.
2555 ///
2556 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2557 /// at the end of each block, and issue warnings for thread safety violations.
2558 /// Each block in the CFG is traversed exactly once.
runThreadSafetyAnalysis(AnalysisDeclContext & AC,ThreadSafetyHandler & Handler,BeforeSet ** BSet)2559 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2560 ThreadSafetyHandler &Handler,
2561 BeforeSet **BSet) {
2562 if (!*BSet)
2563 *BSet = new BeforeSet;
2564 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2565 Analyzer.runAnalysis(AC);
2566 }
2567
threadSafetyCleanup(BeforeSet * Cache)2568 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2569
2570 /// Helper function that returns a LockKind required for the given level
2571 /// of access.
getLockKindFromAccessKind(AccessKind AK)2572 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2573 switch (AK) {
2574 case AK_Read :
2575 return LK_Shared;
2576 case AK_Written :
2577 return LK_Exclusive;
2578 }
2579 llvm_unreachable("Unknown AccessKind");
2580 }
2581