xref: /netbsd-src/sys/netinet/tcp_input.c (revision 582548dbe4ccc899ad91ee0fc31b53b5b461691e)
1 /*	$NetBSD: tcp_input.c,v 1.441 2024/10/08 06:17:14 rin Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.441 2024/10/08 06:17:14 rin Exp $");
142 
143 #ifdef _KERNEL_OPT
144 #include "opt_inet.h"
145 #include "opt_ipsec.h"
146 #include "opt_inet_csum.h"
147 #include "opt_tcp_debug.h"
148 #endif
149 
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/malloc.h>
153 #include <sys/mbuf.h>
154 #include <sys/protosw.h>
155 #include <sys/socket.h>
156 #include <sys/socketvar.h>
157 #include <sys/errno.h>
158 #include <sys/syslog.h>
159 #include <sys/pool.h>
160 #include <sys/domain.h>
161 #include <sys/kernel.h>
162 #ifdef TCP_SIGNATURE
163 #include <sys/md5.h>
164 #endif
165 #include <sys/lwp.h> /* for lwp0 */
166 #include <sys/cprng.h>
167 
168 #include <net/if.h>
169 #include <net/if_types.h>
170 
171 #include <netinet/in.h>
172 #include <netinet/in_systm.h>
173 #include <netinet/ip.h>
174 #include <netinet/in_pcb.h>
175 #include <netinet/in_var.h>
176 #include <netinet/ip_var.h>
177 #include <netinet/in_offload.h>
178 
179 #if NARP > 0
180 #include <netinet/if_inarp.h>
181 #endif
182 #ifdef INET6
183 #include <netinet/ip6.h>
184 #include <netinet6/ip6_var.h>
185 #include <netinet6/in6_pcb.h>
186 #include <netinet6/ip6_var.h>
187 #include <netinet6/in6_var.h>
188 #include <netinet/icmp6.h>
189 #include <netinet6/nd6.h>
190 #ifdef TCP_SIGNATURE
191 #include <netinet6/scope6_var.h>
192 #endif
193 #endif
194 
195 #ifndef INET6
196 #include <netinet/ip6.h>
197 #endif
198 
199 #include <netinet/tcp.h>
200 #include <netinet/tcp_fsm.h>
201 #include <netinet/tcp_seq.h>
202 #include <netinet/tcp_timer.h>
203 #include <netinet/tcp_var.h>
204 #include <netinet/tcp_private.h>
205 #include <netinet/tcp_congctl.h>
206 #include <netinet/tcp_debug.h>
207 #include <netinet/tcp_syncache.h>
208 
209 #ifdef INET6
210 #include "faith.h"
211 #if defined(NFAITH) && NFAITH > 0
212 #include <net/if_faith.h>
213 #endif
214 #endif
215 
216 #ifdef IPSEC
217 #include <netipsec/ipsec.h>
218 #include <netipsec/key.h>
219 #ifdef INET6
220 #include <netipsec/ipsec6.h>
221 #endif
222 #endif	/* IPSEC*/
223 
224 #include <netinet/tcp_vtw.h>
225 
226 int	tcprexmtthresh = 3;
227 int	tcp_log_refused;
228 
229 int	tcp_do_autorcvbuf = 1;
230 int	tcp_autorcvbuf_inc = 16 * 1024;
231 int	tcp_autorcvbuf_max = 256 * 1024;
232 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
233 
234 int tcp_reass_maxqueuelen = 100;
235 
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240 
241 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
242 
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
246 
247 /*
248  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249  */
250 static void
251 nd_hint(struct tcpcb *tp)
252 {
253 	struct route *ro = NULL;
254 	struct rtentry *rt;
255 
256 	if (tp == NULL)
257 		return;
258 
259 	ro = &tp->t_inpcb->inp_route;
260 	if (ro == NULL)
261 		return;
262 
263 	rt = rtcache_validate(ro);
264 	if (rt == NULL)
265 		return;
266 
267 	switch (tp->t_family) {
268 #if NARP > 0
269 	case AF_INET:
270 		arp_nud_hint(rt);
271 		break;
272 #endif
273 #ifdef INET6
274 	case AF_INET6:
275 		nd6_nud_hint(rt);
276 		break;
277 #endif
278 	}
279 
280 	rtcache_unref(rt, ro);
281 }
282 
283 /*
284  * Compute ACK transmission behavior.  Delay the ACK unless
285  * we have already delayed an ACK (must send an ACK every two segments).
286  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
287  * option is enabled.
288  */
289 static void
290 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
291 {
292 
293 	if (tp->t_flags & TF_DELACK ||
294 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
295 		tp->t_flags |= TF_ACKNOW;
296 	else
297 		TCP_SET_DELACK(tp);
298 }
299 
300 static void
301 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
302 {
303 
304 	/*
305 	 * If we had a pending ICMP message that refers to data that have
306 	 * just been acknowledged, disregard the recorded ICMP message.
307 	 */
308 	if ((tp->t_flags & TF_PMTUD_PEND) &&
309 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
310 		tp->t_flags &= ~TF_PMTUD_PEND;
311 
312 	/*
313 	 * Keep track of the largest chunk of data
314 	 * acknowledged since last PMTU update
315 	 */
316 	if (tp->t_pmtud_mss_acked < acked)
317 		tp->t_pmtud_mss_acked = acked;
318 }
319 
320 /*
321  * Convert TCP protocol fields to host order for easier processing.
322  */
323 static void
324 tcp_fields_to_host(struct tcphdr *th)
325 {
326 
327 	NTOHL(th->th_seq);
328 	NTOHL(th->th_ack);
329 	NTOHS(th->th_win);
330 	NTOHS(th->th_urp);
331 }
332 
333 /*
334  * ... and reverse the above.
335  */
336 static void
337 tcp_fields_to_net(struct tcphdr *th)
338 {
339 
340 	HTONL(th->th_seq);
341 	HTONL(th->th_ack);
342 	HTONS(th->th_win);
343 	HTONS(th->th_urp);
344 }
345 
346 static void
347 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
348 {
349 	if (th->th_urp > todrop) {
350 		th->th_urp -= todrop;
351 	} else {
352 		*tiflags &= ~TH_URG;
353 		th->th_urp = 0;
354 	}
355 }
356 
357 #ifdef TCP_CSUM_COUNTERS
358 #include <sys/device.h>
359 
360 extern struct evcnt tcp_hwcsum_ok;
361 extern struct evcnt tcp_hwcsum_bad;
362 extern struct evcnt tcp_hwcsum_data;
363 extern struct evcnt tcp_swcsum;
364 #if defined(INET6)
365 extern struct evcnt tcp6_hwcsum_ok;
366 extern struct evcnt tcp6_hwcsum_bad;
367 extern struct evcnt tcp6_hwcsum_data;
368 extern struct evcnt tcp6_swcsum;
369 #endif /* defined(INET6) */
370 
371 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
372 
373 #else
374 
375 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
376 
377 #endif /* TCP_CSUM_COUNTERS */
378 
379 #ifdef TCP_REASS_COUNTERS
380 #include <sys/device.h>
381 
382 extern struct evcnt tcp_reass_;
383 extern struct evcnt tcp_reass_empty;
384 extern struct evcnt tcp_reass_iteration[8];
385 extern struct evcnt tcp_reass_prependfirst;
386 extern struct evcnt tcp_reass_prepend;
387 extern struct evcnt tcp_reass_insert;
388 extern struct evcnt tcp_reass_inserttail;
389 extern struct evcnt tcp_reass_append;
390 extern struct evcnt tcp_reass_appendtail;
391 extern struct evcnt tcp_reass_overlaptail;
392 extern struct evcnt tcp_reass_overlapfront;
393 extern struct evcnt tcp_reass_segdup;
394 extern struct evcnt tcp_reass_fragdup;
395 
396 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
397 
398 #else
399 
400 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
401 
402 #endif /* TCP_REASS_COUNTERS */
403 
404 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
405     int);
406 
407 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
408 #ifdef INET6
409 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
410 #endif
411 
412 #if defined(MBUFTRACE)
413 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
414 #endif /* defined(MBUFTRACE) */
415 
416 static struct pool tcpipqent_pool;
417 
418 void
419 tcpipqent_init(void)
420 {
421 
422 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
423 	    NULL, IPL_VM);
424 }
425 
426 struct ipqent *
427 tcpipqent_alloc(void)
428 {
429 	struct ipqent *ipqe;
430 	int s;
431 
432 	s = splvm();
433 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
434 	splx(s);
435 
436 	return ipqe;
437 }
438 
439 void
440 tcpipqent_free(struct ipqent *ipqe)
441 {
442 	int s;
443 
444 	s = splvm();
445 	pool_put(&tcpipqent_pool, ipqe);
446 	splx(s);
447 }
448 
449 /*
450  * Insert segment ti into reassembly queue of tcp with
451  * control block tp.  Return TH_FIN if reassembly now includes
452  * a segment with FIN.
453  */
454 static int
455 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
456 {
457 	struct ipqent *p, *q, *nq, *tiqe = NULL;
458 	struct socket *so = NULL;
459 	int pkt_flags;
460 	tcp_seq pkt_seq;
461 	unsigned pkt_len;
462 	u_long rcvpartdupbyte = 0;
463 	u_long rcvoobyte;
464 #ifdef TCP_REASS_COUNTERS
465 	u_int count = 0;
466 #endif
467 	net_stat_ref_t tcps;
468 
469 	so = tp->t_inpcb->inp_socket;
470 
471 	TCP_REASS_LOCK_CHECK(tp);
472 
473 	/*
474 	 * Call with th==NULL after become established to
475 	 * force pre-ESTABLISHED data up to user socket.
476 	 */
477 	if (th == NULL)
478 		goto present;
479 
480 	m_claimm(m, &tcp_reass_mowner);
481 
482 	rcvoobyte = tlen;
483 	/*
484 	 * Copy these to local variables because the TCP header gets munged
485 	 * while we are collapsing mbufs.
486 	 */
487 	pkt_seq = th->th_seq;
488 	pkt_len = tlen;
489 	pkt_flags = th->th_flags;
490 
491 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
492 
493 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
494 		/*
495 		 * When we miss a packet, the vast majority of time we get
496 		 * packets that follow it in order.  So optimize for that.
497 		 */
498 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
499 			p->ipqe_len += pkt_len;
500 			p->ipqe_flags |= pkt_flags;
501 			m_cat(p->ipqe_m, m);
502 			m = NULL;
503 			tiqe = p;
504 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
505 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
506 			goto skip_replacement;
507 		}
508 		/*
509 		 * While we're here, if the pkt is completely beyond
510 		 * anything we have, just insert it at the tail.
511 		 */
512 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
513 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
514 			goto insert_it;
515 		}
516 	}
517 
518 	q = TAILQ_FIRST(&tp->segq);
519 
520 	if (q != NULL) {
521 		/*
522 		 * If this segment immediately precedes the first out-of-order
523 		 * block, simply slap the segment in front of it and (mostly)
524 		 * skip the complicated logic.
525 		 */
526 		if (pkt_seq + pkt_len == q->ipqe_seq) {
527 			q->ipqe_seq = pkt_seq;
528 			q->ipqe_len += pkt_len;
529 			q->ipqe_flags |= pkt_flags;
530 			m_cat(m, q->ipqe_m);
531 			q->ipqe_m = m;
532 			tiqe = q;
533 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
534 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
535 			goto skip_replacement;
536 		}
537 	} else {
538 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
539 	}
540 
541 	/*
542 	 * Find a segment which begins after this one does.
543 	 */
544 	for (p = NULL; q != NULL; q = nq) {
545 		nq = TAILQ_NEXT(q, ipqe_q);
546 #ifdef TCP_REASS_COUNTERS
547 		count++;
548 #endif
549 
550 		/*
551 		 * If the received segment is just right after this
552 		 * fragment, merge the two together and then check
553 		 * for further overlaps.
554 		 */
555 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
556 			pkt_len += q->ipqe_len;
557 			pkt_flags |= q->ipqe_flags;
558 			pkt_seq = q->ipqe_seq;
559 			m_cat(q->ipqe_m, m);
560 			m = q->ipqe_m;
561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 			goto free_ipqe;
563 		}
564 
565 		/*
566 		 * If the received segment is completely past this
567 		 * fragment, we need to go to the next fragment.
568 		 */
569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
570 			p = q;
571 			continue;
572 		}
573 
574 		/*
575 		 * If the fragment is past the received segment,
576 		 * it (or any following) can't be concatenated.
577 		 */
578 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
579 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
580 			break;
581 		}
582 
583 		/*
584 		 * We've received all the data in this segment before.
585 		 * Mark it as a duplicate and return.
586 		 */
587 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
588 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
589 			tcps = TCP_STAT_GETREF();
590 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
591 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, pkt_len);
592 			TCP_STAT_PUTREF();
593 			tcp_new_dsack(tp, pkt_seq, pkt_len);
594 			m_freem(m);
595 			if (tiqe != NULL) {
596 				tcpipqent_free(tiqe);
597 			}
598 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
599 			goto out;
600 		}
601 
602 		/*
603 		 * Received segment completely overlaps this fragment
604 		 * so we drop the fragment (this keeps the temporal
605 		 * ordering of segments correct).
606 		 */
607 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
608 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
609 			rcvpartdupbyte += q->ipqe_len;
610 			m_freem(q->ipqe_m);
611 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
612 			goto free_ipqe;
613 		}
614 
615 		/*
616 		 * Received segment extends past the end of the fragment.
617 		 * Drop the overlapping bytes, merge the fragment and
618 		 * segment, and treat as a longer received packet.
619 		 */
620 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
621 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
622 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
623 			m_adj(m, overlap);
624 			rcvpartdupbyte += overlap;
625 			m_cat(q->ipqe_m, m);
626 			m = q->ipqe_m;
627 			pkt_seq = q->ipqe_seq;
628 			pkt_len += q->ipqe_len - overlap;
629 			rcvoobyte -= overlap;
630 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
631 			goto free_ipqe;
632 		}
633 
634 		/*
635 		 * Received segment extends past the front of the fragment.
636 		 * Drop the overlapping bytes on the received packet. The
637 		 * packet will then be concatenated with this fragment a
638 		 * bit later.
639 		 */
640 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
641 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
642 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
643 			m_adj(m, -overlap);
644 			pkt_len -= overlap;
645 			rcvpartdupbyte += overlap;
646 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
647 			rcvoobyte -= overlap;
648 		}
649 
650 		/*
651 		 * If the received segment immediately precedes this
652 		 * fragment then tack the fragment onto this segment
653 		 * and reinsert the data.
654 		 */
655 		if (q->ipqe_seq == pkt_seq + pkt_len) {
656 			pkt_len += q->ipqe_len;
657 			pkt_flags |= q->ipqe_flags;
658 			m_cat(m, q->ipqe_m);
659 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
660 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
661 			tp->t_segqlen--;
662 			KASSERT(tp->t_segqlen >= 0);
663 			KASSERT(tp->t_segqlen != 0 ||
664 			    (TAILQ_EMPTY(&tp->segq) &&
665 			    TAILQ_EMPTY(&tp->timeq)));
666 			if (tiqe == NULL) {
667 				tiqe = q;
668 			} else {
669 				tcpipqent_free(q);
670 			}
671 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
672 			break;
673 		}
674 
675 		/*
676 		 * If the fragment is before the segment, remember it.
677 		 * When this loop is terminated, p will contain the
678 		 * pointer to the fragment that is right before the
679 		 * received segment.
680 		 */
681 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
682 			p = q;
683 
684 		continue;
685 
686 		/*
687 		 * This is a common operation.  It also will allow
688 		 * to save doing a malloc/free in most instances.
689 		 */
690 	  free_ipqe:
691 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
692 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
693 		tp->t_segqlen--;
694 		KASSERT(tp->t_segqlen >= 0);
695 		KASSERT(tp->t_segqlen != 0 ||
696 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
697 		if (tiqe == NULL) {
698 			tiqe = q;
699 		} else {
700 			tcpipqent_free(q);
701 		}
702 	}
703 
704 #ifdef TCP_REASS_COUNTERS
705 	if (count > 7)
706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
707 	else if (count > 0)
708 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
709 #endif
710 
711 insert_it:
712 	/* limit tcp segments per reassembly queue */
713 	if (tp->t_segqlen > tcp_reass_maxqueuelen) {
714 		TCP_STATINC(TCP_STAT_RCVMEMDROP);
715 		m_freem(m);
716 		goto out;
717 	}
718 
719 	/*
720 	 * Allocate a new queue entry (block) since the received segment
721 	 * did not collapse onto any other out-of-order block. If it had
722 	 * collapsed, tiqe would not be NULL and we would be reusing it.
723 	 *
724 	 * If the allocation fails, drop the packet.
725 	 */
726 	if (tiqe == NULL) {
727 		tiqe = tcpipqent_alloc();
728 		if (tiqe == NULL) {
729 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
730 			m_freem(m);
731 			goto out;
732 		}
733 	}
734 
735 	/*
736 	 * Update the counters.
737 	 */
738 	tp->t_rcvoopack++;
739 	tcps = TCP_STAT_GETREF();
740 	_NET_STATINC_REF(tcps, TCP_STAT_RCVOOPACK);
741 	_NET_STATADD_REF(tcps, TCP_STAT_RCVOOBYTE, rcvoobyte);
742 	if (rcvpartdupbyte) {
743 		_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
744 		_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
745 		    rcvpartdupbyte);
746 	}
747 	TCP_STAT_PUTREF();
748 
749 	/*
750 	 * Insert the new fragment queue entry into both queues.
751 	 */
752 	tiqe->ipqe_m = m;
753 	tiqe->ipqe_seq = pkt_seq;
754 	tiqe->ipqe_len = pkt_len;
755 	tiqe->ipqe_flags = pkt_flags;
756 	if (p == NULL) {
757 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
758 	} else {
759 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
760 	}
761 	tp->t_segqlen++;
762 
763 skip_replacement:
764 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
765 
766 present:
767 	/*
768 	 * Present data to user, advancing rcv_nxt through
769 	 * completed sequence space.
770 	 */
771 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
772 		goto out;
773 	q = TAILQ_FIRST(&tp->segq);
774 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
775 		goto out;
776 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
777 		goto out;
778 
779 	tp->rcv_nxt += q->ipqe_len;
780 	pkt_flags = q->ipqe_flags & TH_FIN;
781 	nd_hint(tp);
782 
783 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
784 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
785 	tp->t_segqlen--;
786 	KASSERT(tp->t_segqlen >= 0);
787 	KASSERT(tp->t_segqlen != 0 ||
788 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
789 	if (so->so_state & SS_CANTRCVMORE)
790 		m_freem(q->ipqe_m);
791 	else
792 		sbappendstream(&so->so_rcv, q->ipqe_m);
793 	tcpipqent_free(q);
794 	TCP_REASS_UNLOCK(tp);
795 	sorwakeup(so);
796 	return pkt_flags;
797 
798 out:
799 	TCP_REASS_UNLOCK(tp);
800 	return 0;
801 }
802 
803 #ifdef INET6
804 int
805 tcp6_input(struct mbuf **mp, int *offp, int proto)
806 {
807 	struct mbuf *m = *mp;
808 
809 	/*
810 	 * draft-itojun-ipv6-tcp-to-anycast
811 	 * better place to put this in?
812 	 */
813 	if (m->m_flags & M_ANYCAST6) {
814 		struct ip6_hdr *ip6;
815 		if (m->m_len < sizeof(struct ip6_hdr)) {
816 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
817 				TCP_STATINC(TCP_STAT_RCVSHORT);
818 				return IPPROTO_DONE;
819 			}
820 		}
821 		ip6 = mtod(m, struct ip6_hdr *);
822 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
823 		    (char *)&ip6->ip6_dst - (char *)ip6);
824 		return IPPROTO_DONE;
825 	}
826 
827 	tcp_input(m, *offp, proto);
828 	return IPPROTO_DONE;
829 }
830 #endif
831 
832 static void
833 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
834 {
835 	char src[INET_ADDRSTRLEN];
836 	char dst[INET_ADDRSTRLEN];
837 
838 	if (ip) {
839 		in_print(src, sizeof(src), &ip->ip_src);
840 		in_print(dst, sizeof(dst), &ip->ip_dst);
841 	} else {
842 		strlcpy(src, "(unknown)", sizeof(src));
843 		strlcpy(dst, "(unknown)", sizeof(dst));
844 	}
845 	log(LOG_INFO,
846 	    "Connection attempt to TCP %s:%d from %s:%d\n",
847 	    dst, ntohs(th->th_dport),
848 	    src, ntohs(th->th_sport));
849 }
850 
851 #ifdef INET6
852 static void
853 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
854 {
855 	char src[INET6_ADDRSTRLEN];
856 	char dst[INET6_ADDRSTRLEN];
857 
858 	if (ip6) {
859 		in6_print(src, sizeof(src), &ip6->ip6_src);
860 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
861 	} else {
862 		strlcpy(src, "(unknown v6)", sizeof(src));
863 		strlcpy(dst, "(unknown v6)", sizeof(dst));
864 	}
865 	log(LOG_INFO,
866 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
867 	    dst, ntohs(th->th_dport),
868 	    src, ntohs(th->th_sport));
869 }
870 #endif
871 
872 /*
873  * Checksum extended TCP header and data.
874  */
875 int
876 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
877     int toff, int off, int tlen)
878 {
879 	struct ifnet *rcvif;
880 	int s;
881 
882 	/*
883 	 * XXX it's better to record and check if this mbuf is
884 	 * already checked.
885 	 */
886 
887 	rcvif = m_get_rcvif(m, &s);
888 	if (__predict_false(rcvif == NULL))
889 		goto badcsum; /* XXX */
890 
891 	switch (af) {
892 	case AF_INET:
893 		switch (m->m_pkthdr.csum_flags &
894 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
895 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
896 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
897 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
898 			goto badcsum;
899 
900 		case M_CSUM_TCPv4|M_CSUM_DATA: {
901 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
902 
903 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
904 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
905 				const struct ip *ip =
906 				    mtod(m, const struct ip *);
907 
908 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
909 				    ip->ip_dst.s_addr,
910 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
911 			}
912 			if ((hw_csum ^ 0xffff) != 0)
913 				goto badcsum;
914 			break;
915 		}
916 
917 		case M_CSUM_TCPv4:
918 			/* Checksum was okay. */
919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
920 			break;
921 
922 		default:
923 			/*
924 			 * Must compute it ourselves.  Maybe skip checksum
925 			 * on loopback interfaces.
926 			 */
927 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
928 					   tcp_do_loopback_cksum)) {
929 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
930 				if (in4_cksum(m, IPPROTO_TCP, toff,
931 					      tlen + off) != 0)
932 					goto badcsum;
933 			}
934 			break;
935 		}
936 		break;
937 
938 #ifdef INET6
939 	case AF_INET6:
940 		switch (m->m_pkthdr.csum_flags &
941 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
942 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
943 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
944 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
945 			goto badcsum;
946 
947 #if 0 /* notyet */
948 		case M_CSUM_TCPv6|M_CSUM_DATA:
949 #endif
950 
951 		case M_CSUM_TCPv6:
952 			/* Checksum was okay. */
953 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
954 			break;
955 
956 		default:
957 			/*
958 			 * Must compute it ourselves.  Maybe skip checksum
959 			 * on loopback interfaces.
960 			 */
961 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
962 			    tcp_do_loopback_cksum)) {
963 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
964 				if (in6_cksum(m, IPPROTO_TCP, toff,
965 				    tlen + off) != 0)
966 					goto badcsum;
967 			}
968 		}
969 		break;
970 #endif /* INET6 */
971 	}
972 	m_put_rcvif(rcvif, &s);
973 
974 	return 0;
975 
976 badcsum:
977 	m_put_rcvif(rcvif, &s);
978 	TCP_STATINC(TCP_STAT_RCVBADSUM);
979 	return -1;
980 }
981 
982 /*
983  * When a packet arrives addressed to a vestigial tcpbp, we
984  * nevertheless have to respond to it per the spec.
985  *
986  * This code is duplicated from the one in tcp_input().
987  */
988 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
989     struct mbuf *m, int tlen)
990 {
991 	int tiflags;
992 	int todrop;
993 	uint32_t t_flags = 0;
994 	net_stat_ref_t tcps;
995 
996 	tiflags = th->th_flags;
997 	todrop  = vp->rcv_nxt - th->th_seq;
998 
999 	if (todrop > 0) {
1000 		if (tiflags & TH_SYN) {
1001 			tiflags &= ~TH_SYN;
1002 			th->th_seq++;
1003 			tcp_urp_drop(th, 1, &tiflags);
1004 			todrop--;
1005 		}
1006 		if (todrop > tlen ||
1007 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1008 			/*
1009 			 * Any valid FIN or RST must be to the left of the
1010 			 * window.  At this point the FIN or RST must be a
1011 			 * duplicate or out of sequence; drop it.
1012 			 */
1013 			if (tiflags & TH_RST)
1014 				goto drop;
1015 			tiflags &= ~(TH_FIN|TH_RST);
1016 
1017 			/*
1018 			 * Send an ACK to resynchronize and drop any data.
1019 			 * But keep on processing for RST or ACK.
1020 			 */
1021 			t_flags |= TF_ACKNOW;
1022 			todrop = tlen;
1023 			tcps = TCP_STAT_GETREF();
1024 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
1025 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
1026 			TCP_STAT_PUTREF();
1027 		} else if ((tiflags & TH_RST) &&
1028 		    th->th_seq != vp->rcv_nxt) {
1029 			/*
1030 			 * Test for reset before adjusting the sequence
1031 			 * number for overlapping data.
1032 			 */
1033 			goto dropafterack_ratelim;
1034 		} else {
1035 			tcps = TCP_STAT_GETREF();
1036 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
1037 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
1038 			    todrop);
1039 			TCP_STAT_PUTREF();
1040 		}
1041 
1042 //		tcp_new_dsack(tp, th->th_seq, todrop);
1043 //		hdroptlen += todrop;	/*drop from head afterwards*/
1044 
1045 		th->th_seq += todrop;
1046 		tlen -= todrop;
1047 		tcp_urp_drop(th, todrop, &tiflags);
1048 	}
1049 
1050 	/*
1051 	 * If new data are received on a connection after the
1052 	 * user processes are gone, then RST the other end.
1053 	 */
1054 	if (tlen) {
1055 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1056 		goto dropwithreset;
1057 	}
1058 
1059 	/*
1060 	 * If segment ends after window, drop trailing data
1061 	 * (and PUSH and FIN); if nothing left, just ACK.
1062 	 */
1063 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1064 
1065 	if (todrop > 0) {
1066 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1067 		if (todrop >= tlen) {
1068 			/*
1069 			 * The segment actually starts after the window.
1070 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1071 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1072 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1073 			 */
1074 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1075 
1076 			/*
1077 			 * If a new connection request is received
1078 			 * while in TIME_WAIT, drop the old connection
1079 			 * and start over if the sequence numbers
1080 			 * are above the previous ones.
1081 			 */
1082 			if ((tiflags & TH_SYN) &&
1083 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1084 				/*
1085 				 * We only support this in the !NOFDREF case, which
1086 				 * is to say: not here.
1087 				 */
1088 				goto dropwithreset;
1089 			}
1090 
1091 			/*
1092 			 * If window is closed can only take segments at
1093 			 * window edge, and have to drop data and PUSH from
1094 			 * incoming segments.  Continue processing, but
1095 			 * remember to ack.  Otherwise, drop segment
1096 			 * and (if not RST) ack.
1097 			 */
1098 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1099 				t_flags |= TF_ACKNOW;
1100 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1101 			} else {
1102 				goto dropafterack;
1103 			}
1104 		} else {
1105 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1106 		}
1107 		m_adj(m, -todrop);
1108 		tlen -= todrop;
1109 		tiflags &= ~(TH_PUSH|TH_FIN);
1110 	}
1111 
1112 	if (tiflags & TH_RST) {
1113 		if (th->th_seq != vp->rcv_nxt)
1114 			goto dropafterack_ratelim;
1115 
1116 		vtw_del(vp->ctl, vp->vtw);
1117 		goto drop;
1118 	}
1119 
1120 	/*
1121 	 * If the ACK bit is off we drop the segment and return.
1122 	 */
1123 	if ((tiflags & TH_ACK) == 0) {
1124 		if (t_flags & TF_ACKNOW)
1125 			goto dropafterack;
1126 		goto drop;
1127 	}
1128 
1129 	/*
1130 	 * In TIME_WAIT state the only thing that should arrive
1131 	 * is a retransmission of the remote FIN.  Acknowledge
1132 	 * it and restart the finack timer.
1133 	 */
1134 	vtw_restart(vp);
1135 	goto dropafterack;
1136 
1137 dropafterack:
1138 	/*
1139 	 * Generate an ACK dropping incoming segment if it occupies
1140 	 * sequence space, where the ACK reflects our state.
1141 	 */
1142 	if (tiflags & TH_RST)
1143 		goto drop;
1144 	goto dropafterack2;
1145 
1146 dropafterack_ratelim:
1147 	/*
1148 	 * We may want to rate-limit ACKs against SYN/RST attack.
1149 	 */
1150 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1151 	    tcp_ackdrop_ppslim) == 0) {
1152 		/* XXX stat */
1153 		goto drop;
1154 	}
1155 	/* ...fall into dropafterack2... */
1156 
1157 dropafterack2:
1158 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1159 	return;
1160 
1161 dropwithreset:
1162 	/*
1163 	 * Generate a RST, dropping incoming segment.
1164 	 * Make ACK acceptable to originator of segment.
1165 	 */
1166 	if (tiflags & TH_RST)
1167 		goto drop;
1168 
1169 	if (tiflags & TH_ACK) {
1170 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1171 	} else {
1172 		if (tiflags & TH_SYN)
1173 			++tlen;
1174 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1175 		    TH_RST|TH_ACK);
1176 	}
1177 	return;
1178 drop:
1179 	m_freem(m);
1180 }
1181 
1182 /*
1183  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1184  */
1185 void
1186 tcp_input(struct mbuf *m, int off, int proto)
1187 {
1188 	struct tcphdr *th;
1189 	struct ip *ip;
1190 	struct inpcb *inp;
1191 #ifdef INET6
1192 	struct ip6_hdr *ip6;
1193 #endif
1194 	u_int8_t *optp = NULL;
1195 	int optlen = 0;
1196 	int len, tlen, hdroptlen = 0;
1197 	struct tcpcb *tp = NULL;
1198 	int tiflags;
1199 	struct socket *so = NULL;
1200 	int todrop, acked, ourfinisacked, needoutput = 0;
1201 	bool dupseg;
1202 #ifdef TCP_DEBUG
1203 	short ostate = 0;
1204 #endif
1205 	u_long tiwin;
1206 	struct tcp_opt_info opti;
1207 	int thlen, iphlen;
1208 	int af;		/* af on the wire */
1209 	struct mbuf *tcp_saveti = NULL;
1210 	uint32_t ts_rtt;
1211 	uint8_t iptos;
1212 	net_stat_ref_t tcps;
1213 	vestigial_inpcb_t vestige;
1214 
1215 	vestige.valid = 0;
1216 
1217 	MCLAIM(m, &tcp_rx_mowner);
1218 
1219 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1220 
1221 	memset(&opti, 0, sizeof(opti));
1222 	opti.ts_present = 0;
1223 	opti.maxseg = 0;
1224 
1225 	/*
1226 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1227 	 *
1228 	 * TCP is, by definition, unicast, so we reject all
1229 	 * multicast outright.
1230 	 *
1231 	 * Note, there are additional src/dst address checks in
1232 	 * the AF-specific code below.
1233 	 */
1234 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1235 		/* XXX stat */
1236 		goto drop;
1237 	}
1238 #ifdef INET6
1239 	if (m->m_flags & M_ANYCAST6) {
1240 		/* XXX stat */
1241 		goto drop;
1242 	}
1243 #endif
1244 
1245 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1246 	if (th == NULL) {
1247 		TCP_STATINC(TCP_STAT_RCVSHORT);
1248 		return;
1249 	}
1250 
1251 	/*
1252 	 * Enforce alignment requirements that are violated in
1253 	 * some cases, see kern/50766 for details.
1254 	 */
1255 	if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
1256 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1257 		if (m == NULL) {
1258 			TCP_STATINC(TCP_STAT_RCVSHORT);
1259 			return;
1260 		}
1261 		th = (struct tcphdr *)(mtod(m, char *) + off);
1262 	}
1263 	KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1264 
1265 	/*
1266 	 * Get IP and TCP header.
1267 	 * Note: IP leaves IP header in first mbuf.
1268 	 */
1269 	ip = mtod(m, struct ip *);
1270 #ifdef INET6
1271 	ip6 = mtod(m, struct ip6_hdr *);
1272 #endif
1273 	switch (ip->ip_v) {
1274 	case 4:
1275 		af = AF_INET;
1276 		iphlen = sizeof(struct ip);
1277 
1278 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1279 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1280 			goto drop;
1281 
1282 		/* We do the checksum after PCB lookup... */
1283 		len = ntohs(ip->ip_len);
1284 		tlen = len - off;
1285 		iptos = ip->ip_tos;
1286 		break;
1287 #ifdef INET6
1288 	case 6:
1289 		iphlen = sizeof(struct ip6_hdr);
1290 		af = AF_INET6;
1291 
1292 		/*
1293 		 * Be proactive about unspecified IPv6 address in source.
1294 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1295 		 * unspecified IPv6 address can be used to confuse us.
1296 		 *
1297 		 * Note that packets with unspecified IPv6 destination is
1298 		 * already dropped in ip6_input.
1299 		 */
1300 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1301 			/* XXX stat */
1302 			goto drop;
1303 		}
1304 
1305 		/*
1306 		 * Make sure destination address is not multicast.
1307 		 * Source address checked in ip6_input().
1308 		 */
1309 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1310 			/* XXX stat */
1311 			goto drop;
1312 		}
1313 
1314 		/* We do the checksum after PCB lookup... */
1315 		len = m->m_pkthdr.len;
1316 		tlen = len - off;
1317 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1318 		break;
1319 #endif
1320 	default:
1321 		m_freem(m);
1322 		return;
1323 	}
1324 
1325 
1326 	/*
1327 	 * Check that TCP offset makes sense, pull out TCP options and
1328 	 * adjust length.
1329 	 */
1330 	thlen = th->th_off << 2;
1331 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1332 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1333 		goto drop;
1334 	}
1335 	tlen -= thlen;
1336 
1337 	if (thlen > sizeof(struct tcphdr)) {
1338 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1339 		if (th == NULL) {
1340 			TCP_STATINC(TCP_STAT_RCVSHORT);
1341 			return;
1342 		}
1343 		KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1344 		optlen = thlen - sizeof(struct tcphdr);
1345 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1346 
1347 		/*
1348 		 * Do quick retrieval of timestamp options.
1349 		 *
1350 		 * If timestamp is the only option and it's formatted as
1351 		 * recommended in RFC 1323 appendix A, we quickly get the
1352 		 * values now and don't bother calling tcp_dooptions(),
1353 		 * etc.
1354 		 */
1355 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1356 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1357 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1358 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1359 		    (th->th_flags & TH_SYN) == 0) {
1360 			opti.ts_present = 1;
1361 			opti.ts_val = be32dec(optp + 4);
1362 			opti.ts_ecr = be32dec(optp + 8);
1363 			optp = NULL;	/* we've parsed the options */
1364 		}
1365 	}
1366 	tiflags = th->th_flags;
1367 
1368 	/*
1369 	 * Checksum extended TCP header and data
1370 	 */
1371 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1372 		goto badcsum;
1373 
1374 	/*
1375 	 * Locate pcb for segment.
1376 	 */
1377 findpcb:
1378 	inp = NULL;
1379 	switch (af) {
1380 	case AF_INET:
1381 		inp = inpcb_lookup(&tcbtable, ip->ip_src, th->th_sport,
1382 		    ip->ip_dst, th->th_dport, &vestige);
1383 		if (inp == NULL && !vestige.valid) {
1384 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1385 			inp = inpcb_lookup_bound(&tcbtable, ip->ip_dst,
1386 			    th->th_dport);
1387 		}
1388 #ifdef INET6
1389 		if (inp == NULL && !vestige.valid) {
1390 			struct in6_addr s, d;
1391 
1392 			/* mapped addr case */
1393 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1394 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1395 			inp = in6pcb_lookup(&tcbtable, &s,
1396 			    th->th_sport, &d, th->th_dport, 0, &vestige);
1397 			if (inp == NULL && !vestige.valid) {
1398 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1399 				inp = in6pcb_lookup_bound(&tcbtable, &d,
1400 				    th->th_dport, 0);
1401 			}
1402 		}
1403 #endif
1404 		if (inp == NULL && !vestige.valid) {
1405 			TCP_STATINC(TCP_STAT_NOPORT);
1406 			if (tcp_log_refused &&
1407 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1408 				tcp4_log_refused(ip, th);
1409 			}
1410 			tcp_fields_to_host(th);
1411 			goto dropwithreset_ratelim;
1412 		}
1413 #if defined(IPSEC)
1414 		if (ipsec_used) {
1415 			if (inp && ipsec_in_reject(m, inp))
1416 				goto drop;
1417 		}
1418 #endif /*IPSEC*/
1419 		break;
1420 #ifdef INET6
1421 	case AF_INET6:
1422 	    {
1423 		int faith;
1424 
1425 #if defined(NFAITH) && NFAITH > 0
1426 		faith = faithprefix(&ip6->ip6_dst);
1427 #else
1428 		faith = 0;
1429 #endif
1430 		inp = in6pcb_lookup(&tcbtable, &ip6->ip6_src,
1431 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1432 		if (inp == NULL && !vestige.valid) {
1433 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1434 			inp = in6pcb_lookup_bound(&tcbtable, &ip6->ip6_dst,
1435 			    th->th_dport, faith);
1436 		}
1437 		if (inp == NULL && !vestige.valid) {
1438 			TCP_STATINC(TCP_STAT_NOPORT);
1439 			if (tcp_log_refused &&
1440 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1441 				tcp6_log_refused(ip6, th);
1442 			}
1443 			tcp_fields_to_host(th);
1444 			goto dropwithreset_ratelim;
1445 		}
1446 #if defined(IPSEC)
1447 		if (ipsec_used && inp && ipsec_in_reject(m, inp))
1448 			goto drop;
1449 #endif
1450 		break;
1451 	    }
1452 #endif
1453 	}
1454 
1455 	tcp_fields_to_host(th);
1456 
1457 	/*
1458 	 * If the state is CLOSED (i.e., TCB does not exist) then
1459 	 * all data in the incoming segment is discarded.
1460 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1461 	 * but should either do a listen or a connect soon.
1462 	 */
1463 	tp = NULL;
1464 	so = NULL;
1465 	if (inp) {
1466 		/* Check the minimum TTL for socket. */
1467 		if (inp->inp_af == AF_INET && ip->ip_ttl < in4p_ip_minttl(inp))
1468 			goto drop;
1469 
1470 		tp = intotcpcb(inp);
1471 		so = inp->inp_socket;
1472 	} else if (vestige.valid) {
1473 		/* We do not support the resurrection of vtw tcpcps. */
1474 		tcp_vtw_input(th, &vestige, m, tlen);
1475 		m = NULL;
1476 		goto drop;
1477 	}
1478 
1479 	if (tp == NULL)
1480 		goto dropwithreset_ratelim;
1481 	if (tp->t_state == TCPS_CLOSED)
1482 		goto drop;
1483 
1484 	KASSERT(so->so_lock == softnet_lock);
1485 	KASSERT(solocked(so));
1486 
1487 	/* Unscale the window into a 32-bit value. */
1488 	if ((tiflags & TH_SYN) == 0)
1489 		tiwin = th->th_win << tp->snd_scale;
1490 	else
1491 		tiwin = th->th_win;
1492 
1493 #ifdef INET6
1494 	/* save packet options if user wanted */
1495 	if (inp->inp_af == AF_INET6 && (inp->inp_flags & IN6P_CONTROLOPTS)) {
1496 		m_freem(inp->inp_options);
1497 		inp->inp_options = NULL;
1498 		ip6_savecontrol(inp, &inp->inp_options, ip6, m);
1499 	}
1500 #endif
1501 
1502 	if (so->so_options & SO_DEBUG) {
1503 #ifdef TCP_DEBUG
1504 		ostate = tp->t_state;
1505 #endif
1506 
1507 		tcp_saveti = NULL;
1508 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
1509 			goto nosave;
1510 
1511 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1512 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1513 			if (tcp_saveti == NULL)
1514 				goto nosave;
1515 		} else {
1516 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1517 			if (tcp_saveti == NULL)
1518 				goto nosave;
1519 			MCLAIM(m, &tcp_mowner);
1520 			tcp_saveti->m_len = iphlen;
1521 			m_copydata(m, 0, iphlen,
1522 			    mtod(tcp_saveti, void *));
1523 		}
1524 
1525 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1526 			m_freem(tcp_saveti);
1527 			tcp_saveti = NULL;
1528 		} else {
1529 			tcp_saveti->m_len += sizeof(struct tcphdr);
1530 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1531 			    sizeof(struct tcphdr));
1532 		}
1533 nosave:;
1534 	}
1535 
1536 	if (so->so_options & SO_ACCEPTCONN) {
1537 		union syn_cache_sa src;
1538 		union syn_cache_sa dst;
1539 
1540 		KASSERT(tp->t_state == TCPS_LISTEN);
1541 
1542 		memset(&src, 0, sizeof(src));
1543 		memset(&dst, 0, sizeof(dst));
1544 		switch (af) {
1545 		case AF_INET:
1546 			src.sin.sin_len = sizeof(struct sockaddr_in);
1547 			src.sin.sin_family = AF_INET;
1548 			src.sin.sin_addr = ip->ip_src;
1549 			src.sin.sin_port = th->th_sport;
1550 
1551 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1552 			dst.sin.sin_family = AF_INET;
1553 			dst.sin.sin_addr = ip->ip_dst;
1554 			dst.sin.sin_port = th->th_dport;
1555 			break;
1556 #ifdef INET6
1557 		case AF_INET6:
1558 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1559 			src.sin6.sin6_family = AF_INET6;
1560 			src.sin6.sin6_addr = ip6->ip6_src;
1561 			src.sin6.sin6_port = th->th_sport;
1562 
1563 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1564 			dst.sin6.sin6_family = AF_INET6;
1565 			dst.sin6.sin6_addr = ip6->ip6_dst;
1566 			dst.sin6.sin6_port = th->th_dport;
1567 			break;
1568 #endif
1569 		}
1570 
1571 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1572 			if (tiflags & TH_RST) {
1573 				syn_cache_reset(&src.sa, &dst.sa, th);
1574 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1575 			    (TH_ACK|TH_SYN)) {
1576 				/*
1577 				 * Received a SYN,ACK. This should never
1578 				 * happen while we are in LISTEN. Send an RST.
1579 				 */
1580 				goto badsyn;
1581 			} else if (tiflags & TH_ACK) {
1582 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1583 				if (so == NULL) {
1584 					/*
1585 					 * We don't have a SYN for this ACK;
1586 					 * send an RST.
1587 					 */
1588 					goto badsyn;
1589 				} else if (so == (struct socket *)(-1)) {
1590 					/*
1591 					 * We were unable to create the
1592 					 * connection. If the 3-way handshake
1593 					 * was completed, and RST has been
1594 					 * sent to the peer. Since the mbuf
1595 					 * might be in use for the reply, do
1596 					 * not free it.
1597 					 */
1598 					m = NULL;
1599 				} else {
1600 					/*
1601 					 * We have created a full-blown
1602 					 * connection.
1603 					 */
1604 					inp = sotoinpcb(so);
1605 					tp = intotcpcb(inp);
1606 					if (tp == NULL)
1607 						goto badsyn;	/*XXX*/
1608 					tiwin <<= tp->snd_scale;
1609 					goto after_listen;
1610 				}
1611 			} else {
1612 				/*
1613 				 * None of RST, SYN or ACK was set.
1614 				 * This is an invalid packet for a
1615 				 * TCB in LISTEN state.  Send a RST.
1616 				 */
1617 				goto badsyn;
1618 			}
1619 		} else {
1620 			/*
1621 			 * Received a SYN.
1622 			 */
1623 
1624 #ifdef INET6
1625 			/*
1626 			 * If deprecated address is forbidden, we do
1627 			 * not accept SYN to deprecated interface
1628 			 * address to prevent any new inbound
1629 			 * connection from getting established.
1630 			 * When we do not accept SYN, we send a TCP
1631 			 * RST, with deprecated source address (instead
1632 			 * of dropping it).  We compromise it as it is
1633 			 * much better for peer to send a RST, and
1634 			 * RST will be the final packet for the
1635 			 * exchange.
1636 			 *
1637 			 * If we do not forbid deprecated addresses, we
1638 			 * accept the SYN packet.  RFC2462 does not
1639 			 * suggest dropping SYN in this case.
1640 			 * If we decipher RFC2462 5.5.4, it says like
1641 			 * this:
1642 			 * 1. use of deprecated addr with existing
1643 			 *    communication is okay - "SHOULD continue
1644 			 *    to be used"
1645 			 * 2. use of it with new communication:
1646 			 *   (2a) "SHOULD NOT be used if alternate
1647 			 *        address with sufficient scope is
1648 			 *        available"
1649 			 *   (2b) nothing mentioned otherwise.
1650 			 * Here we fall into (2b) case as we have no
1651 			 * choice in our source address selection - we
1652 			 * must obey the peer.
1653 			 *
1654 			 * The wording in RFC2462 is confusing, and
1655 			 * there are multiple description text for
1656 			 * deprecated address handling - worse, they
1657 			 * are not exactly the same.  I believe 5.5.4
1658 			 * is the best one, so we follow 5.5.4.
1659 			 */
1660 			if (af == AF_INET6 && !ip6_use_deprecated) {
1661 				struct in6_ifaddr *ia6;
1662 				int s;
1663 				struct ifnet *rcvif = m_get_rcvif(m, &s);
1664 				if (rcvif == NULL)
1665 					goto dropwithreset; /* XXX */
1666 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1667 				    &ip6->ip6_dst)) &&
1668 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1669 					tp = NULL;
1670 					m_put_rcvif(rcvif, &s);
1671 					goto dropwithreset;
1672 				}
1673 				m_put_rcvif(rcvif, &s);
1674 			}
1675 #endif
1676 
1677 			/*
1678 			 * LISTEN socket received a SYN from itself? This
1679 			 * can't possibly be valid; drop the packet.
1680 			 */
1681 			if (th->th_sport == th->th_dport) {
1682 				int eq = 0;
1683 
1684 				switch (af) {
1685 				case AF_INET:
1686 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
1687 					break;
1688 #ifdef INET6
1689 				case AF_INET6:
1690 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1691 					    &ip6->ip6_dst);
1692 					break;
1693 #endif
1694 				}
1695 				if (eq) {
1696 					TCP_STATINC(TCP_STAT_BADSYN);
1697 					goto drop;
1698 				}
1699 			}
1700 
1701 			/*
1702 			 * SYN looks ok; create compressed TCP
1703 			 * state for it.
1704 			 */
1705 			if (so->so_qlen <= so->so_qlimit &&
1706 			    syn_cache_add(&src.sa, &dst.sa, th, off,
1707 			    so, m, optp, optlen, &opti))
1708 				m = NULL;
1709 		}
1710 
1711 		goto drop;
1712 	}
1713 
1714 after_listen:
1715 	/*
1716 	 * From here on, we're dealing with !LISTEN.
1717 	 */
1718 	KASSERT(tp->t_state != TCPS_LISTEN);
1719 
1720 	/*
1721 	 * Segment received on connection.
1722 	 * Reset idle time and keep-alive timer.
1723 	 */
1724 	tp->t_rcvtime = tcp_now;
1725 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1726 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1727 
1728 	/*
1729 	 * Process options.
1730 	 */
1731 #ifdef TCP_SIGNATURE
1732 	if (optp || (tp->t_flags & TF_SIGNATURE))
1733 #else
1734 	if (optp)
1735 #endif
1736 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1737 			goto drop;
1738 
1739 	if (TCP_SACK_ENABLED(tp)) {
1740 		tcp_del_sackholes(tp, th);
1741 	}
1742 
1743 	if (TCP_ECN_ALLOWED(tp)) {
1744 		if (tiflags & TH_CWR) {
1745 			tp->t_flags &= ~TF_ECN_SND_ECE;
1746 		}
1747 		switch (iptos & IPTOS_ECN_MASK) {
1748 		case IPTOS_ECN_CE:
1749 			tp->t_flags |= TF_ECN_SND_ECE;
1750 			TCP_STATINC(TCP_STAT_ECN_CE);
1751 			break;
1752 		case IPTOS_ECN_ECT0:
1753 			TCP_STATINC(TCP_STAT_ECN_ECT);
1754 			break;
1755 		case IPTOS_ECN_ECT1:
1756 			/* XXX: ignore for now -- rpaulo */
1757 			break;
1758 		}
1759 		/*
1760 		 * Congestion experienced.
1761 		 * Ignore if we are already trying to recover.
1762 		 */
1763 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1764 			tp->t_congctl->cong_exp(tp);
1765 	}
1766 
1767 	if (opti.ts_present && opti.ts_ecr) {
1768 		/*
1769 		 * Calculate the RTT from the returned time stamp and the
1770 		 * connection's time base.  If the time stamp is later than
1771 		 * the current time, or is extremely old, fall back to non-1323
1772 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1773 		 * at the same time.
1774 		 *
1775 		 * Note that ts_rtt is in units of slow ticks (500
1776 		 * ms).  Since most earthbound RTTs are < 500 ms,
1777 		 * observed values will have large quantization noise.
1778 		 * Our smoothed RTT is then the fraction of observed
1779 		 * samples that are 1 tick instead of 0 (times 500
1780 		 * ms).
1781 		 *
1782 		 * ts_rtt is increased by 1 to denote a valid sample,
1783 		 * with 0 indicating an invalid measurement.  This
1784 		 * extra 1 must be removed when ts_rtt is used, or
1785 		 * else an erroneous extra 500 ms will result.
1786 		 */
1787 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1788 		if (ts_rtt > TCP_PAWS_IDLE)
1789 			ts_rtt = 0;
1790 	} else {
1791 		ts_rtt = 0;
1792 	}
1793 
1794 	/*
1795 	 * Fast path: check for the two common cases of a uni-directional
1796 	 * data transfer. If:
1797 	 *    o We are in the ESTABLISHED state, and
1798 	 *    o The packet has no control flags, and
1799 	 *    o The packet is in-sequence, and
1800 	 *    o The window didn't change, and
1801 	 *    o We are not retransmitting
1802 	 * It's a candidate.
1803 	 *
1804 	 * If the length (tlen) is zero and the ack moved forward, we're
1805 	 * the sender side of the transfer. Just free the data acked and
1806 	 * wake any higher level process that was blocked waiting for
1807 	 * space.
1808 	 *
1809 	 * If the length is non-zero and the ack didn't move, we're the
1810 	 * receiver side. If we're getting packets in-order (the reassembly
1811 	 * queue is empty), add the data to the socket buffer and note
1812 	 * that we need a delayed ack.
1813 	 */
1814 	if (tp->t_state == TCPS_ESTABLISHED &&
1815 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1816 	        == TH_ACK &&
1817 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1818 	    th->th_seq == tp->rcv_nxt &&
1819 	    tiwin && tiwin == tp->snd_wnd &&
1820 	    tp->snd_nxt == tp->snd_max) {
1821 
1822 		/*
1823 		 * If last ACK falls within this segment's sequence numbers,
1824 		 * record the timestamp.
1825 		 * NOTE that the test is modified according to the latest
1826 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1827 		 *
1828 		 * note that we already know
1829 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1830 		 */
1831 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1832 			tp->ts_recent_age = tcp_now;
1833 			tp->ts_recent = opti.ts_val;
1834 		}
1835 
1836 		if (tlen == 0) {
1837 			/* Ack prediction. */
1838 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1839 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1840 			    tp->snd_cwnd >= tp->snd_wnd &&
1841 			    tp->t_partialacks < 0) {
1842 				/*
1843 				 * this is a pure ack for outstanding data.
1844 				 */
1845 				if (ts_rtt)
1846 					tcp_xmit_timer(tp, ts_rtt - 1);
1847 				else if (tp->t_rtttime &&
1848 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1849 					tcp_xmit_timer(tp,
1850 					  tcp_now - tp->t_rtttime);
1851 				acked = th->th_ack - tp->snd_una;
1852 				tcps = TCP_STAT_GETREF();
1853 				_NET_STATINC_REF(tcps, TCP_STAT_PREDACK);
1854 				_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
1855 				_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE,
1856 				    acked);
1857 				TCP_STAT_PUTREF();
1858 				nd_hint(tp);
1859 
1860 				if (acked > (tp->t_lastoff - tp->t_inoff))
1861 					tp->t_lastm = NULL;
1862 				sbdrop(&so->so_snd, acked);
1863 				tp->t_lastoff -= acked;
1864 
1865 				icmp_check(tp, th, acked);
1866 
1867 				tp->snd_una = th->th_ack;
1868 				tp->snd_fack = tp->snd_una;
1869 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1870 					tp->snd_high = tp->snd_una;
1871 				/*
1872 				 * drag snd_wl2 along so only newer
1873 				 * ACKs can update the window size.
1874 				 * also avoids the state where snd_wl2
1875 				 * is eventually larger than th_ack and thus
1876 				 * blocking the window update mechanism and
1877 				 * the connection gets stuck for a loooong
1878 				 * time in the zero sized send window state.
1879 				 *
1880 				 * see PR/kern 55567
1881 				 */
1882 				tp->snd_wl2 = tp->snd_una;
1883 
1884 				m_freem(m);
1885 
1886 				/*
1887 				 * If all outstanding data are acked, stop
1888 				 * retransmit timer, otherwise restart timer
1889 				 * using current (possibly backed-off) value.
1890 				 * If process is waiting for space,
1891 				 * wakeup/selnotify/signal.  If data
1892 				 * are ready to send, let tcp_output
1893 				 * decide between more output or persist.
1894 				 */
1895 				if (tp->snd_una == tp->snd_max)
1896 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1897 				else if (TCP_TIMER_ISARMED(tp,
1898 				    TCPT_PERSIST) == 0)
1899 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1900 					    tp->t_rxtcur);
1901 
1902 				sowwakeup(so);
1903 				if (so->so_snd.sb_cc) {
1904 					KERNEL_LOCK(1, NULL);
1905 					(void)tcp_output(tp);
1906 					KERNEL_UNLOCK_ONE(NULL);
1907 				}
1908 				m_freem(tcp_saveti);
1909 				return;
1910 			}
1911 		} else if (th->th_ack == tp->snd_una &&
1912 		    TAILQ_FIRST(&tp->segq) == NULL &&
1913 		    tlen <= sbspace(&so->so_rcv)) {
1914 			int newsize = 0;
1915 
1916 			/*
1917 			 * this is a pure, in-sequence data packet
1918 			 * with nothing on the reassembly queue and
1919 			 * we have enough buffer space to take it.
1920 			 */
1921 			tp->rcv_nxt += tlen;
1922 
1923 			/*
1924 			 * Pull rcv_up up to prevent seq wrap relative to
1925 			 * rcv_nxt.
1926 			 */
1927 			tp->rcv_up = tp->rcv_nxt;
1928 
1929 			/*
1930 			 * Pull snd_wl1 up to prevent seq wrap relative to
1931 			 * th_seq.
1932 			 */
1933 			tp->snd_wl1 = th->th_seq;
1934 
1935 			tcps = TCP_STAT_GETREF();
1936 			_NET_STATINC_REF(tcps, TCP_STAT_PREDDAT);
1937 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
1938 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
1939 			TCP_STAT_PUTREF();
1940 			nd_hint(tp);
1941 		/*
1942 		 * Automatic sizing enables the performance of large buffers
1943 		 * and most of the efficiency of small ones by only allocating
1944 		 * space when it is needed.
1945 		 *
1946 		 * On the receive side the socket buffer memory is only rarely
1947 		 * used to any significant extent.  This allows us to be much
1948 		 * more aggressive in scaling the receive socket buffer.  For
1949 		 * the case that the buffer space is actually used to a large
1950 		 * extent and we run out of kernel memory we can simply drop
1951 		 * the new segments; TCP on the sender will just retransmit it
1952 		 * later.  Setting the buffer size too big may only consume too
1953 		 * much kernel memory if the application doesn't read() from
1954 		 * the socket or packet loss or reordering makes use of the
1955 		 * reassembly queue.
1956 		 *
1957 		 * The criteria to step up the receive buffer one notch are:
1958 		 *  1. the number of bytes received during the time it takes
1959 		 *     one timestamp to be reflected back to us (the RTT);
1960 		 *  2. received bytes per RTT is within seven eighth of the
1961 		 *     current socket buffer size;
1962 		 *  3. receive buffer size has not hit maximal automatic size;
1963 		 *
1964 		 * This algorithm does one step per RTT at most and only if
1965 		 * we receive a bulk stream w/o packet losses or reorderings.
1966 		 * Shrinking the buffer during idle times is not necessary as
1967 		 * it doesn't consume any memory when idle.
1968 		 *
1969 		 * TODO: Only step up if the application is actually serving
1970 		 * the buffer to better manage the socket buffer resources.
1971 		 */
1972 			if (tcp_do_autorcvbuf &&
1973 			    opti.ts_ecr &&
1974 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1975 				if (opti.ts_ecr > tp->rfbuf_ts &&
1976 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1977 					if (tp->rfbuf_cnt >
1978 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1979 					    so->so_rcv.sb_hiwat <
1980 					    tcp_autorcvbuf_max) {
1981 						newsize =
1982 						    uimin(so->so_rcv.sb_hiwat +
1983 						    tcp_autorcvbuf_inc,
1984 						    tcp_autorcvbuf_max);
1985 					}
1986 					/* Start over with next RTT. */
1987 					tp->rfbuf_ts = 0;
1988 					tp->rfbuf_cnt = 0;
1989 				} else
1990 					tp->rfbuf_cnt += tlen;	/* add up */
1991 			}
1992 
1993 			/*
1994 			 * Drop TCP, IP headers and TCP options then add data
1995 			 * to socket buffer.
1996 			 */
1997 			if (so->so_state & SS_CANTRCVMORE) {
1998 				m_freem(m);
1999 			} else {
2000 				/*
2001 				 * Set new socket buffer size.
2002 				 * Give up when limit is reached.
2003 				 */
2004 				if (newsize)
2005 					if (!sbreserve(&so->so_rcv,
2006 					    newsize, so))
2007 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2008 				m_adj(m, off + thlen);
2009 				sbappendstream(&so->so_rcv, m);
2010 			}
2011 			sorwakeup(so);
2012 			tcp_setup_ack(tp, th);
2013 			if (tp->t_flags & TF_ACKNOW) {
2014 				KERNEL_LOCK(1, NULL);
2015 				(void)tcp_output(tp);
2016 				KERNEL_UNLOCK_ONE(NULL);
2017 			}
2018 			m_freem(tcp_saveti);
2019 			return;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * Compute mbuf offset to TCP data segment.
2025 	 */
2026 	hdroptlen = off + thlen;
2027 
2028 	/*
2029 	 * Calculate amount of space in receive window. Receive window is
2030 	 * amount of space in rcv queue, but not less than advertised
2031 	 * window.
2032 	 */
2033 	{
2034 		int win;
2035 		win = sbspace(&so->so_rcv);
2036 		if (win < 0)
2037 			win = 0;
2038 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2039 	}
2040 
2041 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2042 	tp->rfbuf_ts = 0;
2043 	tp->rfbuf_cnt = 0;
2044 
2045 	switch (tp->t_state) {
2046 	/*
2047 	 * If the state is SYN_SENT:
2048 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2049 	 *	if seg contains a RST, then drop the connection.
2050 	 *	if seg does not contain SYN, then drop it.
2051 	 * Otherwise this is an acceptable SYN segment
2052 	 *	initialize tp->rcv_nxt and tp->irs
2053 	 *	if seg contains ack then advance tp->snd_una
2054 	 *	if seg contains a ECE and ECN support is enabled, the stream
2055 	 *	    is ECN capable.
2056 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2057 	 *	arrange for segment to be acked (eventually)
2058 	 *	continue processing rest of data/controls, beginning with URG
2059 	 */
2060 	case TCPS_SYN_SENT:
2061 		if ((tiflags & TH_ACK) &&
2062 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2063 		     SEQ_GT(th->th_ack, tp->snd_max)))
2064 			goto dropwithreset;
2065 		if (tiflags & TH_RST) {
2066 			if (tiflags & TH_ACK)
2067 				tp = tcp_drop(tp, ECONNREFUSED);
2068 			goto drop;
2069 		}
2070 		if ((tiflags & TH_SYN) == 0)
2071 			goto drop;
2072 		if (tiflags & TH_ACK) {
2073 			tp->snd_una = th->th_ack;
2074 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2075 				tp->snd_nxt = tp->snd_una;
2076 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2077 				tp->snd_high = tp->snd_una;
2078 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2079 
2080 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2081 				tp->t_flags |= TF_ECN_PERMIT;
2082 				TCP_STATINC(TCP_STAT_ECN_SHS);
2083 			}
2084 		}
2085 		tp->irs = th->th_seq;
2086 		tcp_rcvseqinit(tp);
2087 		tp->t_flags |= TF_ACKNOW;
2088 		tcp_mss_from_peer(tp, opti.maxseg);
2089 
2090 		/*
2091 		 * Initialize the initial congestion window.  If we
2092 		 * had to retransmit the SYN, we must initialize cwnd
2093 		 * to 1 segment (i.e. the Loss Window).
2094 		 */
2095 		if (tp->t_flags & TF_SYN_REXMT)
2096 			tp->snd_cwnd = tp->t_peermss;
2097 		else {
2098 			int ss = tcp_init_win;
2099 			if (inp->inp_af == AF_INET && in_localaddr(in4p_faddr(inp)))
2100 				ss = tcp_init_win_local;
2101 #ifdef INET6
2102 			else if (inp->inp_af == AF_INET6 && in6_localaddr(&in6p_faddr(inp)))
2103 				ss = tcp_init_win_local;
2104 #endif
2105 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2106 		}
2107 
2108 		tcp_rmx_rtt(tp);
2109 		if (tiflags & TH_ACK) {
2110 			TCP_STATINC(TCP_STAT_CONNECTS);
2111 			/*
2112 			 * move tcp_established before soisconnected
2113 			 * because upcall handler can drive tcp_output
2114 			 * functionality.
2115 			 * XXX we might call soisconnected at the end of
2116 			 * all processing
2117 			 */
2118 			tcp_established(tp);
2119 			soisconnected(so);
2120 			/* Do window scaling on this connection? */
2121 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2122 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2123 				tp->snd_scale = tp->requested_s_scale;
2124 				tp->rcv_scale = tp->request_r_scale;
2125 			}
2126 			TCP_REASS_LOCK(tp);
2127 			(void)tcp_reass(tp, NULL, NULL, tlen);
2128 			/*
2129 			 * if we didn't have to retransmit the SYN,
2130 			 * use its rtt as our initial srtt & rtt var.
2131 			 */
2132 			if (tp->t_rtttime)
2133 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2134 		} else {
2135 			tp->t_state = TCPS_SYN_RECEIVED;
2136 		}
2137 
2138 		/*
2139 		 * Advance th->th_seq to correspond to first data byte.
2140 		 * If data, trim to stay within window,
2141 		 * dropping FIN if necessary.
2142 		 */
2143 		th->th_seq++;
2144 		if (tlen > tp->rcv_wnd) {
2145 			todrop = tlen - tp->rcv_wnd;
2146 			m_adj(m, -todrop);
2147 			tlen = tp->rcv_wnd;
2148 			tiflags &= ~TH_FIN;
2149 			tcps = TCP_STAT_GETREF();
2150 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACKAFTERWIN);
2151 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTEAFTERWIN,
2152 			    todrop);
2153 			TCP_STAT_PUTREF();
2154 		}
2155 		tp->snd_wl1 = th->th_seq - 1;
2156 		tp->rcv_up = th->th_seq;
2157 		goto step6;
2158 
2159 	/*
2160 	 * If the state is SYN_RECEIVED:
2161 	 *	If seg contains an ACK, but not for our SYN, drop the input
2162 	 *	and generate an RST.  See page 36, rfc793
2163 	 */
2164 	case TCPS_SYN_RECEIVED:
2165 		if ((tiflags & TH_ACK) &&
2166 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2167 		     SEQ_GT(th->th_ack, tp->snd_max)))
2168 			goto dropwithreset;
2169 		break;
2170 	}
2171 
2172 	/*
2173 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2174 	 */
2175 	KASSERT(tp->t_state != TCPS_LISTEN &&
2176 	    tp->t_state != TCPS_SYN_SENT);
2177 
2178 	/*
2179 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2180 	 * it's less than ts_recent, drop it.
2181 	 */
2182 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2183 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2184 		/* Check to see if ts_recent is over 24 days old.  */
2185 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2186 			/*
2187 			 * Invalidate ts_recent.  If this segment updates
2188 			 * ts_recent, the age will be reset later and ts_recent
2189 			 * will get a valid value.  If it does not, setting
2190 			 * ts_recent to zero will at least satisfy the
2191 			 * requirement that zero be placed in the timestamp
2192 			 * echo reply when ts_recent isn't valid.  The
2193 			 * age isn't reset until we get a valid ts_recent
2194 			 * because we don't want out-of-order segments to be
2195 			 * dropped when ts_recent is old.
2196 			 */
2197 			tp->ts_recent = 0;
2198 		} else {
2199 			tcps = TCP_STAT_GETREF();
2200 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2201 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, tlen);
2202 			_NET_STATINC_REF(tcps, TCP_STAT_PAWSDROP);
2203 			TCP_STAT_PUTREF();
2204 			tcp_new_dsack(tp, th->th_seq, tlen);
2205 			goto dropafterack;
2206 		}
2207 	}
2208 
2209 	/*
2210 	 * Check that at least some bytes of the segment are within the
2211 	 * receive window. If segment begins before rcv_nxt, drop leading
2212 	 * data (and SYN); if nothing left, just ack.
2213 	 */
2214 	todrop = tp->rcv_nxt - th->th_seq;
2215 	dupseg = false;
2216 	if (todrop > 0) {
2217 		if (tiflags & TH_SYN) {
2218 			tiflags &= ~TH_SYN;
2219 			th->th_seq++;
2220 			tcp_urp_drop(th, 1, &tiflags);
2221 			todrop--;
2222 		}
2223 		if (todrop > tlen ||
2224 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2225 			/*
2226 			 * Any valid FIN or RST must be to the left of the
2227 			 * window.  At this point the FIN or RST must be a
2228 			 * duplicate or out of sequence; drop it.
2229 			 */
2230 			if (tiflags & TH_RST)
2231 				goto drop;
2232 			tiflags &= ~(TH_FIN|TH_RST);
2233 
2234 			/*
2235 			 * Send an ACK to resynchronize and drop any data.
2236 			 * But keep on processing for RST or ACK.
2237 			 */
2238 			tp->t_flags |= TF_ACKNOW;
2239 			todrop = tlen;
2240 			dupseg = true;
2241 			tcps = TCP_STAT_GETREF();
2242 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2243 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
2244 			TCP_STAT_PUTREF();
2245 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2246 			/*
2247 			 * Test for reset before adjusting the sequence
2248 			 * number for overlapping data.
2249 			 */
2250 			goto dropafterack_ratelim;
2251 		} else {
2252 			tcps = TCP_STAT_GETREF();
2253 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
2254 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
2255 			    todrop);
2256 			TCP_STAT_PUTREF();
2257 		}
2258 		tcp_new_dsack(tp, th->th_seq, todrop);
2259 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
2260 		th->th_seq += todrop;
2261 		tlen -= todrop;
2262 		tcp_urp_drop(th, todrop, &tiflags);
2263 	}
2264 
2265 	/*
2266 	 * If new data is received on a connection after the user processes
2267 	 * are gone, then RST the other end.
2268 	 */
2269 	if ((so->so_state & SS_NOFDREF) &&
2270 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2271 		tp = tcp_close(tp);
2272 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2273 		goto dropwithreset;
2274 	}
2275 
2276 	/*
2277 	 * If the segment ends after the window, drop trailing data (and
2278 	 * PUSH and FIN); if nothing left, just ACK.
2279 	 */
2280 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2281 	if (todrop > 0) {
2282 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2283 		if (todrop >= tlen) {
2284 			/*
2285 			 * The segment actually starts after the window.
2286 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2287 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2288 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2289 			 */
2290 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2291 
2292 			/*
2293 			 * If a new connection request is received while in
2294 			 * TIME_WAIT, drop the old connection and start over
2295 			 * if the sequence numbers are above the previous
2296 			 * ones.
2297 			 *
2298 			 * NOTE: We need to put the header fields back into
2299 			 * network order.
2300 			 */
2301 			if ((tiflags & TH_SYN) &&
2302 			    tp->t_state == TCPS_TIME_WAIT &&
2303 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2304 				tp = tcp_close(tp);
2305 				tcp_fields_to_net(th);
2306 				m_freem(tcp_saveti);
2307 				tcp_saveti = NULL;
2308 				goto findpcb;
2309 			}
2310 
2311 			/*
2312 			 * If window is closed can only take segments at
2313 			 * window edge, and have to drop data and PUSH from
2314 			 * incoming segments.  Continue processing, but
2315 			 * remember to ack.  Otherwise, drop segment
2316 			 * and (if not RST) ack.
2317 			 */
2318 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2319 				KASSERT(todrop == tlen);
2320 				tp->t_flags |= TF_ACKNOW;
2321 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2322 			} else {
2323 				goto dropafterack;
2324 			}
2325 		} else {
2326 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2327 		}
2328 		m_adj(m, -todrop);
2329 		tlen -= todrop;
2330 		tiflags &= ~(TH_PUSH|TH_FIN);
2331 	}
2332 
2333 	/*
2334 	 * If last ACK falls within this segment's sequence numbers,
2335 	 *  record the timestamp.
2336 	 * NOTE:
2337 	 * 1) That the test incorporates suggestions from the latest
2338 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2339 	 * 2) That updating only on newer timestamps interferes with
2340 	 *    our earlier PAWS tests, so this check should be solely
2341 	 *    predicated on the sequence space of this segment.
2342 	 * 3) That we modify the segment boundary check to be
2343 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2344 	 *    instead of RFC1323's
2345 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2346 	 *    This modified check allows us to overcome RFC1323's
2347 	 *    limitations as described in Stevens TCP/IP Illustrated
2348 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2349 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2350 	 */
2351 	if (opti.ts_present &&
2352 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2353 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2354 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2355 		tp->ts_recent_age = tcp_now;
2356 		tp->ts_recent = opti.ts_val;
2357 	}
2358 
2359 	/*
2360 	 * If the RST bit is set examine the state:
2361 	 *    RECEIVED state:
2362 	 *        If passive open, return to LISTEN state.
2363 	 *        If active open, inform user that connection was refused.
2364 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2365 	 *        Inform user that connection was reset, and close tcb.
2366 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
2367 	 *        Close the tcb.
2368 	 */
2369 	if (tiflags & TH_RST) {
2370 		if (th->th_seq != tp->rcv_nxt)
2371 			goto dropafterack_ratelim;
2372 
2373 		switch (tp->t_state) {
2374 		case TCPS_SYN_RECEIVED:
2375 			so->so_error = ECONNREFUSED;
2376 			goto close;
2377 
2378 		case TCPS_ESTABLISHED:
2379 		case TCPS_FIN_WAIT_1:
2380 		case TCPS_FIN_WAIT_2:
2381 		case TCPS_CLOSE_WAIT:
2382 			so->so_error = ECONNRESET;
2383 		close:
2384 			tp->t_state = TCPS_CLOSED;
2385 			TCP_STATINC(TCP_STAT_DROPS);
2386 			tp = tcp_close(tp);
2387 			goto drop;
2388 
2389 		case TCPS_CLOSING:
2390 		case TCPS_LAST_ACK:
2391 		case TCPS_TIME_WAIT:
2392 			tp = tcp_close(tp);
2393 			goto drop;
2394 		}
2395 	}
2396 
2397 	/*
2398 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2399 	 * we must be in a synchronized state.  RFC793 states (under Reset
2400 	 * Generation) that any unacceptable segment (an out-of-order SYN
2401 	 * qualifies) received in a synchronized state must elicit only an
2402 	 * empty acknowledgment segment ... and the connection remains in
2403 	 * the same state.
2404 	 */
2405 	if (tiflags & TH_SYN) {
2406 		if (tp->rcv_nxt == th->th_seq) {
2407 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2408 			    TH_ACK);
2409 			m_freem(tcp_saveti);
2410 			return;
2411 		}
2412 
2413 		goto dropafterack_ratelim;
2414 	}
2415 
2416 	/*
2417 	 * If the ACK bit is off we drop the segment and return.
2418 	 */
2419 	if ((tiflags & TH_ACK) == 0) {
2420 		if (tp->t_flags & TF_ACKNOW)
2421 			goto dropafterack;
2422 		goto drop;
2423 	}
2424 
2425 	/*
2426 	 * From here on, we're doing ACK processing.
2427 	 */
2428 
2429 	switch (tp->t_state) {
2430 	/*
2431 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2432 	 * ESTABLISHED state and continue processing, otherwise
2433 	 * send an RST.
2434 	 */
2435 	case TCPS_SYN_RECEIVED:
2436 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2437 		    SEQ_GT(th->th_ack, tp->snd_max))
2438 			goto dropwithreset;
2439 		TCP_STATINC(TCP_STAT_CONNECTS);
2440 		soisconnected(so);
2441 		tcp_established(tp);
2442 		/* Do window scaling? */
2443 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2444 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2445 			tp->snd_scale = tp->requested_s_scale;
2446 			tp->rcv_scale = tp->request_r_scale;
2447 		}
2448 		TCP_REASS_LOCK(tp);
2449 		(void)tcp_reass(tp, NULL, NULL, tlen);
2450 		tp->snd_wl1 = th->th_seq - 1;
2451 		/* FALLTHROUGH */
2452 
2453 	/*
2454 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2455 	 * ACKs.  If the ack is in the range
2456 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2457 	 * then advance tp->snd_una to th->th_ack and drop
2458 	 * data from the retransmission queue.  If this ACK reflects
2459 	 * more up to date window information we update our window information.
2460 	 */
2461 	case TCPS_ESTABLISHED:
2462 	case TCPS_FIN_WAIT_1:
2463 	case TCPS_FIN_WAIT_2:
2464 	case TCPS_CLOSE_WAIT:
2465 	case TCPS_CLOSING:
2466 	case TCPS_LAST_ACK:
2467 	case TCPS_TIME_WAIT:
2468 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2469 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2470 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2471 				/*
2472 				 * If we have outstanding data (other than
2473 				 * a window probe), this is a completely
2474 				 * duplicate ack (ie, window info didn't
2475 				 * change), the ack is the biggest we've
2476 				 * seen and we've seen exactly our rexmt
2477 				 * threshold of them, assume a packet
2478 				 * has been dropped and retransmit it.
2479 				 * Kludge snd_nxt & the congestion
2480 				 * window so we send only this one
2481 				 * packet.
2482 				 */
2483 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2484 				    th->th_ack != tp->snd_una)
2485 					tp->t_dupacks = 0;
2486 				else if (tp->t_partialacks < 0 &&
2487 				    (++tp->t_dupacks == tcprexmtthresh ||
2488 				     TCP_FACK_FASTRECOV(tp))) {
2489 					/*
2490 					 * Do the fast retransmit, and adjust
2491 					 * congestion control parameters.
2492 					 */
2493 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2494 						/* False fast retransmit */
2495 						break;
2496 					}
2497 					goto drop;
2498 				} else if (tp->t_dupacks > tcprexmtthresh) {
2499 					tp->snd_cwnd += tp->t_segsz;
2500 					KERNEL_LOCK(1, NULL);
2501 					(void)tcp_output(tp);
2502 					KERNEL_UNLOCK_ONE(NULL);
2503 					goto drop;
2504 				}
2505 			} else {
2506 				/*
2507 				 * If the ack appears to be very old, only
2508 				 * allow data that is in-sequence.  This
2509 				 * makes it somewhat more difficult to insert
2510 				 * forged data by guessing sequence numbers.
2511 				 * Sent an ack to try to update the send
2512 				 * sequence number on the other side.
2513 				 */
2514 				if (tlen && th->th_seq != tp->rcv_nxt &&
2515 				    SEQ_LT(th->th_ack,
2516 				    tp->snd_una - tp->max_sndwnd))
2517 					goto dropafterack;
2518 			}
2519 			break;
2520 		}
2521 		/*
2522 		 * If the congestion window was inflated to account
2523 		 * for the other side's cached packets, retract it.
2524 		 */
2525 		tp->t_congctl->fast_retransmit_newack(tp, th);
2526 
2527 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2528 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2529 			goto dropafterack;
2530 		}
2531 		acked = th->th_ack - tp->snd_una;
2532 		tcps = TCP_STAT_GETREF();
2533 		_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
2534 		_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE, acked);
2535 		TCP_STAT_PUTREF();
2536 
2537 		/*
2538 		 * If we have a timestamp reply, update smoothed
2539 		 * round trip time.  If no timestamp is present but
2540 		 * transmit timer is running and timed sequence
2541 		 * number was acked, update smoothed round trip time.
2542 		 * Since we now have an rtt measurement, cancel the
2543 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2544 		 * Recompute the initial retransmit timer.
2545 		 */
2546 		if (ts_rtt)
2547 			tcp_xmit_timer(tp, ts_rtt - 1);
2548 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2549 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2550 
2551 		/*
2552 		 * If all outstanding data is acked, stop retransmit
2553 		 * timer and remember to restart (more output or persist).
2554 		 * If there is more data to be acked, restart retransmit
2555 		 * timer, using current (possibly backed-off) value.
2556 		 */
2557 		if (th->th_ack == tp->snd_max) {
2558 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2559 			needoutput = 1;
2560 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2561 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2562 
2563 		/*
2564 		 * New data has been acked, adjust the congestion window.
2565 		 */
2566 		tp->t_congctl->newack(tp, th);
2567 
2568 		nd_hint(tp);
2569 		if (acked > so->so_snd.sb_cc) {
2570 			tp->snd_wnd -= so->so_snd.sb_cc;
2571 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2572 			ourfinisacked = 1;
2573 		} else {
2574 			if (acked > (tp->t_lastoff - tp->t_inoff))
2575 				tp->t_lastm = NULL;
2576 			sbdrop(&so->so_snd, acked);
2577 			tp->t_lastoff -= acked;
2578 			if (tp->snd_wnd > acked)
2579 				tp->snd_wnd -= acked;
2580 			else
2581 				tp->snd_wnd = 0;
2582 			ourfinisacked = 0;
2583 		}
2584 		sowwakeup(so);
2585 
2586 		icmp_check(tp, th, acked);
2587 
2588 		tp->snd_una = th->th_ack;
2589 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2590 			tp->snd_fack = tp->snd_una;
2591 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2592 			tp->snd_nxt = tp->snd_una;
2593 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2594 			tp->snd_high = tp->snd_una;
2595 
2596 		switch (tp->t_state) {
2597 
2598 		/*
2599 		 * In FIN_WAIT_1 STATE in addition to the processing
2600 		 * for the ESTABLISHED state if our FIN is now acknowledged
2601 		 * then enter FIN_WAIT_2.
2602 		 */
2603 		case TCPS_FIN_WAIT_1:
2604 			if (ourfinisacked) {
2605 				/*
2606 				 * If we can't receive any more
2607 				 * data, then closing user can proceed.
2608 				 * Starting the timer is contrary to the
2609 				 * specification, but if we don't get a FIN
2610 				 * we'll hang forever.
2611 				 */
2612 				if (so->so_state & SS_CANTRCVMORE) {
2613 					soisdisconnected(so);
2614 					if (tp->t_maxidle > 0)
2615 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2616 						    tp->t_maxidle);
2617 				}
2618 				tp->t_state = TCPS_FIN_WAIT_2;
2619 			}
2620 			break;
2621 
2622 	 	/*
2623 		 * In CLOSING STATE in addition to the processing for
2624 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2625 		 * then enter the TIME-WAIT state, otherwise ignore
2626 		 * the segment.
2627 		 */
2628 		case TCPS_CLOSING:
2629 			if (ourfinisacked) {
2630 				tp->t_state = TCPS_TIME_WAIT;
2631 				tcp_canceltimers(tp);
2632 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2633 				soisdisconnected(so);
2634 			}
2635 			break;
2636 
2637 		/*
2638 		 * In LAST_ACK, we may still be waiting for data to drain
2639 		 * and/or to be acked, as well as for the ack of our FIN.
2640 		 * If our FIN is now acknowledged, delete the TCB,
2641 		 * enter the closed state and return.
2642 		 */
2643 		case TCPS_LAST_ACK:
2644 			if (ourfinisacked) {
2645 				tp = tcp_close(tp);
2646 				goto drop;
2647 			}
2648 			break;
2649 
2650 		/*
2651 		 * In TIME_WAIT state the only thing that should arrive
2652 		 * is a retransmission of the remote FIN.  Acknowledge
2653 		 * it and restart the finack timer.
2654 		 */
2655 		case TCPS_TIME_WAIT:
2656 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2657 			goto dropafterack;
2658 		}
2659 	}
2660 
2661 step6:
2662 	/*
2663 	 * Update window information.
2664 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2665 	 */
2666 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2667 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2668 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2669 		/* keep track of pure window updates */
2670 		if (tlen == 0 &&
2671 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2672 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2673 		tp->snd_wnd = tiwin;
2674 		tp->snd_wl1 = th->th_seq;
2675 		tp->snd_wl2 = th->th_ack;
2676 		if (tp->snd_wnd > tp->max_sndwnd)
2677 			tp->max_sndwnd = tp->snd_wnd;
2678 		needoutput = 1;
2679 	}
2680 
2681 	/*
2682 	 * Process segments with URG.
2683 	 */
2684 	if ((tiflags & TH_URG) && th->th_urp &&
2685 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2686 		/*
2687 		 * This is a kludge, but if we receive and accept
2688 		 * random urgent pointers, we'll crash in
2689 		 * soreceive.  It's hard to imagine someone
2690 		 * actually wanting to send this much urgent data.
2691 		 */
2692 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2693 			th->th_urp = 0;			/* XXX */
2694 			tiflags &= ~TH_URG;		/* XXX */
2695 			goto dodata;			/* XXX */
2696 		}
2697 
2698 		/*
2699 		 * If this segment advances the known urgent pointer,
2700 		 * then mark the data stream.  This should not happen
2701 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2702 		 * a FIN has been received from the remote side.
2703 		 * In these states we ignore the URG.
2704 		 *
2705 		 * According to RFC961 (Assigned Protocols),
2706 		 * the urgent pointer points to the last octet
2707 		 * of urgent data.  We continue, however,
2708 		 * to consider it to indicate the first octet
2709 		 * of data past the urgent section as the original
2710 		 * spec states (in one of two places).
2711 		 */
2712 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2713 			tp->rcv_up = th->th_seq + th->th_urp;
2714 			so->so_oobmark = so->so_rcv.sb_cc +
2715 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2716 			if (so->so_oobmark == 0)
2717 				so->so_state |= SS_RCVATMARK;
2718 			sohasoutofband(so);
2719 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2720 		}
2721 
2722 		/*
2723 		 * Remove out of band data so doesn't get presented to user.
2724 		 * This can happen independent of advancing the URG pointer,
2725 		 * but if two URG's are pending at once, some out-of-band
2726 		 * data may creep in... ick.
2727 		 */
2728 		if (th->th_urp <= (u_int16_t)tlen &&
2729 		    (so->so_options & SO_OOBINLINE) == 0)
2730 			tcp_pulloutofband(so, th, m, hdroptlen);
2731 	} else {
2732 		/*
2733 		 * If no out of band data is expected,
2734 		 * pull receive urgent pointer along
2735 		 * with the receive window.
2736 		 */
2737 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2738 			tp->rcv_up = tp->rcv_nxt;
2739 	}
2740 dodata:
2741 
2742 	/*
2743 	 * Process the segment text, merging it into the TCP sequencing queue,
2744 	 * and arranging for acknowledgement of receipt if necessary.
2745 	 * This process logically involves adjusting tp->rcv_wnd as data
2746 	 * is presented to the user (this happens in tcp_usrreq.c,
2747 	 * tcp_rcvd()).  If a FIN has already been received on this
2748 	 * connection then we just ignore the text.
2749 	 */
2750 	if ((tlen || (tiflags & TH_FIN)) &&
2751 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2752 		/*
2753 		 * Handle the common case:
2754 		 *  o Segment is the next to be received, and
2755 		 *  o The queue is empty, and
2756 		 *  o The connection is established
2757 		 * In this case, we avoid calling tcp_reass.
2758 		 *
2759 		 * tcp_setup_ack: set DELACK for segments received in order,
2760 		 * but ack immediately when segments are out of order (so that
2761 		 * fast retransmit can work).
2762 		 */
2763 		TCP_REASS_LOCK(tp);
2764 		if (th->th_seq == tp->rcv_nxt &&
2765 		    TAILQ_FIRST(&tp->segq) == NULL &&
2766 		    tp->t_state == TCPS_ESTABLISHED) {
2767 			tcp_setup_ack(tp, th);
2768 			tp->rcv_nxt += tlen;
2769 			tiflags = th->th_flags & TH_FIN;
2770 			tcps = TCP_STAT_GETREF();
2771 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
2772 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
2773 			TCP_STAT_PUTREF();
2774 			nd_hint(tp);
2775 			if (so->so_state & SS_CANTRCVMORE) {
2776 				m_freem(m);
2777 			} else {
2778 				m_adj(m, hdroptlen);
2779 				sbappendstream(&(so)->so_rcv, m);
2780 			}
2781 			TCP_REASS_UNLOCK(tp);
2782 			sorwakeup(so);
2783 		} else {
2784 			m_adj(m, hdroptlen);
2785 			tiflags = tcp_reass(tp, th, m, tlen);
2786 			tp->t_flags |= TF_ACKNOW;
2787 		}
2788 
2789 		/*
2790 		 * Note the amount of data that peer has sent into
2791 		 * our window, in order to estimate the sender's
2792 		 * buffer size.
2793 		 */
2794 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2795 	} else {
2796 		m_freem(m);
2797 		m = NULL;
2798 		tiflags &= ~TH_FIN;
2799 	}
2800 
2801 	/*
2802 	 * If FIN is received ACK the FIN and let the user know
2803 	 * that the connection is closing.  Ignore a FIN received before
2804 	 * the connection is fully established.
2805 	 */
2806 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2807 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2808 			socantrcvmore(so);
2809 			tp->t_flags |= TF_ACKNOW;
2810 			tp->rcv_nxt++;
2811 		}
2812 		switch (tp->t_state) {
2813 
2814 	 	/*
2815 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2816 		 */
2817 		case TCPS_ESTABLISHED:
2818 			tp->t_state = TCPS_CLOSE_WAIT;
2819 			break;
2820 
2821 	 	/*
2822 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2823 		 * enter the CLOSING state.
2824 		 */
2825 		case TCPS_FIN_WAIT_1:
2826 			tp->t_state = TCPS_CLOSING;
2827 			break;
2828 
2829 	 	/*
2830 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2831 		 * starting the time-wait timer, turning off the other
2832 		 * standard timers.
2833 		 */
2834 		case TCPS_FIN_WAIT_2:
2835 			tp->t_state = TCPS_TIME_WAIT;
2836 			tcp_canceltimers(tp);
2837 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2838 			soisdisconnected(so);
2839 			break;
2840 
2841 		/*
2842 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2843 		 */
2844 		case TCPS_TIME_WAIT:
2845 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2846 			break;
2847 		}
2848 	}
2849 #ifdef TCP_DEBUG
2850 	if (so->so_options & SO_DEBUG)
2851 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2852 #endif
2853 
2854 	/*
2855 	 * Return any desired output.
2856 	 */
2857 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2858 		KERNEL_LOCK(1, NULL);
2859 		(void)tcp_output(tp);
2860 		KERNEL_UNLOCK_ONE(NULL);
2861 	}
2862 	m_freem(tcp_saveti);
2863 
2864 	if (tp->t_state == TCPS_TIME_WAIT
2865 	    && (so->so_state & SS_NOFDREF)
2866 	    && (tp->t_inpcb || af != AF_INET || af != AF_INET6)
2867 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2868 	    && TAILQ_EMPTY(&tp->segq)
2869 	    && vtw_add(af, tp)) {
2870 		;
2871 	}
2872 	return;
2873 
2874 badsyn:
2875 	/*
2876 	 * Received a bad SYN.  Increment counters and dropwithreset.
2877 	 */
2878 	TCP_STATINC(TCP_STAT_BADSYN);
2879 	tp = NULL;
2880 	goto dropwithreset;
2881 
2882 dropafterack:
2883 	/*
2884 	 * Generate an ACK dropping incoming segment if it occupies
2885 	 * sequence space, where the ACK reflects our state.
2886 	 */
2887 	if (tiflags & TH_RST)
2888 		goto drop;
2889 	goto dropafterack2;
2890 
2891 dropafterack_ratelim:
2892 	/*
2893 	 * We may want to rate-limit ACKs against SYN/RST attack.
2894 	 */
2895 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2896 	    tcp_ackdrop_ppslim) == 0) {
2897 		/* XXX stat */
2898 		goto drop;
2899 	}
2900 
2901 dropafterack2:
2902 	m_freem(m);
2903 	tp->t_flags |= TF_ACKNOW;
2904 	KERNEL_LOCK(1, NULL);
2905 	(void)tcp_output(tp);
2906 	KERNEL_UNLOCK_ONE(NULL);
2907 	m_freem(tcp_saveti);
2908 	return;
2909 
2910 dropwithreset_ratelim:
2911 	/*
2912 	 * We may want to rate-limit RSTs in certain situations,
2913 	 * particularly if we are sending an RST in response to
2914 	 * an attempt to connect to or otherwise communicate with
2915 	 * a port for which we have no socket.
2916 	 */
2917 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2918 	    tcp_rst_ppslim) == 0) {
2919 		/* XXX stat */
2920 		goto drop;
2921 	}
2922 
2923 dropwithreset:
2924 	/*
2925 	 * Generate a RST, dropping incoming segment.
2926 	 * Make ACK acceptable to originator of segment.
2927 	 */
2928 	if (tiflags & TH_RST)
2929 		goto drop;
2930 	if (tiflags & TH_ACK) {
2931 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2932 	} else {
2933 		if (tiflags & TH_SYN)
2934 			tlen++;
2935 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2936 		    TH_RST|TH_ACK);
2937 	}
2938 	m_freem(tcp_saveti);
2939 	return;
2940 
2941 badcsum:
2942 drop:
2943 	/*
2944 	 * Drop space held by incoming segment and return.
2945 	 */
2946 	if (tp) {
2947 		so = tp->t_inpcb->inp_socket;
2948 #ifdef TCP_DEBUG
2949 		if (so && (so->so_options & SO_DEBUG) != 0)
2950 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2951 #endif
2952 	}
2953 	m_freem(tcp_saveti);
2954 	m_freem(m);
2955 	return;
2956 }
2957 
2958 #ifdef TCP_SIGNATURE
2959 int
2960 tcp_signature_apply(void *fstate, void *data, u_int len)
2961 {
2962 
2963 	MD5Update(fstate, (u_char *)data, len);
2964 	return (0);
2965 }
2966 
2967 struct secasvar *
2968 tcp_signature_getsav(struct mbuf *m)
2969 {
2970 	struct ip *ip;
2971 	struct ip6_hdr *ip6;
2972 
2973 	ip = mtod(m, struct ip *);
2974 	switch (ip->ip_v) {
2975 	case 4:
2976 		ip = mtod(m, struct ip *);
2977 		ip6 = NULL;
2978 		break;
2979 	case 6:
2980 		ip = NULL;
2981 		ip6 = mtod(m, struct ip6_hdr *);
2982 		break;
2983 	default:
2984 		return (NULL);
2985 	}
2986 
2987 #ifdef IPSEC
2988 	union sockaddr_union dst;
2989 
2990 	/* Extract the destination from the IP header in the mbuf. */
2991 	memset(&dst, 0, sizeof(union sockaddr_union));
2992 	if (ip != NULL) {
2993 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2994 		dst.sa.sa_family = AF_INET;
2995 		dst.sin.sin_addr = ip->ip_dst;
2996 	} else {
2997 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2998 		dst.sa.sa_family = AF_INET6;
2999 		dst.sin6.sin6_addr = ip6->ip6_dst;
3000 	}
3001 
3002 	/*
3003 	 * Look up an SADB entry which matches the address of the peer.
3004 	 */
3005 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3006 #else
3007 	return NULL;
3008 #endif
3009 }
3010 
3011 int
3012 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3013     struct secasvar *sav, char *sig)
3014 {
3015 	MD5_CTX ctx;
3016 	struct ip *ip;
3017 	struct ipovly *ipovly;
3018 #ifdef INET6
3019 	struct ip6_hdr *ip6;
3020 	struct ip6_hdr_pseudo ip6pseudo;
3021 #endif
3022 	struct ippseudo ippseudo;
3023 	struct tcphdr th0;
3024 	int l, tcphdrlen;
3025 
3026 	if (sav == NULL)
3027 		return (-1);
3028 
3029 	tcphdrlen = th->th_off * 4;
3030 
3031 	switch (mtod(m, struct ip *)->ip_v) {
3032 	case 4:
3033 		MD5Init(&ctx);
3034 		ip = mtod(m, struct ip *);
3035 		memset(&ippseudo, 0, sizeof(ippseudo));
3036 		ipovly = (struct ipovly *)ip;
3037 		ippseudo.ippseudo_src = ipovly->ih_src;
3038 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3039 		ippseudo.ippseudo_pad = 0;
3040 		ippseudo.ippseudo_p = IPPROTO_TCP;
3041 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3042 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3043 		break;
3044 #if INET6
3045 	case 6:
3046 		MD5Init(&ctx);
3047 		ip6 = mtod(m, struct ip6_hdr *);
3048 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3049 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3050 		in6_clearscope(&ip6pseudo.ip6ph_src);
3051 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3052 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3053 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3054 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3055 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3056 		break;
3057 #endif
3058 	default:
3059 		return (-1);
3060 	}
3061 
3062 	th0 = *th;
3063 	th0.th_sum = 0;
3064 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3065 
3066 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3067 	if (l > 0)
3068 		m_apply(m, thoff + tcphdrlen,
3069 		    m->m_pkthdr.len - thoff - tcphdrlen,
3070 		    tcp_signature_apply, &ctx);
3071 
3072 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3073 	MD5Final(sig, &ctx);
3074 
3075 	return (0);
3076 }
3077 #endif
3078 
3079 /*
3080  * Parse and process tcp options.
3081  *
3082  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
3083  * Otherwise returns 0.
3084  */
3085 int
3086 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3087     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3088 {
3089 	u_int16_t mss;
3090 	int opt, optlen = 0;
3091 #ifdef TCP_SIGNATURE
3092 	void *sigp = NULL;
3093 	char sigbuf[TCP_SIGLEN];
3094 	struct secasvar *sav = NULL;
3095 #endif
3096 
3097 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3098 		opt = cp[0];
3099 		if (opt == TCPOPT_EOL)
3100 			break;
3101 		if (opt == TCPOPT_NOP)
3102 			optlen = 1;
3103 		else {
3104 			if (cnt < 2)
3105 				break;
3106 			optlen = cp[1];
3107 			if (optlen < 2 || optlen > cnt)
3108 				break;
3109 		}
3110 		switch (opt) {
3111 
3112 		default:
3113 			continue;
3114 
3115 		case TCPOPT_MAXSEG:
3116 			if (optlen != TCPOLEN_MAXSEG)
3117 				continue;
3118 			if (!(th->th_flags & TH_SYN))
3119 				continue;
3120 			if (TCPS_HAVERCVDSYN(tp->t_state))
3121 				continue;
3122 			memcpy(&mss, cp + 2, sizeof(mss));
3123 			oi->maxseg = ntohs(mss);
3124 			break;
3125 
3126 		case TCPOPT_WINDOW:
3127 			if (optlen != TCPOLEN_WINDOW)
3128 				continue;
3129 			if (!(th->th_flags & TH_SYN))
3130 				continue;
3131 			if (TCPS_HAVERCVDSYN(tp->t_state))
3132 				continue;
3133 			tp->t_flags |= TF_RCVD_SCALE;
3134 			tp->requested_s_scale = cp[2];
3135 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3136 				char buf[INET6_ADDRSTRLEN];
3137 				struct ip *ip = mtod(m, struct ip *);
3138 #ifdef INET6
3139 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3140 #endif
3141 
3142 				switch (ip->ip_v) {
3143 				case 4:
3144 					in_print(buf, sizeof(buf),
3145 					    &ip->ip_src);
3146 					break;
3147 #ifdef INET6
3148 				case 6:
3149 					in6_print(buf, sizeof(buf),
3150 					    &ip6->ip6_src);
3151 					break;
3152 #endif
3153 				default:
3154 					strlcpy(buf, "(unknown)", sizeof(buf));
3155 					break;
3156 				}
3157 
3158 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3159 				    "assuming %d\n",
3160 				    tp->requested_s_scale, buf,
3161 				    TCP_MAX_WINSHIFT);
3162 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3163 			}
3164 			break;
3165 
3166 		case TCPOPT_TIMESTAMP:
3167 			if (optlen != TCPOLEN_TIMESTAMP)
3168 				continue;
3169 			oi->ts_present = 1;
3170 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3171 			NTOHL(oi->ts_val);
3172 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3173 			NTOHL(oi->ts_ecr);
3174 
3175 			if (!(th->th_flags & TH_SYN))
3176 				continue;
3177 			if (TCPS_HAVERCVDSYN(tp->t_state))
3178 				continue;
3179 			/*
3180 			 * A timestamp received in a SYN makes
3181 			 * it ok to send timestamp requests and replies.
3182 			 */
3183 			tp->t_flags |= TF_RCVD_TSTMP;
3184 			tp->ts_recent = oi->ts_val;
3185 			tp->ts_recent_age = tcp_now;
3186                         break;
3187 
3188 		case TCPOPT_SACK_PERMITTED:
3189 			if (optlen != TCPOLEN_SACK_PERMITTED)
3190 				continue;
3191 			if (!(th->th_flags & TH_SYN))
3192 				continue;
3193 			if (TCPS_HAVERCVDSYN(tp->t_state))
3194 				continue;
3195 			if (tcp_do_sack) {
3196 				tp->t_flags |= TF_SACK_PERMIT;
3197 				tp->t_flags |= TF_WILL_SACK;
3198 			}
3199 			break;
3200 
3201 		case TCPOPT_SACK:
3202 			tcp_sack_option(tp, th, cp, optlen);
3203 			break;
3204 #ifdef TCP_SIGNATURE
3205 		case TCPOPT_SIGNATURE:
3206 			if (optlen != TCPOLEN_SIGNATURE)
3207 				continue;
3208 			if (sigp &&
3209 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3210 				return (-1);
3211 
3212 			sigp = sigbuf;
3213 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3214 			tp->t_flags |= TF_SIGNATURE;
3215 			break;
3216 #endif
3217 		}
3218 	}
3219 
3220 #ifndef TCP_SIGNATURE
3221 	return 0;
3222 #else
3223 	if (tp->t_flags & TF_SIGNATURE) {
3224 		sav = tcp_signature_getsav(m);
3225 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3226 			return (-1);
3227 	}
3228 
3229 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3230 		goto out;
3231 
3232 	if (sigp) {
3233 		char sig[TCP_SIGLEN];
3234 
3235 		tcp_fields_to_net(th);
3236 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3237 			tcp_fields_to_host(th);
3238 			goto out;
3239 		}
3240 		tcp_fields_to_host(th);
3241 
3242 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3243 			TCP_STATINC(TCP_STAT_BADSIG);
3244 			goto out;
3245 		} else
3246 			TCP_STATINC(TCP_STAT_GOODSIG);
3247 
3248 		key_sa_recordxfer(sav, m);
3249 		KEY_SA_UNREF(&sav);
3250 	}
3251 	return 0;
3252 out:
3253 	if (sav != NULL)
3254 		KEY_SA_UNREF(&sav);
3255 	return -1;
3256 #endif
3257 }
3258 
3259 /*
3260  * Pull out of band byte out of a segment so
3261  * it doesn't appear in the user's data queue.
3262  * It is still reflected in the segment length for
3263  * sequencing purposes.
3264  */
3265 void
3266 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3267     struct mbuf *m, int off)
3268 {
3269 	int cnt = off + th->th_urp - 1;
3270 
3271 	while (cnt >= 0) {
3272 		if (m->m_len > cnt) {
3273 			char *cp = mtod(m, char *) + cnt;
3274 			struct tcpcb *tp = sototcpcb(so);
3275 
3276 			tp->t_iobc = *cp;
3277 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3278 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3279 			m->m_len--;
3280 			return;
3281 		}
3282 		cnt -= m->m_len;
3283 		m = m->m_next;
3284 		if (m == NULL)
3285 			break;
3286 	}
3287 	panic("tcp_pulloutofband");
3288 }
3289 
3290 /*
3291  * Collect new round-trip time estimate
3292  * and update averages and current timeout.
3293  *
3294  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3295  * difference of two timestamps.
3296  */
3297 void
3298 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3299 {
3300 	int32_t delta;
3301 
3302 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3303 	if (tp->t_srtt != 0) {
3304 		/*
3305 		 * Compute the amount to add to srtt for smoothing,
3306 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3307 		 * srtt is stored in 1/32 slow ticks, we conceptually
3308 		 * shift left 5 bits, subtract srtt to get the
3309 		 * difference, and then shift right by TCP_RTT_SHIFT
3310 		 * (3) to obtain 1/8 of the difference.
3311 		 */
3312 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3313 		/*
3314 		 * This can never happen, because delta's lowest
3315 		 * possible value is 1/8 of t_srtt.  But if it does,
3316 		 * set srtt to some reasonable value, here chosen
3317 		 * as 1/8 tick.
3318 		 */
3319 		if ((tp->t_srtt += delta) <= 0)
3320 			tp->t_srtt = 1 << 2;
3321 		/*
3322 		 * RFC2988 requires that rttvar be updated first.
3323 		 * This code is compliant because "delta" is the old
3324 		 * srtt minus the new observation (scaled).
3325 		 *
3326 		 * RFC2988 says:
3327 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3328 		 *
3329 		 * delta is in units of 1/32 ticks, and has then been
3330 		 * divided by 8.  This is equivalent to being in 1/16s
3331 		 * units and divided by 4.  Subtract from it 1/4 of
3332 		 * the existing rttvar to form the (signed) amount to
3333 		 * adjust.
3334 		 */
3335 		if (delta < 0)
3336 			delta = -delta;
3337 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3338 		/*
3339 		 * As with srtt, this should never happen.  There is
3340 		 * no support in RFC2988 for this operation.  But 1/4s
3341 		 * as rttvar when faced with something arguably wrong
3342 		 * is ok.
3343 		 */
3344 		if ((tp->t_rttvar += delta) <= 0)
3345 			tp->t_rttvar = 1 << 2;
3346 
3347 		/*
3348 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3349 		 * Problem is: it doesn't work.  Disabled by defaulting
3350 		 * tcp_rttlocal to 0; see corresponding code in
3351 		 * tcp_subr that selects local vs remote in a different way.
3352 		 *
3353 		 * The static branch prediction hint here should be removed
3354 		 * when the rtt estimator is fixed and the rtt_enable code
3355 		 * is turned back on.
3356 		 */
3357 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3358 		    && tp->t_srtt > tcp_msl_remote_threshold
3359 		    && tp->t_msl  < tcp_msl_remote) {
3360 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3361 		}
3362 	} else {
3363 		/*
3364 		 * This is the first measurement.  Per RFC2988, 2.2,
3365 		 * set rtt=R and srtt=R/2.
3366 		 * For srtt, storage representation is 1/32 ticks,
3367 		 * so shift left by 5.
3368 		 * For rttvar, storage representation is 1/16 ticks,
3369 		 * So shift left by 4, but then right by 1 to halve.
3370 		 */
3371 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3372 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3373 	}
3374 	tp->t_rtttime = 0;
3375 	tp->t_rxtshift = 0;
3376 
3377 	/*
3378 	 * the retransmit should happen at rtt + 4 * rttvar.
3379 	 * Because of the way we do the smoothing, srtt and rttvar
3380 	 * will each average +1/2 tick of bias.  When we compute
3381 	 * the retransmit timer, we want 1/2 tick of rounding and
3382 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3383 	 * firing of the timer.  The bias will give us exactly the
3384 	 * 1.5 tick we need.  But, because the bias is
3385 	 * statistical, we have to test that we don't drop below
3386 	 * the minimum feasible timer (which is 2 ticks).
3387 	 */
3388 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3389 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3390 
3391 	/*
3392 	 * We received an ack for a packet that wasn't retransmitted;
3393 	 * it is probably safe to discard any error indications we've
3394 	 * received recently.  This isn't quite right, but close enough
3395 	 * for now (a route might have failed after we sent a segment,
3396 	 * and the return path might not be symmetrical).
3397 	 */
3398 	tp->t_softerror = 0;
3399 }
3400