1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineValueType.h" 22 #include "llvm/IR/CallingConv.h" 23 #include "llvm/MC/MCRegisterInfo.h" 24 #include <cassert> 25 #include <functional> 26 27 namespace llvm { 28 29 class BitVector; 30 class MachineFunction; 31 class RegScavenger; 32 template<class T> class SmallVectorImpl; 33 class VirtRegMap; 34 class raw_ostream; 35 36 class TargetRegisterClass { 37 public: 38 typedef const MCPhysReg* iterator; 39 typedef const MCPhysReg* const_iterator; 40 typedef const MVT::SimpleValueType* vt_iterator; 41 typedef const TargetRegisterClass* const * sc_iterator; 42 43 // Instance variables filled by tablegen, do not use! 44 const MCRegisterClass *MC; 45 const vt_iterator VTs; 46 const uint32_t *SubClassMask; 47 const uint16_t *SuperRegIndices; 48 const unsigned LaneMask; 49 const sc_iterator SuperClasses; 50 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 51 52 /// getID() - Return the register class ID number. 53 /// getID()54 unsigned getID() const { return MC->getID(); } 55 56 /// begin/end - Return all of the registers in this class. 57 /// begin()58 iterator begin() const { return MC->begin(); } end()59 iterator end() const { return MC->end(); } 60 61 /// getNumRegs - Return the number of registers in this class. 62 /// getNumRegs()63 unsigned getNumRegs() const { return MC->getNumRegs(); } 64 65 /// getRegister - Return the specified register in the class. 66 /// getRegister(unsigned i)67 unsigned getRegister(unsigned i) const { 68 return MC->getRegister(i); 69 } 70 71 /// contains - Return true if the specified register is included in this 72 /// register class. This does not include virtual registers. contains(unsigned Reg)73 bool contains(unsigned Reg) const { 74 return MC->contains(Reg); 75 } 76 77 /// contains - Return true if both registers are in this class. contains(unsigned Reg1,unsigned Reg2)78 bool contains(unsigned Reg1, unsigned Reg2) const { 79 return MC->contains(Reg1, Reg2); 80 } 81 82 /// getSize - Return the size of the register in bytes, which is also the size 83 /// of a stack slot allocated to hold a spilled copy of this register. getSize()84 unsigned getSize() const { return MC->getSize(); } 85 86 /// getAlignment - Return the minimum required alignment for a register of 87 /// this class. getAlignment()88 unsigned getAlignment() const { return MC->getAlignment(); } 89 90 /// getCopyCost - Return the cost of copying a value between two registers in 91 /// this class. A negative number means the register class is very expensive 92 /// to copy e.g. status flag register classes. getCopyCost()93 int getCopyCost() const { return MC->getCopyCost(); } 94 95 /// isAllocatable - Return true if this register class may be used to create 96 /// virtual registers. isAllocatable()97 bool isAllocatable() const { return MC->isAllocatable(); } 98 99 /// hasType - return true if this TargetRegisterClass has the ValueType vt. 100 /// hasType(MVT vt)101 bool hasType(MVT vt) const { 102 for(int i = 0; VTs[i] != MVT::Other; ++i) 103 if (MVT(VTs[i]) == vt) 104 return true; 105 return false; 106 } 107 108 /// vt_begin / vt_end - Loop over all of the value types that can be 109 /// represented by values in this register class. vt_begin()110 vt_iterator vt_begin() const { 111 return VTs; 112 } 113 vt_end()114 vt_iterator vt_end() const { 115 vt_iterator I = VTs; 116 while (*I != MVT::Other) ++I; 117 return I; 118 } 119 120 /// hasSubClass - return true if the specified TargetRegisterClass 121 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)122 bool hasSubClass(const TargetRegisterClass *RC) const { 123 return RC != this && hasSubClassEq(RC); 124 } 125 126 /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this 127 /// class. hasSubClassEq(const TargetRegisterClass * RC)128 bool hasSubClassEq(const TargetRegisterClass *RC) const { 129 unsigned ID = RC->getID(); 130 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 131 } 132 133 /// hasSuperClass - return true if the specified TargetRegisterClass is a 134 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)135 bool hasSuperClass(const TargetRegisterClass *RC) const { 136 return RC->hasSubClass(this); 137 } 138 139 /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this 140 /// class. hasSuperClassEq(const TargetRegisterClass * RC)141 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 142 return RC->hasSubClassEq(this); 143 } 144 145 /// getSubClassMask - Returns a bit vector of subclasses, including this one. 146 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to 147 /// use it. getSubClassMask()148 const uint32_t *getSubClassMask() const { 149 return SubClassMask; 150 } 151 152 /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices 153 /// that project some super-register class into this register class. The list 154 /// has an entry for each Idx such that: 155 /// 156 /// There exists SuperRC where: 157 /// For all Reg in SuperRC: 158 /// this->contains(Reg:Idx) 159 /// getSuperRegIndices()160 const uint16_t *getSuperRegIndices() const { 161 return SuperRegIndices; 162 } 163 164 /// getSuperClasses - Returns a NULL terminated list of super-classes. The 165 /// classes are ordered by ID which is also a topological ordering from large 166 /// to small classes. The list does NOT include the current class. getSuperClasses()167 sc_iterator getSuperClasses() const { 168 return SuperClasses; 169 } 170 171 /// isASubClass - return true if this TargetRegisterClass is a subset 172 /// class of at least one other TargetRegisterClass. isASubClass()173 bool isASubClass() const { 174 return SuperClasses[0] != nullptr; 175 } 176 177 /// getRawAllocationOrder - Returns the preferred order for allocating 178 /// registers from this register class in MF. The raw order comes directly 179 /// from the .td file and may include reserved registers that are not 180 /// allocatable. Register allocators should also make sure to allocate 181 /// callee-saved registers only after all the volatiles are used. The 182 /// RegisterClassInfo class provides filtered allocation orders with 183 /// callee-saved registers moved to the end. 184 /// 185 /// The MachineFunction argument can be used to tune the allocatable 186 /// registers based on the characteristics of the function, subtarget, or 187 /// other criteria. 188 /// 189 /// By default, this method returns all registers in the class. 190 /// getRawAllocationOrder(const MachineFunction & MF)191 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 192 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 193 } 194 195 /// Returns the combination of all lane masks of register in this class. 196 /// The lane masks of the registers are the combination of all lane masks 197 /// of their subregisters. getLaneMask()198 unsigned getLaneMask() const { 199 return LaneMask; 200 } 201 }; 202 203 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about 204 /// registers. These are used by codegen, not by MC. 205 struct TargetRegisterInfoDesc { 206 unsigned CostPerUse; // Extra cost of instructions using register. 207 bool inAllocatableClass; // Register belongs to an allocatable regclass. 208 }; 209 210 /// Each TargetRegisterClass has a per register weight, and weight 211 /// limit which must be less than the limits of its pressure sets. 212 struct RegClassWeight { 213 unsigned RegWeight; 214 unsigned WeightLimit; 215 }; 216 217 /// TargetRegisterInfo base class - We assume that the target defines a static 218 /// array of TargetRegisterDesc objects that represent all of the machine 219 /// registers that the target has. As such, we simply have to track a pointer 220 /// to this array so that we can turn register number into a register 221 /// descriptor. 222 /// 223 class TargetRegisterInfo : public MCRegisterInfo { 224 public: 225 typedef const TargetRegisterClass * const * regclass_iterator; 226 private: 227 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 228 const char *const *SubRegIndexNames; // Names of subreg indexes. 229 // Pointer to array of lane masks, one per sub-reg index. 230 const unsigned *SubRegIndexLaneMasks; 231 232 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 233 unsigned CoveringLanes; 234 235 protected: 236 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 237 regclass_iterator RegClassBegin, 238 regclass_iterator RegClassEnd, 239 const char *const *SRINames, 240 const unsigned *SRILaneMasks, 241 unsigned CoveringLanes); 242 virtual ~TargetRegisterInfo(); 243 public: 244 245 // Register numbers can represent physical registers, virtual registers, and 246 // sometimes stack slots. The unsigned values are divided into these ranges: 247 // 248 // 0 Not a register, can be used as a sentinel. 249 // [1;2^30) Physical registers assigned by TableGen. 250 // [2^30;2^31) Stack slots. (Rarely used.) 251 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 252 // 253 // Further sentinels can be allocated from the small negative integers. 254 // DenseMapInfo<unsigned> uses -1u and -2u. 255 256 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 257 /// frame index in a variable that normally holds a register. isStackSlot() 258 /// returns true if Reg is in the range used for stack slots. 259 /// 260 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 261 /// slots, so if a variable may contains a stack slot, always check 262 /// isStackSlot() first. 263 /// isStackSlot(unsigned Reg)264 static bool isStackSlot(unsigned Reg) { 265 return int(Reg) >= (1 << 30); 266 } 267 268 /// stackSlot2Index - Compute the frame index from a register value 269 /// representing a stack slot. stackSlot2Index(unsigned Reg)270 static int stackSlot2Index(unsigned Reg) { 271 assert(isStackSlot(Reg) && "Not a stack slot"); 272 return int(Reg - (1u << 30)); 273 } 274 275 /// index2StackSlot - Convert a non-negative frame index to a stack slot 276 /// register value. index2StackSlot(int FI)277 static unsigned index2StackSlot(int FI) { 278 assert(FI >= 0 && "Cannot hold a negative frame index."); 279 return FI + (1u << 30); 280 } 281 282 /// isPhysicalRegister - Return true if the specified register number is in 283 /// the physical register namespace. isPhysicalRegister(unsigned Reg)284 static bool isPhysicalRegister(unsigned Reg) { 285 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 286 return int(Reg) > 0; 287 } 288 289 /// isVirtualRegister - Return true if the specified register number is in 290 /// the virtual register namespace. isVirtualRegister(unsigned Reg)291 static bool isVirtualRegister(unsigned Reg) { 292 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 293 return int(Reg) < 0; 294 } 295 296 /// virtReg2Index - Convert a virtual register number to a 0-based index. 297 /// The first virtual register in a function will get the index 0. virtReg2Index(unsigned Reg)298 static unsigned virtReg2Index(unsigned Reg) { 299 assert(isVirtualRegister(Reg) && "Not a virtual register"); 300 return Reg & ~(1u << 31); 301 } 302 303 /// index2VirtReg - Convert a 0-based index to a virtual register number. 304 /// This is the inverse operation of VirtReg2IndexFunctor below. index2VirtReg(unsigned Index)305 static unsigned index2VirtReg(unsigned Index) { 306 return Index | (1u << 31); 307 } 308 309 /// getMinimalPhysRegClass - Returns the Register Class of a physical 310 /// register of the given type, picking the most sub register class of 311 /// the right type that contains this physreg. 312 const TargetRegisterClass * 313 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; 314 315 /// getAllocatableClass - Return the maximal subclass of the given register 316 /// class that is alloctable, or NULL. 317 const TargetRegisterClass * 318 getAllocatableClass(const TargetRegisterClass *RC) const; 319 320 /// getAllocatableSet - Returns a bitset indexed by register number 321 /// indicating if a register is allocatable or not. If a register class is 322 /// specified, returns the subset for the class. 323 BitVector getAllocatableSet(const MachineFunction &MF, 324 const TargetRegisterClass *RC = nullptr) const; 325 326 /// getCostPerUse - Return the additional cost of using this register instead 327 /// of other registers in its class. getCostPerUse(unsigned RegNo)328 unsigned getCostPerUse(unsigned RegNo) const { 329 return InfoDesc[RegNo].CostPerUse; 330 } 331 332 /// isInAllocatableClass - Return true if the register is in the allocation 333 /// of any register class. isInAllocatableClass(unsigned RegNo)334 bool isInAllocatableClass(unsigned RegNo) const { 335 return InfoDesc[RegNo].inAllocatableClass; 336 } 337 338 /// getSubRegIndexName - Return the human-readable symbolic target-specific 339 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)340 const char *getSubRegIndexName(unsigned SubIdx) const { 341 assert(SubIdx && SubIdx < getNumSubRegIndices() && 342 "This is not a subregister index"); 343 return SubRegIndexNames[SubIdx-1]; 344 } 345 346 /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a 347 /// register that are covered by SubIdx. 348 /// 349 /// Lane masks for sub-register indices are similar to register units for 350 /// physical registers. The individual bits in a lane mask can't be assigned 351 /// any specific meaning. They can be used to check if two sub-register 352 /// indices overlap. 353 /// 354 /// If the target has a register such that: 355 /// 356 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) 357 /// 358 /// then: 359 /// 360 /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0 361 /// 362 /// The converse is not necessarily true. If two lane masks have a common 363 /// bit, the corresponding sub-registers may not overlap, but it can be 364 /// assumed that they usually will. getSubRegIndexLaneMask(unsigned SubIdx)365 unsigned getSubRegIndexLaneMask(unsigned SubIdx) const { 366 // SubIdx == 0 is allowed, it has the lane mask ~0u. 367 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 368 return SubRegIndexLaneMasks[SubIdx]; 369 } 370 371 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 372 /// used to determine if sub-registers overlap - they can't be used to 373 /// determine if a set of sub-registers completely cover another 374 /// sub-register. 375 /// 376 /// The X86 general purpose registers have two lanes corresponding to the 377 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 378 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 379 /// sub_32bit sub-register. 380 /// 381 /// On the other hand, the ARM NEON lanes fully cover their registers: The 382 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 383 /// This is related to the CoveredBySubRegs property on register definitions. 384 /// 385 /// This function returns a bit mask of lanes that completely cover their 386 /// sub-registers. More precisely, given: 387 /// 388 /// Covering = getCoveringLanes(); 389 /// MaskA = getSubRegIndexLaneMask(SubA); 390 /// MaskB = getSubRegIndexLaneMask(SubB); 391 /// 392 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 393 /// SubB. getCoveringLanes()394 unsigned getCoveringLanes() const { return CoveringLanes; } 395 396 /// regsOverlap - Returns true if the two registers are equal or alias each 397 /// other. The registers may be virtual register. regsOverlap(unsigned regA,unsigned regB)398 bool regsOverlap(unsigned regA, unsigned regB) const { 399 if (regA == regB) return true; 400 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 401 return false; 402 403 // Regunits are numerically ordered. Find a common unit. 404 MCRegUnitIterator RUA(regA, this); 405 MCRegUnitIterator RUB(regB, this); 406 do { 407 if (*RUA == *RUB) return true; 408 if (*RUA < *RUB) ++RUA; 409 else ++RUB; 410 } while (RUA.isValid() && RUB.isValid()); 411 return false; 412 } 413 414 /// hasRegUnit - Returns true if Reg contains RegUnit. hasRegUnit(unsigned Reg,unsigned RegUnit)415 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 416 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 417 if (*Units == RegUnit) 418 return true; 419 return false; 420 } 421 422 /// getCalleeSavedRegs - Return a null-terminated list of all of the 423 /// callee saved registers on this target. The register should be in the 424 /// order of desired callee-save stack frame offset. The first register is 425 /// closest to the incoming stack pointer if stack grows down, and vice versa. 426 /// 427 virtual const MCPhysReg* 428 getCalleeSavedRegs(const MachineFunction *MF = nullptr) const = 0; 429 430 /// getCallPreservedMask - Return a mask of call-preserved registers for the 431 /// given calling convention on the current sub-target. The mask should 432 /// include all call-preserved aliases. This is used by the register 433 /// allocator to determine which registers can be live across a call. 434 /// 435 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 436 /// A set bit indicates that all bits of the corresponding register are 437 /// preserved across the function call. The bit mask is expected to be 438 /// sub-register complete, i.e. if A is preserved, so are all its 439 /// sub-registers. 440 /// 441 /// Bits are numbered from the LSB, so the bit for physical register Reg can 442 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 443 /// 444 /// A NULL pointer means that no register mask will be used, and call 445 /// instructions should use implicit-def operands to indicate call clobbered 446 /// registers. 447 /// getCallPreservedMask(CallingConv::ID)448 virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const { 449 // The default mask clobbers everything. All targets should override. 450 return nullptr; 451 } 452 453 /// getReservedRegs - Returns a bitset indexed by physical register number 454 /// indicating if a register is a special register that has particular uses 455 /// and should be considered unavailable at all times, e.g. SP, RA. This is 456 /// used by register scavenger to determine what registers are free. 457 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 458 459 /// Prior to adding the live-out mask to a stackmap or patchpoint 460 /// instruction, provide the target the opportunity to adjust it (mainly to 461 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)462 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { } 463 464 /// getMatchingSuperReg - Return a super-register of the specified register 465 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)466 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 467 const TargetRegisterClass *RC) const { 468 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 469 } 470 471 /// getMatchingSuperRegClass - Return a subclass of the specified register 472 /// class A so that each register in it has a sub-register of the 473 /// specified sub-register index which is in the specified register class B. 474 /// 475 /// TableGen will synthesize missing A sub-classes. 476 virtual const TargetRegisterClass * 477 getMatchingSuperRegClass(const TargetRegisterClass *A, 478 const TargetRegisterClass *B, unsigned Idx) const; 479 480 /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that 481 /// supports the sub-register index Idx. 482 /// If no such sub-class exists, return NULL. 483 /// If all registers in RC already have an Idx sub-register, return RC. 484 /// 485 /// TableGen generates a version of this function that is good enough in most 486 /// cases. Targets can override if they have constraints that TableGen 487 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 488 /// supported by the full GR32 register class in 64-bit mode, but only by the 489 /// GR32_ABCD regiister class in 32-bit mode. 490 /// 491 /// TableGen will synthesize missing RC sub-classes. 492 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)493 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 494 assert(Idx == 0 && "Target has no sub-registers"); 495 return RC; 496 } 497 498 /// composeSubRegIndices - Return the subregister index you get from composing 499 /// two subregister indices. 500 /// 501 /// The special null sub-register index composes as the identity. 502 /// 503 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 504 /// returns c. Note that composeSubRegIndices does not tell you about illegal 505 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 506 /// b, composeSubRegIndices doesn't tell you. 507 /// 508 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 509 /// ssub_0:S0 - ssub_3:S3 subregs. 510 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 511 /// composeSubRegIndices(unsigned a,unsigned b)512 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 513 if (!a) return b; 514 if (!b) return a; 515 return composeSubRegIndicesImpl(a, b); 516 } 517 518 /// Transforms a LaneMask computed for one subregister to the lanemask that 519 /// would have been computed when composing the subsubregisters with IdxA 520 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,unsigned LaneMask)521 unsigned composeSubRegIndexLaneMask(unsigned IdxA, unsigned LaneMask) const { 522 if (!IdxA) 523 return LaneMask; 524 return composeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 525 } 526 527 /// Debugging helper: dump register in human readable form to dbgs() stream. 528 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, 529 const TargetRegisterInfo* TRI = nullptr); 530 531 protected: 532 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)533 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 534 llvm_unreachable("Target has no sub-registers"); 535 } 536 537 /// Overridden by TableGen in targets that have sub-registers. 538 virtual unsigned composeSubRegIndexLaneMaskImpl(unsigned,unsigned)539 composeSubRegIndexLaneMaskImpl(unsigned, unsigned) const { 540 llvm_unreachable("Target has no sub-registers"); 541 } 542 543 public: 544 /// getCommonSuperRegClass - Find a common super-register class if it exists. 545 /// 546 /// Find a register class, SuperRC and two sub-register indices, PreA and 547 /// PreB, such that: 548 /// 549 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 550 /// 551 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 552 /// 553 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 554 /// 555 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 556 /// requirements, and there is no register class with a smaller spill size 557 /// that satisfies the requirements. 558 /// 559 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 560 /// 561 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 562 /// that case, the returned register class will be a sub-class of the 563 /// corresponding argument register class. 564 /// 565 /// The function returns NULL if no register class can be found. 566 /// 567 const TargetRegisterClass* 568 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 569 const TargetRegisterClass *RCB, unsigned SubB, 570 unsigned &PreA, unsigned &PreB) const; 571 572 //===--------------------------------------------------------------------===// 573 // Register Class Information 574 // 575 576 /// Register class iterators 577 /// regclass_begin()578 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()579 regclass_iterator regclass_end() const { return RegClassEnd; } 580 getNumRegClasses()581 unsigned getNumRegClasses() const { 582 return (unsigned)(regclass_end()-regclass_begin()); 583 } 584 585 /// getRegClass - Returns the register class associated with the enumeration 586 /// value. See class MCOperandInfo. getRegClass(unsigned i)587 const TargetRegisterClass *getRegClass(unsigned i) const { 588 assert(i < getNumRegClasses() && "Register Class ID out of range"); 589 return RegClassBegin[i]; 590 } 591 592 /// getRegClassName - Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)593 const char *getRegClassName(const TargetRegisterClass *Class) const { 594 return MCRegisterInfo::getRegClassName(Class->MC); 595 } 596 597 /// getCommonSubClass - find the largest common subclass of A and B. Return 598 /// NULL if there is no common subclass. 599 const TargetRegisterClass * 600 getCommonSubClass(const TargetRegisterClass *A, 601 const TargetRegisterClass *B) const; 602 603 /// getPointerRegClass - Returns a TargetRegisterClass used for pointer 604 /// values. If a target supports multiple different pointer register classes, 605 /// kind specifies which one is indicated. 606 virtual const TargetRegisterClass * 607 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 608 llvm_unreachable("Target didn't implement getPointerRegClass!"); 609 } 610 611 /// getCrossCopyRegClass - Returns a legal register class to copy a register 612 /// in the specified class to or from. If it is possible to copy the register 613 /// directly without using a cross register class copy, return the specified 614 /// RC. Returns NULL if it is not possible to copy between a two registers of 615 /// the specified class. 616 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)617 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 618 return RC; 619 } 620 621 /// getLargestLegalSuperClass - Returns the largest super class of RC that is 622 /// legal to use in the current sub-target and has the same spill size. 623 /// The returned register class can be used to create virtual registers which 624 /// means that all its registers can be copied and spilled. 625 virtual const TargetRegisterClass* getLargestLegalSuperClass(const TargetRegisterClass * RC)626 getLargestLegalSuperClass(const TargetRegisterClass *RC) const { 627 /// The default implementation is very conservative and doesn't allow the 628 /// register allocator to inflate register classes. 629 return RC; 630 } 631 632 /// getRegPressureLimit - Return the register pressure "high water mark" for 633 /// the specific register class. The scheduler is in high register pressure 634 /// mode (for the specific register class) if it goes over the limit. 635 /// 636 /// Note: this is the old register pressure model that relies on a manually 637 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)638 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 639 MachineFunction &MF) const { 640 return 0; 641 } 642 643 /// Get the weight in units of pressure for this register class. 644 virtual const RegClassWeight &getRegClassWeight( 645 const TargetRegisterClass *RC) const = 0; 646 647 /// Get the weight in units of pressure for this register unit. 648 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 649 650 /// Get the number of dimensions of register pressure. 651 virtual unsigned getNumRegPressureSets() const = 0; 652 653 /// Get the name of this register unit pressure set. 654 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 655 656 /// Get the register unit pressure limit for this dimension. 657 /// This limit must be adjusted dynamically for reserved registers. 658 virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0; 659 660 /// Get the dimensions of register pressure impacted by this register class. 661 /// Returns a -1 terminated array of pressure set IDs. 662 virtual const int *getRegClassPressureSets( 663 const TargetRegisterClass *RC) const = 0; 664 665 /// Get the dimensions of register pressure impacted by this register unit. 666 /// Returns a -1 terminated array of pressure set IDs. 667 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 668 669 /// Get a list of 'hint' registers that the register allocator should try 670 /// first when allocating a physical register for the virtual register 671 /// VirtReg. These registers are effectively moved to the front of the 672 /// allocation order. 673 /// 674 /// The Order argument is the allocation order for VirtReg's register class 675 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 676 /// come from Order, and they must not be reserved. 677 /// 678 /// The default implementation of this function can resolve 679 /// target-independent hints provided to MRI::setRegAllocationHint with 680 /// HintType == 0. Targets that override this function should defer to the 681 /// default implementation if they have no reason to change the allocation 682 /// order for VirtReg. There may be target-independent hints. 683 virtual void getRegAllocationHints(unsigned VirtReg, 684 ArrayRef<MCPhysReg> Order, 685 SmallVectorImpl<MCPhysReg> &Hints, 686 const MachineFunction &MF, 687 const VirtRegMap *VRM = nullptr) const; 688 689 /// avoidWriteAfterWrite - Return true if the register allocator should avoid 690 /// writing a register from RC in two consecutive instructions. 691 /// This can avoid pipeline stalls on certain architectures. 692 /// It does cause increased register pressure, though. avoidWriteAfterWrite(const TargetRegisterClass * RC)693 virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const { 694 return false; 695 } 696 697 /// UpdateRegAllocHint - A callback to allow target a chance to update 698 /// register allocation hints when a register is "changed" (e.g. coalesced) 699 /// to another register. e.g. On ARM, some virtual registers should target 700 /// register pairs, if one of pair is coalesced to another register, the 701 /// allocation hint of the other half of the pair should be changed to point 702 /// to the new register. UpdateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)703 virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, 704 MachineFunction &MF) const { 705 // Do nothing. 706 } 707 708 /// Allow the target to reverse allocation order of local live ranges. This 709 /// will generally allocate shorter local live ranges first. For targets with 710 /// many registers, this could reduce regalloc compile time by a large 711 /// factor. It is disabled by default for three reasons: 712 /// (1) Top-down allocation is simpler and easier to debug for targets that 713 /// don't benefit from reversing the order. 714 /// (2) Bottom-up allocation could result in poor evicition decisions on some 715 /// targets affecting the performance of compiled code. 716 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()717 virtual bool reverseLocalAssignment() const { return false; } 718 719 /// Allow the target to override the cost of using a callee-saved register for 720 /// the first time. Default value of 0 means we will use a callee-saved 721 /// register if it is available. getCSRFirstUseCost()722 virtual unsigned getCSRFirstUseCost() const { return 0; } 723 724 /// requiresRegisterScavenging - returns true if the target requires (and can 725 /// make use of) the register scavenger. requiresRegisterScavenging(const MachineFunction & MF)726 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 727 return false; 728 } 729 730 /// useFPForScavengingIndex - returns true if the target wants to use 731 /// frame pointer based accesses to spill to the scavenger emergency spill 732 /// slot. useFPForScavengingIndex(const MachineFunction & MF)733 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 734 return true; 735 } 736 737 /// requiresFrameIndexScavenging - returns true if the target requires post 738 /// PEI scavenging of registers for materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)739 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 740 return false; 741 } 742 743 /// requiresVirtualBaseRegisters - Returns true if the target wants the 744 /// LocalStackAllocation pass to be run and virtual base registers 745 /// used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)746 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 747 return false; 748 } 749 750 /// hasReservedSpillSlot - Return true if target has reserved a spill slot in 751 /// the stack frame of the given function for the specified register. e.g. On 752 /// x86, if the frame register is required, the first fixed stack object is 753 /// reserved as its spill slot. This tells PEI not to create a new stack frame 754 /// object for the given register. It should be called only after 755 /// processFunctionBeforeCalleeSavedScan(). hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)756 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 757 int &FrameIdx) const { 758 return false; 759 } 760 761 /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked 762 /// after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)763 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 764 return false; 765 } 766 767 /// needsStackRealignment - true if storage within the function requires the 768 /// stack pointer to be aligned more than the normal calling convention calls 769 /// for. needsStackRealignment(const MachineFunction & MF)770 virtual bool needsStackRealignment(const MachineFunction &MF) const { 771 return false; 772 } 773 774 /// getFrameIndexInstrOffset - Get the offset from the referenced frame 775 /// index in the instruction, if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)776 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 777 int Idx) const { 778 return 0; 779 } 780 781 /// needsFrameBaseReg - Returns true if the instruction's frame index 782 /// reference would be better served by a base register other than FP 783 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 784 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)785 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 786 return false; 787 } 788 789 /// materializeFrameBaseRegister - Insert defining instruction(s) for 790 /// BaseReg to be a pointer to FrameIdx before insertion point I. materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)791 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 792 unsigned BaseReg, int FrameIdx, 793 int64_t Offset) const { 794 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 795 "target"); 796 } 797 798 /// resolveFrameIndex - Resolve a frame index operand of an instruction 799 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,unsigned BaseReg,int64_t Offset)800 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, 801 int64_t Offset) const { 802 llvm_unreachable("resolveFrameIndex does not exist on this target"); 803 } 804 805 /// isFrameOffsetLegal - Determine whether a given offset immediate is 806 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,int64_t Offset)807 virtual bool isFrameOffsetLegal(const MachineInstr *MI, 808 int64_t Offset) const { 809 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 810 } 811 812 813 /// saveScavengerRegister - Spill the register so it can be used by the 814 /// register scavenger. Return true if the register was spilled, false 815 /// otherwise. If this function does not spill the register, the scavenger 816 /// will instead spill it to the emergency spill slot. 817 /// saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)818 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 819 MachineBasicBlock::iterator I, 820 MachineBasicBlock::iterator &UseMI, 821 const TargetRegisterClass *RC, 822 unsigned Reg) const { 823 return false; 824 } 825 826 /// eliminateFrameIndex - This method must be overriden to eliminate abstract 827 /// frame indices from instructions which may use them. The instruction 828 /// referenced by the iterator contains an MO_FrameIndex operand which must be 829 /// eliminated by this method. This method may modify or replace the 830 /// specified instruction, as long as it keeps the iterator pointing at the 831 /// finished product. SPAdj is the SP adjustment due to call frame setup 832 /// instruction. FIOperandNum is the FI operand number. 833 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 834 int SPAdj, unsigned FIOperandNum, 835 RegScavenger *RS = nullptr) const = 0; 836 837 //===--------------------------------------------------------------------===// 838 /// Subtarget Hooks 839 840 /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC)841 virtual bool shouldCoalesce(MachineInstr *MI, 842 const TargetRegisterClass *SrcRC, 843 unsigned SubReg, 844 const TargetRegisterClass *DstRC, 845 unsigned DstSubReg, 846 const TargetRegisterClass *NewRC) const 847 { return true; } 848 849 //===--------------------------------------------------------------------===// 850 /// Debug information queries. 851 852 /// getFrameRegister - This method should return the register used as a base 853 /// for values allocated in the current stack frame. 854 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 855 }; 856 857 858 //===----------------------------------------------------------------------===// 859 // SuperRegClassIterator 860 //===----------------------------------------------------------------------===// 861 // 862 // Iterate over the possible super-registers for a given register class. The 863 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 864 // possible classes of super-registers. 865 // 866 // Each bit mask will have at least one set bit, and each set bit in Mask 867 // corresponds to a SuperRC such that: 868 // 869 // For all Reg in SuperRC: Reg:Idx is in RC. 870 // 871 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 872 // also satisfies the above requirement, assuming Reg:0 == Reg. 873 // 874 class SuperRegClassIterator { 875 const unsigned RCMaskWords; 876 unsigned SubReg; 877 const uint16_t *Idx; 878 const uint32_t *Mask; 879 880 public: 881 /// Create a SuperRegClassIterator that visits all the super-register classes 882 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 883 SuperRegClassIterator(const TargetRegisterClass *RC, 884 const TargetRegisterInfo *TRI, 885 bool IncludeSelf = false) 886 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 887 SubReg(0), 888 Idx(RC->getSuperRegIndices()), 889 Mask(RC->getSubClassMask()) { 890 if (!IncludeSelf) 891 ++*this; 892 } 893 894 /// Returns true if this iterator is still pointing at a valid entry. isValid()895 bool isValid() const { return Idx; } 896 897 /// Returns the current sub-register index. getSubReg()898 unsigned getSubReg() const { return SubReg; } 899 900 /// Returns the bit mask if register classes that getSubReg() projects into 901 /// RC. getMask()902 const uint32_t *getMask() const { return Mask; } 903 904 /// Advance iterator to the next entry. 905 void operator++() { 906 assert(isValid() && "Cannot move iterator past end."); 907 Mask += RCMaskWords; 908 SubReg = *Idx++; 909 if (!SubReg) 910 Idx = nullptr; 911 } 912 }; 913 914 // This is useful when building IndexedMaps keyed on virtual registers 915 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { operatorVirtReg2IndexFunctor916 unsigned operator()(unsigned Reg) const { 917 return TargetRegisterInfo::virtReg2Index(Reg); 918 } 919 }; 920 921 /// PrintReg - Helper class for printing registers on a raw_ostream. 922 /// Prints virtual and physical registers with or without a TRI instance. 923 /// 924 /// The format is: 925 /// %noreg - NoRegister 926 /// %vreg5 - a virtual register. 927 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 928 /// %EAX - a physical register 929 /// %physreg17 - a physical register when no TRI instance given. 930 /// 931 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 932 /// 933 class PrintReg { 934 const TargetRegisterInfo *TRI; 935 unsigned Reg; 936 unsigned SubIdx; 937 public: 938 explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = nullptr, 939 unsigned subidx = 0) TRI(tri)940 : TRI(tri), Reg(reg), SubIdx(subidx) {} 941 void print(raw_ostream&) const; 942 }; 943 944 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { 945 PR.print(OS); 946 return OS; 947 } 948 949 /// PrintRegUnit - Helper class for printing register units on a raw_ostream. 950 /// 951 /// Register units are named after their root registers: 952 /// 953 /// AL - Single root. 954 /// FP0~ST7 - Dual roots. 955 /// 956 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 957 /// 958 class PrintRegUnit { 959 protected: 960 const TargetRegisterInfo *TRI; 961 unsigned Unit; 962 public: PrintRegUnit(unsigned unit,const TargetRegisterInfo * tri)963 PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri) 964 : TRI(tri), Unit(unit) {} 965 void print(raw_ostream&) const; 966 }; 967 968 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) { 969 PR.print(OS); 970 return OS; 971 } 972 973 /// PrintVRegOrUnit - It is often convenient to track virtual registers and 974 /// physical register units in the same list. 975 class PrintVRegOrUnit : protected PrintRegUnit { 976 public: PrintVRegOrUnit(unsigned VRegOrUnit,const TargetRegisterInfo * tri)977 PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri) 978 : PrintRegUnit(VRegOrUnit, tri) {} 979 void print(raw_ostream&) const; 980 }; 981 982 static inline raw_ostream &operator<<(raw_ostream &OS, 983 const PrintVRegOrUnit &PR) { 984 PR.print(OS); 985 return OS; 986 } 987 988 } // End llvm namespace 989 990 #endif 991