xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: if_sk.c,v 1.113 2024/07/05 04:31:51 rin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  *	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.113 2024/07/05 04:31:51 rin Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 static int skc_probe(device_t, cfdata_t, void *);
157 static void skc_attach(device_t, device_t, void *);
158 static int sk_probe(device_t, cfdata_t, void *);
159 static void sk_attach(device_t, device_t, void *);
160 static int skcprint(void *, const char *);
161 static int sk_intr(void *);
162 static void sk_intr_bcom(struct sk_if_softc *);
163 static void sk_intr_xmac(struct sk_if_softc *);
164 static void sk_intr_yukon(struct sk_if_softc *);
165 static void sk_rxeof(struct sk_if_softc *);
166 static void sk_txeof(struct sk_if_softc *);
167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 static void sk_start(struct ifnet *);
169 static int sk_ioctl(struct ifnet *, u_long, void *);
170 static int sk_init(struct ifnet *);
171 static void sk_unreset_xmac(struct sk_if_softc *);
172 static void sk_init_xmac(struct sk_if_softc *);
173 static void sk_unreset_yukon(struct sk_if_softc *);
174 static void sk_init_yukon(struct sk_if_softc *);
175 static void sk_stop(struct ifnet *, int);
176 static void sk_watchdog(struct ifnet *);
177 static int sk_ifmedia_upd(struct ifnet *);
178 static void sk_reset(struct sk_softc *);
179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
181 static void *sk_jalloc(struct sk_if_softc *);
182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
183 static int sk_init_rx_ring(struct sk_if_softc *);
184 static int sk_init_tx_ring(struct sk_if_softc *);
185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
187 static void sk_vpd_read(struct sk_softc *);
188 
189 static void sk_update_int_mod(struct sk_softc *);
190 
191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
193 static void sk_xmac_miibus_statchg(struct ifnet *);
194 
195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
197 static void sk_marv_miibus_statchg(struct ifnet *);
198 
199 static uint32_t sk_xmac_hash(void *);
200 static uint32_t sk_yukon_hash(void *);
201 static void sk_setfilt(struct sk_if_softc *, void *, int);
202 static void sk_setmulti(struct sk_if_softc *);
203 static void sk_tick(void *);
204 
205 static bool skc_suspend(device_t, const pmf_qual_t *);
206 static bool skc_resume(device_t, const pmf_qual_t *);
207 static bool sk_resume(device_t dv, const pmf_qual_t *);
208 
209 /* #define SK_DEBUG 2 */
210 #ifdef SK_DEBUG
211 #define DPRINTF(x)	if (skdebug) printf x
212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
213 int	skdebug = SK_DEBUG;
214 
215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
216 static void sk_dump_mbuf(struct mbuf *);
217 static void sk_dump_bytes(const char *, int);
218 #else
219 #define DPRINTF(x)
220 #define DPRINTFN(n, x)
221 #endif
222 
223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
224 static int sk_root_num;
225 
226 /* supported device vendors */
227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
228 static const struct device_compatible_entry compat_data[] = {
229 	{ .id = PCI_ID_CODE(PCI_VENDOR_3COM,
230 		PCI_PRODUCT_3COM_3C940) },
231 
232 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
233 		PCI_PRODUCT_DLINK_DGE530T) },
234 
235 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
236 		PCI_PRODUCT_DLINK_DGE560T_2) },
237 
238 	{ .id = PCI_ID_CODE(PCI_VENDOR_LINKSYS,
239 		PCI_PRODUCT_LINKSYS_EG1064) },
240 
241 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
242 		PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE) },
243 
244 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
245 		PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2) },
246 
247 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
248 		PCI_PRODUCT_MARVELL_SKNET) },
249 
250 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
251 		PCI_PRODUCT_MARVELL_BELKIN) },
252 
253 	PCI_COMPAT_EOL
254 };
255 
256 #define SK_LINKSYS_EG1032_SUBID	0x00151737
257 
258 static inline uint32_t
sk_win_read_4(struct sk_softc * sc,uint32_t reg)259 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
260 {
261 #ifdef SK_USEIOSPACE
262 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
263 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
264 #else
265 	return CSR_READ_4(sc, reg);
266 #endif
267 }
268 
269 static inline uint16_t
sk_win_read_2(struct sk_softc * sc,uint32_t reg)270 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
271 {
272 #ifdef SK_USEIOSPACE
273 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
274 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
275 #else
276 	return CSR_READ_2(sc, reg);
277 #endif
278 }
279 
280 static inline uint8_t
sk_win_read_1(struct sk_softc * sc,uint32_t reg)281 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
282 {
283 #ifdef SK_USEIOSPACE
284 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
285 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
286 #else
287 	return CSR_READ_1(sc, reg);
288 #endif
289 }
290 
291 static inline void
sk_win_write_4(struct sk_softc * sc,uint32_t reg,uint32_t x)292 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
293 {
294 #ifdef SK_USEIOSPACE
295 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
296 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
297 #else
298 	CSR_WRITE_4(sc, reg, x);
299 #endif
300 }
301 
302 static inline void
sk_win_write_2(struct sk_softc * sc,uint32_t reg,uint16_t x)303 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
304 {
305 #ifdef SK_USEIOSPACE
306 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
307 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
308 #else
309 	CSR_WRITE_2(sc, reg, x);
310 #endif
311 }
312 
313 static inline void
sk_win_write_1(struct sk_softc * sc,uint32_t reg,uint8_t x)314 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
315 {
316 #ifdef SK_USEIOSPACE
317 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
318 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
319 #else
320 	CSR_WRITE_1(sc, reg, x);
321 #endif
322 }
323 
324 /*
325  * The VPD EEPROM contains Vital Product Data, as suggested in
326  * the PCI 2.1 specification. The VPD data is separated into areas
327  * denoted by resource IDs. The SysKonnect VPD contains an ID string
328  * resource (the name of the adapter), a read-only area resource
329  * containing various key/data fields and a read/write area which
330  * can be used to store asset management information or log messages.
331  * We read the ID string and read-only into buffers attached to
332  * the controller softc structure for later use. At the moment,
333  * we only use the ID string during sk_attach().
334  */
335 static uint8_t
sk_vpd_readbyte(struct sk_softc * sc,int addr)336 sk_vpd_readbyte(struct sk_softc *sc, int addr)
337 {
338 	int			i;
339 
340 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
341 	for (i = 0; i < SK_TIMEOUT; i++) {
342 		DELAY(1);
343 		if (sk_win_read_2(sc,
344 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
345 			break;
346 	}
347 
348 	if (i == SK_TIMEOUT)
349 		return 0;
350 
351 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
352 }
353 
354 static void
sk_vpd_read_res(struct sk_softc * sc,struct vpd_res * res,int addr)355 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
356 {
357 	int			i;
358 	uint8_t		*ptr;
359 
360 	ptr = (uint8_t *)res;
361 	for (i = 0; i < sizeof(struct vpd_res); i++)
362 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
363 }
364 
365 static void
sk_vpd_read(struct sk_softc * sc)366 sk_vpd_read(struct sk_softc *sc)
367 {
368 	int			pos = 0, i;
369 	struct vpd_res		res;
370 
371 	if (sc->sk_vpd_prodname != NULL)
372 		free(sc->sk_vpd_prodname, M_DEVBUF);
373 	if (sc->sk_vpd_readonly != NULL)
374 		free(sc->sk_vpd_readonly, M_DEVBUF);
375 	sc->sk_vpd_prodname = NULL;
376 	sc->sk_vpd_readonly = NULL;
377 
378 	sk_vpd_read_res(sc, &res, pos);
379 
380 	if (res.vr_id != VPD_RES_ID) {
381 		aprint_error_dev(sc->sk_dev,
382 		    "bad VPD resource id: expected %x got %x\n",
383 		    VPD_RES_ID, res.vr_id);
384 		return;
385 	}
386 
387 	pos += sizeof(res);
388 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
389 	for (i = 0; i < res.vr_len; i++)
390 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
391 	sc->sk_vpd_prodname[i] = '\0';
392 	pos += i;
393 
394 	sk_vpd_read_res(sc, &res, pos);
395 
396 	if (res.vr_id != VPD_RES_READ) {
397 		aprint_error_dev(sc->sk_dev,
398 		    "bad VPD resource id: expected %x got %x\n",
399 		    VPD_RES_READ, res.vr_id);
400 		return;
401 	}
402 
403 	pos += sizeof(res);
404 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
405 	for (i = 0; i < res.vr_len ; i++)
406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
407 }
408 
409 static int
sk_xmac_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)410 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
411 {
412 	struct sk_if_softc *sc_if = device_private(dev);
413 	int i;
414 
415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416 
417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
418 		return -1;
419 
420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
423 		for (i = 0; i < SK_TIMEOUT; i++) {
424 			DELAY(1);
425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
426 			    XM_MMUCMD_PHYDATARDY)
427 				break;
428 		}
429 
430 		if (i == SK_TIMEOUT) {
431 			aprint_error_dev(sc_if->sk_dev,
432 			    "phy failed to come ready\n");
433 			return ETIMEDOUT;
434 		}
435 	}
436 	DELAY(1);
437 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
438 	return 0;
439 }
440 
441 static int
sk_xmac_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)442 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
443 {
444 	struct sk_if_softc *sc_if = device_private(dev);
445 	int i;
446 
447 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
448 
449 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
450 	for (i = 0; i < SK_TIMEOUT; i++) {
451 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
452 			break;
453 	}
454 
455 	if (i == SK_TIMEOUT) {
456 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
457 		return ETIMEDOUT;
458 	}
459 
460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
461 	for (i = 0; i < SK_TIMEOUT; i++) {
462 		DELAY(1);
463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
464 			break;
465 	}
466 
467 	if (i == SK_TIMEOUT) {
468 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
469 		return ETIMEDOUT;
470 	}
471 
472 	return 0;
473 }
474 
475 static void
sk_xmac_miibus_statchg(struct ifnet * ifp)476 sk_xmac_miibus_statchg(struct ifnet *ifp)
477 {
478 	struct sk_if_softc *sc_if = ifp->if_softc;
479 	struct mii_data *mii = &sc_if->sk_mii;
480 
481 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
482 
483 	/*
484 	 * If this is a GMII PHY, manually set the XMAC's
485 	 * duplex mode accordingly.
486 	 */
487 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
488 		if ((mii->mii_media_active & IFM_FDX) != 0)
489 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
490 		else
491 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
492 	}
493 }
494 
495 static int
sk_marv_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)496 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
497 {
498 	struct sk_if_softc *sc_if = device_private(dev);
499 	uint16_t data;
500 	int i;
501 
502 	if (phy != 0 ||
503 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
504 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
505 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
506 			     phy, reg));
507 		return -1;
508 	}
509 
510 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
511 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
512 
513 	for (i = 0; i < SK_TIMEOUT; i++) {
514 		DELAY(1);
515 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
516 		if (data & YU_SMICR_READ_VALID)
517 			break;
518 	}
519 
520 	if (i == SK_TIMEOUT) {
521 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
522 		return ETIMEDOUT;
523 	}
524 
525 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
526 		     SK_TIMEOUT));
527 
528 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
529 
530 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
531 		     phy, reg, *val));
532 
533 	return 0;
534 }
535 
536 static int
sk_marv_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)537 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
538 {
539 	struct sk_if_softc *sc_if = device_private(dev);
540 	int i;
541 
542 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
543 		     phy, reg, val));
544 
545 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
546 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
547 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
548 
549 	for (i = 0; i < SK_TIMEOUT; i++) {
550 		DELAY(1);
551 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
552 			break;
553 	}
554 
555 	if (i == SK_TIMEOUT) {
556 		printf("%s: phy write timed out\n",
557 		    device_xname(sc_if->sk_dev));
558 		return ETIMEDOUT;
559 	}
560 
561 	return 0;
562 }
563 
564 static void
sk_marv_miibus_statchg(struct ifnet * ifp)565 sk_marv_miibus_statchg(struct ifnet *ifp)
566 {
567 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
568 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
569 		     YUKON_GPCR)));
570 }
571 
572 static uint32_t
sk_xmac_hash(void * addr)573 sk_xmac_hash(void *addr)
574 {
575 	uint32_t		crc;
576 
577 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
578 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
579 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
580 	return crc;
581 }
582 
583 static uint32_t
sk_yukon_hash(void * addr)584 sk_yukon_hash(void *addr)
585 {
586 	uint32_t		crc;
587 
588 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
589 	crc &= ((1 << SK_HASH_BITS) - 1);
590 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
591 	return crc;
592 }
593 
594 static void
sk_setfilt(struct sk_if_softc * sc_if,void * addrv,int slot)595 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
596 {
597 	char *addr = addrv;
598 	int base = XM_RXFILT_ENTRY(slot);
599 
600 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
601 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
602 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
603 }
604 
605 static void
sk_setmulti(struct sk_if_softc * sc_if)606 sk_setmulti(struct sk_if_softc *sc_if)
607 {
608 	struct sk_softc *sc = sc_if->sk_softc;
609 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
610 	uint32_t hashes[2] = { 0, 0 };
611 	int h = 0, i;
612 	struct ethercom *ec = &sc_if->sk_ethercom;
613 	struct ether_multi *enm;
614 	struct ether_multistep step;
615 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
616 
617 	/* First, zot all the existing filters. */
618 	switch (sc->sk_type) {
619 	case SK_GENESIS:
620 		for (i = 1; i < XM_RXFILT_MAX; i++)
621 			sk_setfilt(sc_if, (void *)&dummy, i);
622 
623 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
624 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
625 		break;
626 	case SK_YUKON:
627 	case SK_YUKON_LITE:
628 	case SK_YUKON_LP:
629 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
633 		break;
634 	}
635 
636 	/* Now program new ones. */
637 allmulti:
638 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
639 		hashes[0] = 0xFFFFFFFF;
640 		hashes[1] = 0xFFFFFFFF;
641 	} else {
642 		i = 1;
643 		/* First find the tail of the list. */
644 		ETHER_LOCK(ec);
645 		ETHER_FIRST_MULTI(step, ec, enm);
646 		while (enm != NULL) {
647 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
648 				 ETHER_ADDR_LEN)) {
649 				ifp->if_flags |= IFF_ALLMULTI;
650 				ETHER_UNLOCK(ec);
651 				goto allmulti;
652 			}
653 			DPRINTFN(2,("multicast address %s\n",
654 				ether_sprintf(enm->enm_addrlo)));
655 			/*
656 			 * Program the first XM_RXFILT_MAX multicast groups
657 			 * into the perfect filter. For all others,
658 			 * use the hash table.
659 			 */
660 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
661 				sk_setfilt(sc_if, enm->enm_addrlo, i);
662 				i++;
663 			}
664 			else {
665 				switch (sc->sk_type) {
666 				case SK_GENESIS:
667 					h = sk_xmac_hash(enm->enm_addrlo);
668 					break;
669 				case SK_YUKON:
670 				case SK_YUKON_LITE:
671 				case SK_YUKON_LP:
672 					h = sk_yukon_hash(enm->enm_addrlo);
673 					break;
674 				}
675 				if (h < 32)
676 					hashes[0] |= (1 << h);
677 				else
678 					hashes[1] |= (1 << (h - 32));
679 			}
680 
681 			ETHER_NEXT_MULTI(step, enm);
682 		}
683 		ETHER_UNLOCK(ec);
684 	}
685 
686 	switch (sc->sk_type) {
687 	case SK_GENESIS:
688 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
689 			       XM_MODE_RX_USE_PERFECT);
690 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
691 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
692 		break;
693 	case SK_YUKON:
694 	case SK_YUKON_LITE:
695 	case SK_YUKON_LP:
696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
698 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
699 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
700 		break;
701 	}
702 }
703 
704 static int
sk_init_rx_ring(struct sk_if_softc * sc_if)705 sk_init_rx_ring(struct sk_if_softc *sc_if)
706 {
707 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
708 	struct sk_ring_data	*rd = sc_if->sk_rdata;
709 	int			i;
710 
711 	memset((char *)rd->sk_rx_ring, 0,
712 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
713 
714 	for (i = 0; i < SK_RX_RING_CNT; i++) {
715 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
716 		if (i == (SK_RX_RING_CNT - 1)) {
717 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
718 			rd->sk_rx_ring[i].sk_next =
719 				htole32(SK_RX_RING_ADDR(sc_if, 0));
720 		} else {
721 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
722 			rd->sk_rx_ring[i].sk_next =
723 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
724 		}
725 	}
726 
727 	for (i = 0; i < SK_RX_RING_CNT; i++) {
728 		if (sk_newbuf(sc_if, i, NULL,
729 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
730 			aprint_error_dev(sc_if->sk_dev,
731 			    "failed alloc of %dth mbuf\n", i);
732 			return ENOBUFS;
733 		}
734 	}
735 	sc_if->sk_cdata.sk_rx_prod = 0;
736 	sc_if->sk_cdata.sk_rx_cons = 0;
737 
738 	return 0;
739 }
740 
741 static int
sk_init_tx_ring(struct sk_if_softc * sc_if)742 sk_init_tx_ring(struct sk_if_softc *sc_if)
743 {
744 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
745 	struct sk_ring_data	*rd = sc_if->sk_rdata;
746 	int			i;
747 
748 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
749 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
750 
751 	for (i = 0; i < SK_TX_RING_CNT; i++) {
752 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
753 		if (i == (SK_TX_RING_CNT - 1)) {
754 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
755 			rd->sk_tx_ring[i].sk_next =
756 				htole32(SK_TX_RING_ADDR(sc_if, 0));
757 		} else {
758 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
759 			rd->sk_tx_ring[i].sk_next =
760 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
761 		}
762 	}
763 
764 	sc_if->sk_cdata.sk_tx_prod = 0;
765 	sc_if->sk_cdata.sk_tx_cons = 0;
766 	sc_if->sk_cdata.sk_tx_cnt = 0;
767 
768 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
769 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
770 
771 	return 0;
772 }
773 
774 static int
sk_newbuf(struct sk_if_softc * sc_if,int i,struct mbuf * m,bus_dmamap_t dmamap)775 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
776 	  bus_dmamap_t dmamap)
777 {
778 	struct mbuf		*m_new = NULL;
779 	struct sk_chain		*c;
780 	struct sk_rx_desc	*r;
781 
782 	if (m == NULL) {
783 		void *buf = NULL;
784 
785 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
786 		if (m_new == NULL) {
787 			aprint_error_dev(sc_if->sk_dev,
788 			    "no memory for rx list -- packet dropped!\n");
789 			return ENOBUFS;
790 		}
791 
792 		/* Allocate the jumbo buffer */
793 		buf = sk_jalloc(sc_if);
794 		if (buf == NULL) {
795 			m_freem(m_new);
796 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
797 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
798 			return ENOBUFS;
799 		}
800 
801 		/* Attach the buffer to the mbuf */
802 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
803 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
804 
805 	} else {
806 		/*
807 		 * We're re-using a previously allocated mbuf;
808 		 * be sure to re-init pointers and lengths to
809 		 * default values.
810 		 */
811 		m_new = m;
812 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
813 		m_new->m_data = m_new->m_ext.ext_buf;
814 	}
815 	m_adj(m_new, ETHER_ALIGN);
816 
817 	c = &sc_if->sk_cdata.sk_rx_chain[i];
818 	r = c->sk_desc;
819 	c->sk_mbuf = m_new;
820 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
821 	    (((vaddr_t)m_new->m_data
822 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
823 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
824 
825 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
826 
827 	return 0;
828 }
829 
830 /*
831  * Memory management for jumbo frames.
832  */
833 
834 static int
sk_alloc_jumbo_mem(struct sk_if_softc * sc_if)835 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
836 {
837 	struct sk_softc		*sc = sc_if->sk_softc;
838 	char *ptr, *kva;
839 	bus_dma_segment_t	seg;
840 	int		i, rseg, state, error;
841 	struct sk_jpool_entry	*entry;
842 
843 	state = error = 0;
844 
845 	/* Grab a big chunk o' storage. */
846 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
847 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
848 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
849 		return ENOBUFS;
850 	}
851 
852 	state = 1;
853 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
854 			   BUS_DMA_NOWAIT)) {
855 		aprint_error_dev(sc->sk_dev,
856 		    "can't map dma buffers (%d bytes)\n",
857 		    SK_JMEM);
858 		error = ENOBUFS;
859 		goto out;
860 	}
861 
862 	state = 2;
863 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
864 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
865 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
866 		error = ENOBUFS;
867 		goto out;
868 	}
869 
870 	state = 3;
871 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
872 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
873 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
874 		error = ENOBUFS;
875 		goto out;
876 	}
877 
878 	state = 4;
879 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
880 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
881 
882 	LIST_INIT(&sc_if->sk_jfree_listhead);
883 	LIST_INIT(&sc_if->sk_jinuse_listhead);
884 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
885 
886 	/*
887 	 * Now divide it up into 9K pieces and save the addresses
888 	 * in an array.
889 	 */
890 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
891 	for (i = 0; i < SK_JSLOTS; i++) {
892 		sc_if->sk_cdata.sk_jslots[i] = ptr;
893 		ptr += SK_JLEN;
894 		entry = malloc(sizeof(struct sk_jpool_entry),
895 		    M_DEVBUF, M_WAITOK);
896 		entry->slot = i;
897 		if (i)
898 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
899 				 entry, jpool_entries);
900 		else
901 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
902 				 entry, jpool_entries);
903 	}
904 out:
905 	if (error != 0) {
906 		switch (state) {
907 		case 4:
908 			bus_dmamap_unload(sc->sc_dmatag,
909 			    sc_if->sk_cdata.sk_rx_jumbo_map);
910 			/* FALLTHROUGH */
911 		case 3:
912 			bus_dmamap_destroy(sc->sc_dmatag,
913 			    sc_if->sk_cdata.sk_rx_jumbo_map);
914 			/* FALLTHROUGH */
915 		case 2:
916 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
917 			/* FALLTHROUGH */
918 		case 1:
919 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
920 			break;
921 		default:
922 			break;
923 		}
924 	}
925 
926 	return error;
927 }
928 
929 /*
930  * Allocate a jumbo buffer.
931  */
932 static void *
sk_jalloc(struct sk_if_softc * sc_if)933 sk_jalloc(struct sk_if_softc *sc_if)
934 {
935 	struct sk_jpool_entry	*entry;
936 
937 	mutex_enter(&sc_if->sk_jpool_mtx);
938 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
939 
940 	if (entry == NULL) {
941 		mutex_exit(&sc_if->sk_jpool_mtx);
942 		return NULL;
943 	}
944 
945 	LIST_REMOVE(entry, jpool_entries);
946 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
947 	mutex_exit(&sc_if->sk_jpool_mtx);
948 	return sc_if->sk_cdata.sk_jslots[entry->slot];
949 }
950 
951 /*
952  * Release a jumbo buffer.
953  */
954 static void
sk_jfree(struct mbuf * m,void * buf,size_t size,void * arg)955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
956 {
957 	struct sk_jpool_entry *entry;
958 	struct sk_if_softc *sc;
959 	int i;
960 
961 	/* Extract the softc struct pointer. */
962 	sc = (struct sk_if_softc *)arg;
963 
964 	if (sc == NULL)
965 		panic("sk_jfree: can't find softc pointer!");
966 
967 	/* calculate the slot this buffer belongs to */
968 
969 	i = ((vaddr_t)buf
970 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
971 
972 	if ((i < 0) || (i >= SK_JSLOTS))
973 		panic("sk_jfree: asked to free buffer that we don't manage!");
974 
975 	mutex_enter(&sc->sk_jpool_mtx);
976 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
977 	if (entry == NULL)
978 		panic("sk_jfree: buffer not in use!");
979 	entry->slot = i;
980 	LIST_REMOVE(entry, jpool_entries);
981 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
982 	mutex_exit(&sc->sk_jpool_mtx);
983 
984 	if (__predict_true(m != NULL))
985 		pool_cache_put(mb_cache, m);
986 }
987 
988 /*
989  * Set media options.
990  */
991 static int
sk_ifmedia_upd(struct ifnet * ifp)992 sk_ifmedia_upd(struct ifnet *ifp)
993 {
994 	struct sk_if_softc *sc_if = ifp->if_softc;
995 	int rc;
996 
997 	(void) sk_init(ifp);
998 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
999 		return 0;
1000 	return rc;
1001 }
1002 
1003 static void
sk_promisc(struct sk_if_softc * sc_if,int on)1004 sk_promisc(struct sk_if_softc *sc_if, int on)
1005 {
1006 	struct sk_softc *sc = sc_if->sk_softc;
1007 	switch (sc->sk_type) {
1008 	case SK_GENESIS:
1009 		if (on)
1010 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 		else
1012 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1013 		break;
1014 	case SK_YUKON:
1015 	case SK_YUKON_LITE:
1016 	case SK_YUKON_LP:
1017 		if (on)
1018 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1020 		else
1021 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1022 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 		break;
1024 	default:
1025 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1026 			sc->sk_type);
1027 		break;
1028 	}
1029 }
1030 
1031 static int
sk_ioctl(struct ifnet * ifp,u_long command,void * data)1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1033 {
1034 	struct sk_if_softc *sc_if = ifp->if_softc;
1035 	int s, error = 0;
1036 
1037 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1038 
1039 	s = splnet();
1040 
1041 	switch (command) {
1042 
1043 	case SIOCSIFFLAGS:
1044 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1045 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1046 			break;
1047 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1048 		case IFF_RUNNING:
1049 			sk_stop(ifp, 1);
1050 			break;
1051 		case IFF_UP:
1052 			sk_init(ifp);
1053 			break;
1054 		case IFF_UP | IFF_RUNNING:
1055 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
1056 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1057 				sk_setmulti(sc_if);
1058 			} else
1059 				sk_init(ifp);
1060 			break;
1061 		}
1062 		sc_if->sk_if_flags = ifp->if_flags;
1063 		error = 0;
1064 		break;
1065 
1066 	default:
1067 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
1068 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1069 			break;
1070 
1071 		error = 0;
1072 
1073 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1074 			;
1075 		else if (ifp->if_flags & IFF_RUNNING) {
1076 			sk_setmulti(sc_if);
1077 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1078 		}
1079 		break;
1080 	}
1081 
1082 	splx(s);
1083 	return error;
1084 }
1085 
1086 static void
sk_update_int_mod(struct sk_softc * sc)1087 sk_update_int_mod(struct sk_softc *sc)
1088 {
1089 	uint32_t imtimer_ticks;
1090 
1091 	/*
1092 	 * Configure interrupt moderation. The moderation timer
1093 	 * defers interrupts specified in the interrupt moderation
1094 	 * timer mask based on the timeout specified in the interrupt
1095 	 * moderation timer init register. Each bit in the timer
1096 	 * register represents one tick, so to specify a timeout in
1097 	 * microseconds, we have to multiply by the correct number of
1098 	 * ticks-per-microsecond.
1099 	 */
1100 	switch (sc->sk_type) {
1101 	case SK_GENESIS:
1102 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1103 		break;
1104 	case SK_YUKON_EC:
1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1106 		break;
1107 	default:
1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1109 	}
1110 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1111 	    sc->sk_int_mod);
1112 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1113 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1114 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1115 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1116 	sc->sk_int_mod_pending = 0;
1117 }
1118 
1119 /*
1120  * Lookup: Check the PCI vendor and device, and return a pointer to
1121  * The structure if the IDs match against our list.
1122  */
1123 
1124 /*
1125  * Probe for a SysKonnect GEnesis chip.
1126  */
1127 
1128 static int
skc_probe(device_t parent,cfdata_t match,void * aux)1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 	pcireg_t subid;
1133 
1134 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1135 
1136 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1137 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1139 	    subid == SK_LINKSYS_EG1032_SUBID)
1140 		return 1;
1141 
1142 	return pci_compatible_match(pa, compat_data);
1143 }
1144 
1145 /*
1146  * Force the GEnesis into reset, then bring it out of reset.
1147  */
1148 static void
sk_reset(struct sk_softc * sc)1149 sk_reset(struct sk_softc *sc)
1150 {
1151 	DPRINTFN(2, ("sk_reset\n"));
1152 
1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1155 	if (SK_YUKON_FAMILY(sc->sk_type))
1156 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1157 
1158 	DELAY(1000);
1159 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1160 	DELAY(2);
1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1162 	if (SK_YUKON_FAMILY(sc->sk_type))
1163 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1164 
1165 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1166 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1167 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1168 
1169 	if (sc->sk_type == SK_GENESIS) {
1170 		/* Configure packet arbiter */
1171 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1172 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1174 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1176 	}
1177 
1178 	/* Enable RAM interface */
1179 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1180 
1181 	sk_update_int_mod(sc);
1182 }
1183 
1184 static int
sk_probe(device_t parent,cfdata_t match,void * aux)1185 sk_probe(device_t parent, cfdata_t match, void *aux)
1186 {
1187 	struct skc_attach_args *sa = aux;
1188 
1189 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1190 		return 0;
1191 
1192 	return 1;
1193 }
1194 
1195 /*
1196  * Each XMAC chip is attached as a separate logical IP interface.
1197  * Single port cards will have only one logical interface of course.
1198  */
1199 static void
sk_attach(device_t parent,device_t self,void * aux)1200 sk_attach(device_t parent, device_t self, void *aux)
1201 {
1202 	struct sk_if_softc *sc_if = device_private(self);
1203 	struct mii_data *mii = &sc_if->sk_mii;
1204 	struct sk_softc *sc = device_private(parent);
1205 	struct skc_attach_args *sa = aux;
1206 	struct sk_txmap_entry	*entry;
1207 	struct ifnet *ifp;
1208 	bus_dma_segment_t seg;
1209 	bus_dmamap_t dmamap;
1210 	prop_data_t data;
1211 	void *kva;
1212 	int i, rseg;
1213 	int mii_flags = 0;
1214 
1215 	aprint_naive("\n");
1216 
1217 	sc_if->sk_dev = self;
1218 	sc_if->sk_port = sa->skc_port;
1219 	sc_if->sk_softc = sc;
1220 	sc->sk_if[sa->skc_port] = sc_if;
1221 
1222 	if (sa->skc_port == SK_PORT_A)
1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1224 	if (sa->skc_port == SK_PORT_B)
1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1226 
1227 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1228 
1229 	/*
1230 	 * Get station address for this interface. Note that
1231 	 * dual port cards actually come with three station
1232 	 * addresses: one for each port, plus an extra. The
1233 	 * extra one is used by the SysKonnect driver software
1234 	 * as a 'virtual' station address for when both ports
1235 	 * are operating in failover mode. Currently we don't
1236 	 * use this extra address.
1237 	 */
1238 	data = prop_dictionary_get(device_properties(self), "mac-address");
1239 	if (data != NULL) {
1240 		/*
1241 		 * Try to get the station address from device properties
1242 		 * first, in case the ROM is missing.
1243 		 */
1244 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1245 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1246 		memcpy(sc_if->sk_enaddr, prop_data_value(data),
1247 		    ETHER_ADDR_LEN);
1248 	} else
1249 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1250 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1251 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1252 
1253 	aprint_normal(": Ethernet address %s\n",
1254 	    ether_sprintf(sc_if->sk_enaddr));
1255 
1256 	/*
1257 	 * Set up RAM buffer addresses. The NIC will have a certain
1258 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1259 	 * need to divide this up a) between the transmitter and
1260 	 * receiver and b) between the two XMACs, if this is a
1261 	 * dual port NIC. Our algorithm is to divide up the memory
1262 	 * evenly so that everyone gets a fair share.
1263 	 */
1264 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1265 		uint32_t		chunk, val;
1266 
1267 		chunk = sc->sk_ramsize / 2;
1268 		val = sc->sk_rboff / sizeof(uint64_t);
1269 		sc_if->sk_rx_ramstart = val;
1270 		val += (chunk / sizeof(uint64_t));
1271 		sc_if->sk_rx_ramend = val - 1;
1272 		sc_if->sk_tx_ramstart = val;
1273 		val += (chunk / sizeof(uint64_t));
1274 		sc_if->sk_tx_ramend = val - 1;
1275 	} else {
1276 		uint32_t		chunk, val;
1277 
1278 		chunk = sc->sk_ramsize / 4;
1279 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1280 		    sizeof(uint64_t);
1281 		sc_if->sk_rx_ramstart = val;
1282 		val += (chunk / sizeof(uint64_t));
1283 		sc_if->sk_rx_ramend = val - 1;
1284 		sc_if->sk_tx_ramstart = val;
1285 		val += (chunk / sizeof(uint64_t));
1286 		sc_if->sk_tx_ramend = val - 1;
1287 	}
1288 
1289 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1290 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
1291 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1292 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1293 
1294 	/* Read and save PHY type and set PHY address */
1295 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1296 	switch (sc_if->sk_phytype) {
1297 	case SK_PHYTYPE_XMAC:
1298 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1299 		break;
1300 	case SK_PHYTYPE_BCOM:
1301 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1302 		break;
1303 	case SK_PHYTYPE_MARV_COPPER:
1304 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1305 		break;
1306 	default:
1307 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1308 		    sc_if->sk_phytype);
1309 		return;
1310 	}
1311 
1312 	/* Allocate the descriptor queues. */
1313 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1314 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1315 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1316 		goto fail;
1317 	}
1318 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1319 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1320 		aprint_error_dev(sc_if->sk_dev,
1321 		    "can't map dma buffers (%lu bytes)\n",
1322 		    (u_long) sizeof(struct sk_ring_data));
1323 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1324 		goto fail;
1325 	}
1326 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1327 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1328 	    &sc_if->sk_ring_map)) {
1329 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1330 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 		    sizeof(struct sk_ring_data));
1332 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 		goto fail;
1334 	}
1335 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1336 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1337 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1338 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1339 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1340 		    sizeof(struct sk_ring_data));
1341 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1342 		goto fail;
1343 	}
1344 
1345 	for (i = 0; i < SK_RX_RING_CNT; i++)
1346 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1347 
1348 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1349 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1350 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1351 
1352 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1353 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1354 			aprint_error_dev(sc_if->sk_dev,
1355 			    "Can't create TX dmamap\n");
1356 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1357 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1358 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1359 			    sizeof(struct sk_ring_data));
1360 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1361 			goto fail;
1362 		}
1363 
1364 		entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1365 		entry->dmamap = dmamap;
1366 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1367 	}
1368 
1369 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
1370 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1371 
1372 	ifp = &sc_if->sk_ethercom.ec_if;
1373 	/* Try to allocate memory for jumbo buffers. */
1374 	if (sk_alloc_jumbo_mem(sc_if)) {
1375 		aprint_error("%s: jumbo buffer allocation failed\n",
1376 		    ifp->if_xname);
1377 		goto fail;
1378 	}
1379 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1380 		| ETHERCAP_JUMBO_MTU;
1381 
1382 	ifp->if_softc = sc_if;
1383 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1384 	ifp->if_ioctl = sk_ioctl;
1385 	ifp->if_start = sk_start;
1386 	ifp->if_stop = sk_stop;
1387 	ifp->if_init = sk_init;
1388 	ifp->if_watchdog = sk_watchdog;
1389 	ifp->if_capabilities = 0;
1390 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1391 	IFQ_SET_READY(&ifp->if_snd);
1392 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1393 
1394 	/*
1395 	 * Do miibus setup.
1396 	 */
1397 	switch (sc->sk_type) {
1398 	case SK_GENESIS:
1399 		sk_unreset_xmac(sc_if);
1400 		break;
1401 	case SK_YUKON:
1402 	case SK_YUKON_LITE:
1403 	case SK_YUKON_LP:
1404 		sk_unreset_yukon(sc_if);
1405 		break;
1406 	default:
1407 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1408 			sc->sk_type);
1409 		goto fail;
1410 	}
1411 
1412 	DPRINTFN(2, ("sk_attach: 1\n"));
1413 
1414 	mii->mii_ifp = ifp;
1415 	switch (sc->sk_type) {
1416 	case SK_GENESIS:
1417 		mii->mii_readreg = sk_xmac_miibus_readreg;
1418 		mii->mii_writereg = sk_xmac_miibus_writereg;
1419 		mii->mii_statchg = sk_xmac_miibus_statchg;
1420 		break;
1421 	case SK_YUKON:
1422 	case SK_YUKON_LITE:
1423 	case SK_YUKON_LP:
1424 		mii->mii_readreg = sk_marv_miibus_readreg;
1425 		mii->mii_writereg = sk_marv_miibus_writereg;
1426 		mii->mii_statchg = sk_marv_miibus_statchg;
1427 		mii_flags = MIIF_DOPAUSE;
1428 		break;
1429 	}
1430 
1431 	sc_if->sk_ethercom.ec_mii = mii;
1432 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1433 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1434 	    MII_OFFSET_ANY, mii_flags);
1435 	if (LIST_EMPTY(&mii->mii_phys)) {
1436 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1437 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1438 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1439 	} else
1440 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1441 
1442 	callout_init(&sc_if->sk_tick_ch, 0);
1443 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1444 
1445 	DPRINTFN(2, ("sk_attach: 1\n"));
1446 
1447 	/*
1448 	 * Call MI attach routines.
1449 	 */
1450 	if_attach(ifp);
1451 	if_deferred_start_init(ifp, NULL);
1452 
1453 	ether_ifattach(ifp, sc_if->sk_enaddr);
1454 
1455 	if (sc->rnd_attached++ == 0) {
1456 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1457 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
1458 	}
1459 
1460 	if (pmf_device_register(self, NULL, sk_resume))
1461 		pmf_class_network_register(self, ifp);
1462 	else
1463 		aprint_error_dev(self, "couldn't establish power handler\n");
1464 
1465 	DPRINTFN(2, ("sk_attach: end\n"));
1466 
1467 	return;
1468 
1469 fail:
1470 	sc->sk_if[sa->skc_port] = NULL;
1471 }
1472 
1473 static int
skcprint(void * aux,const char * pnp)1474 skcprint(void *aux, const char *pnp)
1475 {
1476 	struct skc_attach_args *sa = aux;
1477 
1478 	if (pnp)
1479 		aprint_normal("sk port %c at %s",
1480 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1481 	else
1482 		aprint_normal(" port %c",
1483 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1484 	return UNCONF;
1485 }
1486 
1487 /*
1488  * Attach the interface. Allocate softc structures, do ifmedia
1489  * setup and ethernet/BPF attach.
1490  */
1491 static void
skc_attach(device_t parent,device_t self,void * aux)1492 skc_attach(device_t parent, device_t self, void *aux)
1493 {
1494 	struct sk_softc *sc = device_private(self);
1495 	struct pci_attach_args *pa = aux;
1496 	struct skc_attach_args skca;
1497 	pci_chipset_tag_t pc = pa->pa_pc;
1498 #ifndef SK_USEIOSPACE
1499 	pcireg_t memtype;
1500 #endif
1501 	pci_intr_handle_t ih;
1502 	const char *intrstr = NULL;
1503 	bus_addr_t iobase;
1504 	bus_size_t iosize;
1505 	int rc, sk_nodenum;
1506 	uint32_t command;
1507 	const char *revstr;
1508 	const struct sysctlnode *node;
1509 	char intrbuf[PCI_INTRSTR_LEN];
1510 
1511 	sc->sk_dev = self;
1512 	aprint_naive("\n");
1513 
1514 	DPRINTFN(2, ("begin skc_attach\n"));
1515 
1516 	/*
1517 	 * Handle power management nonsense.
1518 	 */
1519 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1520 
1521 	if (command == 0x01) {
1522 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1523 		if (command & SK_PSTATE_MASK) {
1524 			uint32_t		xiobase, membase, irq;
1525 
1526 			/* Save important PCI config data. */
1527 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1528 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1529 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1530 
1531 			/* Reset the power state. */
1532 			aprint_normal_dev(sc->sk_dev,
1533 			    "chip is in D%d power mode -- setting to D0\n",
1534 			    command & SK_PSTATE_MASK);
1535 			command &= 0xFFFFFFFC;
1536 			pci_conf_write(pc, pa->pa_tag,
1537 			    SK_PCI_PWRMGMTCTRL, command);
1538 
1539 			/* Restore PCI config data. */
1540 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1541 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1542 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * The firmware might have configured the interface to revert the
1548 	 * byte order in all descriptors. Make that undone.
1549 	 */
1550 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1551 	if (command & SK_REG2_REV_DESC)
1552 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1553 		    command & ~SK_REG2_REV_DESC);
1554 
1555 	/*
1556 	 * Map control/status registers.
1557 	 */
1558 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1559 	command |= PCI_COMMAND_IO_ENABLE |
1560 	    PCI_COMMAND_MEM_ENABLE |
1561 	    PCI_COMMAND_MASTER_ENABLE;
1562 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1563 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1564 
1565 #ifdef SK_USEIOSPACE
1566 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1567 		aprint_error(": failed to enable I/O ports!\n");
1568 		return;
1569 	}
1570 	/*
1571 	 * Map control/status registers.
1572 	 */
1573 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1574 			&sc->sk_btag, &sc->sk_bhandle,
1575 			&iobase, &iosize)) {
1576 		aprint_error(": can't find i/o space\n");
1577 		return;
1578 	}
1579 #else
1580 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1581 		aprint_error(": failed to enable memory mapping!\n");
1582 		return;
1583 	}
1584 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1585 	switch (memtype) {
1586 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1587 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1588 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1589 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1590 				   &iobase, &iosize) == 0)
1591 			break;
1592 		/* FALLTHROUGH */
1593 	default:
1594 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1595 		return;
1596 	}
1597 
1598 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1599 	    iobase, iosize));
1600 #endif
1601 	sc->sc_dmatag = pa->pa_dmat;
1602 
1603 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1604 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1605 
1606 	/* bail out here if chip is not recognized */
1607 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1608 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1609 		goto fail;
1610 	}
1611 	if (SK_IS_YUKON2(sc)) {
1612 		aprint_error_dev(sc->sk_dev,
1613 		    "Does not support Yukon2--try msk(4).\n");
1614 		goto fail;
1615 	}
1616 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1617 
1618 	/* Allocate interrupt */
1619 	if (pci_intr_map(pa, &ih)) {
1620 		aprint_error(": couldn't map interrupt\n");
1621 		goto fail;
1622 	}
1623 
1624 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1625 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1626 	    sc, device_xname(sc->sk_dev));
1627 	if (sc->sk_intrhand == NULL) {
1628 		aprint_error(": couldn't establish interrupt");
1629 		if (intrstr != NULL)
1630 			aprint_error(" at %s", intrstr);
1631 		aprint_error("\n");
1632 		goto fail;
1633 	}
1634 	aprint_normal(": %s\n", intrstr);
1635 
1636 	/* Reset the adapter. */
1637 	sk_reset(sc);
1638 
1639 	/* Read and save vital product data from EEPROM. */
1640 	sk_vpd_read(sc);
1641 
1642 	if (sc->sk_type == SK_GENESIS) {
1643 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1644 		/* Read and save RAM size and RAMbuffer offset */
1645 		switch (val) {
1646 		case SK_RAMSIZE_512K_64:
1647 			sc->sk_ramsize = 0x80000;
1648 			sc->sk_rboff = SK_RBOFF_0;
1649 			break;
1650 		case SK_RAMSIZE_1024K_64:
1651 			sc->sk_ramsize = 0x100000;
1652 			sc->sk_rboff = SK_RBOFF_80000;
1653 			break;
1654 		case SK_RAMSIZE_1024K_128:
1655 			sc->sk_ramsize = 0x100000;
1656 			sc->sk_rboff = SK_RBOFF_0;
1657 			break;
1658 		case SK_RAMSIZE_2048K_128:
1659 			sc->sk_ramsize = 0x200000;
1660 			sc->sk_rboff = SK_RBOFF_0;
1661 			break;
1662 		default:
1663 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1664 			       val);
1665 			goto fail_1;
1666 			break;
1667 		}
1668 
1669 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1670 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1671 			     sc->sk_rboff));
1672 	} else {
1673 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1674 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1675 		sc->sk_rboff = SK_RBOFF_0;
1676 
1677 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1678 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1679 			     sc->sk_rboff));
1680 	}
1681 
1682 	/* Read and save physical media type */
1683 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1684 	case SK_PMD_1000BASESX:
1685 		sc->sk_pmd = IFM_1000_SX;
1686 		break;
1687 	case SK_PMD_1000BASELX:
1688 		sc->sk_pmd = IFM_1000_LX;
1689 		break;
1690 	case SK_PMD_1000BASECX:
1691 		sc->sk_pmd = IFM_1000_CX;
1692 		break;
1693 	case SK_PMD_1000BASETX:
1694 	case SK_PMD_1000BASETX_ALT:
1695 		sc->sk_pmd = IFM_1000_T;
1696 		break;
1697 	default:
1698 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1699 		    sk_win_read_1(sc, SK_PMDTYPE));
1700 		goto fail_1;
1701 	}
1702 
1703 	/* determine whether to name it with vpd or just make it up */
1704 	/* Marvell Yukon VPD's can freqently be bogus */
1705 
1706 	switch (pa->pa_id) {
1707 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1708 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1709 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1710 	case PCI_PRODUCT_3COM_3C940:
1711 	case PCI_PRODUCT_DLINK_DGE530T:
1712 	case PCI_PRODUCT_DLINK_DGE560T:
1713 	case PCI_PRODUCT_DLINK_DGE560T_2:
1714 	case PCI_PRODUCT_LINKSYS_EG1032:
1715 	case PCI_PRODUCT_LINKSYS_EG1064:
1716 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1717 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1718 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1719 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1721 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1722 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1723 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1724 		sc->sk_name = sc->sk_vpd_prodname;
1725 		break;
1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1727 	/* whoops yukon vpd prodname bears no resemblance to reality */
1728 		switch (sc->sk_type) {
1729 		case SK_GENESIS:
1730 			sc->sk_name = sc->sk_vpd_prodname;
1731 			break;
1732 		case SK_YUKON:
1733 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1734 			break;
1735 		case SK_YUKON_LITE:
1736 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1737 			break;
1738 		case SK_YUKON_LP:
1739 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1740 			break;
1741 		default:
1742 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1743 		}
1744 
1745 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1746 
1747 		if ( sc->sk_type == SK_YUKON ) {
1748 			uint32_t flashaddr;
1749 			uint8_t testbyte;
1750 
1751 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1752 
1753 			/* test Flash-Address Register */
1754 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1755 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1756 
1757 			if (testbyte != 0) {
1758 				/* this is yukon lite Rev. A0 */
1759 				sc->sk_type = SK_YUKON_LITE;
1760 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1761 				/* restore Flash-Address Register */
1762 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1763 			}
1764 		}
1765 		break;
1766 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1767 		sc->sk_name = sc->sk_vpd_prodname;
1768 		break;
1769 	default:
1770 		sc->sk_name = "Unknown Marvell";
1771 	}
1772 
1773 
1774 	if ( sc->sk_type == SK_YUKON_LITE ) {
1775 		switch (sc->sk_rev) {
1776 		case SK_YUKON_LITE_REV_A0:
1777 			revstr = "A0";
1778 			break;
1779 		case SK_YUKON_LITE_REV_A1:
1780 			revstr = "A1";
1781 			break;
1782 		case SK_YUKON_LITE_REV_A3:
1783 			revstr = "A3";
1784 			break;
1785 		default:
1786 			revstr = "";
1787 		}
1788 	} else {
1789 		revstr = "";
1790 	}
1791 
1792 	/* Announce the product name. */
1793 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1794 			      sc->sk_name, revstr, sc->sk_rev);
1795 
1796 	skca.skc_port = SK_PORT_A;
1797 	(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
1798 
1799 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1800 		skca.skc_port = SK_PORT_B;
1801 		(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
1802 	}
1803 
1804 	/* Turn on the 'driver is loaded' LED. */
1805 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1806 
1807 	/* skc sysctl setup */
1808 
1809 	sc->sk_int_mod = SK_IM_DEFAULT;
1810 	sc->sk_int_mod_pending = 0;
1811 
1812 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1813 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1814 	    SYSCTL_DESCR("skc per-controller controls"),
1815 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1816 	    CTL_EOL)) != 0) {
1817 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1818 		goto fail_1;
1819 	}
1820 
1821 	sk_nodenum = node->sysctl_num;
1822 
1823 	/* interrupt moderation time in usecs */
1824 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1825 	    CTLFLAG_READWRITE,
1826 	    CTLTYPE_INT, "int_mod",
1827 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1828 	    sk_sysctl_handler, 0, (void *)sc,
1829 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1830 	    CTL_EOL)) != 0) {
1831 		aprint_normal_dev(sc->sk_dev,
1832 		    "couldn't create int_mod sysctl node\n");
1833 		goto fail_1;
1834 	}
1835 
1836 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1837 		aprint_error_dev(self, "couldn't establish power handler\n");
1838 
1839 	return;
1840 
1841 fail_1:
1842 	pci_intr_disestablish(pc, sc->sk_intrhand);
1843 fail:
1844 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1845 }
1846 
1847 static int
sk_encap(struct sk_if_softc * sc_if,struct mbuf * m_head,uint32_t * txidx)1848 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1849 {
1850 	struct sk_softc		*sc = sc_if->sk_softc;
1851 	struct sk_tx_desc	*f = NULL;
1852 	uint32_t		frag, cur, cnt = 0, sk_ctl;
1853 	int			i;
1854 	struct sk_txmap_entry	*entry;
1855 	bus_dmamap_t		txmap;
1856 
1857 	DPRINTFN(3, ("sk_encap\n"));
1858 
1859 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1860 	if (entry == NULL) {
1861 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1862 		return ENOBUFS;
1863 	}
1864 	txmap = entry->dmamap;
1865 
1866 	cur = frag = *txidx;
1867 
1868 #ifdef SK_DEBUG
1869 	if (skdebug >= 3)
1870 		sk_dump_mbuf(m_head);
1871 #endif
1872 
1873 	/*
1874 	 * Start packing the mbufs in this chain into
1875 	 * the fragment pointers. Stop when we run out
1876 	 * of fragments or hit the end of the mbuf chain.
1877 	 */
1878 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1879 	    BUS_DMA_NOWAIT)) {
1880 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1881 		return ENOBUFS;
1882 	}
1883 
1884 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1885 
1886 	/* Sync the DMA map. */
1887 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1888 	    BUS_DMASYNC_PREWRITE);
1889 
1890 	for (i = 0; i < txmap->dm_nsegs; i++) {
1891 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1892 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1893 			return ENOBUFS;
1894 		}
1895 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1896 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1897 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1898 		if (cnt == 0)
1899 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1900 		else
1901 			sk_ctl |= SK_TXCTL_OWN;
1902 		f->sk_ctl = htole32(sk_ctl);
1903 		cur = frag;
1904 		SK_INC(frag, SK_TX_RING_CNT);
1905 		cnt++;
1906 	}
1907 
1908 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1909 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1910 
1911 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1912 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1913 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1914 
1915 	/* Sync descriptors before handing to chip */
1916 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1917 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1918 
1919 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1920 		htole32(SK_TXCTL_OWN);
1921 
1922 	/* Sync first descriptor to hand it off */
1923 	SK_CDTXSYNC(sc_if, *txidx, 1,
1924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 
1926 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1927 
1928 #ifdef SK_DEBUG
1929 	if (skdebug >= 3) {
1930 		struct sk_tx_desc *desc;
1931 		uint32_t idx;
1932 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1933 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1934 			sk_dump_txdesc(desc, idx);
1935 		}
1936 	}
1937 #endif
1938 
1939 	*txidx = frag;
1940 
1941 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1942 
1943 	return 0;
1944 }
1945 
1946 static void
sk_start(struct ifnet * ifp)1947 sk_start(struct ifnet *ifp)
1948 {
1949 	struct sk_if_softc	*sc_if = ifp->if_softc;
1950 	struct sk_softc		*sc = sc_if->sk_softc;
1951 	struct mbuf		*m_head = NULL;
1952 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1953 	int			pkts = 0;
1954 
1955 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1956 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1957 
1958 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1959 		IFQ_POLL(&ifp->if_snd, m_head);
1960 		if (m_head == NULL)
1961 			break;
1962 
1963 		/*
1964 		 * Pack the data into the transmit ring. If we
1965 		 * don't have room, set the OACTIVE flag and wait
1966 		 * for the NIC to drain the ring.
1967 		 */
1968 		if (sk_encap(sc_if, m_head, &idx)) {
1969 			ifp->if_flags |= IFF_OACTIVE;
1970 			break;
1971 		}
1972 
1973 		/* now we are committed to transmit the packet */
1974 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1975 		pkts++;
1976 
1977 		/*
1978 		 * If there's a BPF listener, bounce a copy of this frame
1979 		 * to him.
1980 		 */
1981 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1982 	}
1983 	if (pkts == 0)
1984 		return;
1985 
1986 	/* Transmit */
1987 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1988 		sc_if->sk_cdata.sk_tx_prod = idx;
1989 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1990 
1991 		/* Set a timeout in case the chip goes out to lunch. */
1992 		ifp->if_timer = 5;
1993 	}
1994 }
1995 
1996 
1997 static void
sk_watchdog(struct ifnet * ifp)1998 sk_watchdog(struct ifnet *ifp)
1999 {
2000 	struct sk_if_softc *sc_if = ifp->if_softc;
2001 
2002 	/*
2003 	 * Reclaim first as there is a possibility of losing Tx completion
2004 	 * interrupts.
2005 	 */
2006 	sk_txeof(sc_if);
2007 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2008 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2009 
2010 		if_statinc(ifp, if_oerrors);
2011 
2012 		sk_init(ifp);
2013 	}
2014 }
2015 
2016 #if 0 /* XXX XXX XXX UNUSED */
2017 static void
2018 sk_shutdown(void *v)
2019 {
2020 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2021 	struct sk_softc		*sc = sc_if->sk_softc;
2022 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2023 
2024 	DPRINTFN(2, ("sk_shutdown\n"));
2025 	sk_stop(ifp, 1);
2026 
2027 	/* Turn off the 'driver is loaded' LED. */
2028 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2029 
2030 	/*
2031 	 * Reset the GEnesis controller. Doing this should also
2032 	 * assert the resets on the attached XMAC(s).
2033 	 */
2034 	sk_reset(sc);
2035 }
2036 #endif
2037 
2038 static void
sk_rxeof(struct sk_if_softc * sc_if)2039 sk_rxeof(struct sk_if_softc *sc_if)
2040 {
2041 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2042 	struct mbuf		*m;
2043 	struct sk_chain		*cur_rx;
2044 	struct sk_rx_desc	*cur_desc;
2045 	int			i, cur, total_len = 0;
2046 	uint32_t		rxstat, sk_ctl;
2047 	bus_dmamap_t		dmamap;
2048 
2049 	i = sc_if->sk_cdata.sk_rx_prod;
2050 
2051 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2052 
2053 	for (;;) {
2054 		cur = i;
2055 
2056 		/* Sync the descriptor */
2057 		SK_CDRXSYNC(sc_if, cur,
2058 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2059 
2060 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2061 		if (sk_ctl & SK_RXCTL_OWN) {
2062 			/* Invalidate the descriptor -- it's not ready yet */
2063 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2064 			sc_if->sk_cdata.sk_rx_prod = i;
2065 			break;
2066 		}
2067 
2068 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2069 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2070 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2071 
2072 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2073 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074 
2075 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2076 		m = cur_rx->sk_mbuf;
2077 		cur_rx->sk_mbuf = NULL;
2078 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2079 
2080 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2081 
2082 		SK_INC(i, SK_RX_RING_CNT);
2083 
2084 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2085 			if_statinc(ifp, if_ierrors);
2086 			sk_newbuf(sc_if, cur, m, dmamap);
2087 			continue;
2088 		}
2089 
2090 		/*
2091 		 * Try to allocate a new jumbo buffer. If that
2092 		 * fails, copy the packet to mbufs and put the
2093 		 * jumbo buffer back in the ring so it can be
2094 		 * re-used. If allocating mbufs fails, then we
2095 		 * have to drop the packet.
2096 		 */
2097 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2098 			struct mbuf		*m0;
2099 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2100 			    total_len + ETHER_ALIGN, 0, ifp);
2101 			sk_newbuf(sc_if, cur, m, dmamap);
2102 			if (m0 == NULL) {
2103 				aprint_error_dev(sc_if->sk_dev, "no receive "
2104 				    "buffers available -- packet dropped!\n");
2105 				if_statinc(ifp, if_ierrors);
2106 				continue;
2107 			}
2108 			m_adj(m0, ETHER_ALIGN);
2109 			m = m0;
2110 		} else {
2111 			m_set_rcvif(m, ifp);
2112 			m->m_pkthdr.len = m->m_len = total_len;
2113 		}
2114 
2115 		/* pass it on. */
2116 		if_percpuq_enqueue(ifp->if_percpuq, m);
2117 	}
2118 }
2119 
2120 static void
sk_txeof(struct sk_if_softc * sc_if)2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 	struct sk_softc		*sc = sc_if->sk_softc;
2124 	struct sk_tx_desc	*cur_tx;
2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2126 	uint32_t		idx, sk_ctl;
2127 	struct sk_txmap_entry	*entry;
2128 
2129 	DPRINTFN(3, ("sk_txeof\n"));
2130 
2131 	/*
2132 	 * Go through our tx ring and free mbufs for those
2133 	 * frames that have been sent.
2134 	 */
2135 	idx = sc_if->sk_cdata.sk_tx_cons;
2136 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2137 		SK_CDTXSYNC(sc_if, idx, 1,
2138 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2139 
2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 		sk_ctl = le32toh(cur_tx->sk_ctl);
2142 #ifdef SK_DEBUG
2143 		if (skdebug >= 3)
2144 			sk_dump_txdesc(cur_tx, idx);
2145 #endif
2146 		if (sk_ctl & SK_TXCTL_OWN) {
2147 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2148 			break;
2149 		}
2150 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2151 			if_statinc(ifp, if_opackets);
2152 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2153 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2154 
2155 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2156 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2157 
2158 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2159 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2160 					  link);
2161 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2162 
2163 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2164 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2165 		}
2166 		sc_if->sk_cdata.sk_tx_cnt--;
2167 		SK_INC(idx, SK_TX_RING_CNT);
2168 	}
2169 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2170 		ifp->if_timer = 0;
2171 	else /* nudge chip to keep tx ring moving */
2172 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2173 
2174 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2175 		ifp->if_flags &= ~IFF_OACTIVE;
2176 
2177 	sc_if->sk_cdata.sk_tx_cons = idx;
2178 }
2179 
2180 static void
sk_tick(void * xsc_if)2181 sk_tick(void *xsc_if)
2182 {
2183 	struct sk_if_softc *sc_if = xsc_if;
2184 	struct mii_data *mii = &sc_if->sk_mii;
2185 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2186 	int i;
2187 
2188 	DPRINTFN(3, ("sk_tick\n"));
2189 
2190 	if (!(ifp->if_flags & IFF_UP))
2191 		return;
2192 
2193 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2194 		sk_intr_bcom(sc_if);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * According to SysKonnect, the correct way to verify that
2200 	 * the link has come back up is to poll bit 0 of the GPIO
2201 	 * register three times. This pin has the signal from the
2202 	 * link sync pin connected to it; if we read the same link
2203 	 * state 3 times in a row, we know the link is up.
2204 	 */
2205 	for (i = 0; i < 3; i++) {
2206 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2207 			break;
2208 	}
2209 
2210 	if (i != 3) {
2211 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2212 		return;
2213 	}
2214 
2215 	/* Turn the GP0 interrupt back on. */
2216 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2217 	SK_XM_READ_2(sc_if, XM_ISR);
2218 	mii_tick(mii);
2219 	if (ifp->if_link_state != LINK_STATE_UP)
2220 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2221 	else
2222 		callout_stop(&sc_if->sk_tick_ch);
2223 }
2224 
2225 static void
sk_intr_bcom(struct sk_if_softc * sc_if)2226 sk_intr_bcom(struct sk_if_softc *sc_if)
2227 {
2228 	struct mii_data *mii = &sc_if->sk_mii;
2229 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2230 	uint16_t status;
2231 
2232 
2233 	DPRINTFN(3, ("sk_intr_bcom\n"));
2234 
2235 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2236 
2237 	/*
2238 	 * Read the PHY interrupt register to make sure
2239 	 * we clear any pending interrupts.
2240 	 */
2241 	sk_xmac_miibus_readreg(sc_if->sk_dev,
2242 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2243 
2244 	if (!(ifp->if_flags & IFF_RUNNING)) {
2245 		sk_init_xmac(sc_if);
2246 		return;
2247 	}
2248 
2249 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2250 		uint16_t lstat;
2251 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2252 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2253 
2254 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2255 			(void)mii_mediachg(mii);
2256 			/* Turn off the link LED. */
2257 			SK_IF_WRITE_1(sc_if, 0,
2258 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2259 			sc_if->sk_link = 0;
2260 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2261 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2262 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2263 			mii_tick(mii);
2264 			sc_if->sk_link = 1;
2265 			/* Turn on the link LED. */
2266 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2267 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2268 			    SK_LINKLED_BLINK_OFF);
2269 			mii_pollstat(mii);
2270 		} else {
2271 			mii_tick(mii);
2272 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2273 		}
2274 	}
2275 
2276 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2277 }
2278 
2279 static void
sk_intr_xmac(struct sk_if_softc * sc_if)2280 sk_intr_xmac(struct sk_if_softc	*sc_if)
2281 {
2282 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2283 
2284 	DPRINTFN(3, ("sk_intr_xmac\n"));
2285 
2286 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2287 		if (status & XM_ISR_GP0_SET) {
2288 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2289 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2290 		}
2291 
2292 		if (status & XM_ISR_AUTONEG_DONE) {
2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2294 		}
2295 	}
2296 
2297 	if (status & XM_IMR_TX_UNDERRUN)
2298 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2299 
2300 	if (status & XM_IMR_RX_OVERRUN)
2301 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2302 }
2303 
2304 static void
sk_intr_yukon(struct sk_if_softc * sc_if)2305 sk_intr_yukon(struct sk_if_softc *sc_if)
2306 {
2307 #ifdef SK_DEBUG
2308 	int status;
2309 
2310 	status =
2311 #endif
2312 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2313 
2314 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2315 }
2316 
2317 static int
sk_intr(void * xsc)2318 sk_intr(void *xsc)
2319 {
2320 	struct sk_softc		*sc = xsc;
2321 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2322 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2323 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2324 	uint32_t		status;
2325 	int			claimed = 0;
2326 
2327 	if (sc_if0 != NULL)
2328 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2329 	if (sc_if1 != NULL)
2330 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2331 
2332 	for (;;) {
2333 		status = CSR_READ_4(sc, SK_ISSR);
2334 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2335 
2336 		if (!(status & sc->sk_intrmask))
2337 			break;
2338 
2339 		claimed = 1;
2340 
2341 		/* Handle receive interrupts first. */
2342 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2343 			sk_rxeof(sc_if0);
2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2345 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2346 		}
2347 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2348 			sk_rxeof(sc_if1);
2349 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2350 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2351 		}
2352 
2353 		/* Then transmit interrupts. */
2354 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2355 			sk_txeof(sc_if0);
2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2357 			    SK_TXBMU_CLR_IRQ_EOF);
2358 		}
2359 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2360 			sk_txeof(sc_if1);
2361 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2362 			    SK_TXBMU_CLR_IRQ_EOF);
2363 		}
2364 
2365 		/* Then MAC interrupts. */
2366 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2367 		    (ifp0->if_flags & IFF_RUNNING)) {
2368 			if (sc->sk_type == SK_GENESIS)
2369 				sk_intr_xmac(sc_if0);
2370 			else
2371 				sk_intr_yukon(sc_if0);
2372 		}
2373 
2374 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2375 		    (ifp1->if_flags & IFF_RUNNING)) {
2376 			if (sc->sk_type == SK_GENESIS)
2377 				sk_intr_xmac(sc_if1);
2378 			else
2379 				sk_intr_yukon(sc_if1);
2380 
2381 		}
2382 
2383 		if (status & SK_ISR_EXTERNAL_REG) {
2384 			if (sc_if0 != NULL &&
2385 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2386 				sk_intr_bcom(sc_if0);
2387 
2388 			if (sc_if1 != NULL &&
2389 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2390 				sk_intr_bcom(sc_if1);
2391 		}
2392 	}
2393 
2394 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2395 
2396 	if (ifp0 != NULL)
2397 		if_schedule_deferred_start(ifp0);
2398 	if (ifp1 != NULL)
2399 		if_schedule_deferred_start(ifp1);
2400 
2401 	KASSERT(sc->rnd_attached > 0);
2402 	rnd_add_uint32(&sc->rnd_source, status);
2403 
2404 	if (sc->sk_int_mod_pending)
2405 		sk_update_int_mod(sc);
2406 
2407 	return claimed;
2408 }
2409 
2410 static void
sk_unreset_xmac(struct sk_if_softc * sc_if)2411 sk_unreset_xmac(struct sk_if_softc *sc_if)
2412 {
2413 	struct sk_softc		*sc = sc_if->sk_softc;
2414 	static const struct sk_bcom_hack     bhack[] = {
2415 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2416 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2417 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2418 	{ 0, 0 } };
2419 
2420 	DPRINTFN(1, ("sk_unreset_xmac\n"));
2421 
2422 	/* Unreset the XMAC. */
2423 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2424 	DELAY(1000);
2425 
2426 	/* Reset the XMAC's internal state. */
2427 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2428 
2429 	/* Save the XMAC II revision */
2430 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2431 
2432 	/*
2433 	 * Perform additional initialization for external PHYs,
2434 	 * namely for the 1000baseTX cards that use the XMAC's
2435 	 * GMII mode.
2436 	 */
2437 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2438 		int			i = 0;
2439 		uint32_t		val;
2440 		uint16_t		phyval;
2441 
2442 		/* Take PHY out of reset. */
2443 		val = sk_win_read_4(sc, SK_GPIO);
2444 		if (sc_if->sk_port == SK_PORT_A)
2445 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2446 		else
2447 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2448 		sk_win_write_4(sc, SK_GPIO, val);
2449 
2450 		/* Enable GMII mode on the XMAC. */
2451 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2452 
2453 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2454 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2455 		DELAY(10000);
2456 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2457 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2458 
2459 		/*
2460 		 * Early versions of the BCM5400 apparently have
2461 		 * a bug that requires them to have their reserved
2462 		 * registers initialized to some magic values. I don't
2463 		 * know what the numbers do, I'm just the messenger.
2464 		 */
2465 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2466 		    SK_PHYADDR_BCOM, 0x03, &phyval);
2467 		if (phyval == 0x6041) {
2468 			while (bhack[i].reg) {
2469 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2470 				    SK_PHYADDR_BCOM, bhack[i].reg,
2471 				    bhack[i].val);
2472 				i++;
2473 			}
2474 		}
2475 	}
2476 }
2477 
2478 static void
sk_init_xmac(struct sk_if_softc * sc_if)2479 sk_init_xmac(struct sk_if_softc *sc_if)
2480 {
2481 	struct sk_softc		*sc = sc_if->sk_softc;
2482 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2483 
2484 	sk_unreset_xmac(sc_if);
2485 
2486 	/* Set station address */
2487 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2488 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
2489 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2490 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
2491 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2492 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
2493 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2494 
2495 	if (ifp->if_flags & IFF_PROMISC)
2496 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2497 	else
2498 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2499 
2500 	if (ifp->if_flags & IFF_BROADCAST)
2501 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2502 	else
2503 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2504 
2505 	/* We don't need the FCS appended to the packet. */
2506 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2507 
2508 	/* We want short frames padded to 60 bytes. */
2509 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2510 
2511 	/*
2512 	 * Enable the reception of all error frames. This is
2513 	 * a necessary evil due to the design of the XMAC. The
2514 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2515 	 * frames can be up to 9000 bytes in length. When bad
2516 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2517 	 * in 'store and forward' mode. For this to work, the
2518 	 * entire frame has to fit into the FIFO, but that means
2519 	 * that jumbo frames larger than 8192 bytes will be
2520 	 * truncated. Disabling all bad frame filtering causes
2521 	 * the RX FIFO to operate in streaming mode, in which
2522 	 * case the XMAC will start transferring frames out of the
2523 	 * RX FIFO as soon as the FIFO threshold is reached.
2524 	 */
2525 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2526 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2527 	    XM_MODE_RX_INRANGELEN);
2528 
2529 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2530 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2531 	else
2532 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2533 
2534 	/*
2535 	 * Bump up the transmit threshold. This helps hold off transmit
2536 	 * underruns when we're blasting traffic from both ports at once.
2537 	 */
2538 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2539 
2540 	/* Set multicast filter */
2541 	sk_setmulti(sc_if);
2542 
2543 	/* Clear and enable interrupts */
2544 	SK_XM_READ_2(sc_if, XM_ISR);
2545 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2546 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2547 	else
2548 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2549 
2550 	/* Configure MAC arbiter */
2551 	switch (sc_if->sk_xmac_rev) {
2552 	case XM_XMAC_REV_B2:
2553 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2554 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2555 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2556 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2557 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2558 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2559 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2560 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2561 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2562 		break;
2563 	case XM_XMAC_REV_C1:
2564 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2565 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2566 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2567 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2568 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2569 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2570 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2571 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2572 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2573 		break;
2574 	default:
2575 		break;
2576 	}
2577 	sk_win_write_2(sc, SK_MACARB_CTL,
2578 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2579 
2580 	sc_if->sk_link = 1;
2581 }
2582 
2583 static void
sk_unreset_yukon(struct sk_if_softc * sc_if)2584 sk_unreset_yukon(struct sk_if_softc *sc_if)
2585 {
2586 	uint32_t		/*mac, */phy;
2587 	struct sk_softc		*sc;
2588 
2589 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2590 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2591 
2592 	sc = sc_if->sk_softc;
2593 	if (sc->sk_type == SK_YUKON_LITE &&
2594 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2595 		/* Take PHY out of reset. */
2596 		sk_win_write_4(sc, SK_GPIO,
2597 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2598 		    & ~SK_GPIO_DAT9);
2599 	}
2600 
2601 	/* GMAC and GPHY Reset */
2602 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2603 
2604 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2605 
2606 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2607 	DELAY(1000);
2608 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2609 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2610 	DELAY(1000);
2611 
2612 
2613 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2614 
2615 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2616 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2617 
2618 	switch (sc_if->sk_softc->sk_pmd) {
2619 	case IFM_1000_SX:
2620 	case IFM_1000_LX:
2621 		phy |= SK_GPHY_FIBER;
2622 		break;
2623 
2624 	case IFM_1000_CX:
2625 	case IFM_1000_T:
2626 		phy |= SK_GPHY_COPPER;
2627 		break;
2628 	}
2629 
2630 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2631 
2632 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2633 	DELAY(1000);
2634 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2635 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2636 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2637 
2638 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2639 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2640 }
2641 
2642 static void
sk_init_yukon(struct sk_if_softc * sc_if)2643 sk_init_yukon(struct sk_if_softc *sc_if)
2644 {
2645 	uint16_t		reg;
2646 	int			i;
2647 
2648 	DPRINTFN(1, ("sk_init_yukon: start\n"));
2649 	sk_unreset_yukon(sc_if);
2650 
2651 	/* unused read of the interrupt source register */
2652 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2653 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2654 
2655 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2656 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2657 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2658 
2659 	/* MIB Counter Clear Mode set */
2660 	reg |= YU_PAR_MIB_CLR;
2661 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2662 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2663 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2664 
2665 	/* MIB Counter Clear Mode clear */
2666 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2667 	reg &= ~YU_PAR_MIB_CLR;
2668 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2669 
2670 	/* receive control reg */
2671 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2672 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2673 		      YU_RCR_CRCR);
2674 
2675 	/* transmit parameter register */
2676 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2677 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2678 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2679 
2680 	/* serial mode register */
2681 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2682 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2683 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2684 		      YU_SMR_IPG_DATA(0x1e));
2685 
2686 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2687 	/* Setup Yukon's address */
2688 	for (i = 0; i < 3; i++) {
2689 		/* Write Source Address 1 (unicast filter) */
2690 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2691 			      sc_if->sk_enaddr[i * 2] |
2692 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2693 	}
2694 
2695 	for (i = 0; i < 3; i++) {
2696 		reg = sk_win_read_2(sc_if->sk_softc,
2697 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2698 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2699 	}
2700 
2701 	/* Set multicast filter */
2702 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2703 	sk_setmulti(sc_if);
2704 
2705 	/* enable interrupt mask for counter overflows */
2706 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2707 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2708 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2709 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2710 
2711 	/* Configure RX MAC FIFO */
2712 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2713 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2714 
2715 	/* Configure TX MAC FIFO */
2716 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2717 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2718 
2719 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2720 }
2721 
2722 /*
2723  * Note that to properly initialize any part of the GEnesis chip,
2724  * you first have to take it out of reset mode.
2725  */
2726 static int
sk_init(struct ifnet * ifp)2727 sk_init(struct ifnet *ifp)
2728 {
2729 	struct sk_if_softc	*sc_if = ifp->if_softc;
2730 	struct sk_softc		*sc = sc_if->sk_softc;
2731 	struct mii_data		*mii = &sc_if->sk_mii;
2732 	int			rc = 0, s;
2733 	uint32_t		imr, imtimer_ticks;
2734 
2735 	DPRINTFN(1, ("sk_init\n"));
2736 
2737 	s = splnet();
2738 
2739 	if (ifp->if_flags & IFF_RUNNING) {
2740 		splx(s);
2741 		return 0;
2742 	}
2743 
2744 	/* Cancel pending I/O and free all RX/TX buffers. */
2745 	sk_stop(ifp, 0);
2746 
2747 	if (sc->sk_type == SK_GENESIS) {
2748 		/* Configure LINK_SYNC LED */
2749 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2750 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2751 			      SK_LINKLED_LINKSYNC_ON);
2752 
2753 		/* Configure RX LED */
2754 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2755 			      SK_RXLEDCTL_COUNTER_START);
2756 
2757 		/* Configure TX LED */
2758 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2759 			      SK_TXLEDCTL_COUNTER_START);
2760 	}
2761 
2762 	/* Configure I2C registers */
2763 
2764 	/* Configure XMAC(s) */
2765 	switch (sc->sk_type) {
2766 	case SK_GENESIS:
2767 		sk_init_xmac(sc_if);
2768 		break;
2769 	case SK_YUKON:
2770 	case SK_YUKON_LITE:
2771 	case SK_YUKON_LP:
2772 		sk_init_yukon(sc_if);
2773 		break;
2774 	}
2775 	if ((rc = mii_mediachg(mii)) == ENXIO)
2776 		rc = 0;
2777 	else if (rc != 0)
2778 		goto out;
2779 
2780 	if (sc->sk_type == SK_GENESIS) {
2781 		/* Configure MAC FIFOs */
2782 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2783 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2784 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2785 
2786 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2787 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2788 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2789 	}
2790 
2791 	/* Configure transmit arbiter(s) */
2792 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2793 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2794 
2795 	/* Configure RAMbuffers */
2796 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2797 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2798 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2799 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2802 
2803 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2804 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2805 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2810 
2811 	/* Configure BMUs */
2812 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2813 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2814 	    SK_RX_RING_ADDR(sc_if, 0));
2815 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2816 
2817 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2818 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2819 	    SK_TX_RING_ADDR(sc_if, 0));
2820 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2821 
2822 	/* Init descriptors */
2823 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2824 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2825 		    "memory for rx buffers\n");
2826 		sk_stop(ifp, 0);
2827 		splx(s);
2828 		return ENOBUFS;
2829 	}
2830 
2831 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2832 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2833 		    "memory for tx buffers\n");
2834 		sk_stop(ifp, 0);
2835 		splx(s);
2836 		return ENOBUFS;
2837 	}
2838 
2839 	/* Set interrupt moderation if changed via sysctl. */
2840 	switch (sc->sk_type) {
2841 	case SK_GENESIS:
2842 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2843 		break;
2844 	case SK_YUKON_EC:
2845 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2846 		break;
2847 	default:
2848 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2849 	}
2850 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2851 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2852 		sk_win_write_4(sc, SK_IMTIMERINIT,
2853 		    SK_IM_USECS(sc->sk_int_mod));
2854 		aprint_verbose_dev(sc->sk_dev,
2855 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2856 	}
2857 
2858 	/* Configure interrupt handling */
2859 	CSR_READ_4(sc, SK_ISSR);
2860 	if (sc_if->sk_port == SK_PORT_A)
2861 		sc->sk_intrmask |= SK_INTRS1;
2862 	else
2863 		sc->sk_intrmask |= SK_INTRS2;
2864 
2865 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2866 
2867 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2868 
2869 	/* Start BMUs. */
2870 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2871 
2872 	if (sc->sk_type == SK_GENESIS) {
2873 		/* Enable XMACs TX and RX state machines */
2874 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2875 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2876 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2877 	}
2878 
2879 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2880 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2881 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2882 #if 0
2883 		/* XXX disable 100Mbps and full duplex mode? */
2884 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2885 #endif
2886 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2887 	}
2888 
2889 
2890 	ifp->if_flags |= IFF_RUNNING;
2891 	ifp->if_flags &= ~IFF_OACTIVE;
2892 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2893 
2894 out:
2895 	splx(s);
2896 	return rc;
2897 }
2898 
2899 static void
sk_stop(struct ifnet * ifp,int disable)2900 sk_stop(struct ifnet *ifp, int disable)
2901 {
2902 	struct sk_if_softc	*sc_if = ifp->if_softc;
2903 	struct sk_softc		*sc = sc_if->sk_softc;
2904 	int			i;
2905 
2906 	DPRINTFN(1, ("sk_stop\n"));
2907 
2908 	callout_stop(&sc_if->sk_tick_ch);
2909 
2910 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2911 		uint32_t		val;
2912 
2913 		/* Put PHY back into reset. */
2914 		val = sk_win_read_4(sc, SK_GPIO);
2915 		if (sc_if->sk_port == SK_PORT_A) {
2916 			val |= SK_GPIO_DIR0;
2917 			val &= ~SK_GPIO_DAT0;
2918 		} else {
2919 			val |= SK_GPIO_DIR2;
2920 			val &= ~SK_GPIO_DAT2;
2921 		}
2922 		sk_win_write_4(sc, SK_GPIO, val);
2923 	}
2924 
2925 	/* Turn off various components of this interface. */
2926 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2927 	switch (sc->sk_type) {
2928 	case SK_GENESIS:
2929 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2930 			      SK_TXMACCTL_XMAC_RESET);
2931 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2932 		break;
2933 	case SK_YUKON:
2934 	case SK_YUKON_LITE:
2935 	case SK_YUKON_LP:
2936 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2937 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2938 		break;
2939 	}
2940 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2941 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2942 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2943 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2944 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2945 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2946 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2947 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2948 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2949 
2950 	/* Disable interrupts */
2951 	if (sc_if->sk_port == SK_PORT_A)
2952 		sc->sk_intrmask &= ~SK_INTRS1;
2953 	else
2954 		sc->sk_intrmask &= ~SK_INTRS2;
2955 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2956 
2957 	SK_XM_READ_2(sc_if, XM_ISR);
2958 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2959 
2960 	/* Free RX and TX mbufs still in the queues. */
2961 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2962 		m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2963 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2964 	}
2965 
2966 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2967 		m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2968 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2969 	}
2970 
2971 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2972 }
2973 
2974 /* Power Management Framework */
2975 
2976 static bool
skc_suspend(device_t dv,const pmf_qual_t * qual)2977 skc_suspend(device_t dv, const pmf_qual_t *qual)
2978 {
2979 	struct sk_softc *sc = device_private(dv);
2980 
2981 	DPRINTFN(2, ("skc_suspend\n"));
2982 
2983 	/* Turn off the driver is loaded LED */
2984 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2985 
2986 	return true;
2987 }
2988 
2989 static bool
skc_resume(device_t dv,const pmf_qual_t * qual)2990 skc_resume(device_t dv, const pmf_qual_t *qual)
2991 {
2992 	struct sk_softc *sc = device_private(dv);
2993 
2994 	DPRINTFN(2, ("skc_resume\n"));
2995 
2996 	sk_reset(sc);
2997 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2998 
2999 	return true;
3000 }
3001 
3002 static bool
sk_resume(device_t dv,const pmf_qual_t * qual)3003 sk_resume(device_t dv, const pmf_qual_t *qual)
3004 {
3005 	struct sk_if_softc *sc_if = device_private(dv);
3006 
3007 	sk_init_yukon(sc_if);
3008 	return true;
3009 }
3010 
3011 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3012     skc_probe, skc_attach, NULL, NULL);
3013 
3014 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3015     sk_probe, sk_attach, NULL, NULL);
3016 
3017 #ifdef SK_DEBUG
3018 static void
sk_dump_txdesc(struct sk_tx_desc * desc,int idx)3019 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3020 {
3021 #define DESC_PRINT(X)					\
3022 	if (X)						\
3023 		printf("txdesc[%d]." #X "=%#x\n",	\
3024 		       idx, X);
3025 
3026 	DESC_PRINT(le32toh(desc->sk_ctl));
3027 	DESC_PRINT(le32toh(desc->sk_next));
3028 	DESC_PRINT(le32toh(desc->sk_data_lo));
3029 	DESC_PRINT(le32toh(desc->sk_data_hi));
3030 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3031 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3032 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3033 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3034 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3035 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3036 #undef PRINT
3037 }
3038 
3039 static void
sk_dump_bytes(const char * data,int len)3040 sk_dump_bytes(const char *data, int len)
3041 {
3042 	int c, i, j;
3043 
3044 	for (i = 0; i < len; i += 16) {
3045 		printf("%08x  ", i);
3046 		c = len - i;
3047 		if (c > 16) c = 16;
3048 
3049 		for (j = 0; j < c; j++) {
3050 			printf("%02x ", data[i + j] & 0xff);
3051 			if ((j & 0xf) == 7 && j > 0)
3052 				printf(" ");
3053 		}
3054 
3055 		for (; j < 16; j++)
3056 			printf("   ");
3057 		printf("  ");
3058 
3059 		for (j = 0; j < c; j++) {
3060 			int ch = data[i + j] & 0xff;
3061 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3062 		}
3063 
3064 		printf("\n");
3065 
3066 		if (c < 16)
3067 			break;
3068 	}
3069 }
3070 
3071 static void
sk_dump_mbuf(struct mbuf * m)3072 sk_dump_mbuf(struct mbuf *m)
3073 {
3074 	int count = m->m_pkthdr.len;
3075 
3076 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3077 
3078 	while (count > 0 && m) {
3079 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3080 		       m, m->m_data, m->m_len);
3081 		sk_dump_bytes(mtod(m, char *), m->m_len);
3082 
3083 		count -= m->m_len;
3084 		m = m->m_next;
3085 	}
3086 }
3087 #endif
3088 
3089 static int
sk_sysctl_handler(SYSCTLFN_ARGS)3090 sk_sysctl_handler(SYSCTLFN_ARGS)
3091 {
3092 	int error, t;
3093 	struct sysctlnode node;
3094 	struct sk_softc *sc;
3095 
3096 	node = *rnode;
3097 	sc = node.sysctl_data;
3098 	t = sc->sk_int_mod;
3099 	node.sysctl_data = &t;
3100 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3101 	if (error || newp == NULL)
3102 		return error;
3103 
3104 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3105 		return EINVAL;
3106 
3107 	/* update the softc with sysctl-changed value, and mark
3108 	   for hardware update */
3109 	sc->sk_int_mod = t;
3110 	sc->sk_int_mod_pending = 1;
3111 	return 0;
3112 }
3113 
3114 /*
3115  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3116  * set up in skc_attach()
3117  */
3118 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3119 {
3120 	int rc;
3121 	const struct sysctlnode *node;
3122 
3123 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3124 	    0, CTLTYPE_NODE, "sk",
3125 	    SYSCTL_DESCR("sk interface controls"),
3126 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3127 		goto err;
3128 	}
3129 
3130 	sk_root_num = node->sysctl_num;
3131 	return;
3132 
3133 err:
3134 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3135 }
3136