xref: /spdk/lib/nvme/nvme_rdma.c (revision d58eef2a29f5d65b15a72162d9d79db68f27aa81)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2016 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 /*
8  * NVMe over RDMA transport
9  */
10 
11 #include "spdk/stdinc.h"
12 
13 #include "spdk/assert.h"
14 #include "spdk/dma.h"
15 #include "spdk/log.h"
16 #include "spdk/trace.h"
17 #include "spdk/queue.h"
18 #include "spdk/nvme.h"
19 #include "spdk/nvmf_spec.h"
20 #include "spdk/string.h"
21 #include "spdk/endian.h"
22 #include "spdk/likely.h"
23 #include "spdk/config.h"
24 
25 #include "nvme_internal.h"
26 #include "spdk_internal/rdma_provider.h"
27 #include "spdk_internal/rdma_utils.h"
28 
29 #define NVME_RDMA_TIME_OUT_IN_MS 2000
30 #define NVME_RDMA_RW_BUFFER_SIZE 131072
31 
32 /*
33  * NVME RDMA qpair Resource Defaults
34  */
35 #define NVME_RDMA_DEFAULT_TX_SGE		2
36 #define NVME_RDMA_DEFAULT_RX_SGE		1
37 
38 /* Max number of NVMe-oF SGL descriptors supported by the host */
39 #define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
40 
41 /* number of STAILQ entries for holding pending RDMA CM events. */
42 #define NVME_RDMA_NUM_CM_EVENTS			256
43 
44 /* The default size for a shared rdma completion queue. */
45 #define DEFAULT_NVME_RDMA_CQ_SIZE		4096
46 
47 /*
48  * In the special case of a stale connection we don't expose a mechanism
49  * for the user to retry the connection so we need to handle it internally.
50  */
51 #define NVME_RDMA_STALE_CONN_RETRY_MAX		5
52 #define NVME_RDMA_STALE_CONN_RETRY_DELAY_US	10000
53 
54 /*
55  * Maximum value of transport_retry_count used by RDMA controller
56  */
57 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT	7
58 
59 /*
60  * Maximum value of transport_ack_timeout used by RDMA controller
61  */
62 #define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT	31
63 
64 /*
65  * Number of microseconds to wait until the lingering qpair becomes quiet.
66  */
67 #define NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US	1000000ull
68 
69 /*
70  * The max length of keyed SGL data block (3 bytes)
71  */
72 #define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
73 
74 #define WC_PER_QPAIR(queue_depth)	(queue_depth * 2)
75 
76 #define NVME_RDMA_POLL_GROUP_CHECK_QPN(_rqpair, qpn)				\
77 	((_rqpair)->rdma_qp && (_rqpair)->rdma_qp->qp->qp_num == (qpn))	\
78 
79 enum nvme_rdma_wr_type {
80 	RDMA_WR_TYPE_RECV,
81 	RDMA_WR_TYPE_SEND,
82 };
83 
84 struct nvme_rdma_wr {
85 	/* Using this instead of the enum allows this struct to only occupy one byte. */
86 	uint8_t	type;
87 };
88 
89 struct spdk_nvmf_cmd {
90 	struct spdk_nvme_cmd cmd;
91 	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
92 };
93 
94 struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
95 
96 /* STAILQ wrapper for cm events. */
97 struct nvme_rdma_cm_event_entry {
98 	struct rdma_cm_event			*evt;
99 	STAILQ_ENTRY(nvme_rdma_cm_event_entry)	link;
100 };
101 
102 /* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
103 struct nvme_rdma_ctrlr {
104 	struct spdk_nvme_ctrlr			ctrlr;
105 
106 	uint16_t				max_sge;
107 
108 	struct rdma_event_channel		*cm_channel;
109 
110 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	pending_cm_events;
111 
112 	STAILQ_HEAD(, nvme_rdma_cm_event_entry)	free_cm_events;
113 
114 	struct nvme_rdma_cm_event_entry		*cm_events;
115 };
116 
117 struct nvme_rdma_poller_stats {
118 	uint64_t polls;
119 	uint64_t idle_polls;
120 	uint64_t queued_requests;
121 	uint64_t completions;
122 	struct spdk_rdma_provider_qp_stats rdma_stats;
123 };
124 
125 struct nvme_rdma_poll_group;
126 struct nvme_rdma_rsps;
127 
128 struct nvme_rdma_poller {
129 	struct ibv_context		*device;
130 	struct ibv_cq			*cq;
131 	struct spdk_rdma_provider_srq	*srq;
132 	struct nvme_rdma_rsps		*rsps;
133 	struct ibv_pd			*pd;
134 	struct spdk_rdma_utils_mem_map	*mr_map;
135 	uint32_t			refcnt;
136 	int				required_num_wc;
137 	int				current_num_wc;
138 	struct nvme_rdma_poller_stats	stats;
139 	struct nvme_rdma_poll_group	*group;
140 	STAILQ_ENTRY(nvme_rdma_poller)	link;
141 };
142 
143 struct nvme_rdma_qpair;
144 
145 struct nvme_rdma_poll_group {
146 	struct spdk_nvme_transport_poll_group		group;
147 	STAILQ_HEAD(, nvme_rdma_poller)			pollers;
148 	uint32_t					num_pollers;
149 	TAILQ_HEAD(, nvme_rdma_qpair)			connecting_qpairs;
150 	TAILQ_HEAD(, nvme_rdma_qpair)			active_qpairs;
151 };
152 
153 enum nvme_rdma_qpair_state {
154 	NVME_RDMA_QPAIR_STATE_INVALID = 0,
155 	NVME_RDMA_QPAIR_STATE_STALE_CONN,
156 	NVME_RDMA_QPAIR_STATE_INITIALIZING,
157 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND,
158 	NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL,
159 	NVME_RDMA_QPAIR_STATE_AUTHENTICATING,
160 	NVME_RDMA_QPAIR_STATE_RUNNING,
161 	NVME_RDMA_QPAIR_STATE_EXITING,
162 	NVME_RDMA_QPAIR_STATE_LINGERING,
163 	NVME_RDMA_QPAIR_STATE_EXITED,
164 };
165 
166 typedef int (*nvme_rdma_cm_event_cb)(struct nvme_rdma_qpair *rqpair, int ret);
167 
168 struct nvme_rdma_rsp_opts {
169 	uint16_t				num_entries;
170 	struct nvme_rdma_qpair			*rqpair;
171 	struct spdk_rdma_provider_srq		*srq;
172 	struct spdk_rdma_utils_mem_map		*mr_map;
173 };
174 
175 struct nvme_rdma_rsps {
176 	/* Parallel arrays of response buffers + response SGLs of size num_entries */
177 	struct ibv_sge				*rsp_sgls;
178 	struct spdk_nvme_rdma_rsp		*rsps;
179 
180 	struct ibv_recv_wr			*rsp_recv_wrs;
181 
182 	/* Count of outstanding recv objects */
183 	uint16_t				current_num_recvs;
184 
185 	uint16_t				num_entries;
186 };
187 
188 /* NVMe RDMA qpair extensions for spdk_nvme_qpair */
189 struct nvme_rdma_qpair {
190 	struct spdk_nvme_qpair			qpair;
191 
192 	struct spdk_rdma_provider_qp		*rdma_qp;
193 	struct rdma_cm_id			*cm_id;
194 	struct ibv_cq				*cq;
195 	struct spdk_rdma_provider_srq		*srq;
196 
197 	struct	spdk_nvme_rdma_req		*rdma_reqs;
198 
199 	uint32_t				max_send_sge;
200 
201 	uint16_t				num_entries;
202 
203 	bool					delay_cmd_submit;
204 	/* Append copy task even if no accel sequence is attached to IO.
205 	 * Result is UMR configured per IO data buffer */
206 	bool					append_copy;
207 
208 	uint32_t				num_completions;
209 	uint32_t				num_outstanding_reqs;
210 
211 	struct nvme_rdma_rsps			*rsps;
212 
213 	/*
214 	 * Array of num_entries NVMe commands registered as RDMA message buffers.
215 	 * Indexed by rdma_req->id.
216 	 */
217 	struct spdk_nvmf_cmd			*cmds;
218 
219 	struct spdk_rdma_utils_mem_map		*mr_map;
220 
221 	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
222 	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
223 
224 	/* Count of outstanding send objects */
225 	uint16_t				current_num_sends;
226 
227 	TAILQ_ENTRY(nvme_rdma_qpair)		link_active;
228 
229 	/* Placed at the end of the struct since it is not used frequently */
230 	struct rdma_cm_event			*evt;
231 	struct nvme_rdma_poller			*poller;
232 
233 	uint64_t				evt_timeout_ticks;
234 	nvme_rdma_cm_event_cb			evt_cb;
235 	enum rdma_cm_event_type			expected_evt_type;
236 
237 	enum nvme_rdma_qpair_state		state;
238 
239 	bool					in_connect_poll;
240 
241 	uint8_t					stale_conn_retry_count;
242 	bool					need_destroy;
243 	TAILQ_ENTRY(nvme_rdma_qpair)		link_connecting;
244 };
245 
246 enum NVME_RDMA_COMPLETION_FLAGS {
247 	NVME_RDMA_SEND_COMPLETED = 1u << 0,
248 	NVME_RDMA_RECV_COMPLETED = 1u << 1,
249 };
250 
251 struct spdk_nvme_rdma_req {
252 	uint16_t				id;
253 	uint16_t				completion_flags: 2;
254 	uint16_t				in_progress_accel: 1;
255 	uint16_t				reserved: 13;
256 	/* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
257 	 * during processing of RDMA_SEND. To complete the request we must know the response
258 	 * received in RDMA_RECV, so store it in this field */
259 	struct spdk_nvme_rdma_rsp		*rdma_rsp;
260 
261 	struct nvme_rdma_wr			rdma_wr;
262 
263 	struct ibv_send_wr			send_wr;
264 
265 	struct nvme_request			*req;
266 
267 	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
268 
269 	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
270 
271 	/* Fields below are not used in regular IO path, keep them last */
272 	spdk_memory_domain_data_cpl_cb		transfer_cpl_cb;
273 	void					*transfer_cpl_cb_arg;
274 	/* Accel sequence API works with iovec pointer, we need to store result of next_sge callback */
275 	struct iovec				iovs[NVME_RDMA_MAX_SGL_DESCRIPTORS];
276 };
277 
278 struct spdk_nvme_rdma_rsp {
279 	struct spdk_nvme_cpl	cpl;
280 	struct nvme_rdma_qpair	*rqpair;
281 	struct ibv_recv_wr	*recv_wr;
282 	struct nvme_rdma_wr	rdma_wr;
283 };
284 
285 struct nvme_rdma_memory_translation_ctx {
286 	void *addr;
287 	size_t length;
288 	uint32_t lkey;
289 	uint32_t rkey;
290 };
291 
292 static const char *rdma_cm_event_str[] = {
293 	"RDMA_CM_EVENT_ADDR_RESOLVED",
294 	"RDMA_CM_EVENT_ADDR_ERROR",
295 	"RDMA_CM_EVENT_ROUTE_RESOLVED",
296 	"RDMA_CM_EVENT_ROUTE_ERROR",
297 	"RDMA_CM_EVENT_CONNECT_REQUEST",
298 	"RDMA_CM_EVENT_CONNECT_RESPONSE",
299 	"RDMA_CM_EVENT_CONNECT_ERROR",
300 	"RDMA_CM_EVENT_UNREACHABLE",
301 	"RDMA_CM_EVENT_REJECTED",
302 	"RDMA_CM_EVENT_ESTABLISHED",
303 	"RDMA_CM_EVENT_DISCONNECTED",
304 	"RDMA_CM_EVENT_DEVICE_REMOVAL",
305 	"RDMA_CM_EVENT_MULTICAST_JOIN",
306 	"RDMA_CM_EVENT_MULTICAST_ERROR",
307 	"RDMA_CM_EVENT_ADDR_CHANGE",
308 	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
309 };
310 
311 static struct nvme_rdma_poller *nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group,
312 		struct ibv_context *device);
313 static void nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group,
314 		struct nvme_rdma_poller *poller);
315 
316 static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
317 		struct spdk_nvme_qpair *qpair);
318 
319 static inline int nvme_rdma_memory_domain_transfer_data(struct spdk_memory_domain *dst_domain,
320 		void *dst_domain_ctx,
321 		struct iovec *dst_iov, uint32_t dst_iovcnt,
322 		struct spdk_memory_domain *src_domain, void *src_domain_ctx,
323 		struct iovec *src_iov, uint32_t src_iovcnt,
324 		struct spdk_memory_domain_translation_result *translation,
325 		spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg);
326 
327 static inline int _nvme_rdma_qpair_submit_request(struct nvme_rdma_qpair *rqpair,
328 		struct spdk_nvme_rdma_req *rdma_req);
329 
330 static inline struct nvme_rdma_qpair *
331 nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
332 {
333 	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
334 	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
335 }
336 
337 static inline struct nvme_rdma_poll_group *
338 nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
339 {
340 	return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
341 }
342 
343 static inline struct nvme_rdma_ctrlr *
344 nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
345 {
346 	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
347 	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
348 }
349 
350 static inline struct spdk_nvme_rdma_req *
351 nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
352 {
353 	struct spdk_nvme_rdma_req *rdma_req;
354 
355 	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
356 	if (spdk_likely(rdma_req)) {
357 		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
358 	}
359 
360 	return rdma_req;
361 }
362 
363 static inline void
364 nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
365 {
366 	rdma_req->completion_flags = 0;
367 	rdma_req->req = NULL;
368 	rdma_req->rdma_rsp = NULL;
369 	assert(rdma_req->transfer_cpl_cb == NULL);
370 	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
371 }
372 
373 static inline void
374 nvme_rdma_finish_data_transfer(struct spdk_nvme_rdma_req *rdma_req, int rc)
375 {
376 	spdk_memory_domain_data_cpl_cb cb = rdma_req->transfer_cpl_cb;
377 
378 	SPDK_DEBUGLOG(nvme, "req %p, finish data transfer, rc %d\n", rdma_req, rc);
379 	rdma_req->transfer_cpl_cb = NULL;
380 	assert(cb);
381 	cb(rdma_req->transfer_cpl_cb_arg, rc);
382 }
383 
384 static void
385 nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
386 		       struct spdk_nvme_cpl *rsp,
387 		       bool print_on_error)
388 {
389 	struct nvme_request *req = rdma_req->req;
390 	struct nvme_rdma_qpair *rqpair;
391 	struct spdk_nvme_qpair *qpair;
392 	bool error, print_error;
393 
394 	assert(req != NULL);
395 
396 	qpair = req->qpair;
397 	rqpair = nvme_rdma_qpair(qpair);
398 
399 	error = spdk_nvme_cpl_is_error(rsp);
400 	print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging;
401 
402 	if (print_error) {
403 		spdk_nvme_qpair_print_command(qpair, &req->cmd);
404 	}
405 
406 	if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) {
407 		spdk_nvme_qpair_print_completion(qpair, rsp);
408 	}
409 
410 	assert(rqpair->num_outstanding_reqs > 0);
411 	rqpair->num_outstanding_reqs--;
412 
413 	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
414 
415 	nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, rsp);
416 	nvme_rdma_req_put(rqpair, rdma_req);
417 }
418 
419 static const char *
420 nvme_rdma_cm_event_str_get(uint32_t event)
421 {
422 	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
423 		return rdma_cm_event_str[event];
424 	} else {
425 		return "Undefined";
426 	}
427 }
428 
429 
430 static int
431 nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
432 {
433 	struct rdma_cm_event				*event = rqpair->evt;
434 	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
435 	int						rc = 0;
436 
437 	if (event) {
438 		switch (event->event) {
439 		case RDMA_CM_EVENT_ADDR_RESOLVED:
440 		case RDMA_CM_EVENT_ADDR_ERROR:
441 		case RDMA_CM_EVENT_ROUTE_RESOLVED:
442 		case RDMA_CM_EVENT_ROUTE_ERROR:
443 			break;
444 		case RDMA_CM_EVENT_CONNECT_REQUEST:
445 			break;
446 		case RDMA_CM_EVENT_CONNECT_ERROR:
447 			break;
448 		case RDMA_CM_EVENT_UNREACHABLE:
449 		case RDMA_CM_EVENT_REJECTED:
450 			break;
451 		case RDMA_CM_EVENT_CONNECT_RESPONSE:
452 			rc = spdk_rdma_provider_qp_complete_connect(rqpair->rdma_qp);
453 		/* fall through */
454 		case RDMA_CM_EVENT_ESTABLISHED:
455 			accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
456 			if (accept_data == NULL) {
457 				rc = -1;
458 			} else {
459 				SPDK_DEBUGLOG(nvme, "Requested queue depth %d. Target receive queue depth %d.\n",
460 					      rqpair->num_entries + 1, accept_data->crqsize);
461 			}
462 			break;
463 		case RDMA_CM_EVENT_DISCONNECTED:
464 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
465 			break;
466 		case RDMA_CM_EVENT_DEVICE_REMOVAL:
467 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
468 			rqpair->need_destroy = true;
469 			break;
470 		case RDMA_CM_EVENT_MULTICAST_JOIN:
471 		case RDMA_CM_EVENT_MULTICAST_ERROR:
472 			break;
473 		case RDMA_CM_EVENT_ADDR_CHANGE:
474 			rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
475 			break;
476 		case RDMA_CM_EVENT_TIMEWAIT_EXIT:
477 			break;
478 		default:
479 			SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
480 			break;
481 		}
482 		rqpair->evt = NULL;
483 		rdma_ack_cm_event(event);
484 	}
485 
486 	return rc;
487 }
488 
489 /*
490  * This function must be called under the nvme controller's lock
491  * because it touches global controller variables. The lock is taken
492  * by the generic transport code before invoking a few of the functions
493  * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
494  * and conditionally nvme_rdma_qpair_process_completions when it is calling
495  * completions on the admin qpair. When adding a new call to this function, please
496  * verify that it is in a situation where it falls under the lock.
497  */
498 static int
499 nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
500 {
501 	struct nvme_rdma_cm_event_entry	*entry, *tmp;
502 	struct nvme_rdma_qpair		*event_qpair;
503 	struct rdma_cm_event		*event;
504 	struct rdma_event_channel	*channel = rctrlr->cm_channel;
505 
506 	STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
507 		event_qpair = entry->evt->id->context;
508 		if (event_qpair->evt == NULL) {
509 			event_qpair->evt = entry->evt;
510 			STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
511 			STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
512 		}
513 	}
514 
515 	while (rdma_get_cm_event(channel, &event) == 0) {
516 		event_qpair = event->id->context;
517 		if (event_qpair->evt == NULL) {
518 			event_qpair->evt = event;
519 		} else {
520 			assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
521 			entry = STAILQ_FIRST(&rctrlr->free_cm_events);
522 			if (entry == NULL) {
523 				rdma_ack_cm_event(event);
524 				return -ENOMEM;
525 			}
526 			STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
527 			entry->evt = event;
528 			STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
529 		}
530 	}
531 
532 	/* rdma_get_cm_event() returns -1 on error. If an error occurs, errno
533 	 * will be set to indicate the failure reason. So return negated errno here.
534 	 */
535 	return -errno;
536 }
537 
538 static int
539 nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
540 			    struct rdma_cm_event *reaped_evt)
541 {
542 	int rc = -EBADMSG;
543 
544 	if (expected_evt_type == reaped_evt->event) {
545 		return 0;
546 	}
547 
548 	switch (expected_evt_type) {
549 	case RDMA_CM_EVENT_ESTABLISHED:
550 		/*
551 		 * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
552 		 * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
553 		 * the same values here.
554 		 */
555 		if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
556 			rc = -ESTALE;
557 		} else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
558 			/*
559 			 *  If we are using a qpair which is not created using rdma cm API
560 			 *  then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
561 			 *  RDMA_CM_EVENT_ESTABLISHED.
562 			 */
563 			return 0;
564 		}
565 		break;
566 	default:
567 		break;
568 	}
569 
570 	SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
571 		    nvme_rdma_cm_event_str_get(expected_evt_type),
572 		    nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
573 		    reaped_evt->status);
574 	return rc;
575 }
576 
577 static int
578 nvme_rdma_process_event_start(struct nvme_rdma_qpair *rqpair,
579 			      enum rdma_cm_event_type evt,
580 			      nvme_rdma_cm_event_cb evt_cb)
581 {
582 	int	rc;
583 
584 	assert(evt_cb != NULL);
585 
586 	if (rqpair->evt != NULL) {
587 		rc = nvme_rdma_qpair_process_cm_event(rqpair);
588 		if (rc) {
589 			return rc;
590 		}
591 	}
592 
593 	rqpair->expected_evt_type = evt;
594 	rqpair->evt_cb = evt_cb;
595 	rqpair->evt_timeout_ticks = (g_spdk_nvme_transport_opts.rdma_cm_event_timeout_ms * 1000 *
596 				     spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + spdk_get_ticks();
597 
598 	return 0;
599 }
600 
601 static int
602 nvme_rdma_process_event_poll(struct nvme_rdma_qpair *rqpair)
603 {
604 	struct nvme_rdma_ctrlr	*rctrlr;
605 	int	rc = 0, rc2;
606 
607 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
608 	assert(rctrlr != NULL);
609 
610 	if (!rqpair->evt && spdk_get_ticks() < rqpair->evt_timeout_ticks) {
611 		rc = nvme_rdma_poll_events(rctrlr);
612 		if (rc == -EAGAIN || rc == -EWOULDBLOCK) {
613 			return rc;
614 		}
615 	}
616 
617 	if (rqpair->evt == NULL) {
618 		rc = -EADDRNOTAVAIL;
619 		goto exit;
620 	}
621 
622 	rc = nvme_rdma_validate_cm_event(rqpair->expected_evt_type, rqpair->evt);
623 
624 	rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
625 	/* bad message takes precedence over the other error codes from processing the event. */
626 	rc = rc == 0 ? rc2 : rc;
627 
628 exit:
629 	assert(rqpair->evt_cb != NULL);
630 	return rqpair->evt_cb(rqpair, rc);
631 }
632 
633 static int
634 nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
635 {
636 	int	current_num_wc, required_num_wc;
637 	int	max_cq_size;
638 
639 	required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
640 	current_num_wc = poller->current_num_wc;
641 	if (current_num_wc < required_num_wc) {
642 		current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
643 	}
644 
645 	max_cq_size = g_spdk_nvme_transport_opts.rdma_max_cq_size;
646 	if (max_cq_size != 0 && current_num_wc > max_cq_size) {
647 		current_num_wc = max_cq_size;
648 	}
649 
650 	if (poller->current_num_wc != current_num_wc) {
651 		SPDK_DEBUGLOG(nvme, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
652 			      current_num_wc);
653 		if (ibv_resize_cq(poller->cq, current_num_wc)) {
654 			SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
655 			return -1;
656 		}
657 
658 		poller->current_num_wc = current_num_wc;
659 	}
660 
661 	poller->required_num_wc = required_num_wc;
662 	return 0;
663 }
664 
665 static int
666 nvme_rdma_qpair_set_poller(struct spdk_nvme_qpair *qpair)
667 {
668 	struct nvme_rdma_qpair          *rqpair = nvme_rdma_qpair(qpair);
669 	struct nvme_rdma_poll_group     *group = nvme_rdma_poll_group(qpair->poll_group);
670 	struct nvme_rdma_poller         *poller;
671 
672 	assert(rqpair->cq == NULL);
673 
674 	poller = nvme_rdma_poll_group_get_poller(group, rqpair->cm_id->verbs);
675 	if (!poller) {
676 		SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
677 		return -EINVAL;
678 	}
679 
680 	if (!poller->srq) {
681 		if (nvme_rdma_resize_cq(rqpair, poller)) {
682 			nvme_rdma_poll_group_put_poller(group, poller);
683 			return -EPROTO;
684 		}
685 	}
686 
687 	rqpair->cq = poller->cq;
688 	rqpair->srq = poller->srq;
689 	if (rqpair->srq) {
690 		rqpair->rsps = poller->rsps;
691 	}
692 	rqpair->poller = poller;
693 	return 0;
694 }
695 
696 static int
697 nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
698 {
699 	int			rc;
700 	struct spdk_rdma_provider_qp_init_attr	attr = {};
701 	struct ibv_device_attr	dev_attr;
702 	struct nvme_rdma_ctrlr	*rctrlr;
703 	uint32_t num_cqe, max_num_cqe;
704 
705 	rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
706 	if (rc != 0) {
707 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
708 		return -1;
709 	}
710 
711 	if (rqpair->qpair.poll_group) {
712 		assert(!rqpair->cq);
713 		rc = nvme_rdma_qpair_set_poller(&rqpair->qpair);
714 		if (rc) {
715 			SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
716 			return -1;
717 		}
718 		assert(rqpair->cq);
719 	} else {
720 		num_cqe = rqpair->num_entries * 2;
721 		max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
722 		if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
723 			num_cqe = max_num_cqe;
724 		}
725 		rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, num_cqe, rqpair, NULL, 0);
726 		if (!rqpair->cq) {
727 			SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
728 			return -1;
729 		}
730 	}
731 
732 	rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
733 	if (g_nvme_hooks.get_ibv_pd) {
734 		attr.pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
735 	} else {
736 		attr.pd = spdk_rdma_utils_get_pd(rqpair->cm_id->verbs);
737 	}
738 
739 	attr.stats		= rqpair->poller ? &rqpair->poller->stats.rdma_stats : NULL;
740 	attr.send_cq		= rqpair->cq;
741 	attr.recv_cq		= rqpair->cq;
742 	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
743 	if (rqpair->srq) {
744 		attr.srq	= rqpair->srq->srq;
745 	} else {
746 		attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
747 	}
748 	attr.cap.max_send_sge	= spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
749 	attr.cap.max_recv_sge	= spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
750 	attr.domain_transfer	= spdk_rdma_provider_accel_sequence_supported() ?
751 				  nvme_rdma_memory_domain_transfer_data : NULL;
752 
753 	rqpair->rdma_qp = spdk_rdma_provider_qp_create(rqpair->cm_id, &attr);
754 
755 	if (!rqpair->rdma_qp) {
756 		return -1;
757 	}
758 
759 	/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
760 	rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
761 	rqpair->current_num_sends = 0;
762 
763 	rqpair->cm_id->context = rqpair;
764 
765 	return 0;
766 }
767 
768 static void
769 nvme_rdma_reset_failed_sends(struct nvme_rdma_qpair *rqpair,
770 			     struct ibv_send_wr *bad_send_wr)
771 {
772 	while (bad_send_wr != NULL) {
773 		assert(rqpair->current_num_sends > 0);
774 		rqpair->current_num_sends--;
775 		bad_send_wr = bad_send_wr->next;
776 	}
777 }
778 
779 static void
780 nvme_rdma_reset_failed_recvs(struct nvme_rdma_rsps *rsps,
781 			     struct ibv_recv_wr *bad_recv_wr, int rc)
782 {
783 	SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
784 		    rc, spdk_strerror(rc), bad_recv_wr);
785 	while (bad_recv_wr != NULL) {
786 		assert(rsps->current_num_recvs > 0);
787 		rsps->current_num_recvs--;
788 		bad_recv_wr = bad_recv_wr->next;
789 	}
790 }
791 
792 static inline int
793 nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
794 {
795 	struct ibv_send_wr *bad_send_wr = NULL;
796 	int rc;
797 
798 	rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
799 
800 	if (spdk_unlikely(rc)) {
801 		SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
802 			    rc, spdk_strerror(rc), bad_send_wr);
803 		nvme_rdma_reset_failed_sends(rqpair, bad_send_wr);
804 	}
805 
806 	return rc;
807 }
808 
809 static inline int
810 nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
811 {
812 	struct ibv_recv_wr *bad_recv_wr;
813 	int rc = 0;
814 
815 	rc = spdk_rdma_provider_qp_flush_recv_wrs(rqpair->rdma_qp, &bad_recv_wr);
816 	if (spdk_unlikely(rc)) {
817 		nvme_rdma_reset_failed_recvs(rqpair->rsps, bad_recv_wr, rc);
818 	}
819 
820 	return rc;
821 }
822 
823 static inline int
824 nvme_rdma_poller_submit_recvs(struct nvme_rdma_poller *poller)
825 {
826 	struct ibv_recv_wr *bad_recv_wr;
827 	int rc;
828 
829 	rc = spdk_rdma_provider_srq_flush_recv_wrs(poller->srq, &bad_recv_wr);
830 	if (spdk_unlikely(rc)) {
831 		nvme_rdma_reset_failed_recvs(poller->rsps, bad_recv_wr, rc);
832 	}
833 
834 	return rc;
835 }
836 
837 #define nvme_rdma_trace_ibv_sge(sg_list) \
838 	if (sg_list) { \
839 		SPDK_DEBUGLOG(nvme, "local addr %p length 0x%x lkey 0x%x\n", \
840 			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
841 	}
842 
843 static void
844 nvme_rdma_free_rsps(struct nvme_rdma_rsps *rsps)
845 {
846 	if (!rsps) {
847 		return;
848 	}
849 
850 	spdk_free(rsps->rsps);
851 	spdk_free(rsps->rsp_sgls);
852 	spdk_free(rsps->rsp_recv_wrs);
853 	spdk_free(rsps);
854 }
855 
856 static struct nvme_rdma_rsps *
857 nvme_rdma_create_rsps(struct nvme_rdma_rsp_opts *opts)
858 {
859 	struct nvme_rdma_rsps *rsps;
860 	struct spdk_rdma_utils_memory_translation translation;
861 	uint16_t i;
862 	int rc;
863 
864 	rsps = spdk_zmalloc(sizeof(*rsps), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
865 	if (!rsps) {
866 		SPDK_ERRLOG("Failed to allocate rsps object\n");
867 		return NULL;
868 	}
869 
870 	rsps->rsp_sgls = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_sgls), 0, NULL,
871 				      SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
872 	if (!rsps->rsp_sgls) {
873 		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
874 		goto fail;
875 	}
876 
877 	rsps->rsp_recv_wrs = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsp_recv_wrs), 0, NULL,
878 					  SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
879 	if (!rsps->rsp_recv_wrs) {
880 		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
881 		goto fail;
882 	}
883 
884 	rsps->rsps = spdk_zmalloc(opts->num_entries * sizeof(*rsps->rsps), 0, NULL,
885 				  SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
886 	if (!rsps->rsps) {
887 		SPDK_ERRLOG("can not allocate rdma rsps\n");
888 		goto fail;
889 	}
890 
891 	for (i = 0; i < opts->num_entries; i++) {
892 		struct ibv_sge *rsp_sgl = &rsps->rsp_sgls[i];
893 		struct spdk_nvme_rdma_rsp *rsp = &rsps->rsps[i];
894 		struct ibv_recv_wr *recv_wr = &rsps->rsp_recv_wrs[i];
895 
896 		rsp->rqpair = opts->rqpair;
897 		rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
898 		rsp->recv_wr = recv_wr;
899 		rsp_sgl->addr = (uint64_t)rsp;
900 		rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
901 		rc = spdk_rdma_utils_get_translation(opts->mr_map, rsp, sizeof(*rsp), &translation);
902 		if (rc) {
903 			goto fail;
904 		}
905 		rsp_sgl->lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
906 
907 		recv_wr->wr_id = (uint64_t)&rsp->rdma_wr;
908 		recv_wr->next = NULL;
909 		recv_wr->sg_list = rsp_sgl;
910 		recv_wr->num_sge = 1;
911 
912 		nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
913 
914 		if (opts->rqpair) {
915 			spdk_rdma_provider_qp_queue_recv_wrs(opts->rqpair->rdma_qp, recv_wr);
916 		} else {
917 			spdk_rdma_provider_srq_queue_recv_wrs(opts->srq, recv_wr);
918 		}
919 	}
920 
921 	rsps->num_entries = opts->num_entries;
922 	rsps->current_num_recvs = opts->num_entries;
923 
924 	return rsps;
925 fail:
926 	nvme_rdma_free_rsps(rsps);
927 	return NULL;
928 }
929 
930 static void
931 nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
932 {
933 	if (!rqpair->rdma_reqs) {
934 		return;
935 	}
936 
937 	spdk_free(rqpair->cmds);
938 	rqpair->cmds = NULL;
939 
940 	spdk_free(rqpair->rdma_reqs);
941 	rqpair->rdma_reqs = NULL;
942 }
943 
944 static int
945 nvme_rdma_create_reqs(struct nvme_rdma_qpair *rqpair)
946 {
947 	struct spdk_rdma_utils_memory_translation translation;
948 	uint16_t i;
949 	int rc;
950 
951 	assert(!rqpair->rdma_reqs);
952 	rqpair->rdma_reqs = spdk_zmalloc(rqpair->num_entries * sizeof(struct spdk_nvme_rdma_req), 0, NULL,
953 					 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
954 	if (rqpair->rdma_reqs == NULL) {
955 		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
956 		goto fail;
957 	}
958 
959 	assert(!rqpair->cmds);
960 	rqpair->cmds = spdk_zmalloc(rqpair->num_entries * sizeof(*rqpair->cmds), 0, NULL,
961 				    SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
962 	if (!rqpair->cmds) {
963 		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
964 		goto fail;
965 	}
966 
967 	TAILQ_INIT(&rqpair->free_reqs);
968 	TAILQ_INIT(&rqpair->outstanding_reqs);
969 	for (i = 0; i < rqpair->num_entries; i++) {
970 		struct spdk_nvme_rdma_req	*rdma_req;
971 		struct spdk_nvmf_cmd		*cmd;
972 
973 		rdma_req = &rqpair->rdma_reqs[i];
974 		rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
975 		cmd = &rqpair->cmds[i];
976 
977 		rdma_req->id = i;
978 
979 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, cmd, sizeof(*cmd), &translation);
980 		if (rc) {
981 			goto fail;
982 		}
983 		rdma_req->send_sgl[0].lkey = spdk_rdma_utils_memory_translation_get_lkey(&translation);
984 
985 		/* The first RDMA sgl element will always point
986 		 * at this data structure. Depending on whether
987 		 * an NVMe-oF SGL is required, the length of
988 		 * this element may change. */
989 		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
990 		rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
991 		rdma_req->send_wr.next = NULL;
992 		rdma_req->send_wr.opcode = IBV_WR_SEND;
993 		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
994 		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
995 		rdma_req->send_wr.imm_data = 0;
996 
997 		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
998 	}
999 
1000 	return 0;
1001 fail:
1002 	nvme_rdma_free_reqs(rqpair);
1003 	return -ENOMEM;
1004 }
1005 
1006 static int nvme_rdma_connect(struct nvme_rdma_qpair *rqpair);
1007 
1008 static int
1009 nvme_rdma_route_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1010 {
1011 	if (ret) {
1012 		SPDK_ERRLOG("RDMA route resolution error\n");
1013 		return -1;
1014 	}
1015 
1016 	ret = nvme_rdma_qpair_init(rqpair);
1017 	if (ret < 0) {
1018 		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
1019 		return -1;
1020 	}
1021 
1022 	return nvme_rdma_connect(rqpair);
1023 }
1024 
1025 static int
1026 nvme_rdma_addr_resolved(struct nvme_rdma_qpair *rqpair, int ret)
1027 {
1028 	if (ret) {
1029 		SPDK_ERRLOG("RDMA address resolution error\n");
1030 		return -1;
1031 	}
1032 
1033 	if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
1034 #ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
1035 		uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
1036 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
1037 				      RDMA_OPTION_ID_ACK_TIMEOUT,
1038 				      &timeout, sizeof(timeout));
1039 		if (ret) {
1040 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
1041 		}
1042 #else
1043 		SPDK_DEBUGLOG(nvme, "transport_ack_timeout is not supported\n");
1044 #endif
1045 	}
1046 
1047 	if (rqpair->qpair.ctrlr->opts.transport_tos != SPDK_NVME_TRANSPORT_TOS_DISABLED) {
1048 #ifdef SPDK_CONFIG_RDMA_SET_TOS
1049 		uint8_t tos = rqpair->qpair.ctrlr->opts.transport_tos;
1050 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_TOS, &tos, sizeof(tos));
1051 		if (ret) {
1052 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_TOS %u, ret %d\n", tos, ret);
1053 		}
1054 #else
1055 		SPDK_DEBUGLOG(nvme, "transport_tos is not supported\n");
1056 #endif
1057 	}
1058 
1059 	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
1060 	if (ret) {
1061 		SPDK_ERRLOG("rdma_resolve_route\n");
1062 		return ret;
1063 	}
1064 
1065 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ROUTE_RESOLVED,
1066 					     nvme_rdma_route_resolved);
1067 }
1068 
1069 static int
1070 nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
1071 		       struct sockaddr *src_addr,
1072 		       struct sockaddr *dst_addr)
1073 {
1074 	int ret;
1075 
1076 	if (src_addr) {
1077 		int reuse = 1;
1078 
1079 		ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
1080 				      &reuse, sizeof(reuse));
1081 		if (ret) {
1082 			SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_REUSEADDR %d, ret %d\n",
1083 				       reuse, ret);
1084 			/* It is likely that rdma_resolve_addr() returns -EADDRINUSE, but
1085 			 * we may missing something. We rely on rdma_resolve_addr().
1086 			 */
1087 		}
1088 	}
1089 
1090 	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
1091 				NVME_RDMA_TIME_OUT_IN_MS);
1092 	if (ret) {
1093 		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
1094 		return ret;
1095 	}
1096 
1097 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ADDR_RESOLVED,
1098 					     nvme_rdma_addr_resolved);
1099 }
1100 
1101 static int nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair);
1102 
1103 static int
1104 nvme_rdma_connect_established(struct nvme_rdma_qpair *rqpair, int ret)
1105 {
1106 	struct nvme_rdma_rsp_opts opts = {};
1107 
1108 	if (ret == -ESTALE) {
1109 		return nvme_rdma_stale_conn_retry(rqpair);
1110 	} else if (ret) {
1111 		SPDK_ERRLOG("RDMA connect error %d\n", ret);
1112 		return ret;
1113 	}
1114 
1115 	assert(!rqpair->mr_map);
1116 	rqpair->mr_map = spdk_rdma_utils_create_mem_map(rqpair->rdma_qp->qp->pd, &g_nvme_hooks,
1117 			 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
1118 	if (!rqpair->mr_map) {
1119 		SPDK_ERRLOG("Unable to register RDMA memory translation map\n");
1120 		return -1;
1121 	}
1122 
1123 	ret = nvme_rdma_create_reqs(rqpair);
1124 	SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1125 	if (ret) {
1126 		SPDK_ERRLOG("Unable to create rqpair RDMA requests\n");
1127 		return -1;
1128 	}
1129 	SPDK_DEBUGLOG(nvme, "RDMA requests created\n");
1130 
1131 	if (!rqpair->srq) {
1132 		opts.num_entries = rqpair->num_entries;
1133 		opts.rqpair = rqpair;
1134 		opts.srq = NULL;
1135 		opts.mr_map = rqpair->mr_map;
1136 
1137 		assert(!rqpair->rsps);
1138 		rqpair->rsps = nvme_rdma_create_rsps(&opts);
1139 		if (!rqpair->rsps) {
1140 			SPDK_ERRLOG("Unable to create rqpair RDMA responses\n");
1141 			return -1;
1142 		}
1143 		SPDK_DEBUGLOG(nvme, "RDMA responses created\n");
1144 
1145 		ret = nvme_rdma_qpair_submit_recvs(rqpair);
1146 		SPDK_DEBUGLOG(nvme, "rc =%d\n", ret);
1147 		if (ret) {
1148 			SPDK_ERRLOG("Unable to submit rqpair RDMA responses\n");
1149 			return -1;
1150 		}
1151 		SPDK_DEBUGLOG(nvme, "RDMA responses submitted\n");
1152 	}
1153 
1154 	rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND;
1155 
1156 	return 0;
1157 }
1158 
1159 static int
1160 nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
1161 {
1162 	struct rdma_conn_param				param = {};
1163 	struct spdk_nvmf_rdma_request_private_data	request_data = {};
1164 	struct ibv_device_attr				attr;
1165 	int						ret;
1166 	struct spdk_nvme_ctrlr				*ctrlr;
1167 
1168 	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
1169 	if (ret != 0) {
1170 		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
1171 		return ret;
1172 	}
1173 
1174 	param.responder_resources = attr.max_qp_rd_atom;
1175 
1176 	ctrlr = rqpair->qpair.ctrlr;
1177 	if (!ctrlr) {
1178 		return -1;
1179 	}
1180 
1181 	request_data.qid = rqpair->qpair.id;
1182 	request_data.hrqsize = rqpair->num_entries + 1;
1183 	request_data.hsqsize = rqpair->num_entries;
1184 	request_data.cntlid = ctrlr->cntlid;
1185 
1186 	param.private_data = &request_data;
1187 	param.private_data_len = sizeof(request_data);
1188 	param.retry_count = ctrlr->opts.transport_retry_count;
1189 	param.rnr_retry_count = 7;
1190 
1191 	/* Fields below are ignored by rdma cm if qpair has been
1192 	 * created using rdma cm API. */
1193 	param.srq = 0;
1194 	param.qp_num = rqpair->rdma_qp->qp->qp_num;
1195 
1196 	ret = rdma_connect(rqpair->cm_id, &param);
1197 	if (ret) {
1198 		SPDK_ERRLOG("nvme rdma connect error\n");
1199 		return ret;
1200 	}
1201 
1202 	ctrlr->numa.id_valid = 1;
1203 	ctrlr->numa.id = spdk_rdma_cm_id_get_numa_id(rqpair->cm_id);
1204 
1205 	return nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_ESTABLISHED,
1206 					     nvme_rdma_connect_established);
1207 }
1208 
1209 static int
1210 nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1211 {
1212 	struct sockaddr_storage dst_addr;
1213 	struct sockaddr_storage src_addr;
1214 	bool src_addr_specified;
1215 	long int port, src_port = 0;
1216 	int rc;
1217 	struct nvme_rdma_ctrlr *rctrlr;
1218 	struct nvme_rdma_qpair *rqpair;
1219 	struct nvme_rdma_poll_group *group;
1220 	int family;
1221 
1222 	rqpair = nvme_rdma_qpair(qpair);
1223 	rctrlr = nvme_rdma_ctrlr(ctrlr);
1224 	assert(rctrlr != NULL);
1225 
1226 	switch (ctrlr->trid.adrfam) {
1227 	case SPDK_NVMF_ADRFAM_IPV4:
1228 		family = AF_INET;
1229 		break;
1230 	case SPDK_NVMF_ADRFAM_IPV6:
1231 		family = AF_INET6;
1232 		break;
1233 	default:
1234 		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
1235 		return -1;
1236 	}
1237 
1238 	SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
1239 
1240 	memset(&dst_addr, 0, sizeof(dst_addr));
1241 
1242 	SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid);
1243 	rc = nvme_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid, &port);
1244 	if (rc != 0) {
1245 		SPDK_ERRLOG("dst_addr nvme_parse_addr() failed\n");
1246 		return -1;
1247 	}
1248 
1249 	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
1250 		memset(&src_addr, 0, sizeof(src_addr));
1251 		rc = nvme_parse_addr(&src_addr, family,
1252 				     ctrlr->opts.src_addr[0] ? ctrlr->opts.src_addr : NULL,
1253 				     ctrlr->opts.src_svcid[0] ? ctrlr->opts.src_svcid : NULL,
1254 				     &src_port);
1255 		if (rc != 0) {
1256 			SPDK_ERRLOG("src_addr nvme_parse_addr() failed\n");
1257 			return -1;
1258 		}
1259 		src_addr_specified = true;
1260 	} else {
1261 		src_addr_specified = false;
1262 	}
1263 
1264 	rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
1265 	if (rc < 0) {
1266 		SPDK_ERRLOG("rdma_create_id() failed\n");
1267 		return -1;
1268 	}
1269 
1270 	rc = nvme_rdma_resolve_addr(rqpair,
1271 				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
1272 				    (struct sockaddr *)&dst_addr);
1273 	if (rc < 0) {
1274 		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
1275 		return -1;
1276 	}
1277 
1278 	rqpair->state = NVME_RDMA_QPAIR_STATE_INITIALIZING;
1279 
1280 	if (qpair->poll_group != NULL && rqpair->link_connecting.tqe_prev == NULL) {
1281 		group = nvme_rdma_poll_group(qpair->poll_group);
1282 		TAILQ_INSERT_TAIL(&group->connecting_qpairs, rqpair, link_connecting);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int
1289 nvme_rdma_stale_conn_reconnect(struct nvme_rdma_qpair *rqpair)
1290 {
1291 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
1292 
1293 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks) {
1294 		return -EAGAIN;
1295 	}
1296 
1297 	return nvme_rdma_ctrlr_connect_qpair(qpair->ctrlr, qpair);
1298 }
1299 
1300 static int
1301 nvme_rdma_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr,
1302 				   struct spdk_nvme_qpair *qpair)
1303 {
1304 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
1305 	int rc;
1306 
1307 	if (rqpair->in_connect_poll) {
1308 		return -EAGAIN;
1309 	}
1310 
1311 	rqpair->in_connect_poll = true;
1312 
1313 	switch (rqpair->state) {
1314 	case NVME_RDMA_QPAIR_STATE_INVALID:
1315 		rc = -EAGAIN;
1316 		break;
1317 
1318 	case NVME_RDMA_QPAIR_STATE_INITIALIZING:
1319 	case NVME_RDMA_QPAIR_STATE_EXITING:
1320 		if (!nvme_qpair_is_admin_queue(qpair)) {
1321 			nvme_ctrlr_lock(ctrlr);
1322 		}
1323 
1324 		rc = nvme_rdma_process_event_poll(rqpair);
1325 
1326 		if (!nvme_qpair_is_admin_queue(qpair)) {
1327 			nvme_ctrlr_unlock(ctrlr);
1328 		}
1329 
1330 		if (rc == 0) {
1331 			rc = -EAGAIN;
1332 		}
1333 		rqpair->in_connect_poll = false;
1334 
1335 		return rc;
1336 
1337 	case NVME_RDMA_QPAIR_STATE_STALE_CONN:
1338 		rc = nvme_rdma_stale_conn_reconnect(rqpair);
1339 		if (rc == 0) {
1340 			rc = -EAGAIN;
1341 		}
1342 		break;
1343 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_SEND:
1344 		rc = nvme_fabric_qpair_connect_async(qpair, rqpair->num_entries + 1);
1345 		if (rc == 0) {
1346 			rqpair->state = NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL;
1347 			rc = -EAGAIN;
1348 		} else {
1349 			SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
1350 		}
1351 		break;
1352 	case NVME_RDMA_QPAIR_STATE_FABRIC_CONNECT_POLL:
1353 		rc = nvme_fabric_qpair_connect_poll(qpair);
1354 		if (rc == 0) {
1355 			if (nvme_fabric_qpair_auth_required(qpair)) {
1356 				rc = nvme_fabric_qpair_authenticate_async(qpair);
1357 				if (rc == 0) {
1358 					rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
1359 					rc = -EAGAIN;
1360 				}
1361 			} else {
1362 				rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1363 				nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1364 			}
1365 		} else if (rc != -EAGAIN) {
1366 			SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n");
1367 		}
1368 		break;
1369 	case NVME_RDMA_QPAIR_STATE_AUTHENTICATING:
1370 		rc = nvme_fabric_qpair_authenticate_poll(qpair);
1371 		if (rc == 0) {
1372 			rqpair->state = NVME_RDMA_QPAIR_STATE_RUNNING;
1373 			nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED);
1374 		}
1375 		break;
1376 	case NVME_RDMA_QPAIR_STATE_RUNNING:
1377 		rc = 0;
1378 		break;
1379 	default:
1380 		assert(false);
1381 		rc = -EINVAL;
1382 		break;
1383 	}
1384 
1385 	rqpair->in_connect_poll = false;
1386 
1387 	return rc;
1388 }
1389 
1390 static inline int
1391 nvme_rdma_get_memory_translation(struct nvme_request *req, struct nvme_rdma_qpair *rqpair,
1392 				 struct nvme_rdma_memory_translation_ctx *_ctx)
1393 {
1394 	struct spdk_memory_domain_translation_ctx ctx;
1395 	struct spdk_memory_domain_translation_result dma_translation = {.iov_count = 0};
1396 	struct spdk_rdma_utils_memory_translation rdma_translation;
1397 	int rc;
1398 
1399 	assert(req);
1400 	assert(rqpair);
1401 	assert(_ctx);
1402 
1403 	if (req->payload.opts && req->payload.opts->memory_domain) {
1404 		ctx.size = sizeof(struct spdk_memory_domain_translation_ctx);
1405 		ctx.rdma.ibv_qp = rqpair->rdma_qp->qp;
1406 		dma_translation.size = sizeof(struct spdk_memory_domain_translation_result);
1407 
1408 		rc = spdk_memory_domain_translate_data(req->payload.opts->memory_domain,
1409 						       req->payload.opts->memory_domain_ctx,
1410 						       rqpair->rdma_qp->domain, &ctx, _ctx->addr,
1411 						       _ctx->length, &dma_translation);
1412 		if (spdk_unlikely(rc) || dma_translation.iov_count != 1) {
1413 			SPDK_ERRLOG("DMA memory translation failed, rc %d, iov count %u\n", rc, dma_translation.iov_count);
1414 			return rc;
1415 		}
1416 
1417 		_ctx->lkey = dma_translation.rdma.lkey;
1418 		_ctx->rkey = dma_translation.rdma.rkey;
1419 		_ctx->addr = dma_translation.iov.iov_base;
1420 		_ctx->length = dma_translation.iov.iov_len;
1421 	} else {
1422 		rc = spdk_rdma_utils_get_translation(rqpair->mr_map, _ctx->addr, _ctx->length, &rdma_translation);
1423 		if (spdk_unlikely(rc)) {
1424 			SPDK_ERRLOG("RDMA memory translation failed, rc %d\n", rc);
1425 			return rc;
1426 		}
1427 		if (rdma_translation.translation_type == SPDK_RDMA_UTILS_TRANSLATION_MR) {
1428 			_ctx->lkey = rdma_translation.mr_or_key.mr->lkey;
1429 			_ctx->rkey = rdma_translation.mr_or_key.mr->rkey;
1430 		} else {
1431 			_ctx->lkey = _ctx->rkey = (uint32_t)rdma_translation.mr_or_key.key;
1432 		}
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 
1439 /*
1440  * Build SGL describing empty payload.
1441  */
1442 static int
1443 nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
1444 {
1445 	struct nvme_request *req = rdma_req->req;
1446 
1447 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1448 
1449 	/* The first element of this SGL is pointing at an
1450 	 * spdk_nvmf_cmd object. For this particular command,
1451 	 * we only need the first 64 bytes corresponding to
1452 	 * the NVMe command. */
1453 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1454 
1455 	/* The RDMA SGL needs one element describing the NVMe command. */
1456 	rdma_req->send_wr.num_sge = 1;
1457 
1458 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1459 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1460 	req->cmd.dptr.sgl1.keyed.length = 0;
1461 	req->cmd.dptr.sgl1.keyed.key = 0;
1462 	req->cmd.dptr.sgl1.address = 0;
1463 
1464 	return 0;
1465 }
1466 
1467 static inline void
1468 nvme_rdma_configure_contig_inline_request(struct spdk_nvme_rdma_req *rdma_req,
1469 		struct nvme_request *req, struct nvme_rdma_memory_translation_ctx *ctx)
1470 {
1471 	rdma_req->send_sgl[1].lkey = ctx->lkey;
1472 
1473 	/* The first element of this SGL is pointing at an
1474 	 * spdk_nvmf_cmd object. For this particular command,
1475 	 * we only need the first 64 bytes corresponding to
1476 	 * the NVMe command. */
1477 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1478 
1479 	rdma_req->send_sgl[1].addr = (uint64_t)ctx->addr;
1480 	rdma_req->send_sgl[1].length = (uint32_t)ctx->length;
1481 
1482 	/* The RDMA SGL contains two elements. The first describes
1483 	 * the NVMe command and the second describes the data
1484 	 * payload. */
1485 	rdma_req->send_wr.num_sge = 2;
1486 
1487 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1488 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1489 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1490 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx->length;
1491 	/* Inline only supported for icdoff == 0 currently.  This function will
1492 	 * not get called for controllers with other values. */
1493 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1494 }
1495 
1496 /*
1497  * Build inline SGL describing contiguous payload buffer.
1498  */
1499 static inline int
1500 nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
1501 				      struct spdk_nvme_rdma_req *rdma_req)
1502 {
1503 	struct nvme_request *req = rdma_req->req;
1504 	struct nvme_rdma_memory_translation_ctx ctx = {
1505 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1506 		.length = req->payload_size
1507 	};
1508 	int rc;
1509 
1510 	assert(ctx.length != 0);
1511 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1512 
1513 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1514 	if (spdk_unlikely(rc)) {
1515 		return -1;
1516 	}
1517 
1518 	nvme_rdma_configure_contig_inline_request(rdma_req, req, &ctx);
1519 
1520 	return 0;
1521 }
1522 
1523 static inline void
1524 nvme_rdma_configure_contig_request(struct spdk_nvme_rdma_req *rdma_req, struct nvme_request *req,
1525 				   struct nvme_rdma_memory_translation_ctx *ctx)
1526 {
1527 	req->cmd.dptr.sgl1.keyed.key = ctx->rkey;
1528 
1529 	/* The first element of this SGL is pointing at an
1530 	 * spdk_nvmf_cmd object. For this particular command,
1531 	 * we only need the first 64 bytes corresponding to
1532 	 * the NVMe command. */
1533 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1534 
1535 	/* The RDMA SGL needs one element describing the NVMe command. */
1536 	rdma_req->send_wr.num_sge = 1;
1537 
1538 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1539 	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1540 	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1541 	req->cmd.dptr.sgl1.keyed.length = (uint32_t)ctx->length;
1542 	req->cmd.dptr.sgl1.address = (uint64_t)ctx->addr;
1543 }
1544 
1545 /*
1546  * Build SGL describing contiguous payload buffer.
1547  */
1548 static inline int
1549 nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
1550 			       struct spdk_nvme_rdma_req *rdma_req)
1551 {
1552 	struct nvme_request *req = rdma_req->req;
1553 	struct nvme_rdma_memory_translation_ctx ctx = {
1554 		.addr = (uint8_t *)req->payload.contig_or_cb_arg + req->payload_offset,
1555 		.length = req->payload_size
1556 	};
1557 	int rc;
1558 
1559 	assert(req->payload_size != 0);
1560 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
1561 
1562 	if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1563 		SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1564 			    req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1565 		return -1;
1566 	}
1567 
1568 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1569 	if (spdk_unlikely(rc)) {
1570 		return -1;
1571 	}
1572 
1573 	nvme_rdma_configure_contig_request(rdma_req, req, &ctx);
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Build SGL describing scattered payload buffer.
1580  */
1581 static inline int
1582 nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
1583 			    struct spdk_nvme_rdma_req *rdma_req)
1584 {
1585 	struct nvme_request *req = rdma_req->req;
1586 	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
1587 	struct nvme_rdma_memory_translation_ctx ctx;
1588 	uint32_t remaining_size;
1589 	uint32_t sge_length;
1590 	int rc, max_num_sgl, num_sgl_desc;
1591 
1592 	assert(req->payload_size != 0);
1593 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1594 	assert(req->payload.reset_sgl_fn != NULL);
1595 	assert(req->payload.next_sge_fn != NULL);
1596 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1597 
1598 	max_num_sgl = req->qpair->ctrlr->max_sges;
1599 
1600 	remaining_size = req->payload_size;
1601 	num_sgl_desc = 0;
1602 	do {
1603 		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &sge_length);
1604 		if (spdk_unlikely(rc)) {
1605 			return -1;
1606 		}
1607 
1608 		sge_length = spdk_min(remaining_size, sge_length);
1609 
1610 		if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
1611 			SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
1612 				    sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
1613 			return -1;
1614 		}
1615 		ctx.length = sge_length;
1616 		rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1617 		if (spdk_unlikely(rc)) {
1618 			return -1;
1619 		}
1620 
1621 		cmd->sgl[num_sgl_desc].keyed.key = ctx.rkey;
1622 		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1623 		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1624 		cmd->sgl[num_sgl_desc].keyed.length = (uint32_t)ctx.length;
1625 		cmd->sgl[num_sgl_desc].address = (uint64_t)ctx.addr;
1626 
1627 		remaining_size -= ctx.length;
1628 		num_sgl_desc++;
1629 	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
1630 
1631 
1632 	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
1633 	if (spdk_unlikely(remaining_size > 0)) {
1634 		return -1;
1635 	}
1636 
1637 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1638 
1639 	/* The RDMA SGL needs one element describing some portion
1640 	 * of the spdk_nvmf_cmd structure. */
1641 	rdma_req->send_wr.num_sge = 1;
1642 
1643 	/*
1644 	 * If only one SGL descriptor is required, it can be embedded directly in the command
1645 	 * as a data block descriptor.
1646 	 */
1647 	if (num_sgl_desc == 1) {
1648 		/* The first element of this SGL is pointing at an
1649 		 * spdk_nvmf_cmd object. For this particular command,
1650 		 * we only need the first 64 bytes corresponding to
1651 		 * the NVMe command. */
1652 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1653 
1654 		req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
1655 		req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
1656 		req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
1657 		req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
1658 		req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
1659 	} else {
1660 		/*
1661 		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
1662 		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
1663 		 */
1664 		uint32_t descriptors_size = sizeof(struct spdk_nvme_sgl_descriptor) * num_sgl_desc;
1665 
1666 		if (spdk_unlikely(descriptors_size > rqpair->qpair.ctrlr->ioccsz_bytes)) {
1667 			SPDK_ERRLOG("Size of SGL descriptors (%u) exceeds ICD (%u)\n",
1668 				    descriptors_size, rqpair->qpair.ctrlr->ioccsz_bytes);
1669 			return -1;
1670 		}
1671 		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + descriptors_size;
1672 
1673 		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1674 		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1675 		req->cmd.dptr.sgl1.unkeyed.length = descriptors_size;
1676 		req->cmd.dptr.sgl1.address = (uint64_t)0;
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683  * Build inline SGL describing sgl payload buffer.
1684  */
1685 static inline int
1686 nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
1687 				   struct spdk_nvme_rdma_req *rdma_req)
1688 {
1689 	struct nvme_request *req = rdma_req->req;
1690 	struct nvme_rdma_memory_translation_ctx ctx;
1691 	uint32_t length;
1692 	int rc;
1693 
1694 	assert(req->payload_size != 0);
1695 	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
1696 	assert(req->payload.reset_sgl_fn != NULL);
1697 	assert(req->payload.next_sge_fn != NULL);
1698 	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1699 
1700 	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &ctx.addr, &length);
1701 	if (spdk_unlikely(rc)) {
1702 		return -1;
1703 	}
1704 
1705 	if (length < req->payload_size) {
1706 		SPDK_DEBUGLOG(nvme, "Inline SGL request split so sending separately.\n");
1707 		return nvme_rdma_build_sgl_request(rqpair, rdma_req);
1708 	}
1709 
1710 	if (length > req->payload_size) {
1711 		length = req->payload_size;
1712 	}
1713 
1714 	ctx.length = length;
1715 	rc = nvme_rdma_get_memory_translation(req, rqpair, &ctx);
1716 	if (spdk_unlikely(rc)) {
1717 		return -1;
1718 	}
1719 
1720 	rdma_req->send_sgl[1].addr = (uint64_t)ctx.addr;
1721 	rdma_req->send_sgl[1].length = (uint32_t)ctx.length;
1722 	rdma_req->send_sgl[1].lkey = ctx.lkey;
1723 
1724 	rdma_req->send_wr.num_sge = 2;
1725 
1726 	/* The first element of this SGL is pointing at an
1727 	 * spdk_nvmf_cmd object. For this particular command,
1728 	 * we only need the first 64 bytes corresponding to
1729 	 * the NVMe command. */
1730 	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
1731 
1732 	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
1733 	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
1734 	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1735 	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)ctx.length;
1736 	/* Inline only supported for icdoff == 0 currently.  This function will
1737 	 * not get called for controllers with other values. */
1738 	req->cmd.dptr.sgl1.address = (uint64_t)0;
1739 
1740 	return 0;
1741 }
1742 
1743 static inline int
1744 nvme_rdma_accel_append_copy(struct spdk_nvme_poll_group *pg, void **seq,
1745 			    struct spdk_memory_domain *rdma_domain, struct spdk_nvme_rdma_req *rdma_req,
1746 			    struct iovec *iovs, uint32_t iovcnt,
1747 			    struct spdk_memory_domain *src_domain, void *src_domain_ctx)
1748 {
1749 	return pg->accel_fn_table.append_copy(pg->ctx, seq, iovs, iovcnt, rdma_domain, rdma_req, iovs,
1750 					      iovcnt, src_domain, src_domain_ctx, NULL, NULL);
1751 }
1752 
1753 static inline void
1754 nvme_rdma_accel_reverse(struct spdk_nvme_poll_group *pg, void *seq)
1755 {
1756 	pg->accel_fn_table.reverse_sequence(seq);
1757 }
1758 
1759 static inline void
1760 nvme_rdma_accel_finish(struct spdk_nvme_poll_group *pg, void *seq,
1761 		       spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
1762 {
1763 	pg->accel_fn_table.finish_sequence(seq, cb_fn, cb_arg);
1764 }
1765 
1766 static inline void
1767 nvme_rdma_accel_completion_cb(void *cb_arg, int status)
1768 {
1769 	struct spdk_nvme_rdma_req *rdma_req = cb_arg;
1770 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
1771 	struct spdk_nvme_cpl cpl;
1772 	enum spdk_nvme_generic_command_status_code sc;
1773 	uint16_t dnr = 0;
1774 
1775 	rdma_req->in_progress_accel = 0;
1776 	rdma_req->req->accel_sequence = NULL;
1777 	SPDK_DEBUGLOG(nvme, "rdma_req %p qpair %p, accel completion rc %d\n", rdma_req, rqpair, status);
1778 
1779 	/* nvme_rdma driver may fail data transfer on WC_FLUSH error completion which is expected.
1780 	 * To prevent false errors from accel, first check if qpair is in the process of disconnect */
1781 	if (spdk_unlikely(!spdk_nvme_qpair_is_connected(&rqpair->qpair))) {
1782 		struct spdk_nvmf_fabric_connect_cmd *cmd = (struct spdk_nvmf_fabric_connect_cmd *)
1783 				&rdma_req->req->cmd;
1784 
1785 		if (cmd->opcode != SPDK_NVME_OPC_FABRIC && cmd->fctype != SPDK_NVMF_FABRIC_COMMAND_CONNECT) {
1786 			SPDK_DEBUGLOG(nvme, "qpair %p, req %p accel cpl in disconnecting, outstanding %u\n",
1787 				      rqpair, rdma_req, rqpair->qpair.num_outstanding_reqs);
1788 			sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1789 			goto fail_req;
1790 		}
1791 	}
1792 	if (spdk_unlikely(status)) {
1793 		SPDK_ERRLOG("qpair %p, req %p, accel sequence status %d\n", rdma_req->req->qpair, rdma_req, status);
1794 		sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
1795 		/* Something wrong happened, let the upper layer know that retry is no desired */
1796 		dnr = 1;
1797 		goto fail_req;
1798 	}
1799 
1800 	nvme_rdma_req_complete(rdma_req, &rdma_req->rdma_rsp->cpl, true);
1801 	return;
1802 
1803 fail_req:
1804 	memset(&cpl, 0, sizeof(cpl));
1805 	cpl.status.sc = sc;
1806 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1807 	cpl.status.dnr = dnr;
1808 	nvme_rdma_req_complete(rdma_req, &cpl, true);
1809 }
1810 
1811 static inline int
1812 nvme_rdma_apply_accel_sequence(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
1813 			       struct spdk_nvme_rdma_req *rdma_req)
1814 {
1815 	struct spdk_nvme_poll_group *pg = rqpair->qpair.poll_group->group;
1816 	struct spdk_memory_domain *src_domain;
1817 	void *src_domain_ctx;
1818 	void *accel_seq = req->accel_sequence;
1819 	uint32_t iovcnt = 0;
1820 	int rc;
1821 
1822 	SPDK_DEBUGLOG(nvme, "req %p, start accel seq %p\n", rdma_req, accel_seq);
1823 	if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
1824 		void *addr;
1825 		uint32_t sge_length, payload_size;
1826 
1827 		payload_size = req->payload_size;
1828 		assert(payload_size);
1829 		req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
1830 		do {
1831 			rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &addr, &sge_length);
1832 			if (spdk_unlikely(rc)) {
1833 				return -1;
1834 			}
1835 			sge_length = spdk_min(payload_size, sge_length);
1836 			rdma_req->iovs[iovcnt].iov_base = addr;
1837 			rdma_req->iovs[iovcnt].iov_len = sge_length;
1838 			iovcnt++;
1839 			payload_size -= sge_length;
1840 		} while (payload_size && iovcnt < NVME_RDMA_MAX_SGL_DESCRIPTORS);
1841 
1842 		if (spdk_unlikely(payload_size)) {
1843 			SPDK_ERRLOG("not enough iovs to handle req %p, remaining len %u\n", rdma_req, payload_size);
1844 			return -E2BIG;
1845 		}
1846 	} else {
1847 		rdma_req->iovs[iovcnt].iov_base = req->payload.contig_or_cb_arg;
1848 		rdma_req->iovs[iovcnt].iov_len = req->payload_size;
1849 		iovcnt = 1;
1850 	}
1851 	if (req->payload.opts && req->payload.opts->memory_domain) {
1852 		if (accel_seq) {
1853 			src_domain = rqpair->rdma_qp->domain;
1854 			src_domain_ctx = rdma_req;
1855 		} else {
1856 			src_domain = req->payload.opts->memory_domain;
1857 			src_domain_ctx = req->payload.opts->memory_domain_ctx;
1858 		}
1859 	} else {
1860 		src_domain = NULL;
1861 		src_domain_ctx = NULL;
1862 	}
1863 
1864 	rc = nvme_rdma_accel_append_copy(pg, &accel_seq, rqpair->rdma_qp->domain, rdma_req, rdma_req->iovs,
1865 					 iovcnt, src_domain, src_domain_ctx);
1866 	if (spdk_unlikely(rc)) {
1867 		return rc;
1868 	}
1869 
1870 	if (spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
1871 		nvme_rdma_accel_reverse(pg, accel_seq);
1872 	}
1873 
1874 	rdma_req->in_progress_accel = 1;
1875 	TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
1876 	rqpair->num_outstanding_reqs++;
1877 
1878 	SPDK_DEBUGLOG(nvme, "req %p, finish accel seq %p\n", rdma_req, accel_seq);
1879 	nvme_rdma_accel_finish(pg, accel_seq, nvme_rdma_accel_completion_cb, rdma_req);
1880 
1881 	return 0;
1882 }
1883 
1884 static inline int
1885 nvme_rdma_memory_domain_transfer_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
1886 				      struct iovec *dst_iov, uint32_t dst_iovcnt,
1887 				      struct spdk_memory_domain *src_domain, void *src_domain_ctx,
1888 				      struct iovec *src_iov, uint32_t src_iovcnt,
1889 				      struct spdk_memory_domain_translation_result *translation,
1890 				      spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
1891 {
1892 	struct nvme_rdma_memory_translation_ctx ctx;
1893 	struct spdk_nvme_rdma_req *rdma_req = dst_domain_ctx;
1894 	struct nvme_request *req = rdma_req->req;
1895 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
1896 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1897 	bool icd_supported;
1898 
1899 	assert(dst_domain == rqpair->rdma_qp->domain);
1900 	assert(src_domain);
1901 	assert(spdk_memory_domain_get_dma_device_type(src_domain) == SPDK_DMA_DEVICE_TYPE_RDMA);
1902 	/* We expect "inplace" operation */
1903 	assert(dst_iov == src_iov);
1904 	assert(dst_iovcnt == src_iovcnt);
1905 
1906 	if (spdk_unlikely(!src_domain ||
1907 			  spdk_memory_domain_get_dma_device_type(src_domain) != SPDK_DMA_DEVICE_TYPE_RDMA)) {
1908 		SPDK_ERRLOG("Unexpected source memory domain %p, type %d\n", src_domain,
1909 			    src_domain ? (int)spdk_memory_domain_get_dma_device_type(src_domain) : -1);
1910 		return -ENOTSUP;
1911 	}
1912 	if (spdk_unlikely(dst_iovcnt != 1 || !translation || translation->iov_count != 1)) {
1913 		SPDK_ERRLOG("Unexpected iovcnt %u or missed translation, rdma_req %p\n", dst_iovcnt, rdma_req);
1914 		return -ENOTSUP;
1915 	}
1916 	ctx.addr = translation->iov.iov_base;
1917 	ctx.length = translation->iov.iov_len;
1918 	ctx.lkey = translation->rdma.lkey;
1919 	ctx.rkey = translation->rdma.rkey;
1920 
1921 	SPDK_DEBUGLOG(nvme, "req %p, addr %p, len %zu, key %u\n", rdma_req, ctx.addr, ctx.length, ctx.rkey);
1922 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1923 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1924 
1925 	/* We expect that result of accel sequence is a Memory Key which describes a virtually contig address space.
1926 	 * That means we prepare a contig request even if original payload was scattered */
1927 	if (icd_supported) {
1928 		nvme_rdma_configure_contig_inline_request(rdma_req, req, &ctx);
1929 	} else {
1930 		nvme_rdma_configure_contig_request(rdma_req, req, &ctx);
1931 	}
1932 	rdma_req->transfer_cpl_cb = cpl_cb;
1933 	rdma_req->transfer_cpl_cb_arg = cpl_cb_arg;
1934 
1935 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1936 
1937 	return _nvme_rdma_qpair_submit_request(rqpair, rdma_req);
1938 }
1939 
1940 static inline int
1941 nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
1942 {
1943 	struct nvme_request *req = rdma_req->req;
1944 	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
1945 	enum nvme_payload_type payload_type;
1946 	bool icd_supported;
1947 	int rc = -1;
1948 
1949 	payload_type = nvme_payload_type(&req->payload);
1950 	/*
1951 	 * Check if icdoff is non zero, to avoid interop conflicts with
1952 	 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
1953 	 * targets use icdoff = 0.  For targets with non-zero icdoff, we
1954 	 * will currently just not use inline data for now.
1955 	 */
1956 	icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
1957 			&& req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
1958 
1959 	if (spdk_unlikely(req->payload_size == 0)) {
1960 		rc = nvme_rdma_build_null_request(rdma_req);
1961 	} else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
1962 		if (icd_supported) {
1963 			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
1964 		} else {
1965 			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
1966 		}
1967 	} else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
1968 		if (icd_supported) {
1969 			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
1970 		} else {
1971 			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
1972 		}
1973 	}
1974 
1975 	if (spdk_unlikely(rc)) {
1976 		return rc;
1977 	}
1978 
1979 	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
1980 	return 0;
1981 }
1982 
1983 static struct spdk_nvme_qpair *
1984 nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
1985 			     uint16_t qid, uint32_t qsize,
1986 			     enum spdk_nvme_qprio qprio,
1987 			     uint32_t num_requests,
1988 			     bool delay_cmd_submit,
1989 			     bool async)
1990 {
1991 	struct nvme_rdma_qpair *rqpair;
1992 	struct spdk_nvme_qpair *qpair;
1993 	int rc;
1994 
1995 	if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) {
1996 		SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n",
1997 			    qsize, SPDK_NVME_QUEUE_MIN_ENTRIES);
1998 		return NULL;
1999 	}
2000 
2001 	rqpair = spdk_zmalloc(sizeof(struct nvme_rdma_qpair), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
2002 			      SPDK_MALLOC_DMA);
2003 	if (!rqpair) {
2004 		SPDK_ERRLOG("failed to get create rqpair\n");
2005 		return NULL;
2006 	}
2007 
2008 	/* Set num_entries one less than queue size. According to NVMe
2009 	 * and NVMe-oF specs we can not submit queue size requests,
2010 	 * one slot shall always remain empty.
2011 	 */
2012 	rqpair->num_entries = qsize - 1;
2013 	rqpair->delay_cmd_submit = delay_cmd_submit;
2014 	rqpair->state = NVME_RDMA_QPAIR_STATE_INVALID;
2015 	rqpair->append_copy = g_spdk_nvme_transport_opts.rdma_umr_per_io &&
2016 			      spdk_rdma_provider_accel_sequence_supported() && qid != 0;
2017 	SPDK_DEBUGLOG(nvme, "rqpair %p, append_copy %s\n", rqpair,
2018 		      rqpair->append_copy ? "enabled" : "diabled");
2019 	qpair = &rqpair->qpair;
2020 	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async);
2021 	if (rc != 0) {
2022 		spdk_free(rqpair);
2023 		return NULL;
2024 	}
2025 
2026 	return qpair;
2027 }
2028 
2029 static void
2030 nvme_rdma_qpair_destroy(struct nvme_rdma_qpair *rqpair)
2031 {
2032 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2033 	struct nvme_rdma_ctrlr *rctrlr;
2034 	struct nvme_rdma_cm_event_entry *entry, *tmp;
2035 
2036 	spdk_rdma_utils_free_mem_map(&rqpair->mr_map);
2037 
2038 	if (rqpair->evt) {
2039 		rdma_ack_cm_event(rqpair->evt);
2040 		rqpair->evt = NULL;
2041 	}
2042 
2043 	/*
2044 	 * This works because we have the controller lock both in
2045 	 * this function and in the function where we add new events.
2046 	 */
2047 	if (qpair->ctrlr != NULL) {
2048 		rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2049 		STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
2050 			if (entry->evt->id->context == rqpair) {
2051 				STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
2052 				rdma_ack_cm_event(entry->evt);
2053 				STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
2054 			}
2055 		}
2056 	}
2057 
2058 	if (rqpair->cm_id) {
2059 		if (rqpair->rdma_qp) {
2060 			spdk_rdma_utils_put_pd(rqpair->rdma_qp->qp->pd);
2061 			spdk_rdma_provider_qp_destroy(rqpair->rdma_qp);
2062 			rqpair->rdma_qp = NULL;
2063 		}
2064 	}
2065 
2066 	if (rqpair->poller) {
2067 		struct nvme_rdma_poll_group     *group;
2068 
2069 		assert(qpair->poll_group);
2070 		group = nvme_rdma_poll_group(qpair->poll_group);
2071 
2072 		nvme_rdma_poll_group_put_poller(group, rqpair->poller);
2073 
2074 		rqpair->poller = NULL;
2075 		rqpair->cq = NULL;
2076 		if (rqpair->srq) {
2077 			rqpair->srq = NULL;
2078 			rqpair->rsps = NULL;
2079 		}
2080 	} else if (rqpair->cq) {
2081 		ibv_destroy_cq(rqpair->cq);
2082 		rqpair->cq = NULL;
2083 	}
2084 
2085 	nvme_rdma_free_reqs(rqpair);
2086 	nvme_rdma_free_rsps(rqpair->rsps);
2087 	rqpair->rsps = NULL;
2088 
2089 	/* destroy cm_id last so cma device will not be freed before we destroy the cq. */
2090 	if (rqpair->cm_id) {
2091 		rdma_destroy_id(rqpair->cm_id);
2092 		rqpair->cm_id = NULL;
2093 	}
2094 }
2095 
2096 static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
2097 
2098 static void
2099 nvme_rdma_qpair_flush_send_wrs(struct nvme_rdma_qpair *rqpair)
2100 {
2101 	struct ibv_send_wr *bad_wr = NULL;
2102 	int rc;
2103 
2104 	rc = spdk_rdma_provider_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr);
2105 	if (rc) {
2106 		nvme_rdma_reset_failed_sends(rqpair, bad_wr);
2107 	}
2108 }
2109 
2110 static int
2111 nvme_rdma_qpair_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2112 {
2113 	if (ret) {
2114 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2115 		goto quiet;
2116 	}
2117 
2118 	if (rqpair->poller == NULL) {
2119 		/* If poller is not used, cq is not shared.
2120 		 * So complete disconnecting qpair immediately.
2121 		 */
2122 		goto quiet;
2123 	}
2124 
2125 	if (rqpair->rsps == NULL) {
2126 		goto quiet;
2127 	}
2128 
2129 	nvme_rdma_qpair_flush_send_wrs(rqpair);
2130 
2131 	if (rqpair->need_destroy ||
2132 	    (rqpair->current_num_sends != 0 ||
2133 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0)) ||
2134 	    ((rqpair->qpair.ctrlr->flags & SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED) &&
2135 	     (!TAILQ_EMPTY(&rqpair->outstanding_reqs)))) {
2136 		rqpair->state = NVME_RDMA_QPAIR_STATE_LINGERING;
2137 		rqpair->evt_timeout_ticks = (NVME_RDMA_DISCONNECTED_QPAIR_TIMEOUT_US * spdk_get_ticks_hz()) /
2138 					    SPDK_SEC_TO_USEC + spdk_get_ticks();
2139 
2140 		return -EAGAIN;
2141 	}
2142 
2143 quiet:
2144 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
2145 
2146 	nvme_rdma_qpair_abort_reqs(&rqpair->qpair, rqpair->qpair.abort_dnr);
2147 	nvme_rdma_qpair_destroy(rqpair);
2148 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
2149 
2150 	return 0;
2151 }
2152 
2153 static int
2154 nvme_rdma_qpair_wait_until_quiet(struct nvme_rdma_qpair *rqpair)
2155 {
2156 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2157 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2158 
2159 	if (spdk_get_ticks() < rqpair->evt_timeout_ticks &&
2160 	    (rqpair->current_num_sends != 0 ||
2161 	     (!rqpair->srq && rqpair->rsps->current_num_recvs != 0))) {
2162 		return -EAGAIN;
2163 	}
2164 
2165 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITED;
2166 	nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
2167 	if (!nvme_qpair_is_admin_queue(qpair)) {
2168 		nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
2169 	}
2170 	nvme_rdma_qpair_destroy(rqpair);
2171 	if (!nvme_qpair_is_admin_queue(qpair)) {
2172 		nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
2173 	}
2174 	nvme_transport_ctrlr_disconnect_qpair_done(&rqpair->qpair);
2175 
2176 	return 0;
2177 }
2178 
2179 static void
2180 _nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
2181 				  nvme_rdma_cm_event_cb disconnected_qpair_cb)
2182 {
2183 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2184 	int rc;
2185 
2186 	assert(disconnected_qpair_cb != NULL);
2187 
2188 	rqpair->state = NVME_RDMA_QPAIR_STATE_EXITING;
2189 
2190 	if (rqpair->cm_id) {
2191 		if (rqpair->rdma_qp) {
2192 			rc = spdk_rdma_provider_qp_disconnect(rqpair->rdma_qp);
2193 			if ((qpair->ctrlr != NULL) && (rc == 0)) {
2194 				rc = nvme_rdma_process_event_start(rqpair, RDMA_CM_EVENT_DISCONNECTED,
2195 								   disconnected_qpair_cb);
2196 				if (rc == 0) {
2197 					return;
2198 				}
2199 			}
2200 		}
2201 	}
2202 
2203 	disconnected_qpair_cb(rqpair, 0);
2204 }
2205 
2206 static int
2207 nvme_rdma_ctrlr_disconnect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2208 {
2209 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2210 	int rc;
2211 
2212 	switch (rqpair->state) {
2213 	case NVME_RDMA_QPAIR_STATE_EXITING:
2214 		if (!nvme_qpair_is_admin_queue(qpair)) {
2215 			nvme_ctrlr_lock(ctrlr);
2216 		}
2217 
2218 		rc = nvme_rdma_process_event_poll(rqpair);
2219 
2220 		if (!nvme_qpair_is_admin_queue(qpair)) {
2221 			nvme_ctrlr_unlock(ctrlr);
2222 		}
2223 		break;
2224 
2225 	case NVME_RDMA_QPAIR_STATE_LINGERING:
2226 		rc = nvme_rdma_qpair_wait_until_quiet(rqpair);
2227 		break;
2228 	case NVME_RDMA_QPAIR_STATE_EXITED:
2229 		rc = 0;
2230 		break;
2231 
2232 	default:
2233 		assert(false);
2234 		rc = -EAGAIN;
2235 		break;
2236 	}
2237 
2238 	return rc;
2239 }
2240 
2241 static void
2242 nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2243 {
2244 	int rc;
2245 
2246 	_nvme_rdma_ctrlr_disconnect_qpair(ctrlr, qpair, nvme_rdma_qpair_disconnected);
2247 
2248 	/* If the async mode is disabled, poll the qpair until it is actually disconnected.
2249 	 * It is ensured that poll_group_process_completions() calls disconnected_qpair_cb
2250 	 * for any disconnected qpair. Hence, we do not have to check if the qpair is in
2251 	 * a poll group or not.
2252 	 * At the same time, if the qpair is being destroyed, i.e. this function is called by
2253 	 * spdk_nvme_ctrlr_free_io_qpair then we need to wait until qpair is disconnected, otherwise
2254 	 * we may leak some resources.
2255 	 */
2256 	if (qpair->async && !qpair->destroy_in_progress) {
2257 		return;
2258 	}
2259 
2260 	while (1) {
2261 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(ctrlr, qpair);
2262 		if (rc != -EAGAIN) {
2263 			break;
2264 		}
2265 	}
2266 }
2267 
2268 static int
2269 nvme_rdma_stale_conn_disconnected(struct nvme_rdma_qpair *rqpair, int ret)
2270 {
2271 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2272 
2273 	if (ret) {
2274 		SPDK_DEBUGLOG(nvme, "Target did not respond to qpair disconnect.\n");
2275 	}
2276 
2277 	nvme_rdma_qpair_destroy(rqpair);
2278 
2279 	qpair->last_transport_failure_reason = qpair->transport_failure_reason;
2280 	qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_NONE;
2281 
2282 	rqpair->state = NVME_RDMA_QPAIR_STATE_STALE_CONN;
2283 	rqpair->evt_timeout_ticks = (NVME_RDMA_STALE_CONN_RETRY_DELAY_US * spdk_get_ticks_hz()) /
2284 				    SPDK_SEC_TO_USEC + spdk_get_ticks();
2285 
2286 	return 0;
2287 }
2288 
2289 static int
2290 nvme_rdma_stale_conn_retry(struct nvme_rdma_qpair *rqpair)
2291 {
2292 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2293 
2294 	if (rqpair->stale_conn_retry_count >= NVME_RDMA_STALE_CONN_RETRY_MAX) {
2295 		SPDK_ERRLOG("Retry failed %d times, give up stale connection to qpair (cntlid:%u, qid:%u).\n",
2296 			    NVME_RDMA_STALE_CONN_RETRY_MAX, qpair->ctrlr->cntlid, qpair->id);
2297 		return -ESTALE;
2298 	}
2299 
2300 	rqpair->stale_conn_retry_count++;
2301 
2302 	SPDK_NOTICELOG("%d times, retry stale connection to qpair (cntlid:%u, qid:%u).\n",
2303 		       rqpair->stale_conn_retry_count, qpair->ctrlr->cntlid, qpair->id);
2304 
2305 	_nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair, nvme_rdma_stale_conn_disconnected);
2306 
2307 	return 0;
2308 }
2309 
2310 static int
2311 nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
2312 {
2313 	struct nvme_rdma_qpair *rqpair;
2314 
2315 	assert(qpair != NULL);
2316 	rqpair = nvme_rdma_qpair(qpair);
2317 
2318 	if (rqpair->state != NVME_RDMA_QPAIR_STATE_EXITED) {
2319 		int rc __attribute__((unused));
2320 
2321 		/* qpair was removed from the poll group while the disconnect is not finished.
2322 		 * Destroy rdma resources forcefully. */
2323 		rc = nvme_rdma_qpair_disconnected(rqpair, 0);
2324 		assert(rc == 0);
2325 	}
2326 
2327 	nvme_rdma_qpair_abort_reqs(qpair, qpair->abort_dnr);
2328 	nvme_qpair_deinit(qpair);
2329 
2330 	spdk_free(rqpair);
2331 
2332 	return 0;
2333 }
2334 
2335 static struct spdk_nvme_qpair *
2336 nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
2337 				const struct spdk_nvme_io_qpair_opts *opts)
2338 {
2339 	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
2340 					    opts->io_queue_requests,
2341 					    opts->delay_cmd_submit,
2342 					    opts->async_mode);
2343 }
2344 
2345 static int
2346 nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
2347 {
2348 	/* do nothing here */
2349 	return 0;
2350 }
2351 
2352 static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
2353 
2354 /* We have to use the typedef in the function declaration to appease astyle. */
2355 typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t;
2356 
2357 static spdk_nvme_ctrlr_t *
2358 nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
2359 			  const struct spdk_nvme_ctrlr_opts *opts,
2360 			  void *devhandle)
2361 {
2362 	struct nvme_rdma_ctrlr *rctrlr;
2363 	struct ibv_context **contexts;
2364 	struct ibv_device_attr dev_attr;
2365 	int i, flag, rc;
2366 
2367 	rctrlr = spdk_zmalloc(sizeof(struct nvme_rdma_ctrlr), 0, NULL, SPDK_ENV_NUMA_ID_ANY,
2368 			      SPDK_MALLOC_DMA);
2369 	if (rctrlr == NULL) {
2370 		SPDK_ERRLOG("could not allocate ctrlr\n");
2371 		return NULL;
2372 	}
2373 
2374 	rctrlr->ctrlr.opts = *opts;
2375 	rctrlr->ctrlr.trid = *trid;
2376 
2377 	if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
2378 		SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
2379 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
2380 		rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
2381 	}
2382 
2383 	if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
2384 		SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
2385 			       NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
2386 		rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
2387 	}
2388 
2389 	contexts = rdma_get_devices(NULL);
2390 	if (contexts == NULL) {
2391 		SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
2392 		spdk_free(rctrlr);
2393 		return NULL;
2394 	}
2395 
2396 	i = 0;
2397 	rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
2398 
2399 	while (contexts[i] != NULL) {
2400 		rc = ibv_query_device(contexts[i], &dev_attr);
2401 		if (rc < 0) {
2402 			SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
2403 			rdma_free_devices(contexts);
2404 			spdk_free(rctrlr);
2405 			return NULL;
2406 		}
2407 		rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
2408 		i++;
2409 	}
2410 
2411 	rdma_free_devices(contexts);
2412 
2413 	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
2414 	if (rc != 0) {
2415 		spdk_free(rctrlr);
2416 		return NULL;
2417 	}
2418 
2419 	STAILQ_INIT(&rctrlr->pending_cm_events);
2420 	STAILQ_INIT(&rctrlr->free_cm_events);
2421 	rctrlr->cm_events = spdk_zmalloc(NVME_RDMA_NUM_CM_EVENTS * sizeof(*rctrlr->cm_events), 0, NULL,
2422 					 SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_DMA);
2423 	if (rctrlr->cm_events == NULL) {
2424 		SPDK_ERRLOG("unable to allocate buffers to hold CM events.\n");
2425 		goto destruct_ctrlr;
2426 	}
2427 
2428 	for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
2429 		STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
2430 	}
2431 
2432 	rctrlr->cm_channel = rdma_create_event_channel();
2433 	if (rctrlr->cm_channel == NULL) {
2434 		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
2435 		goto destruct_ctrlr;
2436 	}
2437 
2438 	flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
2439 	if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
2440 		SPDK_ERRLOG("Cannot set event channel to non blocking\n");
2441 		goto destruct_ctrlr;
2442 	}
2443 
2444 	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
2445 			       rctrlr->ctrlr.opts.admin_queue_size, 0,
2446 			       rctrlr->ctrlr.opts.admin_queue_size, false, true);
2447 	if (!rctrlr->ctrlr.adminq) {
2448 		SPDK_ERRLOG("failed to create admin qpair\n");
2449 		goto destruct_ctrlr;
2450 	}
2451 	if (spdk_rdma_provider_accel_sequence_supported()) {
2452 		rctrlr->ctrlr.flags |= SPDK_NVME_CTRLR_ACCEL_SEQUENCE_SUPPORTED;
2453 	}
2454 
2455 	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
2456 		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
2457 		goto destruct_ctrlr;
2458 	}
2459 
2460 	SPDK_DEBUGLOG(nvme, "successfully initialized the nvmf ctrlr\n");
2461 	return &rctrlr->ctrlr;
2462 
2463 destruct_ctrlr:
2464 	nvme_ctrlr_destruct(&rctrlr->ctrlr);
2465 	return NULL;
2466 }
2467 
2468 static int
2469 nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
2470 {
2471 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
2472 	struct nvme_rdma_cm_event_entry *entry;
2473 
2474 	if (ctrlr->adminq) {
2475 		nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
2476 	}
2477 
2478 	STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
2479 		rdma_ack_cm_event(entry->evt);
2480 	}
2481 
2482 	STAILQ_INIT(&rctrlr->free_cm_events);
2483 	STAILQ_INIT(&rctrlr->pending_cm_events);
2484 	spdk_free(rctrlr->cm_events);
2485 
2486 	if (rctrlr->cm_channel) {
2487 		rdma_destroy_event_channel(rctrlr->cm_channel);
2488 		rctrlr->cm_channel = NULL;
2489 	}
2490 
2491 	nvme_ctrlr_destruct_finish(ctrlr);
2492 
2493 	spdk_free(rctrlr);
2494 
2495 	return 0;
2496 }
2497 
2498 static inline int
2499 _nvme_rdma_qpair_submit_request(struct nvme_rdma_qpair *rqpair,
2500 				struct spdk_nvme_rdma_req *rdma_req)
2501 {
2502 	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
2503 	struct ibv_send_wr *wr;
2504 	struct nvme_rdma_poll_group *group;
2505 
2506 	if (!rqpair->link_active.tqe_prev && qpair->poll_group) {
2507 		group = nvme_rdma_poll_group(qpair->poll_group);
2508 		TAILQ_INSERT_TAIL(&group->active_qpairs, rqpair, link_active);
2509 	}
2510 	assert(rqpair->current_num_sends < rqpair->num_entries);
2511 	rqpair->current_num_sends++;
2512 
2513 	wr = &rdma_req->send_wr;
2514 	wr->next = NULL;
2515 	nvme_rdma_trace_ibv_sge(wr->sg_list);
2516 
2517 	spdk_rdma_provider_qp_queue_send_wrs(rqpair->rdma_qp, wr);
2518 
2519 	if (!rqpair->delay_cmd_submit) {
2520 		return nvme_rdma_qpair_submit_sends(rqpair);
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static int
2527 nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
2528 			       struct nvme_request *req)
2529 {
2530 	struct nvme_rdma_qpair *rqpair;
2531 	struct spdk_nvme_rdma_req *rdma_req;
2532 	int rc;
2533 
2534 	rqpair = nvme_rdma_qpair(qpair);
2535 	assert(rqpair != NULL);
2536 	assert(req != NULL);
2537 
2538 	rdma_req = nvme_rdma_req_get(rqpair);
2539 	if (spdk_unlikely(!rdma_req)) {
2540 		if (rqpair->poller) {
2541 			rqpair->poller->stats.queued_requests++;
2542 		}
2543 		/* Inform the upper layer to try again later. */
2544 		return -EAGAIN;
2545 	}
2546 
2547 	assert(rdma_req->req == NULL);
2548 	rdma_req->req = req;
2549 	req->cmd.cid = rdma_req->id;
2550 	if (req->accel_sequence || rqpair->append_copy) {
2551 		assert(spdk_rdma_provider_accel_sequence_supported());
2552 		assert(rqpair->qpair.poll_group->group);
2553 		assert(rqpair->qpair.poll_group->group->accel_fn_table.append_copy);
2554 		assert(rqpair->qpair.poll_group->group->accel_fn_table.reverse_sequence);
2555 		assert(rqpair->qpair.poll_group->group->accel_fn_table.finish_sequence);
2556 
2557 		rc = nvme_rdma_apply_accel_sequence(rqpair, req, rdma_req);
2558 		if (spdk_unlikely(rc)) {
2559 			SPDK_ERRLOG("failed to apply accel seq, rqpair %p, req %p, rc %d\n", rqpair, rdma_req, rc);
2560 			nvme_rdma_req_put(rqpair, rdma_req);
2561 			return rc;
2562 		}
2563 		/* Capsule will be sent in data_transfer callback */
2564 		return 0;
2565 	}
2566 
2567 	rc = nvme_rdma_req_init(rqpair, rdma_req);
2568 	if (spdk_unlikely(rc)) {
2569 		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
2570 		nvme_rdma_req_put(rqpair, rdma_req);
2571 		return -1;
2572 	}
2573 
2574 	TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
2575 	rqpair->num_outstanding_reqs++;
2576 
2577 	return _nvme_rdma_qpair_submit_request(rqpair, rdma_req);
2578 }
2579 
2580 static int
2581 nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
2582 {
2583 	/* Currently, doing nothing here */
2584 	return 0;
2585 }
2586 
2587 static void
2588 nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
2589 {
2590 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2591 	struct spdk_nvme_cpl cpl;
2592 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2593 
2594 	cpl.sqid = qpair->id;
2595 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
2596 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
2597 	cpl.status.dnr = dnr;
2598 
2599 	/*
2600 	 * We cannot abort requests at the RDMA layer without
2601 	 * unregistering them. If we do, we can still get error
2602 	 * free completions on the shared completion queue.
2603 	 */
2604 	if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
2605 	    nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
2606 		nvme_ctrlr_disconnect_qpair(qpair);
2607 	}
2608 
2609 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2610 		if (rdma_req->in_progress_accel) {
2611 			/* We should wait for accel completion */
2612 			continue;
2613 		}
2614 		nvme_rdma_req_complete(rdma_req, &cpl, true);
2615 	}
2616 }
2617 
2618 static void
2619 nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
2620 {
2621 	uint64_t t02;
2622 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
2623 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
2624 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
2625 	struct spdk_nvme_ctrlr_process *active_proc;
2626 
2627 	/* Don't check timeouts during controller initialization. */
2628 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
2629 		return;
2630 	}
2631 
2632 	if (nvme_qpair_is_admin_queue(qpair)) {
2633 		active_proc = nvme_ctrlr_get_current_process(ctrlr);
2634 	} else {
2635 		active_proc = qpair->active_proc;
2636 	}
2637 
2638 	/* Only check timeouts if the current process has a timeout callback. */
2639 	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
2640 		return;
2641 	}
2642 
2643 	t02 = spdk_get_ticks();
2644 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
2645 		assert(rdma_req->req != NULL);
2646 
2647 		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
2648 			/*
2649 			 * The requests are in order, so as soon as one has not timed out,
2650 			 * stop iterating.
2651 			 */
2652 			break;
2653 		}
2654 	}
2655 }
2656 
2657 static inline void
2658 nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
2659 {
2660 	struct spdk_nvme_rdma_rsp *rdma_rsp = rdma_req->rdma_rsp;
2661 	struct ibv_recv_wr *recv_wr = rdma_rsp->recv_wr;
2662 
2663 	if (rdma_req->transfer_cpl_cb) {
2664 		int rc = 0;
2665 
2666 		if (spdk_unlikely(spdk_nvme_cpl_is_error(&rdma_rsp->cpl))) {
2667 			SPDK_WARNLOG("req %p, error cpl sct %d, sc %d\n", rdma_req, rdma_rsp->cpl.status.sct,
2668 				     rdma_rsp->cpl.status.sc);
2669 			rc = -EIO;
2670 		}
2671 		nvme_rdma_finish_data_transfer(rdma_req, rc);
2672 	} else {
2673 		nvme_rdma_req_complete(rdma_req, &rdma_rsp->cpl, true);
2674 	}
2675 
2676 	if (spdk_unlikely(rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING && !rqpair->srq)) {
2677 		/* Skip posting back recv wr if we are in a disconnection process. We may never get
2678 		 * a WC and we may end up stuck in LINGERING state until the timeout. */
2679 		return;
2680 	}
2681 
2682 	assert(rqpair->rsps->current_num_recvs < rqpair->rsps->num_entries);
2683 	rqpair->rsps->current_num_recvs++;
2684 
2685 	recv_wr->next = NULL;
2686 	nvme_rdma_trace_ibv_sge(recv_wr->sg_list);
2687 
2688 	if (!rqpair->srq) {
2689 		spdk_rdma_provider_qp_queue_recv_wrs(rqpair->rdma_qp, recv_wr);
2690 	} else {
2691 		spdk_rdma_provider_srq_queue_recv_wrs(rqpair->srq, recv_wr);
2692 	}
2693 }
2694 
2695 #define MAX_COMPLETIONS_PER_POLL 128
2696 
2697 static void
2698 nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
2699 {
2700 	if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
2701 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
2702 	} else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
2703 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
2704 	}
2705 
2706 	nvme_ctrlr_disconnect_qpair(qpair);
2707 }
2708 
2709 static struct nvme_rdma_qpair *
2710 get_rdma_qpair_from_wc(struct nvme_rdma_poll_group *group, struct ibv_wc *wc)
2711 {
2712 	struct spdk_nvme_qpair *qpair;
2713 	struct nvme_rdma_qpair *rqpair;
2714 
2715 	STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
2716 		rqpair = nvme_rdma_qpair(qpair);
2717 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2718 			return rqpair;
2719 		}
2720 	}
2721 
2722 	STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
2723 		rqpair = nvme_rdma_qpair(qpair);
2724 		if (NVME_RDMA_POLL_GROUP_CHECK_QPN(rqpair, wc->qp_num)) {
2725 			return rqpair;
2726 		}
2727 	}
2728 
2729 	return NULL;
2730 }
2731 
2732 static inline void
2733 nvme_rdma_log_wc_status(struct nvme_rdma_qpair *rqpair, struct ibv_wc *wc)
2734 {
2735 	struct nvme_rdma_wr *rdma_wr = (struct nvme_rdma_wr *)wc->wr_id;
2736 
2737 	if (wc->status == IBV_WC_WR_FLUSH_ERR) {
2738 		/* If qpair is in ERR state, we will receive completions for all posted and not completed
2739 		 * Work Requests with IBV_WC_WR_FLUSH_ERR status. Don't log an error in that case */
2740 		SPDK_DEBUGLOG(nvme, "WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2741 			      rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2742 			      ibv_wc_status_str(wc->status));
2743 	} else {
2744 		SPDK_ERRLOG("WC error, qid %u, qp state %d, request 0x%lu type %d, status: (%d): %s\n",
2745 			    rqpair->qpair.id, rqpair->qpair.state, wc->wr_id, rdma_wr->type, wc->status,
2746 			    ibv_wc_status_str(wc->status));
2747 	}
2748 }
2749 
2750 static inline int
2751 nvme_rdma_process_recv_completion(struct nvme_rdma_poller *poller, struct ibv_wc *wc,
2752 				  struct nvme_rdma_wr *rdma_wr)
2753 {
2754 	struct nvme_rdma_qpair		*rqpair;
2755 	struct spdk_nvme_rdma_req	*rdma_req;
2756 	struct spdk_nvme_rdma_rsp	*rdma_rsp;
2757 
2758 	rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
2759 
2760 	if (poller && poller->srq) {
2761 		rqpair = get_rdma_qpair_from_wc(poller->group, wc);
2762 		if (spdk_unlikely(!rqpair)) {
2763 			/* Since we do not handle the LAST_WQE_REACHED event, we do not know when
2764 			 * a Receive Queue in a QP, that is associated with an SRQ, is flushed.
2765 			 * We may get a WC for a already destroyed QP.
2766 			 *
2767 			 * However, for the SRQ, this is not any error. Hence, just re-post the
2768 			 * receive request to the SRQ to reuse for other QPs, and return 0.
2769 			 */
2770 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2771 			return 0;
2772 		}
2773 	} else {
2774 		rqpair = rdma_rsp->rqpair;
2775 		if (spdk_unlikely(!rqpair)) {
2776 			/* TODO: Fix forceful QP destroy when it is not async mode.
2777 			 * CQ itself did not cause any error. Hence, return 0 for now.
2778 			 */
2779 			SPDK_WARNLOG("QP might be already destroyed.\n");
2780 			return 0;
2781 		}
2782 	}
2783 
2784 
2785 	assert(rqpair->rsps->current_num_recvs > 0);
2786 	rqpair->rsps->current_num_recvs--;
2787 
2788 	if (spdk_unlikely(wc->status)) {
2789 		nvme_rdma_log_wc_status(rqpair, wc);
2790 		goto err_wc;
2791 	}
2792 
2793 	SPDK_DEBUGLOG(nvme, "CQ recv completion\n");
2794 
2795 	if (spdk_unlikely(wc->byte_len < sizeof(struct spdk_nvme_cpl))) {
2796 		SPDK_ERRLOG("recv length %u less than expected response size\n", wc->byte_len);
2797 		goto err_wc;
2798 	}
2799 	rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2800 	rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
2801 	rdma_req->rdma_rsp = rdma_rsp;
2802 
2803 	if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) == 0) {
2804 		return 0;
2805 	}
2806 
2807 	rqpair->num_completions++;
2808 
2809 	nvme_rdma_request_ready(rqpair, rdma_req);
2810 
2811 	if (!rqpair->delay_cmd_submit) {
2812 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2813 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2814 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2815 			return -ENXIO;
2816 		}
2817 	}
2818 
2819 	return 1;
2820 
2821 err_wc:
2822 	nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2823 	if (poller && poller->srq) {
2824 		spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_rsp->recv_wr);
2825 	}
2826 	rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
2827 	if (rdma_req->transfer_cpl_cb) {
2828 		nvme_rdma_finish_data_transfer(rdma_req, -ENXIO);
2829 	}
2830 	return -ENXIO;
2831 }
2832 
2833 static inline int
2834 nvme_rdma_process_send_completion(struct nvme_rdma_poller *poller,
2835 				  struct nvme_rdma_qpair *rdma_qpair,
2836 				  struct ibv_wc *wc, struct nvme_rdma_wr *rdma_wr)
2837 {
2838 	struct nvme_rdma_qpair		*rqpair;
2839 	struct spdk_nvme_rdma_req	*rdma_req;
2840 
2841 	rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
2842 	rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
2843 	if (spdk_unlikely(!rqpair)) {
2844 		rqpair = rdma_qpair != NULL ? rdma_qpair : get_rdma_qpair_from_wc(poller->group, wc);
2845 	}
2846 
2847 	/* If we are flushing I/O */
2848 	if (spdk_unlikely(wc->status)) {
2849 		if (!rqpair) {
2850 			/* When poll_group is used, several qpairs share the same CQ and it is possible to
2851 			 * receive a completion with error (e.g. IBV_WC_WR_FLUSH_ERR) for already disconnected qpair
2852 			 * That happens due to qpair is destroyed while there are submitted but not completed send/receive
2853 			 * Work Requests */
2854 			assert(poller);
2855 			return 0;
2856 		}
2857 		assert(rqpair->current_num_sends > 0);
2858 		rqpair->current_num_sends--;
2859 		nvme_rdma_log_wc_status(rqpair, wc);
2860 		nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2861 		if (rdma_req->rdma_rsp && poller && poller->srq) {
2862 			spdk_rdma_provider_srq_queue_recv_wrs(poller->srq, rdma_req->rdma_rsp->recv_wr);
2863 		}
2864 		if (rdma_req->transfer_cpl_cb) {
2865 			nvme_rdma_finish_data_transfer(rdma_req, -ENXIO);
2866 		}
2867 		return -ENXIO;
2868 	}
2869 
2870 	/* We do not support Soft Roce anymore. Other than Soft Roce's bug, we should not
2871 	 * receive a completion without error status after qpair is disconnected/destroyed.
2872 	 */
2873 	if (spdk_unlikely(rdma_req->req == NULL)) {
2874 		/*
2875 		 * Some infiniband drivers do not guarantee the previous assumption after we
2876 		 * received a RDMA_CM_EVENT_DEVICE_REMOVAL event.
2877 		 */
2878 		SPDK_ERRLOG("Received malformed completion: request 0x%"PRIx64" type %d\n", wc->wr_id,
2879 			    rdma_wr->type);
2880 		if (!rqpair || !rqpair->need_destroy) {
2881 			assert(0);
2882 		}
2883 		return -ENXIO;
2884 	}
2885 
2886 	rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
2887 	assert(rqpair->current_num_sends > 0);
2888 	rqpair->current_num_sends--;
2889 
2890 	if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) == 0) {
2891 		return 0;
2892 	}
2893 
2894 	rqpair->num_completions++;
2895 
2896 	nvme_rdma_request_ready(rqpair, rdma_req);
2897 
2898 	if (!rqpair->delay_cmd_submit) {
2899 		if (spdk_unlikely(nvme_rdma_qpair_submit_recvs(rqpair))) {
2900 			SPDK_ERRLOG("Unable to re-post rx descriptor\n");
2901 			nvme_rdma_fail_qpair(&rqpair->qpair, 0);
2902 			return -ENXIO;
2903 		}
2904 	}
2905 
2906 	return 1;
2907 }
2908 
2909 static inline int
2910 nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
2911 				 struct nvme_rdma_poller *poller,
2912 				 struct nvme_rdma_qpair *rdma_qpair,
2913 				 uint64_t *rdma_completions)
2914 {
2915 	struct ibv_wc			wc[MAX_COMPLETIONS_PER_POLL];
2916 	struct nvme_rdma_wr		*rdma_wr;
2917 	uint32_t			reaped = 0;
2918 	int				completion_rc = 0;
2919 	int				rc, _rc, i;
2920 
2921 	rc = ibv_poll_cq(cq, batch_size, wc);
2922 	if (spdk_unlikely(rc < 0)) {
2923 		SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
2924 			    errno, spdk_strerror(errno));
2925 		return -ECANCELED;
2926 	} else if (rc == 0) {
2927 		return 0;
2928 	}
2929 
2930 	for (i = 0; i < rc; i++) {
2931 		rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
2932 		switch (rdma_wr->type) {
2933 		case RDMA_WR_TYPE_RECV:
2934 			_rc = nvme_rdma_process_recv_completion(poller, &wc[i], rdma_wr);
2935 			break;
2936 
2937 		case RDMA_WR_TYPE_SEND:
2938 			_rc = nvme_rdma_process_send_completion(poller, rdma_qpair, &wc[i], rdma_wr);
2939 			break;
2940 
2941 		default:
2942 			SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
2943 			return -ECANCELED;
2944 		}
2945 		if (spdk_likely(_rc >= 0)) {
2946 			reaped += _rc;
2947 		} else {
2948 			completion_rc = _rc;
2949 		}
2950 	}
2951 
2952 	*rdma_completions += rc;
2953 
2954 	if (spdk_unlikely(completion_rc)) {
2955 		return completion_rc;
2956 	}
2957 
2958 	return reaped;
2959 }
2960 
2961 static void
2962 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
2963 {
2964 
2965 }
2966 
2967 static int
2968 nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
2969 				    uint32_t max_completions)
2970 {
2971 	struct nvme_rdma_qpair		*rqpair = nvme_rdma_qpair(qpair);
2972 	struct nvme_rdma_ctrlr		*rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
2973 	int				rc = 0, batch_size;
2974 	struct ibv_cq			*cq;
2975 	uint64_t			rdma_completions = 0;
2976 
2977 	/*
2978 	 * This is used during the connection phase. It's possible that we are still reaping error completions
2979 	 * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
2980 	 * is shared.
2981 	 */
2982 	if (qpair->poll_group != NULL) {
2983 		return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
2984 				dummy_disconnected_qpair_cb);
2985 	}
2986 
2987 	if (max_completions == 0) {
2988 		max_completions = rqpair->num_entries;
2989 	} else {
2990 		max_completions = spdk_min(max_completions, rqpair->num_entries);
2991 	}
2992 
2993 	switch (nvme_qpair_get_state(qpair)) {
2994 	case NVME_QPAIR_CONNECTING:
2995 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
2996 		if (rc == 0) {
2997 			/* Once the connection is completed, we can submit queued requests */
2998 			nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
2999 		} else if (rc != -EAGAIN) {
3000 			SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3001 			goto failed;
3002 		} else if (rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING) {
3003 			return 0;
3004 		}
3005 		break;
3006 
3007 	case NVME_QPAIR_DISCONNECTING:
3008 		nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3009 		return -ENXIO;
3010 
3011 	default:
3012 		if (nvme_qpair_is_admin_queue(qpair)) {
3013 			nvme_rdma_poll_events(rctrlr);
3014 		}
3015 		nvme_rdma_qpair_process_cm_event(rqpair);
3016 		break;
3017 	}
3018 
3019 	if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3020 		goto failed;
3021 	}
3022 
3023 	cq = rqpair->cq;
3024 
3025 	rqpair->num_completions = 0;
3026 	do {
3027 		batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
3028 		rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair, &rdma_completions);
3029 
3030 		if (rc == 0) {
3031 			break;
3032 			/* Handle the case where we fail to poll the cq. */
3033 		} else if (rc == -ECANCELED) {
3034 			goto failed;
3035 		} else if (rc == -ENXIO) {
3036 			return rc;
3037 		}
3038 	} while (rqpair->num_completions < max_completions);
3039 
3040 	if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
3041 			  nvme_rdma_qpair_submit_recvs(rqpair))) {
3042 		goto failed;
3043 	}
3044 
3045 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3046 		nvme_rdma_qpair_check_timeout(qpair);
3047 	}
3048 
3049 	return rqpair->num_completions;
3050 
3051 failed:
3052 	nvme_rdma_fail_qpair(qpair, 0);
3053 	return -ENXIO;
3054 }
3055 
3056 static uint32_t
3057 nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
3058 {
3059 	/* max_mr_size by ibv_query_device indicates the largest value that we can
3060 	 * set for a registered memory region.  It is independent from the actual
3061 	 * I/O size and is very likely to be larger than 2 MiB which is the
3062 	 * granularity we currently register memory regions.  Hence return
3063 	 * UINT32_MAX here and let the generic layer use the controller data to
3064 	 * moderate this value.
3065 	 */
3066 	return UINT32_MAX;
3067 }
3068 
3069 static uint16_t
3070 nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
3071 {
3072 	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
3073 	uint32_t max_sge = rctrlr->max_sge;
3074 	uint32_t max_in_capsule_sge = (ctrlr->cdata.nvmf_specific.ioccsz * 16 -
3075 				       sizeof(struct spdk_nvme_cmd)) /
3076 				      sizeof(struct spdk_nvme_sgl_descriptor);
3077 
3078 	/* Max SGE is limited by capsule size */
3079 	max_sge = spdk_min(max_sge, max_in_capsule_sge);
3080 	/* Max SGE may be limited by MSDBD.
3081 	 * If umr_per_io is enabled and supported, we always use virtually contig buffer, we don't limit max_sge by
3082 	 * MSDBD in that case */
3083 	if (!(g_spdk_nvme_transport_opts.rdma_umr_per_io &&
3084 	      spdk_rdma_provider_accel_sequence_supported()) &&
3085 	    ctrlr->cdata.nvmf_specific.msdbd != 0) {
3086 		max_sge = spdk_min(max_sge, ctrlr->cdata.nvmf_specific.msdbd);
3087 	}
3088 
3089 	/* Max SGE can't be less than 1 */
3090 	max_sge = spdk_max(1, max_sge);
3091 	return max_sge;
3092 }
3093 
3094 static int
3095 nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
3096 				 int (*iter_fn)(struct nvme_request *req, void *arg),
3097 				 void *arg)
3098 {
3099 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3100 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
3101 	int rc;
3102 
3103 	assert(iter_fn != NULL);
3104 
3105 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
3106 		assert(rdma_req->req != NULL);
3107 
3108 		rc = iter_fn(rdma_req->req, arg);
3109 		if (rc != 0) {
3110 			return rc;
3111 		}
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 static int
3118 nvme_rdma_qpair_authenticate(struct spdk_nvme_qpair *qpair)
3119 {
3120 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3121 	int rc;
3122 
3123 	/* If the qpair is still connecting, it'll be forced to authenticate later on */
3124 	if (rqpair->state < NVME_RDMA_QPAIR_STATE_RUNNING) {
3125 		return 0;
3126 	} else if (rqpair->state != NVME_RDMA_QPAIR_STATE_RUNNING) {
3127 		return -ENOTCONN;
3128 	}
3129 
3130 	rc = nvme_fabric_qpair_authenticate_async(qpair);
3131 	if (rc == 0) {
3132 		nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTING);
3133 		rqpair->state = NVME_RDMA_QPAIR_STATE_AUTHENTICATING;
3134 	}
3135 
3136 	return rc;
3137 }
3138 
3139 static void
3140 nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
3141 {
3142 	struct spdk_nvme_rdma_req *rdma_req, *tmp;
3143 	struct spdk_nvme_cpl cpl;
3144 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3145 
3146 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
3147 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
3148 
3149 	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
3150 		assert(rdma_req->req != NULL);
3151 
3152 		if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
3153 			continue;
3154 		}
3155 
3156 		nvme_rdma_req_complete(rdma_req, &cpl, false);
3157 	}
3158 }
3159 
3160 static void
3161 nvme_rdma_poller_destroy(struct nvme_rdma_poller *poller)
3162 {
3163 	if (poller->cq) {
3164 		ibv_destroy_cq(poller->cq);
3165 	}
3166 	if (poller->rsps) {
3167 		nvme_rdma_free_rsps(poller->rsps);
3168 	}
3169 	if (poller->srq) {
3170 		spdk_rdma_provider_srq_destroy(poller->srq);
3171 	}
3172 	if (poller->mr_map) {
3173 		spdk_rdma_utils_free_mem_map(&poller->mr_map);
3174 	}
3175 	if (poller->pd) {
3176 		spdk_rdma_utils_put_pd(poller->pd);
3177 	}
3178 	free(poller);
3179 }
3180 
3181 static struct nvme_rdma_poller *
3182 nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
3183 {
3184 	struct nvme_rdma_poller *poller;
3185 	struct ibv_device_attr dev_attr;
3186 	struct spdk_rdma_provider_srq_init_attr srq_init_attr = {};
3187 	struct nvme_rdma_rsp_opts opts;
3188 	int num_cqe, max_num_cqe;
3189 	int rc;
3190 
3191 	poller = calloc(1, sizeof(*poller));
3192 	if (poller == NULL) {
3193 		SPDK_ERRLOG("Unable to allocate poller.\n");
3194 		return NULL;
3195 	}
3196 
3197 	poller->group = group;
3198 	poller->device = ctx;
3199 
3200 	if (g_spdk_nvme_transport_opts.rdma_srq_size != 0) {
3201 		rc = ibv_query_device(ctx, &dev_attr);
3202 		if (rc) {
3203 			SPDK_ERRLOG("Unable to query RDMA device.\n");
3204 			goto fail;
3205 		}
3206 
3207 		poller->pd = spdk_rdma_utils_get_pd(ctx);
3208 		if (poller->pd == NULL) {
3209 			SPDK_ERRLOG("Unable to get PD.\n");
3210 			goto fail;
3211 		}
3212 
3213 		poller->mr_map = spdk_rdma_utils_create_mem_map(poller->pd, &g_nvme_hooks,
3214 				 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE);
3215 		if (poller->mr_map == NULL) {
3216 			SPDK_ERRLOG("Unable to create memory map.\n");
3217 			goto fail;
3218 		}
3219 
3220 		srq_init_attr.stats = &poller->stats.rdma_stats.recv;
3221 		srq_init_attr.pd = poller->pd;
3222 		srq_init_attr.srq_init_attr.attr.max_wr = spdk_min((uint32_t)dev_attr.max_srq_wr,
3223 				g_spdk_nvme_transport_opts.rdma_srq_size);
3224 		srq_init_attr.srq_init_attr.attr.max_sge = spdk_min(dev_attr.max_sge,
3225 				NVME_RDMA_DEFAULT_RX_SGE);
3226 
3227 		poller->srq = spdk_rdma_provider_srq_create(&srq_init_attr);
3228 		if (poller->srq == NULL) {
3229 			SPDK_ERRLOG("Unable to create SRQ.\n");
3230 			goto fail;
3231 		}
3232 
3233 		opts.num_entries = g_spdk_nvme_transport_opts.rdma_srq_size;
3234 		opts.rqpair = NULL;
3235 		opts.srq = poller->srq;
3236 		opts.mr_map = poller->mr_map;
3237 
3238 		poller->rsps = nvme_rdma_create_rsps(&opts);
3239 		if (poller->rsps == NULL) {
3240 			SPDK_ERRLOG("Unable to create poller RDMA responses.\n");
3241 			goto fail;
3242 		}
3243 
3244 		rc = nvme_rdma_poller_submit_recvs(poller);
3245 		if (rc) {
3246 			SPDK_ERRLOG("Unable to submit poller RDMA responses.\n");
3247 			goto fail;
3248 		}
3249 
3250 		/*
3251 		 * When using an srq, fix the size of the completion queue at startup.
3252 		 * The initiator sends only send and recv WRs. Hence, the multiplier is 2.
3253 		 * (The target sends also data WRs. Hence, the multiplier is 3.)
3254 		 */
3255 		num_cqe = g_spdk_nvme_transport_opts.rdma_srq_size * 2;
3256 	} else {
3257 		num_cqe = DEFAULT_NVME_RDMA_CQ_SIZE;
3258 	}
3259 
3260 	max_num_cqe = g_spdk_nvme_transport_opts.rdma_max_cq_size;
3261 	if (max_num_cqe != 0 && num_cqe > max_num_cqe) {
3262 		num_cqe = max_num_cqe;
3263 	}
3264 
3265 	poller->cq = ibv_create_cq(poller->device, num_cqe, group, NULL, 0);
3266 
3267 	if (poller->cq == NULL) {
3268 		SPDK_ERRLOG("Unable to create CQ, errno %d.\n", errno);
3269 		goto fail;
3270 	}
3271 
3272 	STAILQ_INSERT_HEAD(&group->pollers, poller, link);
3273 	group->num_pollers++;
3274 	poller->current_num_wc = num_cqe;
3275 	poller->required_num_wc = 0;
3276 	return poller;
3277 
3278 fail:
3279 	nvme_rdma_poller_destroy(poller);
3280 	return NULL;
3281 }
3282 
3283 static void
3284 nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
3285 {
3286 	struct nvme_rdma_poller	*poller, *tmp_poller;
3287 
3288 	STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
3289 		assert(poller->refcnt == 0);
3290 		if (poller->refcnt) {
3291 			SPDK_WARNLOG("Destroying poller with non-zero ref count: poller %p, refcnt %d\n",
3292 				     poller, poller->refcnt);
3293 		}
3294 
3295 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
3296 		nvme_rdma_poller_destroy(poller);
3297 	}
3298 }
3299 
3300 static struct nvme_rdma_poller *
3301 nvme_rdma_poll_group_get_poller(struct nvme_rdma_poll_group *group, struct ibv_context *device)
3302 {
3303 	struct nvme_rdma_poller *poller = NULL;
3304 
3305 	STAILQ_FOREACH(poller, &group->pollers, link) {
3306 		if (poller->device == device) {
3307 			break;
3308 		}
3309 	}
3310 
3311 	if (!poller) {
3312 		poller = nvme_rdma_poller_create(group, device);
3313 		if (!poller) {
3314 			SPDK_ERRLOG("Failed to create a poller for device %p\n", device);
3315 			return NULL;
3316 		}
3317 	}
3318 
3319 	poller->refcnt++;
3320 	return poller;
3321 }
3322 
3323 static void
3324 nvme_rdma_poll_group_put_poller(struct nvme_rdma_poll_group *group, struct nvme_rdma_poller *poller)
3325 {
3326 	assert(poller->refcnt > 0);
3327 	if (--poller->refcnt == 0) {
3328 		STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
3329 		group->num_pollers--;
3330 		nvme_rdma_poller_destroy(poller);
3331 	}
3332 }
3333 
3334 static struct spdk_nvme_transport_poll_group *
3335 nvme_rdma_poll_group_create(void)
3336 {
3337 	struct nvme_rdma_poll_group	*group;
3338 
3339 	group = calloc(1, sizeof(*group));
3340 	if (group == NULL) {
3341 		SPDK_ERRLOG("Unable to allocate poll group.\n");
3342 		return NULL;
3343 	}
3344 
3345 	STAILQ_INIT(&group->pollers);
3346 	TAILQ_INIT(&group->connecting_qpairs);
3347 	TAILQ_INIT(&group->active_qpairs);
3348 	return &group->group;
3349 }
3350 
3351 static int
3352 nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
3353 {
3354 	return 0;
3355 }
3356 
3357 static int
3358 nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
3359 {
3360 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3361 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3362 
3363 	if (rqpair->link_connecting.tqe_prev) {
3364 		TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3365 		/* We use prev pointer to check if qpair is in connecting list or not .
3366 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3367 		 */
3368 		rqpair->link_connecting.tqe_prev = NULL;
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 static int
3375 nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
3376 			 struct spdk_nvme_qpair *qpair)
3377 {
3378 	return 0;
3379 }
3380 
3381 static int
3382 nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
3383 			    struct spdk_nvme_qpair *qpair)
3384 {
3385 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
3386 	struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
3387 
3388 	if (rqpair->poller) {
3389 		/* A qpair may skip transport disconnect part if it was already disconnecting. But on RDMA level a qpair
3390 		 * may still have a poller reference. In that case we should continue transport disconnect here
3391 		 * because a poller depends on the poll group reference which is going to be removed */
3392 		SPDK_INFOLOG(nvme, "qpair %p, id %u, nvme state %d, rdma state %d, force disconnect\n",
3393 			     qpair, qpair->id, qpair->state, rqpair->state);
3394 		nvme_rdma_ctrlr_disconnect_qpair(qpair->ctrlr, qpair);
3395 	}
3396 
3397 	if (rqpair->link_active.tqe_prev) {
3398 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3399 		rqpair->link_active.tqe_prev = NULL;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 static inline void
3406 nvme_rdma_qpair_process_submits(struct nvme_rdma_poll_group *group,
3407 				struct nvme_rdma_qpair *rqpair)
3408 {
3409 	struct spdk_nvme_qpair	*qpair = &rqpair->qpair;
3410 
3411 	assert(rqpair->link_active.tqe_prev != NULL);
3412 
3413 	if (spdk_unlikely(rqpair->state <= NVME_RDMA_QPAIR_STATE_INITIALIZING ||
3414 			  rqpair->state >= NVME_RDMA_QPAIR_STATE_EXITING)) {
3415 		return;
3416 	}
3417 
3418 	if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
3419 		nvme_rdma_qpair_check_timeout(qpair);
3420 	}
3421 
3422 	nvme_rdma_qpair_submit_sends(rqpair);
3423 	if (!rqpair->srq) {
3424 		nvme_rdma_qpair_submit_recvs(rqpair);
3425 	}
3426 	if (rqpair->num_completions > 0) {
3427 		nvme_qpair_resubmit_requests(qpair, rqpair->num_completions);
3428 		rqpair->num_completions = 0;
3429 	}
3430 
3431 	if (rqpair->num_outstanding_reqs == 0 && STAILQ_EMPTY(&qpair->queued_req)) {
3432 		TAILQ_REMOVE(&group->active_qpairs, rqpair, link_active);
3433 		/* We use prev pointer to check if qpair is in active list or not.
3434 		 * TAILQ_REMOVE doesn't do it. So, we do it manually.
3435 		 */
3436 		rqpair->link_active.tqe_prev = NULL;
3437 	}
3438 }
3439 
3440 static int64_t
3441 nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
3442 		uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3443 {
3444 	struct spdk_nvme_qpair			*qpair, *tmp_qpair;
3445 	struct nvme_rdma_qpair			*rqpair, *tmp_rqpair;
3446 	struct nvme_rdma_poll_group		*group;
3447 	struct nvme_rdma_poller			*poller;
3448 	int					batch_size, rc, rc2 = 0;
3449 	int64_t					total_completions = 0;
3450 	uint64_t				completions_allowed = 0;
3451 	uint64_t				completions_per_poller = 0;
3452 	uint64_t				poller_completions = 0;
3453 	uint64_t				rdma_completions;
3454 
3455 	if (completions_per_qpair == 0) {
3456 		completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
3457 	}
3458 
3459 	group = nvme_rdma_poll_group(tgroup);
3460 
3461 	STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
3462 		rc = nvme_rdma_ctrlr_disconnect_qpair_poll(qpair->ctrlr, qpair);
3463 		if (rc == 0) {
3464 			disconnected_qpair_cb(qpair, tgroup->group->ctx);
3465 		}
3466 	}
3467 
3468 	TAILQ_FOREACH_SAFE(rqpair, &group->connecting_qpairs, link_connecting, tmp_rqpair) {
3469 		qpair = &rqpair->qpair;
3470 
3471 		rc = nvme_rdma_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair);
3472 		if (rc == 0 || rc != -EAGAIN) {
3473 			TAILQ_REMOVE(&group->connecting_qpairs, rqpair, link_connecting);
3474 			/* We use prev pointer to check if qpair is in connecting list or not.
3475 			 * TAILQ_REMOVE does not do it. So, we do it manually.
3476 			 */
3477 			rqpair->link_connecting.tqe_prev = NULL;
3478 
3479 			if (rc == 0) {
3480 				/* Once the connection is completed, we can submit queued requests */
3481 				nvme_qpair_resubmit_requests(qpair, rqpair->num_entries);
3482 			} else if (rc != -EAGAIN) {
3483 				SPDK_ERRLOG("Failed to connect rqpair=%p\n", rqpair);
3484 				nvme_rdma_fail_qpair(qpair, 0);
3485 			}
3486 		}
3487 	}
3488 
3489 	STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
3490 		rqpair = nvme_rdma_qpair(qpair);
3491 
3492 		if (spdk_likely(nvme_qpair_get_state(qpair) != NVME_QPAIR_CONNECTING)) {
3493 			nvme_rdma_qpair_process_cm_event(rqpair);
3494 		}
3495 
3496 		if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
3497 			rc2 = -ENXIO;
3498 			nvme_rdma_fail_qpair(qpair, 0);
3499 		}
3500 	}
3501 
3502 	completions_allowed = completions_per_qpair * tgroup->num_connected_qpairs;
3503 	if (spdk_likely(group->num_pollers)) {
3504 		completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
3505 	}
3506 
3507 	STAILQ_FOREACH(poller, &group->pollers, link) {
3508 		poller_completions = 0;
3509 		rdma_completions = 0;
3510 		do {
3511 			poller->stats.polls++;
3512 			batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
3513 			rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, poller, NULL, &rdma_completions);
3514 			if (rc <= 0) {
3515 				if (rc == -ECANCELED) {
3516 					return -EIO;
3517 				} else if (rc == 0) {
3518 					poller->stats.idle_polls++;
3519 				}
3520 				break;
3521 			}
3522 
3523 			poller_completions += rc;
3524 		} while (poller_completions < completions_per_poller);
3525 		total_completions += poller_completions;
3526 		poller->stats.completions += rdma_completions;
3527 		if (poller->srq) {
3528 			nvme_rdma_poller_submit_recvs(poller);
3529 		}
3530 	}
3531 
3532 	TAILQ_FOREACH_SAFE(rqpair, &group->active_qpairs, link_active, tmp_rqpair) {
3533 		nvme_rdma_qpair_process_submits(group, rqpair);
3534 	}
3535 
3536 	return rc2 != 0 ? rc2 : total_completions;
3537 }
3538 
3539 /*
3540  * Handle disconnected qpairs when interrupt support gets added.
3541  */
3542 static void
3543 nvme_rdma_poll_group_check_disconnected_qpairs(struct spdk_nvme_transport_poll_group *tgroup,
3544 		spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
3545 {
3546 }
3547 
3548 static int
3549 nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
3550 {
3551 	struct nvme_rdma_poll_group	*group = nvme_rdma_poll_group(tgroup);
3552 
3553 	if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
3554 		return -EBUSY;
3555 	}
3556 
3557 	nvme_rdma_poll_group_free_pollers(group);
3558 	free(group);
3559 
3560 	return 0;
3561 }
3562 
3563 static int
3564 nvme_rdma_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
3565 			       struct spdk_nvme_transport_poll_group_stat **_stats)
3566 {
3567 	struct nvme_rdma_poll_group *group;
3568 	struct spdk_nvme_transport_poll_group_stat *stats;
3569 	struct spdk_nvme_rdma_device_stat *device_stat;
3570 	struct nvme_rdma_poller *poller;
3571 	uint32_t i = 0;
3572 
3573 	if (tgroup == NULL || _stats == NULL) {
3574 		SPDK_ERRLOG("Invalid stats or group pointer\n");
3575 		return -EINVAL;
3576 	}
3577 
3578 	group = nvme_rdma_poll_group(tgroup);
3579 	stats = calloc(1, sizeof(*stats));
3580 	if (!stats) {
3581 		SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
3582 		return -ENOMEM;
3583 	}
3584 	stats->trtype = SPDK_NVME_TRANSPORT_RDMA;
3585 	stats->rdma.num_devices = group->num_pollers;
3586 
3587 	if (stats->rdma.num_devices == 0) {
3588 		*_stats = stats;
3589 		return 0;
3590 	}
3591 
3592 	stats->rdma.device_stats = calloc(stats->rdma.num_devices, sizeof(*stats->rdma.device_stats));
3593 	if (!stats->rdma.device_stats) {
3594 		SPDK_ERRLOG("Can't allocate memory for RDMA device stats\n");
3595 		free(stats);
3596 		return -ENOMEM;
3597 	}
3598 
3599 	STAILQ_FOREACH(poller, &group->pollers, link) {
3600 		device_stat = &stats->rdma.device_stats[i];
3601 		device_stat->name = poller->device->device->name;
3602 		device_stat->polls = poller->stats.polls;
3603 		device_stat->idle_polls = poller->stats.idle_polls;
3604 		device_stat->completions = poller->stats.completions;
3605 		device_stat->queued_requests = poller->stats.queued_requests;
3606 		device_stat->total_send_wrs = poller->stats.rdma_stats.send.num_submitted_wrs;
3607 		device_stat->send_doorbell_updates = poller->stats.rdma_stats.send.doorbell_updates;
3608 		device_stat->total_recv_wrs = poller->stats.rdma_stats.recv.num_submitted_wrs;
3609 		device_stat->recv_doorbell_updates = poller->stats.rdma_stats.recv.doorbell_updates;
3610 		i++;
3611 	}
3612 
3613 	*_stats = stats;
3614 
3615 	return 0;
3616 }
3617 
3618 static void
3619 nvme_rdma_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
3620 				struct spdk_nvme_transport_poll_group_stat *stats)
3621 {
3622 	if (stats) {
3623 		free(stats->rdma.device_stats);
3624 	}
3625 	free(stats);
3626 }
3627 
3628 static int
3629 nvme_rdma_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
3630 				   struct spdk_memory_domain **domains, int array_size)
3631 {
3632 	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(ctrlr->adminq);
3633 
3634 	if (domains && array_size > 0) {
3635 		domains[0] = rqpair->rdma_qp->domain;
3636 	}
3637 
3638 	return 1;
3639 }
3640 
3641 void
3642 spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
3643 {
3644 	g_nvme_hooks = *hooks;
3645 }
3646 
3647 const struct spdk_nvme_transport_ops rdma_ops = {
3648 	.name = "RDMA",
3649 	.type = SPDK_NVME_TRANSPORT_RDMA,
3650 	.ctrlr_construct = nvme_rdma_ctrlr_construct,
3651 	.ctrlr_scan = nvme_fabric_ctrlr_scan,
3652 	.ctrlr_destruct = nvme_rdma_ctrlr_destruct,
3653 	.ctrlr_enable = nvme_rdma_ctrlr_enable,
3654 
3655 	.ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
3656 	.ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
3657 	.ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
3658 	.ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
3659 	.ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async,
3660 	.ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async,
3661 	.ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async,
3662 	.ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async,
3663 
3664 	.ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
3665 	.ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
3666 
3667 	.ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
3668 	.ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
3669 	.ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
3670 	.ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
3671 
3672 	.ctrlr_get_memory_domains = nvme_rdma_ctrlr_get_memory_domains,
3673 
3674 	.qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
3675 	.qpair_reset = nvme_rdma_qpair_reset,
3676 	.qpair_submit_request = nvme_rdma_qpair_submit_request,
3677 	.qpair_process_completions = nvme_rdma_qpair_process_completions,
3678 	.qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
3679 	.qpair_authenticate = nvme_rdma_qpair_authenticate,
3680 	.admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
3681 
3682 	.poll_group_create = nvme_rdma_poll_group_create,
3683 	.poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
3684 	.poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
3685 	.poll_group_add = nvme_rdma_poll_group_add,
3686 	.poll_group_remove = nvme_rdma_poll_group_remove,
3687 	.poll_group_process_completions = nvme_rdma_poll_group_process_completions,
3688 	.poll_group_check_disconnected_qpairs = nvme_rdma_poll_group_check_disconnected_qpairs,
3689 	.poll_group_destroy = nvme_rdma_poll_group_destroy,
3690 	.poll_group_get_stats = nvme_rdma_poll_group_get_stats,
3691 	.poll_group_free_stats = nvme_rdma_poll_group_free_stats,
3692 };
3693 
3694 SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);
3695