xref: /dpdk/examples/ip_reassembly/main.c (revision e1a06e391ba74f9c4d46a6ecef6d8ee084f4229e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <signal.h>
16 #include <sys/param.h>
17 
18 #include <rte_common.h>
19 #include <rte_byteorder.h>
20 #include <rte_log.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_eal.h>
24 #include <rte_launch.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_malloc.h>
38 #include <rte_ip.h>
39 #include <rte_tcp.h>
40 #include <rte_udp.h>
41 #include <rte_string_fns.h>
42 #include <rte_lpm.h>
43 #include <rte_lpm6.h>
44 
45 #include <rte_ip_frag.h>
46 
47 #define MAX_PKT_BURST 32
48 
49 
50 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
51 
52 #define MAX_JUMBO_PKT_LEN  9600
53 
54 #define	BUF_SIZE	RTE_MBUF_DEFAULT_DATAROOM
55 #define	MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
56 
57 #define NB_MBUF 8192
58 #define MEMPOOL_CACHE_SIZE 256
59 
60 /* allow max jumbo frame 9.5 KB */
61 #define JUMBO_FRAME_MAX_SIZE	0x2600
62 
63 #define	MAX_FLOW_NUM	UINT16_MAX
64 #define	MIN_FLOW_NUM	1
65 #define	DEF_FLOW_NUM	0x1000
66 
67 /* TTL numbers are in ms. */
68 #define	MAX_FLOW_TTL	(3600 * MS_PER_S)
69 #define	MIN_FLOW_TTL	1
70 #define	DEF_FLOW_TTL	MS_PER_S
71 
72 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
73 
74 /* Should be power of two. */
75 #define	IP_FRAG_TBL_BUCKET_ENTRIES	16
76 
77 static uint32_t max_flow_num = DEF_FLOW_NUM;
78 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
79 
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81 
82 #define NB_SOCKETS 8
83 
84 /* Configure how many packets ahead to prefetch, when reading packets */
85 #define PREFETCH_OFFSET	3
86 
87 /*
88  * Configurable number of RX/TX ring descriptors
89  */
90 #define RX_DESC_DEFAULT 1024
91 #define TX_DESC_DEFAULT 1024
92 
93 static uint16_t nb_rxd = RX_DESC_DEFAULT;
94 static uint16_t nb_txd = TX_DESC_DEFAULT;
95 
96 /* ethernet addresses of ports */
97 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
98 
99 #ifndef IPv4_BYTES
100 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
101 #define IPv4_BYTES(addr) \
102 		(uint8_t) (((addr) >> 24) & 0xFF),\
103 		(uint8_t) (((addr) >> 16) & 0xFF),\
104 		(uint8_t) (((addr) >> 8) & 0xFF),\
105 		(uint8_t) ((addr) & 0xFF)
106 #endif
107 
108 #ifndef IPv6_BYTES
109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
110                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
111 #define IPv6_BYTES(addr) \
112 	addr[0],  addr[1], addr[2],  addr[3], \
113 	addr[4],  addr[5], addr[6],  addr[7], \
114 	addr[8],  addr[9], addr[10], addr[11],\
115 	addr[12], addr[13],addr[14], addr[15]
116 #endif
117 
118 #define IPV6_ADDR_LEN 16
119 
120 /* mask of enabled ports */
121 static uint32_t enabled_port_mask = 0;
122 
123 static int rx_queue_per_lcore = 1;
124 
125 struct mbuf_table {
126 	uint32_t len;
127 	uint32_t head;
128 	uint32_t tail;
129 	struct rte_mbuf *m_table[];
130 };
131 
132 struct rx_queue {
133 	struct rte_ip_frag_tbl *frag_tbl;
134 	struct rte_mempool *pool;
135 	struct rte_lpm *lpm;
136 	struct rte_lpm6 *lpm6;
137 	uint16_t portid;
138 };
139 
140 struct tx_lcore_stat {
141 	uint64_t call;
142 	uint64_t drop;
143 	uint64_t queue;
144 	uint64_t send;
145 };
146 
147 #define MAX_RX_QUEUE_PER_LCORE 16
148 #define MAX_TX_QUEUE_PER_PORT 16
149 #define MAX_RX_QUEUE_PER_PORT 128
150 
151 struct __rte_cache_aligned lcore_queue_conf {
152 	uint16_t n_rx_queue;
153 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
154 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
155 	struct rte_ip_frag_death_row death_row;
156 	struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
157 	struct tx_lcore_stat tx_stat;
158 };
159 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
160 
161 static struct rte_eth_conf port_conf = {
162 	.rxmode = {
163 		.mq_mode        = RTE_ETH_MQ_RX_RSS,
164 		.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
165 			RTE_ETHER_CRC_LEN,
166 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
167 	},
168 	.rx_adv_conf = {
169 			.rss_conf = {
170 				.rss_key = NULL,
171 				.rss_hf = RTE_ETH_RSS_IP,
172 		},
173 	},
174 	.txmode = {
175 		.mq_mode = RTE_ETH_MQ_TX_NONE,
176 		.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
177 			     RTE_ETH_TX_OFFLOAD_MULTI_SEGS),
178 	},
179 };
180 
181 /*
182  * IPv4 forwarding table
183  */
184 struct l3fwd_ipv4_route {
185 	uint32_t ip;
186 	uint8_t  depth;
187 	uint8_t  if_out;
188 };
189 
190 /* Default l3fwd_ipv4_route_array table. 8< */
191 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
192 		{RTE_IPV4(100,10,0,0), 16, 0},
193 		{RTE_IPV4(100,20,0,0), 16, 1},
194 		{RTE_IPV4(100,30,0,0), 16, 2},
195 		{RTE_IPV4(100,40,0,0), 16, 3},
196 		{RTE_IPV4(100,50,0,0), 16, 4},
197 		{RTE_IPV4(100,60,0,0), 16, 5},
198 		{RTE_IPV4(100,70,0,0), 16, 6},
199 		{RTE_IPV4(100,80,0,0), 16, 7},
200 };
201 /* >8 End of default l3fwd_ipv4_route_array table. */
202 
203 /*
204  * IPv6 forwarding table
205  */
206 
207 struct l3fwd_ipv6_route {
208 	struct rte_ipv6_addr ip;
209 	uint8_t depth;
210 	uint8_t if_out;
211 };
212 
213 /* Default l3fwd_ipv6_route_array table. 8< */
214 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
215 	{RTE_IPV6(0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 0},
216 	{RTE_IPV6(0x0201, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 1},
217 	{RTE_IPV6(0x0301, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 2},
218 	{RTE_IPV6(0x0401, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 3},
219 	{RTE_IPV6(0x0501, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 4},
220 	{RTE_IPV6(0x0601, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 5},
221 	{RTE_IPV6(0x0701, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 6}
222 };
223 /* >8 End of default l3fwd_ipv6_route_array table. */
224 
225 #define LPM_MAX_RULES         1024
226 #define LPM6_MAX_RULES         1024
227 #define LPM6_NUMBER_TBL8S (1 << 16)
228 
229 struct rte_lpm6_config lpm6_config = {
230 		.max_rules = LPM6_MAX_RULES,
231 		.number_tbl8s = LPM6_NUMBER_TBL8S,
232 		.flags = 0
233 };
234 
235 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
236 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
237 
238 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
239 #define TX_LCORE_STAT_UPDATE(s, f, v)   ((s)->f += (v))
240 #else
241 #define TX_LCORE_STAT_UPDATE(s, f, v)   do {} while (0)
242 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
243 
244 /*
245  * If number of queued packets reached given threshold, then
246  * send burst of packets on an output interface.
247  */
248 static inline uint32_t
249 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
250 {
251 	uint32_t fill, len, k, n;
252 	struct mbuf_table *txmb;
253 
254 	txmb = qconf->tx_mbufs[port];
255 	len = txmb->len;
256 
257 	if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
258 		fill += len;
259 
260 	if (fill >= thresh) {
261 		n = RTE_MIN(len - txmb->tail, fill);
262 
263 		k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
264 			txmb->m_table + txmb->tail, (uint16_t)n);
265 
266 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
267 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
268 
269 		fill -= k;
270 		if ((txmb->tail += k) == len)
271 			txmb->tail = 0;
272 	}
273 
274 	return fill;
275 }
276 
277 /* Enqueue a single packet, and send burst if queue is filled */
278 static inline int
279 send_single_packet(struct rte_mbuf *m, uint16_t port)
280 {
281 	uint32_t fill, lcore_id, len;
282 	struct lcore_queue_conf *qconf;
283 	struct mbuf_table *txmb;
284 
285 	lcore_id = rte_lcore_id();
286 	qconf = &lcore_queue_conf[lcore_id];
287 
288 	txmb = qconf->tx_mbufs[port];
289 	len = txmb->len;
290 
291 	fill = send_burst(qconf, MAX_PKT_BURST, port);
292 
293 	if (fill == len - 1) {
294 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
295 		rte_pktmbuf_free(txmb->m_table[txmb->tail]);
296 		if (++txmb->tail == len)
297 			txmb->tail = 0;
298 	}
299 
300 	TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
301 	txmb->m_table[txmb->head] = m;
302 	if(++txmb->head == len)
303 		txmb->head = 0;
304 
305 	return 0;
306 }
307 
308 static inline void
309 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
310 	struct lcore_queue_conf *qconf, uint64_t tms)
311 {
312 	struct rte_ether_hdr *eth_hdr;
313 	struct rte_ip_frag_tbl *tbl;
314 	struct rte_ip_frag_death_row *dr;
315 	struct rx_queue *rxq;
316 	void *d_addr_bytes;
317 	uint32_t next_hop;
318 	uint16_t dst_port;
319 
320 	rxq = &qconf->rx_queue_list[queue];
321 
322 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
323 
324 	dst_port = portid;
325 
326 	/* if packet is IPv4 */
327 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
328 		struct rte_ipv4_hdr *ip_hdr;
329 		uint32_t ip_dst;
330 
331 		ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
332 
333 		 /* if it is a fragmented packet, then try to reassemble. */
334 		if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
335 			struct rte_mbuf *mo;
336 
337 			tbl = rxq->frag_tbl;
338 			dr = &qconf->death_row;
339 
340 			/* prepare mbuf: setup l2_len/l3_len. */
341 			m->l2_len = sizeof(*eth_hdr);
342 			m->l3_len = sizeof(*ip_hdr);
343 
344 			/* process this fragment. */
345 			mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
346 			if (mo == NULL)
347 				/* no packet to send out. */
348 				return;
349 
350 			/* we have our packet reassembled. */
351 			if (mo != m) {
352 				m = mo;
353 				eth_hdr = rte_pktmbuf_mtod(m,
354 					struct rte_ether_hdr *);
355 				ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
356 			}
357 
358 			/* update offloading flags */
359 			m->ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM);
360 		}
361 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
362 
363 		/* Find destination port */
364 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
365 				(enabled_port_mask & 1 << next_hop) != 0) {
366 			dst_port = next_hop;
367 		}
368 
369 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
370 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
371 		/* if packet is IPv6 */
372 		struct rte_ipv6_fragment_ext *frag_hdr;
373 		struct rte_ipv6_hdr *ip_hdr;
374 
375 		ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
376 
377 		frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);
378 
379 		if (frag_hdr != NULL) {
380 			struct rte_mbuf *mo;
381 
382 			tbl = rxq->frag_tbl;
383 			dr  = &qconf->death_row;
384 
385 			/* prepare mbuf: setup l2_len/l3_len. */
386 			m->l2_len = sizeof(*eth_hdr);
387 			m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
388 
389 			mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
390 			if (mo == NULL)
391 				return;
392 
393 			if (mo != m) {
394 				m = mo;
395 				eth_hdr = rte_pktmbuf_mtod(m,
396 							struct rte_ether_hdr *);
397 				ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
398 			}
399 		}
400 
401 		/* Find destination port */
402 		if (rte_lpm6_lookup(rxq->lpm6, &ip_hdr->dst_addr,
403 						&next_hop) == 0 &&
404 				(enabled_port_mask & 1 << next_hop) != 0) {
405 			dst_port = next_hop;
406 		}
407 
408 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6);
409 	}
410 	/* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
411 
412 	/* 02:00:00:00:00:xx */
413 	d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
414 	*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
415 
416 	/* src addr */
417 	rte_ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->src_addr);
418 
419 	send_single_packet(m, dst_port);
420 }
421 
422 /* main processing loop */
423 static int
424 main_loop(__rte_unused void *dummy)
425 {
426 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
427 	unsigned lcore_id;
428 	uint64_t diff_tsc, cur_tsc, prev_tsc;
429 	int i, j, nb_rx;
430 	uint16_t portid;
431 	struct lcore_queue_conf *qconf;
432 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
433 
434 	prev_tsc = 0;
435 
436 	lcore_id = rte_lcore_id();
437 	qconf = &lcore_queue_conf[lcore_id];
438 
439 	if (qconf->n_rx_queue == 0) {
440 		RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
441 		return 0;
442 	}
443 
444 	RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
445 
446 	for (i = 0; i < qconf->n_rx_queue; i++) {
447 
448 		portid = qconf->rx_queue_list[i].portid;
449 		RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id,
450 			portid);
451 	}
452 
453 	while (1) {
454 
455 		cur_tsc = rte_rdtsc();
456 
457 		/*
458 		 * TX burst queue drain
459 		 */
460 		diff_tsc = cur_tsc - prev_tsc;
461 		if (unlikely(diff_tsc > drain_tsc)) {
462 
463 			/*
464 			 * This could be optimized (use queueid instead of
465 			 * portid), but it is not called so often
466 			 */
467 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
468 				if ((enabled_port_mask & (1 << portid)) != 0)
469 					send_burst(qconf, 1, portid);
470 			}
471 
472 			prev_tsc = cur_tsc;
473 		}
474 
475 		/*
476 		 * Read packet from RX queues
477 		 */
478 		for (i = 0; i < qconf->n_rx_queue; ++i) {
479 
480 			portid = qconf->rx_queue_list[i].portid;
481 
482 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
483 				MAX_PKT_BURST);
484 
485 			/* Prefetch first packets */
486 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
487 				rte_prefetch0(rte_pktmbuf_mtod(
488 						pkts_burst[j], void *));
489 			}
490 
491 			/* Prefetch and forward already prefetched packets */
492 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
493 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
494 					j + PREFETCH_OFFSET], void *));
495 				reassemble(pkts_burst[j], portid,
496 					i, qconf, cur_tsc);
497 			}
498 
499 			/* Forward remaining prefetched packets */
500 			for (; j < nb_rx; j++) {
501 				reassemble(pkts_burst[j], portid,
502 					i, qconf, cur_tsc);
503 			}
504 
505 			rte_ip_frag_free_death_row(&qconf->death_row,
506 				PREFETCH_OFFSET);
507 		}
508 	}
509 }
510 
511 /* display usage */
512 static void
513 print_usage(const char *prgname)
514 {
515 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
516 		"  [--maxflows=<flows>]  [--flowttl=<ttl>[(s|ms)]]\n"
517 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
518 		"  -q NQ: number of RX queues per lcore\n"
519 		"  --maxflows=<flows>: optional, maximum number of flows "
520 		"supported\n"
521 		"  --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
522 		"flow\n",
523 		prgname);
524 }
525 
526 static uint32_t
527 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
528 {
529 	char *end;
530 	uint64_t v;
531 
532 	/* parse decimal string */
533 	errno = 0;
534 	v = strtoul(str, &end, 10);
535 	if (errno != 0 || *end != '\0')
536 		return -EINVAL;
537 
538 	if (v < min || v > max)
539 		return -EINVAL;
540 
541 	*val = (uint32_t)v;
542 	return 0;
543 }
544 
545 static int
546 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
547 {
548 	char *end;
549 	uint64_t v;
550 
551 	static const char frmt_sec[] = "s";
552 	static const char frmt_msec[] = "ms";
553 
554 	/* parse decimal string */
555 	errno = 0;
556 	v = strtoul(str, &end, 10);
557 	if (errno != 0)
558 		return -EINVAL;
559 
560 	if (*end != '\0') {
561 		if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
562 			v *= MS_PER_S;
563 		else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
564 			return -EINVAL;
565 	}
566 
567 	if (v < min || v > max)
568 		return -EINVAL;
569 
570 	*val = (uint32_t)v;
571 	return 0;
572 }
573 
574 static int
575 parse_portmask(const char *portmask)
576 {
577 	char *end = NULL;
578 	unsigned long pm;
579 
580 	/* parse hexadecimal string */
581 	pm = strtoul(portmask, &end, 16);
582 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
583 		return 0;
584 
585 	return pm;
586 }
587 
588 static int
589 parse_nqueue(const char *q_arg)
590 {
591 	char *end = NULL;
592 	unsigned long n;
593 
594 	printf("%p\n", q_arg);
595 
596 	/* parse hexadecimal string */
597 	n = strtoul(q_arg, &end, 10);
598 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
599 		return -1;
600 	if (n == 0)
601 		return -1;
602 	if (n >= MAX_RX_QUEUE_PER_LCORE)
603 		return -1;
604 
605 	return n;
606 }
607 
608 /* Parse the argument given in the command line of the application */
609 static int
610 parse_args(int argc, char **argv)
611 {
612 	int opt, ret;
613 	char **argvopt;
614 	int option_index;
615 	char *prgname = argv[0];
616 	static struct option lgopts[] = {
617 		{"maxflows", 1, 0, 0},
618 		{"flowttl", 1, 0, 0},
619 		{NULL, 0, 0, 0}
620 	};
621 
622 	argvopt = argv;
623 
624 	while ((opt = getopt_long(argc, argvopt, "p:q:",
625 				lgopts, &option_index)) != EOF) {
626 
627 		switch (opt) {
628 		/* portmask */
629 		case 'p':
630 			enabled_port_mask = parse_portmask(optarg);
631 			if (enabled_port_mask == 0) {
632 				printf("invalid portmask\n");
633 				print_usage(prgname);
634 				return -1;
635 			}
636 			break;
637 
638 		/* nqueue */
639 		case 'q':
640 			rx_queue_per_lcore = parse_nqueue(optarg);
641 			if (rx_queue_per_lcore < 0) {
642 				printf("invalid queue number\n");
643 				print_usage(prgname);
644 				return -1;
645 			}
646 			break;
647 
648 		/* long options */
649 		case 0:
650 			if (!strncmp(lgopts[option_index].name,
651 					"maxflows", 8)) {
652 				if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
653 						MAX_FLOW_NUM,
654 						&max_flow_num)) != 0) {
655 					printf("invalid value: \"%s\" for "
656 						"parameter %s\n",
657 						optarg,
658 						lgopts[option_index].name);
659 					print_usage(prgname);
660 					return ret;
661 				}
662 			}
663 
664 			if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
665 				if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
666 						MAX_FLOW_TTL,
667 						&max_flow_ttl)) != 0) {
668 					printf("invalid value: \"%s\" for "
669 						"parameter %s\n",
670 						optarg,
671 						lgopts[option_index].name);
672 					print_usage(prgname);
673 					return ret;
674 				}
675 			}
676 
677 			break;
678 
679 		default:
680 			print_usage(prgname);
681 			return -1;
682 		}
683 	}
684 
685 	if (optind >= 0)
686 		argv[optind-1] = prgname;
687 
688 	ret = optind-1;
689 	optind = 1; /* reset getopt lib */
690 	return ret;
691 }
692 
693 static void
694 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
695 {
696 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
697 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
698 	printf("%s%s", name, buf);
699 }
700 
701 /* Check the link status of all ports in up to 9s, and print them finally */
702 static void
703 check_all_ports_link_status(uint32_t port_mask)
704 {
705 #define CHECK_INTERVAL 100 /* 100ms */
706 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
707 	uint16_t portid;
708 	uint8_t count, all_ports_up, print_flag = 0;
709 	struct rte_eth_link link;
710 	int ret;
711 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
712 
713 	printf("\nChecking link status");
714 	fflush(stdout);
715 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
716 		all_ports_up = 1;
717 		RTE_ETH_FOREACH_DEV(portid) {
718 			if ((port_mask & (1 << portid)) == 0)
719 				continue;
720 			memset(&link, 0, sizeof(link));
721 			ret = rte_eth_link_get_nowait(portid, &link);
722 			if (ret < 0) {
723 				all_ports_up = 0;
724 				if (print_flag == 1)
725 					printf("Port %u link get failed: %s\n",
726 						portid, rte_strerror(-ret));
727 				continue;
728 			}
729 			/* print link status if flag set */
730 			if (print_flag == 1) {
731 				rte_eth_link_to_str(link_status_text,
732 					sizeof(link_status_text), &link);
733 				printf("Port %d %s\n", portid,
734 				       link_status_text);
735 				continue;
736 			}
737 			/* clear all_ports_up flag if any link down */
738 			if (link.link_status == RTE_ETH_LINK_DOWN) {
739 				all_ports_up = 0;
740 				break;
741 			}
742 		}
743 		/* after finally printing all link status, get out */
744 		if (print_flag == 1)
745 			break;
746 
747 		if (all_ports_up == 0) {
748 			printf(".");
749 			fflush(stdout);
750 			rte_delay_ms(CHECK_INTERVAL);
751 		}
752 
753 		/* set the print_flag if all ports up or timeout */
754 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
755 			print_flag = 1;
756 			printf("\ndone\n");
757 		}
758 	}
759 }
760 
761 static int
762 init_routing_table(void)
763 {
764 	struct rte_lpm *lpm;
765 	struct rte_lpm6 *lpm6;
766 	int socket, ret;
767 	unsigned i;
768 
769 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
770 		if (socket_lpm[socket]) {
771 			lpm = socket_lpm[socket];
772 			/* populate the LPM table */
773 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
774 				ret = rte_lpm_add(lpm,
775 					l3fwd_ipv4_route_array[i].ip,
776 					l3fwd_ipv4_route_array[i].depth,
777 					l3fwd_ipv4_route_array[i].if_out);
778 
779 				if (ret < 0) {
780 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
781 						"LPM table\n", i);
782 					return -1;
783 				}
784 
785 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
786 						"/%d (port %d)\n",
787 					socket,
788 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
789 					l3fwd_ipv4_route_array[i].depth,
790 					l3fwd_ipv4_route_array[i].if_out);
791 			}
792 		}
793 
794 		if (socket_lpm6[socket]) {
795 			lpm6 = socket_lpm6[socket];
796 			/* populate the LPM6 table */
797 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
798 				ret = rte_lpm6_add(lpm6,
799 					&l3fwd_ipv6_route_array[i].ip,
800 					l3fwd_ipv6_route_array[i].depth,
801 					l3fwd_ipv6_route_array[i].if_out);
802 
803 				if (ret < 0) {
804 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
805 						"LPM6 table\n", i);
806 					return -1;
807 				}
808 
809 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
810 						"/%d (port %d)\n",
811 					socket,
812 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip.a),
813 					l3fwd_ipv6_route_array[i].depth,
814 					l3fwd_ipv6_route_array[i].if_out);
815 			}
816 		}
817 	}
818 	return 0;
819 }
820 
821 static int
822 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
823 	uint32_t port)
824 {
825 	struct mbuf_table *mtb;
826 	uint32_t n;
827 	size_t sz;
828 
829 	n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
830 	sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) *  n;
831 
832 	if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
833 			socket)) == NULL) {
834 		RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
835 			"failed to allocate %zu bytes\n",
836 			__func__, lcore, port, sz);
837 		return -1;
838 	}
839 
840 	mtb->len = n;
841 	qconf->tx_mbufs[port] = mtb;
842 
843 	return 0;
844 }
845 
846 static int
847 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
848 {
849 	int socket;
850 	uint32_t nb_mbuf;
851 	uint64_t frag_cycles;
852 	char buf[RTE_MEMPOOL_NAMESIZE];
853 
854 	socket = rte_lcore_to_socket_id(lcore);
855 	if (socket == SOCKET_ID_ANY)
856 		socket = 0;
857 
858 	/* Each table entry holds information about packet fragmentation. 8< */
859 	frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
860 		max_flow_ttl;
861 
862 	if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
863 			IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
864 			socket)) == NULL) {
865 		RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
866 			"lcore: %u for queue: %u failed\n",
867 			max_flow_num, lcore, queue);
868 		return -1;
869 	}
870 	/* >8 End of holding packet fragmentation. */
871 
872 	/*
873 	 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
874 	 * mbufs could be stored in the fragment table.
875 	 * Plus, each TX queue can hold up to <max_flow_num> packets.
876 	 */
877 
878 	/* mbufs stored in the fragment table. 8< */
879 	nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
880 	nb_mbuf *= (port_conf.rxmode.mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN
881 			+ BUF_SIZE - 1) / BUF_SIZE;
882 	nb_mbuf *= 2; /* ipv4 and ipv6 */
883 	nb_mbuf += nb_rxd + nb_txd;
884 
885 	nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
886 
887 	snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
888 
889 	rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
890 					    MBUF_DATA_SIZE, socket);
891 	if (rxq->pool == NULL) {
892 		RTE_LOG(ERR, IP_RSMBL,
893 			"rte_pktmbuf_pool_create(%s) failed", buf);
894 		return -1;
895 	}
896 	/* >8 End of mbufs stored in the fragmentation table. */
897 
898 	return 0;
899 }
900 
901 static int
902 init_mem(void)
903 {
904 	char buf[PATH_MAX];
905 	struct rte_lpm *lpm;
906 	struct rte_lpm6 *lpm6;
907 	struct rte_lpm_config lpm_config;
908 	int socket;
909 	unsigned lcore_id;
910 
911 	/* traverse through lcores and initialize structures on each socket */
912 
913 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
914 
915 		if (rte_lcore_is_enabled(lcore_id) == 0)
916 			continue;
917 
918 		socket = rte_lcore_to_socket_id(lcore_id);
919 
920 		if (socket == SOCKET_ID_ANY)
921 			socket = 0;
922 
923 		if (socket_lpm[socket] == NULL) {
924 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
925 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
926 
927 			lpm_config.max_rules = LPM_MAX_RULES;
928 			lpm_config.number_tbl8s = 256;
929 			lpm_config.flags = 0;
930 
931 			lpm = rte_lpm_create(buf, socket, &lpm_config);
932 			if (lpm == NULL) {
933 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
934 				return -1;
935 			}
936 			socket_lpm[socket] = lpm;
937 		}
938 
939 		if (socket_lpm6[socket] == NULL) {
940 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
941 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
942 
943 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
944 			if (lpm6 == NULL) {
945 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
946 				return -1;
947 			}
948 			socket_lpm6[socket] = lpm6;
949 		}
950 	}
951 
952 	return 0;
953 }
954 
955 static void
956 queue_dump_stat(void)
957 {
958 	uint32_t i, lcore;
959 	const struct lcore_queue_conf *qconf;
960 
961 	for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
962 		if (rte_lcore_is_enabled(lcore) == 0)
963 			continue;
964 
965 		qconf = &lcore_queue_conf[lcore];
966 		for (i = 0; i < qconf->n_rx_queue; i++) {
967 
968 			fprintf(stdout, " -- lcoreid=%u portid=%u "
969 				"frag tbl stat:\n",
970 				lcore,  qconf->rx_queue_list[i].portid);
971 			rte_ip_frag_table_statistics_dump(stdout,
972 					qconf->rx_queue_list[i].frag_tbl);
973 			fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
974 				"TX packets _queued:\t%" PRIu64 "\n"
975 				"TX packets dropped:\t%" PRIu64 "\n"
976 				"TX packets send:\t%" PRIu64 "\n",
977 				qconf->tx_stat.call,
978 				qconf->tx_stat.queue,
979 				qconf->tx_stat.drop,
980 				qconf->tx_stat.send);
981 		}
982 	}
983 }
984 
985 static void
986 signal_handler(int signum)
987 {
988 	queue_dump_stat();
989 	if (signum != SIGUSR1)
990 		rte_exit(0, "received signal: %d, exiting\n", signum);
991 }
992 
993 int
994 main(int argc, char **argv)
995 {
996 	struct lcore_queue_conf *qconf;
997 	struct rte_eth_dev_info dev_info;
998 	struct rte_eth_txconf *txconf;
999 	struct rx_queue *rxq;
1000 	int ret, socket;
1001 	unsigned nb_ports;
1002 	uint16_t queueid;
1003 	unsigned lcore_id = 0, rx_lcore_id = 0;
1004 	uint32_t n_tx_queue, nb_lcores;
1005 	uint16_t portid;
1006 
1007 	/* init EAL */
1008 	ret = rte_eal_init(argc, argv);
1009 	if (ret < 0)
1010 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1011 	argc -= ret;
1012 	argv += ret;
1013 
1014 	/* parse application arguments (after the EAL ones) */
1015 	ret = parse_args(argc, argv);
1016 	if (ret < 0)
1017 		rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
1018 
1019 	nb_ports = rte_eth_dev_count_avail();
1020 	if (nb_ports == 0)
1021 		rte_exit(EXIT_FAILURE, "No ports found!\n");
1022 
1023 	nb_lcores = rte_lcore_count();
1024 
1025 	/* initialize structures (mempools, lpm etc.) */
1026 	if (init_mem() < 0)
1027 		rte_panic("Cannot initialize memory structures!\n");
1028 
1029 	/* check if portmask has non-existent ports */
1030 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
1031 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
1032 
1033 	/* initialize all ports */
1034 	RTE_ETH_FOREACH_DEV(portid) {
1035 		struct rte_eth_rxconf rxq_conf;
1036 		struct rte_eth_conf local_port_conf = port_conf;
1037 
1038 		/* skip ports that are not enabled */
1039 		if ((enabled_port_mask & (1 << portid)) == 0) {
1040 			printf("\nSkipping disabled port %d\n", portid);
1041 			continue;
1042 		}
1043 
1044 		qconf = &lcore_queue_conf[rx_lcore_id];
1045 
1046 		/* limit the frame size to the maximum supported by NIC */
1047 		ret = rte_eth_dev_info_get(portid, &dev_info);
1048 		if (ret != 0)
1049 			rte_exit(EXIT_FAILURE,
1050 				"Error during getting device (port %u) info: %s\n",
1051 				portid, strerror(-ret));
1052 
1053 		local_port_conf.rxmode.mtu = RTE_MIN(
1054 		    dev_info.max_mtu,
1055 		    local_port_conf.rxmode.mtu);
1056 
1057 		/* get the lcore_id for this port */
1058 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1059 			   qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
1060 
1061 			rx_lcore_id++;
1062 			if (rx_lcore_id >= RTE_MAX_LCORE)
1063 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
1064 
1065 			qconf = &lcore_queue_conf[rx_lcore_id];
1066 		}
1067 
1068 		socket = rte_lcore_to_socket_id(portid);
1069 		if (socket == SOCKET_ID_ANY)
1070 			socket = 0;
1071 
1072 		queueid = qconf->n_rx_queue;
1073 		rxq = &qconf->rx_queue_list[queueid];
1074 		rxq->portid = portid;
1075 		rxq->lpm = socket_lpm[socket];
1076 		rxq->lpm6 = socket_lpm6[socket];
1077 
1078 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
1079 						       &nb_txd);
1080 		if (ret < 0)
1081 			rte_exit(EXIT_FAILURE,
1082 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
1083 				 ret, portid);
1084 
1085 		if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
1086 			rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
1087 		qconf->n_rx_queue++;
1088 
1089 		/* init port */
1090 		printf("Initializing port %d ... ", portid );
1091 		fflush(stdout);
1092 
1093 		n_tx_queue = nb_lcores;
1094 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1095 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1096 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
1097 			local_port_conf.txmode.offloads |=
1098 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
1099 
1100 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1101 			dev_info.flow_type_rss_offloads;
1102 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1103 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
1104 			printf("Port %u modified RSS hash function based on hardware support,"
1105 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1106 				portid,
1107 				port_conf.rx_adv_conf.rss_conf.rss_hf,
1108 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1109 		}
1110 
1111 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
1112 					    &local_port_conf);
1113 		if (ret < 0) {
1114 			printf("\n");
1115 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1116 				"err=%d, port=%d\n",
1117 				ret, portid);
1118 		}
1119 
1120 		/* init one RX queue */
1121 		rxq_conf = dev_info.default_rxconf;
1122 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
1123 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1124 					     socket, &rxq_conf,
1125 					     rxq->pool);
1126 		if (ret < 0) {
1127 			printf("\n");
1128 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
1129 				"err=%d, port=%d\n",
1130 				ret, portid);
1131 		}
1132 
1133 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1134 		if (ret < 0) {
1135 			printf("\n");
1136 			rte_exit(EXIT_FAILURE,
1137 				"rte_eth_macaddr_get: err=%d, port=%d\n",
1138 				ret, portid);
1139 		}
1140 
1141 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1142 		printf("\n");
1143 
1144 		/* init one TX queue per couple (lcore,port) */
1145 		queueid = 0;
1146 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1147 			if (rte_lcore_is_enabled(lcore_id) == 0)
1148 				continue;
1149 
1150 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1151 
1152 			printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
1153 			fflush(stdout);
1154 
1155 			txconf = &dev_info.default_txconf;
1156 			txconf->offloads = local_port_conf.txmode.offloads;
1157 
1158 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1159 					socket, txconf);
1160 			if (ret < 0)
1161 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1162 					"port=%d\n", ret, portid);
1163 
1164 			qconf = &lcore_queue_conf[lcore_id];
1165 			qconf->tx_queue_id[portid] = queueid;
1166 			setup_port_tbl(qconf, lcore_id, socket, portid);
1167 			queueid++;
1168 		}
1169 		printf("\n");
1170 	}
1171 
1172 	printf("\n");
1173 
1174 	/* start ports */
1175 	RTE_ETH_FOREACH_DEV(portid) {
1176 		if ((enabled_port_mask & (1 << portid)) == 0) {
1177 			continue;
1178 		}
1179 		/* Start device */
1180 		ret = rte_eth_dev_start(portid);
1181 		if (ret < 0)
1182 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1183 				ret, portid);
1184 
1185 		ret = rte_eth_promiscuous_enable(portid);
1186 		if (ret != 0)
1187 			rte_exit(EXIT_FAILURE,
1188 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1189 				rte_strerror(-ret), portid);
1190 	}
1191 
1192 	if (init_routing_table() < 0)
1193 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1194 
1195 	check_all_ports_link_status(enabled_port_mask);
1196 
1197 	signal(SIGUSR1, signal_handler);
1198 	signal(SIGTERM, signal_handler);
1199 	signal(SIGINT, signal_handler);
1200 
1201 	/* launch per-lcore init on every lcore */
1202 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1203 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1204 		if (rte_eal_wait_lcore(lcore_id) < 0)
1205 			return -1;
1206 	}
1207 
1208 	/* clean up the EAL */
1209 	rte_eal_cleanup();
1210 
1211 	return 0;
1212 }
1213