xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdgpu/amdgpu_sdma_v4_0.c (revision 2b73d18af7a98bc9907041875c671f63165f1d3e)
1 /*	$NetBSD: amdgpu_sdma_v4_0.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2016 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_sdma_v4_0.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
28 
29 #include <linux/delay.h>
30 #include <linux/firmware.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 
34 #include "amdgpu.h"
35 #include "amdgpu_ucode.h"
36 #include "amdgpu_trace.h"
37 
38 #include "sdma0/sdma0_4_2_offset.h"
39 #include "sdma0/sdma0_4_2_sh_mask.h"
40 #include "sdma1/sdma1_4_2_offset.h"
41 #include "sdma1/sdma1_4_2_sh_mask.h"
42 #include "sdma2/sdma2_4_2_2_offset.h"
43 #include "sdma2/sdma2_4_2_2_sh_mask.h"
44 #include "sdma3/sdma3_4_2_2_offset.h"
45 #include "sdma3/sdma3_4_2_2_sh_mask.h"
46 #include "sdma4/sdma4_4_2_2_offset.h"
47 #include "sdma4/sdma4_4_2_2_sh_mask.h"
48 #include "sdma5/sdma5_4_2_2_offset.h"
49 #include "sdma5/sdma5_4_2_2_sh_mask.h"
50 #include "sdma6/sdma6_4_2_2_offset.h"
51 #include "sdma6/sdma6_4_2_2_sh_mask.h"
52 #include "sdma7/sdma7_4_2_2_offset.h"
53 #include "sdma7/sdma7_4_2_2_sh_mask.h"
54 #include "hdp/hdp_4_0_offset.h"
55 #include "sdma0/sdma0_4_1_default.h"
56 
57 #include "soc15_common.h"
58 #include "soc15.h"
59 #include "vega10_sdma_pkt_open.h"
60 
61 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
62 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
63 
64 #include "amdgpu_ras.h"
65 
66 #include <linux/nbsd-namespace.h>
67 
68 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
72 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
74 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
75 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
76 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
77 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
78 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
79 
80 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
81 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
82 
83 #define WREG32_SDMA(instance, offset, value) \
84 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
85 #define RREG32_SDMA(instance, offset) \
86 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
87 
88 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
89 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
90 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
91 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
92 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
93 
94 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
102 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
114 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
115 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
116 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
117 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
118 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
125 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
126 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
127 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
128 };
129 
130 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
134 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
135 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
136 };
137 
138 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
150 };
151 
152 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
154 };
155 
156 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
157 {
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
184 };
185 
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213 };
214 
215 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
216 {
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
218 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
219 };
220 
221 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
222 {
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
224 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
225 };
226 
227 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
228 {
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
242 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
244 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
248 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
249 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
253 };
254 
255 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
256 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
258 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
260 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
261 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
262 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
266 };
267 
268 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
269 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
270 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
271 	0, 0,
272 	},
273 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
274 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
275 	0, 0,
276 	},
277 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
278 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
279 	0, 0,
280 	},
281 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
282 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
283 	0, 0,
284 	},
285 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
286 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
287 	0, 0,
288 	},
289 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
290 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
291 	0, 0,
292 	},
293 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
294 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
295 	0, 0,
296 	},
297 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
298 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
299 	0, 0,
300 	},
301 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
302 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
303 	0, 0,
304 	},
305 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
306 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
307 	0, 0,
308 	},
309 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
310 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
311 	0, 0,
312 	},
313 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
314 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
315 	0, 0,
316 	},
317 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
318 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
319 	0, 0,
320 	},
321 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
322 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
323 	0, 0,
324 	},
325 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
326 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
327 	0, 0,
328 	},
329 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
330 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
331 	0, 0,
332 	},
333 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
334 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
335 	0, 0,
336 	},
337 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
338 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
339 	0, 0,
340 	},
341 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
342 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
343 	0, 0,
344 	},
345 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
346 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
347 	0, 0,
348 	},
349 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
350 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
351 	0, 0,
352 	},
353 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
354 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
355 	0, 0,
356 	},
357 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
358 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
359 	0, 0,
360 	},
361 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
362 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
363 	0, 0,
364 	},
365 };
366 
sdma_v4_0_get_reg_offset(struct amdgpu_device * adev,u32 instance,u32 offset)367 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
368 		u32 instance, u32 offset)
369 {
370 	switch (instance) {
371 	case 0:
372 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
373 	case 1:
374 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
375 	case 2:
376 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
377 	case 3:
378 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
379 	case 4:
380 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
381 	case 5:
382 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
383 	case 6:
384 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
385 	case 7:
386 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
387 	default:
388 		break;
389 	}
390 	return 0;
391 }
392 
sdma_v4_0_seq_to_irq_id(int seq_num)393 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
394 {
395 	switch (seq_num) {
396 	case 0:
397 		return SOC15_IH_CLIENTID_SDMA0;
398 	case 1:
399 		return SOC15_IH_CLIENTID_SDMA1;
400 	case 2:
401 		return SOC15_IH_CLIENTID_SDMA2;
402 	case 3:
403 		return SOC15_IH_CLIENTID_SDMA3;
404 	case 4:
405 		return SOC15_IH_CLIENTID_SDMA4;
406 	case 5:
407 		return SOC15_IH_CLIENTID_SDMA5;
408 	case 6:
409 		return SOC15_IH_CLIENTID_SDMA6;
410 	case 7:
411 		return SOC15_IH_CLIENTID_SDMA7;
412 	default:
413 		break;
414 	}
415 	return -EINVAL;
416 }
417 
sdma_v4_0_irq_id_to_seq(unsigned client_id)418 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
419 {
420 	switch (client_id) {
421 	case SOC15_IH_CLIENTID_SDMA0:
422 		return 0;
423 	case SOC15_IH_CLIENTID_SDMA1:
424 		return 1;
425 	case SOC15_IH_CLIENTID_SDMA2:
426 		return 2;
427 	case SOC15_IH_CLIENTID_SDMA3:
428 		return 3;
429 	case SOC15_IH_CLIENTID_SDMA4:
430 		return 4;
431 	case SOC15_IH_CLIENTID_SDMA5:
432 		return 5;
433 	case SOC15_IH_CLIENTID_SDMA6:
434 		return 6;
435 	case SOC15_IH_CLIENTID_SDMA7:
436 		return 7;
437 	default:
438 		break;
439 	}
440 	return -EINVAL;
441 }
442 
sdma_v4_0_init_golden_registers(struct amdgpu_device * adev)443 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
444 {
445 	switch (adev->asic_type) {
446 	case CHIP_VEGA10:
447 		soc15_program_register_sequence(adev,
448 						golden_settings_sdma_4,
449 						ARRAY_SIZE(golden_settings_sdma_4));
450 		soc15_program_register_sequence(adev,
451 						golden_settings_sdma_vg10,
452 						ARRAY_SIZE(golden_settings_sdma_vg10));
453 		break;
454 	case CHIP_VEGA12:
455 		soc15_program_register_sequence(adev,
456 						golden_settings_sdma_4,
457 						ARRAY_SIZE(golden_settings_sdma_4));
458 		soc15_program_register_sequence(adev,
459 						golden_settings_sdma_vg12,
460 						ARRAY_SIZE(golden_settings_sdma_vg12));
461 		break;
462 	case CHIP_VEGA20:
463 		soc15_program_register_sequence(adev,
464 						golden_settings_sdma0_4_2_init,
465 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
466 		soc15_program_register_sequence(adev,
467 						golden_settings_sdma0_4_2,
468 						ARRAY_SIZE(golden_settings_sdma0_4_2));
469 		soc15_program_register_sequence(adev,
470 						golden_settings_sdma1_4_2,
471 						ARRAY_SIZE(golden_settings_sdma1_4_2));
472 		break;
473 	case CHIP_ARCTURUS:
474 		soc15_program_register_sequence(adev,
475 						golden_settings_sdma_arct,
476 						ARRAY_SIZE(golden_settings_sdma_arct));
477 		break;
478 	case CHIP_RAVEN:
479 		soc15_program_register_sequence(adev,
480 						golden_settings_sdma_4_1,
481 						ARRAY_SIZE(golden_settings_sdma_4_1));
482 		if (adev->rev_id >= 8)
483 			soc15_program_register_sequence(adev,
484 							golden_settings_sdma_rv2,
485 							ARRAY_SIZE(golden_settings_sdma_rv2));
486 		else
487 			soc15_program_register_sequence(adev,
488 							golden_settings_sdma_rv1,
489 							ARRAY_SIZE(golden_settings_sdma_rv1));
490 		break;
491 	case CHIP_RENOIR:
492 		soc15_program_register_sequence(adev,
493 						golden_settings_sdma_4_3,
494 						ARRAY_SIZE(golden_settings_sdma_4_3));
495 		break;
496 	default:
497 		break;
498 	}
499 }
500 
sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance * sdma_inst)501 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
502 {
503 	int err = 0;
504 	const struct sdma_firmware_header_v1_0 *hdr;
505 
506 	err = amdgpu_ucode_validate(sdma_inst->fw);
507 	if (err)
508 		return err;
509 
510 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
511 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
512 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
513 
514 	if (sdma_inst->feature_version >= 20)
515 		sdma_inst->burst_nop = true;
516 
517 	return 0;
518 }
519 
sdma_v4_0_destroy_inst_ctx(struct amdgpu_device * adev)520 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
521 {
522 	int i;
523 
524 	for (i = 0; i < adev->sdma.num_instances; i++) {
525 		if (adev->sdma.instance[i].fw != NULL)
526 			release_firmware(adev->sdma.instance[i].fw);
527 
528 		/* arcturus shares the same FW memory across
529 		   all SDMA isntances */
530 		if (adev->asic_type == CHIP_ARCTURUS)
531 			break;
532 	}
533 
534 	memset((void*)adev->sdma.instance, 0,
535 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
536 }
537 
538 /**
539  * sdma_v4_0_init_microcode - load ucode images from disk
540  *
541  * @adev: amdgpu_device pointer
542  *
543  * Use the firmware interface to load the ucode images into
544  * the driver (not loaded into hw).
545  * Returns 0 on success, error on failure.
546  */
547 
548 // emulation only, won't work on real chip
549 // vega10 real chip need to use PSP to load firmware
sdma_v4_0_init_microcode(struct amdgpu_device * adev)550 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
551 {
552 	const char *chip_name;
553 	char fw_name[30];
554 	int err = 0, i;
555 	struct amdgpu_firmware_info *info = NULL;
556 	const struct common_firmware_header *header = NULL;
557 
558 	DRM_DEBUG("\n");
559 
560 	switch (adev->asic_type) {
561 	case CHIP_VEGA10:
562 		chip_name = "vega10";
563 		break;
564 	case CHIP_VEGA12:
565 		chip_name = "vega12";
566 		break;
567 	case CHIP_VEGA20:
568 		chip_name = "vega20";
569 		break;
570 	case CHIP_RAVEN:
571 		if (adev->rev_id >= 8)
572 			chip_name = "raven2";
573 		else if (adev->pdev->device == 0x15d8)
574 			chip_name = "picasso";
575 		else
576 			chip_name = "raven";
577 		break;
578 	case CHIP_ARCTURUS:
579 		chip_name = "arcturus";
580 		break;
581 	case CHIP_RENOIR:
582 		chip_name = "renoir";
583 		break;
584 	default:
585 		BUG();
586 	}
587 
588 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
589 
590 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
591 	if (err)
592 		goto out;
593 
594 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
595 	if (err)
596 		goto out;
597 
598 	for (i = 1; i < adev->sdma.num_instances; i++) {
599 		if (adev->asic_type == CHIP_ARCTURUS) {
600 			/* Acturus will leverage the same FW memory
601 			   for every SDMA instance */
602 			memcpy((void*)&adev->sdma.instance[i],
603 			       (void*)&adev->sdma.instance[0],
604 			       sizeof(struct amdgpu_sdma_instance));
605 		}
606 		else {
607 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
608 
609 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
610 			if (err)
611 				goto out;
612 
613 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
614 			if (err)
615 				goto out;
616 		}
617 	}
618 
619 	DRM_DEBUG("psp_load == '%s'\n",
620 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
621 
622 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
623 		for (i = 0; i < adev->sdma.num_instances; i++) {
624 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
625 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
626 			info->fw = adev->sdma.instance[i].fw;
627 			header = (const struct common_firmware_header *)info->fw->data;
628 			adev->firmware.fw_size +=
629 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
630 		}
631 	}
632 
633 out:
634 	if (err) {
635 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
636 		sdma_v4_0_destroy_inst_ctx(adev);
637 	}
638 	return err;
639 }
640 
641 /**
642  * sdma_v4_0_ring_get_rptr - get the current read pointer
643  *
644  * @ring: amdgpu ring pointer
645  *
646  * Get the current rptr from the hardware (VEGA10+).
647  */
sdma_v4_0_ring_get_rptr(struct amdgpu_ring * ring)648 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
649 {
650 	volatile u64 *rptr;
651 
652 	/* XXX check if swapping is necessary on BE */
653 	rptr = ((volatile u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
654 
655 	DRM_DEBUG("rptr before shift == 0x%016"PRIx64"\n", *rptr);
656 	return ((*rptr) >> 2);
657 }
658 
659 /**
660  * sdma_v4_0_ring_get_wptr - get the current write pointer
661  *
662  * @ring: amdgpu ring pointer
663  *
664  * Get the current wptr from the hardware (VEGA10+).
665  */
sdma_v4_0_ring_get_wptr(struct amdgpu_ring * ring)666 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
667 {
668 	struct amdgpu_device *adev = ring->adev;
669 	u64 wptr;
670 
671 	if (ring->use_doorbell) {
672 		/* XXX check if swapping is necessary on BE */
673 		wptr = READ_ONCE(*((volatile u64 *)&adev->wb.wb[ring->wptr_offs]));
674 		DRM_DEBUG("wptr/doorbell before shift == 0x%016"PRIx64"\n", wptr);
675 	} else {
676 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
677 		wptr = wptr << 32;
678 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
679 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016"PRIx64"\n",
680 				ring->me, wptr);
681 	}
682 
683 	return wptr >> 2;
684 }
685 
686 /**
687  * sdma_v4_0_ring_set_wptr - commit the write pointer
688  *
689  * @ring: amdgpu ring pointer
690  *
691  * Write the wptr back to the hardware (VEGA10+).
692  */
sdma_v4_0_ring_set_wptr(struct amdgpu_ring * ring)693 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
694 {
695 	struct amdgpu_device *adev = ring->adev;
696 
697 	DRM_DEBUG("Setting write pointer\n");
698 	if (ring->use_doorbell) {
699 		volatile u64 *wb = (volatile u64 *)&adev->wb.wb[ring->wptr_offs];
700 
701 		DRM_DEBUG("Using doorbell -- "
702 				"wptr_offs == 0x%08x "
703 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
704 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
705 				ring->wptr_offs,
706 				lower_32_bits(ring->wptr << 2),
707 				upper_32_bits(ring->wptr << 2));
708 		/* XXX check if swapping is necessary on BE */
709 		WRITE_ONCE(*wb, (ring->wptr << 2));
710 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016"PRIx64")\n",
711 				ring->doorbell_index, ring->wptr << 2);
712 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
713 	} else {
714 		DRM_DEBUG("Not using doorbell -- "
715 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
716 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
717 				ring->me,
718 				lower_32_bits(ring->wptr << 2),
719 				ring->me,
720 				upper_32_bits(ring->wptr << 2));
721 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
722 			    lower_32_bits(ring->wptr << 2));
723 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
724 			    upper_32_bits(ring->wptr << 2));
725 	}
726 }
727 
728 /**
729  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
730  *
731  * @ring: amdgpu ring pointer
732  *
733  * Get the current wptr from the hardware (VEGA10+).
734  */
sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring * ring)735 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
736 {
737 	struct amdgpu_device *adev = ring->adev;
738 	u64 wptr;
739 
740 	if (ring->use_doorbell) {
741 		/* XXX check if swapping is necessary on BE */
742 		wptr = READ_ONCE(*((volatile u64 *)&adev->wb.wb[ring->wptr_offs]));
743 	} else {
744 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
745 		wptr = wptr << 32;
746 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
747 	}
748 
749 	return wptr >> 2;
750 }
751 
752 /**
753  * sdma_v4_0_ring_set_wptr - commit the write pointer
754  *
755  * @ring: amdgpu ring pointer
756  *
757  * Write the wptr back to the hardware (VEGA10+).
758  */
sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring * ring)759 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
760 {
761 	struct amdgpu_device *adev = ring->adev;
762 
763 	if (ring->use_doorbell) {
764 		volatile u64 *wb = (volatile u64 *)&adev->wb.wb[ring->wptr_offs];
765 
766 		/* XXX check if swapping is necessary on BE */
767 		WRITE_ONCE(*wb, (ring->wptr << 2));
768 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
769 	} else {
770 		uint64_t wptr = ring->wptr << 2;
771 
772 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
773 			    lower_32_bits(wptr));
774 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
775 			    upper_32_bits(wptr));
776 	}
777 }
778 
sdma_v4_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)779 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
780 {
781 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
782 	int i;
783 
784 	for (i = 0; i < count; i++)
785 		if (sdma && sdma->burst_nop && (i == 0))
786 			amdgpu_ring_write(ring, ring->funcs->nop |
787 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
788 		else
789 			amdgpu_ring_write(ring, ring->funcs->nop);
790 }
791 
792 /**
793  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
794  *
795  * @ring: amdgpu ring pointer
796  * @ib: IB object to schedule
797  *
798  * Schedule an IB in the DMA ring (VEGA10).
799  */
sdma_v4_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)800 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
801 				   struct amdgpu_job *job,
802 				   struct amdgpu_ib *ib,
803 				   uint32_t flags)
804 {
805 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
806 
807 	/* IB packet must end on a 8 DW boundary */
808 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
809 
810 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
811 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
812 	/* base must be 32 byte aligned */
813 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
814 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
815 	amdgpu_ring_write(ring, ib->length_dw);
816 	amdgpu_ring_write(ring, 0);
817 	amdgpu_ring_write(ring, 0);
818 
819 }
820 
sdma_v4_0_wait_reg_mem(struct amdgpu_ring * ring,int mem_space,int hdp,uint32_t addr0,uint32_t addr1,uint32_t ref,uint32_t mask,uint32_t inv)821 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
822 				   int mem_space, int hdp,
823 				   uint32_t addr0, uint32_t addr1,
824 				   uint32_t ref, uint32_t mask,
825 				   uint32_t inv)
826 {
827 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
828 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
829 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
830 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
831 	if (mem_space) {
832 		/* memory */
833 		amdgpu_ring_write(ring, addr0);
834 		amdgpu_ring_write(ring, addr1);
835 	} else {
836 		/* registers */
837 		amdgpu_ring_write(ring, addr0 << 2);
838 		amdgpu_ring_write(ring, addr1 << 2);
839 	}
840 	amdgpu_ring_write(ring, ref); /* reference */
841 	amdgpu_ring_write(ring, mask); /* mask */
842 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
843 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
844 }
845 
846 /**
847  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
848  *
849  * @ring: amdgpu ring pointer
850  *
851  * Emit an hdp flush packet on the requested DMA ring.
852  */
sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)853 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
854 {
855 	struct amdgpu_device *adev = ring->adev;
856 	u32 ref_and_mask = 0;
857 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
858 
859 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
860 
861 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
862 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
863 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
864 			       ref_and_mask, ref_and_mask, 10);
865 }
866 
867 /**
868  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
869  *
870  * @ring: amdgpu ring pointer
871  * @fence: amdgpu fence object
872  *
873  * Add a DMA fence packet to the ring to write
874  * the fence seq number and DMA trap packet to generate
875  * an interrupt if needed (VEGA10).
876  */
sdma_v4_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)877 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
878 				      unsigned flags)
879 {
880 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
881 	/* write the fence */
882 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
883 	/* zero in first two bits */
884 	BUG_ON(addr & 0x3);
885 	amdgpu_ring_write(ring, lower_32_bits(addr));
886 	amdgpu_ring_write(ring, upper_32_bits(addr));
887 	amdgpu_ring_write(ring, lower_32_bits(seq));
888 
889 	/* optionally write high bits as well */
890 	if (write64bit) {
891 		addr += 4;
892 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
893 		/* zero in first two bits */
894 		BUG_ON(addr & 0x3);
895 		amdgpu_ring_write(ring, lower_32_bits(addr));
896 		amdgpu_ring_write(ring, upper_32_bits(addr));
897 		amdgpu_ring_write(ring, upper_32_bits(seq));
898 	}
899 
900 	/* generate an interrupt */
901 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
902 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
903 }
904 
905 
906 /**
907  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
908  *
909  * @adev: amdgpu_device pointer
910  *
911  * Stop the gfx async dma ring buffers (VEGA10).
912  */
sdma_v4_0_gfx_stop(struct amdgpu_device * adev)913 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
914 {
915 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
916 	u32 rb_cntl, ib_cntl;
917 	int i, unset = 0;
918 
919 	for (i = 0; i < adev->sdma.num_instances; i++) {
920 		sdma[i] = &adev->sdma.instance[i].ring;
921 
922 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
923 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
924 			unset = 1;
925 		}
926 
927 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
928 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
929 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
930 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
931 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
932 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
933 
934 		sdma[i]->sched.ready = false;
935 	}
936 }
937 
938 /**
939  * sdma_v4_0_rlc_stop - stop the compute async dma engines
940  *
941  * @adev: amdgpu_device pointer
942  *
943  * Stop the compute async dma queues (VEGA10).
944  */
sdma_v4_0_rlc_stop(struct amdgpu_device * adev)945 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
946 {
947 	/* XXX todo */
948 }
949 
950 /**
951  * sdma_v4_0_page_stop - stop the page async dma engines
952  *
953  * @adev: amdgpu_device pointer
954  *
955  * Stop the page async dma ring buffers (VEGA10).
956  */
sdma_v4_0_page_stop(struct amdgpu_device * adev)957 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
958 {
959 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
960 	u32 rb_cntl, ib_cntl;
961 	int i;
962 	bool unset = false;
963 
964 	for (i = 0; i < adev->sdma.num_instances; i++) {
965 		sdma[i] = &adev->sdma.instance[i].page;
966 
967 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
968 			(unset == false)) {
969 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
970 			unset = true;
971 		}
972 
973 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
974 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
975 					RB_ENABLE, 0);
976 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
977 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
978 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
979 					IB_ENABLE, 0);
980 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
981 
982 		sdma[i]->sched.ready = false;
983 	}
984 }
985 
986 /**
987  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
988  *
989  * @adev: amdgpu_device pointer
990  * @enable: enable/disable the DMA MEs context switch.
991  *
992  * Halt or unhalt the async dma engines context switch (VEGA10).
993  */
sdma_v4_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)994 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
995 {
996 	u32 f32_cntl, phase_quantum = 0;
997 	int i;
998 
999 	if (amdgpu_sdma_phase_quantum) {
1000 		unsigned value = amdgpu_sdma_phase_quantum;
1001 		unsigned unit = 0;
1002 
1003 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1004 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1005 			value = (value + 1) >> 1;
1006 			unit++;
1007 		}
1008 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1009 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1010 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1011 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1012 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1013 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1014 			WARN_ONCE(1,
1015 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1016 				  value << unit);
1017 		}
1018 		phase_quantum =
1019 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1020 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1021 	}
1022 
1023 	for (i = 0; i < adev->sdma.num_instances; i++) {
1024 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1025 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1026 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1027 		if (enable && amdgpu_sdma_phase_quantum) {
1028 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1029 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1030 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1031 		}
1032 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1033 	}
1034 
1035 }
1036 
1037 /**
1038  * sdma_v4_0_enable - stop the async dma engines
1039  *
1040  * @adev: amdgpu_device pointer
1041  * @enable: enable/disable the DMA MEs.
1042  *
1043  * Halt or unhalt the async dma engines (VEGA10).
1044  */
sdma_v4_0_enable(struct amdgpu_device * adev,bool enable)1045 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1046 {
1047 	u32 f32_cntl;
1048 	int i;
1049 
1050 	if (enable == false) {
1051 		sdma_v4_0_gfx_stop(adev);
1052 		sdma_v4_0_rlc_stop(adev);
1053 		if (adev->sdma.has_page_queue)
1054 			sdma_v4_0_page_stop(adev);
1055 	}
1056 
1057 	for (i = 0; i < adev->sdma.num_instances; i++) {
1058 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1059 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1060 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1061 	}
1062 }
1063 
1064 /**
1065  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1066  */
sdma_v4_0_rb_cntl(struct amdgpu_ring * ring,uint32_t rb_cntl)1067 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1068 {
1069 	/* Set ring buffer size in dwords */
1070 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1071 
1072 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1073 #ifdef __BIG_ENDIAN
1074 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1075 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1076 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1077 #endif
1078 	return rb_cntl;
1079 }
1080 
1081 /**
1082  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1083  *
1084  * @adev: amdgpu_device pointer
1085  * @i: instance to resume
1086  *
1087  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1088  * Returns 0 for success, error for failure.
1089  */
sdma_v4_0_gfx_resume(struct amdgpu_device * adev,unsigned int i)1090 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1091 {
1092 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1093 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1094 	u32 wb_offset;
1095 	u32 doorbell;
1096 	u32 doorbell_offset;
1097 	u64 wptr_gpu_addr;
1098 
1099 	wb_offset = (ring->rptr_offs * 4);
1100 
1101 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1102 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1103 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1104 
1105 	/* Initialize the ring buffer's read and write pointers */
1106 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1107 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1108 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1109 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1110 
1111 	/* set the wb address whether it's enabled or not */
1112 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1113 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1114 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1115 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1116 
1117 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1118 				RPTR_WRITEBACK_ENABLE, 1);
1119 
1120 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1121 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1122 
1123 	ring->wptr = 0;
1124 
1125 	/* before programing wptr to a less value, need set minor_ptr_update first */
1126 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1127 
1128 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1129 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1130 
1131 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1132 				 ring->use_doorbell);
1133 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1134 					SDMA0_GFX_DOORBELL_OFFSET,
1135 					OFFSET, ring->doorbell_index);
1136 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1137 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1138 
1139 	sdma_v4_0_ring_set_wptr(ring);
1140 
1141 	/* set minor_ptr_update to 0 after wptr programed */
1142 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1143 
1144 	/* setup the wptr shadow polling */
1145 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1146 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1147 		    lower_32_bits(wptr_gpu_addr));
1148 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1149 		    upper_32_bits(wptr_gpu_addr));
1150 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1151 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1152 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1153 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1155 
1156 	/* enable DMA RB */
1157 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1158 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1159 
1160 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1161 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1162 #ifdef __BIG_ENDIAN
1163 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1164 #endif
1165 	/* enable DMA IBs */
1166 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1167 
1168 	ring->sched.ready = true;
1169 }
1170 
1171 /**
1172  * sdma_v4_0_page_resume - setup and start the async dma engines
1173  *
1174  * @adev: amdgpu_device pointer
1175  * @i: instance to resume
1176  *
1177  * Set up the page DMA ring buffers and enable them (VEGA10).
1178  * Returns 0 for success, error for failure.
1179  */
sdma_v4_0_page_resume(struct amdgpu_device * adev,unsigned int i)1180 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1181 {
1182 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1183 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1184 	u32 wb_offset;
1185 	u32 doorbell;
1186 	u32 doorbell_offset;
1187 	u64 wptr_gpu_addr;
1188 
1189 	wb_offset = (ring->rptr_offs * 4);
1190 
1191 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1192 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1193 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1194 
1195 	/* Initialize the ring buffer's read and write pointers */
1196 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1197 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1198 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1199 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1200 
1201 	/* set the wb address whether it's enabled or not */
1202 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1203 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1204 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1205 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1206 
1207 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1208 				RPTR_WRITEBACK_ENABLE, 1);
1209 
1210 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1211 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1212 
1213 	ring->wptr = 0;
1214 
1215 	/* before programing wptr to a less value, need set minor_ptr_update first */
1216 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1217 
1218 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1219 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1220 
1221 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1222 				 ring->use_doorbell);
1223 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1224 					SDMA0_PAGE_DOORBELL_OFFSET,
1225 					OFFSET, ring->doorbell_index);
1226 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1227 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1228 
1229 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1230 	sdma_v4_0_page_ring_set_wptr(ring);
1231 
1232 	/* set minor_ptr_update to 0 after wptr programed */
1233 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1234 
1235 	/* setup the wptr shadow polling */
1236 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1237 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1238 		    lower_32_bits(wptr_gpu_addr));
1239 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1240 		    upper_32_bits(wptr_gpu_addr));
1241 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1242 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1243 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1244 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1245 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1246 
1247 	/* enable DMA RB */
1248 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1249 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1250 
1251 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1252 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1253 #ifdef __BIG_ENDIAN
1254 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1255 #endif
1256 	/* enable DMA IBs */
1257 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1258 
1259 	ring->sched.ready = true;
1260 }
1261 
1262 static void
sdma_v4_1_update_power_gating(struct amdgpu_device * adev,bool enable)1263 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1264 {
1265 	uint32_t def, data;
1266 
1267 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1268 		/* enable idle interrupt */
1269 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1270 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1271 
1272 		if (data != def)
1273 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1274 	} else {
1275 		/* disable idle interrupt */
1276 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1277 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1278 		if (data != def)
1279 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1280 	}
1281 }
1282 
sdma_v4_1_init_power_gating(struct amdgpu_device * adev)1283 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1284 {
1285 	uint32_t def, data;
1286 
1287 	/* Enable HW based PG. */
1288 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1289 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1290 	if (data != def)
1291 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1292 
1293 	/* enable interrupt */
1294 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1295 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1296 	if (data != def)
1297 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1298 
1299 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1300 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1301 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1302 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1303 	/* Configure switch time for hysteresis purpose. Use default right now */
1304 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1305 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1306 	if(data != def)
1307 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1308 }
1309 
sdma_v4_0_init_pg(struct amdgpu_device * adev)1310 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1311 {
1312 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1313 		return;
1314 
1315 	switch (adev->asic_type) {
1316 	case CHIP_RAVEN:
1317 	case CHIP_RENOIR:
1318 		sdma_v4_1_init_power_gating(adev);
1319 		sdma_v4_1_update_power_gating(adev, true);
1320 		break;
1321 	default:
1322 		break;
1323 	}
1324 }
1325 
1326 /**
1327  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1328  *
1329  * @adev: amdgpu_device pointer
1330  *
1331  * Set up the compute DMA queues and enable them (VEGA10).
1332  * Returns 0 for success, error for failure.
1333  */
sdma_v4_0_rlc_resume(struct amdgpu_device * adev)1334 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1335 {
1336 	sdma_v4_0_init_pg(adev);
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1343  *
1344  * @adev: amdgpu_device pointer
1345  *
1346  * Loads the sDMA0/1 ucode.
1347  * Returns 0 for success, -EINVAL if the ucode is not available.
1348  */
sdma_v4_0_load_microcode(struct amdgpu_device * adev)1349 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1350 {
1351 	const struct sdma_firmware_header_v1_0 *hdr;
1352 	const __le32 *fw_data;
1353 	u32 fw_size;
1354 	int i, j;
1355 
1356 	/* halt the MEs */
1357 	sdma_v4_0_enable(adev, false);
1358 
1359 	for (i = 0; i < adev->sdma.num_instances; i++) {
1360 		if (!adev->sdma.instance[i].fw)
1361 			return -EINVAL;
1362 
1363 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1364 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1365 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1366 
1367 		fw_data = (const __le32 *)
1368 			(adev->sdma.instance[i].fw->data +
1369 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1370 
1371 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1372 
1373 		for (j = 0; j < fw_size; j++)
1374 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1375 				    le32_to_cpup(fw_data++));
1376 
1377 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1378 			    adev->sdma.instance[i].fw_version);
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /**
1385  * sdma_v4_0_start - setup and start the async dma engines
1386  *
1387  * @adev: amdgpu_device pointer
1388  *
1389  * Set up the DMA engines and enable them (VEGA10).
1390  * Returns 0 for success, error for failure.
1391  */
sdma_v4_0_start(struct amdgpu_device * adev)1392 static int sdma_v4_0_start(struct amdgpu_device *adev)
1393 {
1394 	struct amdgpu_ring *ring;
1395 	int i, r = 0;
1396 
1397 	if (amdgpu_sriov_vf(adev)) {
1398 		sdma_v4_0_ctx_switch_enable(adev, false);
1399 		sdma_v4_0_enable(adev, false);
1400 	} else {
1401 
1402 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1403 			r = sdma_v4_0_load_microcode(adev);
1404 			if (r)
1405 				return r;
1406 		}
1407 
1408 		/* unhalt the MEs */
1409 		sdma_v4_0_enable(adev, true);
1410 		/* enable sdma ring preemption */
1411 		sdma_v4_0_ctx_switch_enable(adev, true);
1412 	}
1413 
1414 	/* start the gfx rings and rlc compute queues */
1415 	for (i = 0; i < adev->sdma.num_instances; i++) {
1416 		uint32_t temp;
1417 
1418 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1419 		sdma_v4_0_gfx_resume(adev, i);
1420 		if (adev->sdma.has_page_queue)
1421 			sdma_v4_0_page_resume(adev, i);
1422 
1423 		/* set utc l1 enable flag always to 1 */
1424 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1425 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1426 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1427 
1428 		if (!amdgpu_sriov_vf(adev)) {
1429 			/* unhalt engine */
1430 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1431 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1432 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1433 		}
1434 	}
1435 
1436 	if (amdgpu_sriov_vf(adev)) {
1437 		sdma_v4_0_ctx_switch_enable(adev, true);
1438 		sdma_v4_0_enable(adev, true);
1439 	} else {
1440 		r = sdma_v4_0_rlc_resume(adev);
1441 		if (r)
1442 			return r;
1443 	}
1444 
1445 	for (i = 0; i < adev->sdma.num_instances; i++) {
1446 		ring = &adev->sdma.instance[i].ring;
1447 
1448 		r = amdgpu_ring_test_helper(ring);
1449 		if (r)
1450 			return r;
1451 
1452 		if (adev->sdma.has_page_queue) {
1453 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1454 
1455 			r = amdgpu_ring_test_helper(page);
1456 			if (r)
1457 				return r;
1458 
1459 			if (adev->mman.buffer_funcs_ring == page)
1460 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1461 		}
1462 
1463 		if (adev->mman.buffer_funcs_ring == ring)
1464 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1465 	}
1466 
1467 	return r;
1468 }
1469 
1470 /**
1471  * sdma_v4_0_ring_test_ring - simple async dma engine test
1472  *
1473  * @ring: amdgpu_ring structure holding ring information
1474  *
1475  * Test the DMA engine by writing using it to write an
1476  * value to memory. (VEGA10).
1477  * Returns 0 for success, error for failure.
1478  */
sdma_v4_0_ring_test_ring(struct amdgpu_ring * ring)1479 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1480 {
1481 	struct amdgpu_device *adev = ring->adev;
1482 	unsigned i;
1483 	unsigned index;
1484 	int r;
1485 	u32 tmp;
1486 	u64 gpu_addr;
1487 
1488 	r = amdgpu_device_wb_get(adev, &index);
1489 	if (r)
1490 		return r;
1491 
1492 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1493 	tmp = 0xCAFEDEAD;
1494 	adev->wb.wb[index] = cpu_to_le32(tmp);
1495 
1496 	r = amdgpu_ring_alloc(ring, 5);
1497 	if (r)
1498 		goto error_free_wb;
1499 
1500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1501 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1502 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1503 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1504 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1505 	amdgpu_ring_write(ring, 0xDEADBEEF);
1506 	amdgpu_ring_commit(ring);
1507 
1508 	for (i = 0; i < adev->usec_timeout; i++) {
1509 		tmp = le32_to_cpu(adev->wb.wb[index]);
1510 		if (tmp == 0xDEADBEEF)
1511 			break;
1512 		udelay(1);
1513 	}
1514 
1515 	if (i >= adev->usec_timeout)
1516 		r = -ETIMEDOUT;
1517 
1518 error_free_wb:
1519 	amdgpu_device_wb_free(adev, index);
1520 	return r;
1521 }
1522 
1523 /**
1524  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1525  *
1526  * @ring: amdgpu_ring structure holding ring information
1527  *
1528  * Test a simple IB in the DMA ring (VEGA10).
1529  * Returns 0 on success, error on failure.
1530  */
sdma_v4_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)1531 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1532 {
1533 	struct amdgpu_device *adev = ring->adev;
1534 	struct amdgpu_ib ib;
1535 	struct dma_fence *f = NULL;
1536 	unsigned index;
1537 	long r;
1538 	u32 tmp = 0;
1539 	u64 gpu_addr;
1540 
1541 	r = amdgpu_device_wb_get(adev, &index);
1542 	if (r)
1543 		return r;
1544 
1545 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1546 	tmp = 0xCAFEDEAD;
1547 	adev->wb.wb[index] = cpu_to_le32(tmp);
1548 	memset(&ib, 0, sizeof(ib));
1549 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1550 	if (r)
1551 		goto err0;
1552 
1553 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1554 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1555 	ib.ptr[1] = lower_32_bits(gpu_addr);
1556 	ib.ptr[2] = upper_32_bits(gpu_addr);
1557 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1558 	ib.ptr[4] = 0xDEADBEEF;
1559 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1560 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1561 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1562 	ib.length_dw = 8;
1563 
1564 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1565 	if (r)
1566 		goto err1;
1567 
1568 	r = dma_fence_wait_timeout(f, false, timeout);
1569 	if (r == 0) {
1570 		r = -ETIMEDOUT;
1571 		goto err1;
1572 	} else if (r < 0) {
1573 		goto err1;
1574 	}
1575 	tmp = le32_to_cpu(adev->wb.wb[index]);
1576 	if (tmp == 0xDEADBEEF)
1577 		r = 0;
1578 	else
1579 		r = -EINVAL;
1580 
1581 err1:
1582 	amdgpu_ib_free(adev, &ib, NULL);
1583 	dma_fence_put(f);
1584 err0:
1585 	amdgpu_device_wb_free(adev, index);
1586 	return r;
1587 }
1588 
1589 
1590 /**
1591  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1592  *
1593  * @ib: indirect buffer to fill with commands
1594  * @pe: addr of the page entry
1595  * @src: src addr to copy from
1596  * @count: number of page entries to update
1597  *
1598  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1599  */
sdma_v4_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)1600 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1601 				  uint64_t pe, uint64_t src,
1602 				  unsigned count)
1603 {
1604 	unsigned bytes = count * 8;
1605 
1606 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1607 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1608 	ib->ptr[ib->length_dw++] = bytes - 1;
1609 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1610 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1611 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1612 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1613 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1614 
1615 }
1616 
1617 /**
1618  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1619  *
1620  * @ib: indirect buffer to fill with commands
1621  * @pe: addr of the page entry
1622  * @addr: dst addr to write into pe
1623  * @count: number of page entries to update
1624  * @incr: increase next addr by incr bytes
1625  * @flags: access flags
1626  *
1627  * Update PTEs by writing them manually using sDMA (VEGA10).
1628  */
sdma_v4_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)1629 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1630 				   uint64_t value, unsigned count,
1631 				   uint32_t incr)
1632 {
1633 	unsigned ndw = count * 2;
1634 
1635 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1636 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1637 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1638 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1639 	ib->ptr[ib->length_dw++] = ndw - 1;
1640 	for (; ndw > 0; ndw -= 2) {
1641 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1642 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1643 		value += incr;
1644 	}
1645 }
1646 
1647 /**
1648  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1649  *
1650  * @ib: indirect buffer to fill with commands
1651  * @pe: addr of the page entry
1652  * @addr: dst addr to write into pe
1653  * @count: number of page entries to update
1654  * @incr: increase next addr by incr bytes
1655  * @flags: access flags
1656  *
1657  * Update the page tables using sDMA (VEGA10).
1658  */
sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1659 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1660 				     uint64_t pe,
1661 				     uint64_t addr, unsigned count,
1662 				     uint32_t incr, uint64_t flags)
1663 {
1664 	/* for physically contiguous pages (vram) */
1665 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1666 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1667 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1668 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1669 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1670 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1671 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1672 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1673 	ib->ptr[ib->length_dw++] = 0;
1674 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1675 }
1676 
1677 /**
1678  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1679  *
1680  * @ib: indirect buffer to fill with padding
1681  *
1682  */
sdma_v4_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1683 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1684 {
1685 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1686 	u32 pad_count;
1687 	int i;
1688 
1689 	pad_count = (-ib->length_dw) & 7;
1690 	for (i = 0; i < pad_count; i++)
1691 		if (sdma && sdma->burst_nop && (i == 0))
1692 			ib->ptr[ib->length_dw++] =
1693 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1694 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1695 		else
1696 			ib->ptr[ib->length_dw++] =
1697 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1698 }
1699 
1700 
1701 /**
1702  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1703  *
1704  * @ring: amdgpu_ring pointer
1705  *
1706  * Make sure all previous operations are completed (CIK).
1707  */
sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1708 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1709 {
1710 	uint32_t seq = ring->fence_drv.sync_seq;
1711 	uint64_t addr = ring->fence_drv.gpu_addr;
1712 
1713 	/* wait for idle */
1714 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1715 			       addr & 0xfffffffc,
1716 			       upper_32_bits(addr) & 0xffffffff,
1717 			       seq, 0xffffffff, 4);
1718 }
1719 
1720 
1721 /**
1722  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1723  *
1724  * @ring: amdgpu_ring pointer
1725  * @vm: amdgpu_vm pointer
1726  *
1727  * Update the page table base and flush the VM TLB
1728  * using sDMA (VEGA10).
1729  */
sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1730 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1731 					 unsigned vmid, uint64_t pd_addr)
1732 {
1733 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1734 }
1735 
sdma_v4_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1736 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1737 				     uint32_t reg, uint32_t val)
1738 {
1739 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1740 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1741 	amdgpu_ring_write(ring, reg);
1742 	amdgpu_ring_write(ring, val);
1743 }
1744 
sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)1745 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1746 					 uint32_t val, uint32_t mask)
1747 {
1748 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1749 }
1750 
sdma_v4_0_fw_support_paging_queue(struct amdgpu_device * adev)1751 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1752 {
1753 	uint fw_version = adev->sdma.instance[0].fw_version;
1754 
1755 	switch (adev->asic_type) {
1756 	case CHIP_VEGA10:
1757 		return fw_version >= 430;
1758 	case CHIP_VEGA12:
1759 		/*return fw_version >= 31;*/
1760 		return false;
1761 	case CHIP_VEGA20:
1762 		return fw_version >= 123;
1763 	default:
1764 		return false;
1765 	}
1766 }
1767 
sdma_v4_0_early_init(void * handle)1768 static int sdma_v4_0_early_init(void *handle)
1769 {
1770 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1771 	int r;
1772 
1773 	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1774 		adev->sdma.num_instances = 1;
1775 	else if (adev->asic_type == CHIP_ARCTURUS)
1776 		adev->sdma.num_instances = 8;
1777 	else
1778 		adev->sdma.num_instances = 2;
1779 
1780 	r = sdma_v4_0_init_microcode(adev);
1781 	if (r) {
1782 		DRM_ERROR("Failed to load sdma firmware!\n");
1783 		return r;
1784 	}
1785 
1786 	/* TODO: Page queue breaks driver reload under SRIOV */
1787 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1788 		adev->sdma.has_page_queue = false;
1789 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1790 		adev->sdma.has_page_queue = true;
1791 
1792 	sdma_v4_0_set_ring_funcs(adev);
1793 	sdma_v4_0_set_buffer_funcs(adev);
1794 	sdma_v4_0_set_vm_pte_funcs(adev);
1795 	sdma_v4_0_set_irq_funcs(adev);
1796 	sdma_v4_0_set_ras_funcs(adev);
1797 
1798 	return 0;
1799 }
1800 
1801 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1802 		void *err_data,
1803 		struct amdgpu_iv_entry *entry);
1804 
sdma_v4_0_late_init(void * handle)1805 static int sdma_v4_0_late_init(void *handle)
1806 {
1807 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1808 	struct ras_ih_if ih_info = {
1809 		.cb = sdma_v4_0_process_ras_data_cb,
1810 	};
1811 	int i;
1812 
1813 	/* read back edc counter registers to clear the counters */
1814 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1815 		for (i = 0; i < adev->sdma.num_instances; i++)
1816 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
1817 	}
1818 
1819 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1820 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1821 	else
1822 		return 0;
1823 }
1824 
sdma_v4_0_sw_init(void * handle)1825 static int sdma_v4_0_sw_init(void *handle)
1826 {
1827 	struct amdgpu_ring *ring;
1828 	int r, i;
1829 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1830 
1831 	/* SDMA trap event */
1832 	for (i = 0; i < adev->sdma.num_instances; i++) {
1833 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1834 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1835 				      &adev->sdma.trap_irq);
1836 		if (r)
1837 			return r;
1838 	}
1839 
1840 	/* SDMA SRAM ECC event */
1841 	for (i = 0; i < adev->sdma.num_instances; i++) {
1842 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1843 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1844 				      &adev->sdma.ecc_irq);
1845 		if (r)
1846 			return r;
1847 	}
1848 
1849 	for (i = 0; i < adev->sdma.num_instances; i++) {
1850 		ring = &adev->sdma.instance[i].ring;
1851 		ring->ring_obj = NULL;
1852 		ring->use_doorbell = true;
1853 
1854 		DRM_INFO("use_doorbell being set to: [%s]\n",
1855 				ring->use_doorbell?"true":"false");
1856 
1857 		/* doorbell size is 2 dwords, get DWORD offset */
1858 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1859 
1860 		snprintf(ring->name, sizeof(ring->name), "sdma%d", i);
1861 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1862 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1863 		if (r)
1864 			return r;
1865 
1866 		if (adev->sdma.has_page_queue) {
1867 			ring = &adev->sdma.instance[i].page;
1868 			ring->ring_obj = NULL;
1869 			ring->use_doorbell = true;
1870 
1871 			/* paging queue use same doorbell index/routing as gfx queue
1872 			 * with 0x400 (4096 dwords) offset on second doorbell page
1873 			 */
1874 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1875 			ring->doorbell_index += 0x400;
1876 
1877 			snprintf(ring->name, sizeof(ring->name), "page%d", i);
1878 			r = amdgpu_ring_init(adev, ring, 1024,
1879 					     &adev->sdma.trap_irq,
1880 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1881 			if (r)
1882 				return r;
1883 		}
1884 	}
1885 
1886 	return r;
1887 }
1888 
sdma_v4_0_sw_fini(void * handle)1889 static int sdma_v4_0_sw_fini(void *handle)
1890 {
1891 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1892 	int i;
1893 
1894 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1895 		adev->sdma.funcs->ras_fini(adev);
1896 
1897 	for (i = 0; i < adev->sdma.num_instances; i++) {
1898 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1899 		if (adev->sdma.has_page_queue)
1900 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1901 	}
1902 
1903 	sdma_v4_0_destroy_inst_ctx(adev);
1904 
1905 	return 0;
1906 }
1907 
sdma_v4_0_hw_init(void * handle)1908 static int sdma_v4_0_hw_init(void *handle)
1909 {
1910 	int r;
1911 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1912 
1913 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1914 			adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1915 			(adev->asic_type == CHIP_RENOIR && !adev->in_gpu_reset))
1916 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1917 
1918 	if (!amdgpu_sriov_vf(adev))
1919 		sdma_v4_0_init_golden_registers(adev);
1920 
1921 	r = sdma_v4_0_start(adev);
1922 
1923 	return r;
1924 }
1925 
sdma_v4_0_hw_fini(void * handle)1926 static int sdma_v4_0_hw_fini(void *handle)
1927 {
1928 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1929 	int i;
1930 
1931 	if (amdgpu_sriov_vf(adev))
1932 		return 0;
1933 
1934 	for (i = 0; i < adev->sdma.num_instances; i++) {
1935 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1936 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1937 	}
1938 
1939 	sdma_v4_0_ctx_switch_enable(adev, false);
1940 	sdma_v4_0_enable(adev, false);
1941 
1942 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1943 			&& adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1944 			adev->asic_type == CHIP_RENOIR)
1945 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1946 
1947 	return 0;
1948 }
1949 
sdma_v4_0_suspend(void * handle)1950 static int sdma_v4_0_suspend(void *handle)
1951 {
1952 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1953 
1954 	return sdma_v4_0_hw_fini(adev);
1955 }
1956 
sdma_v4_0_resume(void * handle)1957 static int sdma_v4_0_resume(void *handle)
1958 {
1959 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1960 
1961 	return sdma_v4_0_hw_init(adev);
1962 }
1963 
sdma_v4_0_is_idle(void * handle)1964 static bool sdma_v4_0_is_idle(void *handle)
1965 {
1966 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1967 	u32 i;
1968 
1969 	for (i = 0; i < adev->sdma.num_instances; i++) {
1970 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1971 
1972 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1973 			return false;
1974 	}
1975 
1976 	return true;
1977 }
1978 
sdma_v4_0_wait_for_idle(void * handle)1979 static int sdma_v4_0_wait_for_idle(void *handle)
1980 {
1981 	unsigned i, j;
1982 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1983 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1984 
1985 	for (i = 0; i < adev->usec_timeout; i++) {
1986 		for (j = 0; j < adev->sdma.num_instances; j++) {
1987 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1988 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1989 				break;
1990 		}
1991 		if (j == adev->sdma.num_instances)
1992 			return 0;
1993 		udelay(1);
1994 	}
1995 	return -ETIMEDOUT;
1996 }
1997 
sdma_v4_0_soft_reset(void * handle)1998 static int sdma_v4_0_soft_reset(void *handle)
1999 {
2000 	/* todo */
2001 
2002 	return 0;
2003 }
2004 
sdma_v4_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)2005 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2006 					struct amdgpu_irq_src *source,
2007 					unsigned type,
2008 					enum amdgpu_interrupt_state state)
2009 {
2010 	u32 sdma_cntl;
2011 
2012 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2013 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2014 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2015 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2016 
2017 	return 0;
2018 }
2019 
sdma_v4_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2020 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2021 				      struct amdgpu_irq_src *source,
2022 				      struct amdgpu_iv_entry *entry)
2023 {
2024 	uint32_t instance;
2025 
2026 	DRM_DEBUG("IH: SDMA trap\n");
2027 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2028 	switch (entry->ring_id) {
2029 	case 0:
2030 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2031 		break;
2032 	case 1:
2033 		if (adev->asic_type == CHIP_VEGA20)
2034 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2035 		break;
2036 	case 2:
2037 		/* XXX compute */
2038 		break;
2039 	case 3:
2040 		if (adev->asic_type != CHIP_VEGA20)
2041 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2042 		break;
2043 	}
2044 	return 0;
2045 }
2046 
sdma_v4_0_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)2047 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2048 		void *err_data,
2049 		struct amdgpu_iv_entry *entry)
2050 {
2051 	int instance;
2052 
2053 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2054 	 * be disabled and the driver should only look for the aggregated
2055 	 * interrupt via sync flood
2056 	 */
2057 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2058 		goto out;
2059 
2060 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2061 	if (instance < 0)
2062 		goto out;
2063 
2064 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2065 
2066 out:
2067 	return AMDGPU_RAS_SUCCESS;
2068 }
2069 
sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)2070 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2071 					      struct amdgpu_irq_src *source,
2072 					      struct amdgpu_iv_entry *entry)
2073 {
2074 	int instance;
2075 
2076 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2077 
2078 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2079 	if (instance < 0)
2080 		return 0;
2081 
2082 	switch (entry->ring_id) {
2083 	case 0:
2084 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2085 		break;
2086 	}
2087 	return 0;
2088 }
2089 
sdma_v4_0_set_ecc_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)2090 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2091 					struct amdgpu_irq_src *source,
2092 					unsigned type,
2093 					enum amdgpu_interrupt_state state)
2094 {
2095 	u32 sdma_edc_config;
2096 
2097 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2098 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2099 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2100 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2101 
2102 	return 0;
2103 }
2104 
sdma_v4_0_update_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)2105 static void sdma_v4_0_update_medium_grain_clock_gating(
2106 		struct amdgpu_device *adev,
2107 		bool enable)
2108 {
2109 	uint32_t data, def;
2110 	int i;
2111 
2112 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2113 		for (i = 0; i < adev->sdma.num_instances; i++) {
2114 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2115 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2116 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2117 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2118 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2119 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2120 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2121 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2122 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2123 			if (def != data)
2124 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2125 		}
2126 	} else {
2127 		for (i = 0; i < adev->sdma.num_instances; i++) {
2128 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2129 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2130 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2131 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2132 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2133 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2134 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2135 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2136 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2137 			if (def != data)
2138 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2139 		}
2140 	}
2141 }
2142 
2143 
sdma_v4_0_update_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)2144 static void sdma_v4_0_update_medium_grain_light_sleep(
2145 		struct amdgpu_device *adev,
2146 		bool enable)
2147 {
2148 	uint32_t data, def;
2149 	int i;
2150 
2151 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2152 		for (i = 0; i < adev->sdma.num_instances; i++) {
2153 			/* 1-not override: enable sdma mem light sleep */
2154 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2155 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2156 			if (def != data)
2157 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2158 		}
2159 	} else {
2160 		for (i = 0; i < adev->sdma.num_instances; i++) {
2161 		/* 0-override:disable sdma mem light sleep */
2162 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2163 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2164 			if (def != data)
2165 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2166 		}
2167 	}
2168 }
2169 
sdma_v4_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)2170 static int sdma_v4_0_set_clockgating_state(void *handle,
2171 					  enum amd_clockgating_state state)
2172 {
2173 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2174 
2175 	if (amdgpu_sriov_vf(adev))
2176 		return 0;
2177 
2178 	switch (adev->asic_type) {
2179 	case CHIP_VEGA10:
2180 	case CHIP_VEGA12:
2181 	case CHIP_VEGA20:
2182 	case CHIP_RAVEN:
2183 	case CHIP_ARCTURUS:
2184 	case CHIP_RENOIR:
2185 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2186 				state == AMD_CG_STATE_GATE);
2187 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2188 				state == AMD_CG_STATE_GATE);
2189 		break;
2190 	default:
2191 		break;
2192 	}
2193 	return 0;
2194 }
2195 
sdma_v4_0_set_powergating_state(void * handle,enum amd_powergating_state state)2196 static int sdma_v4_0_set_powergating_state(void *handle,
2197 					  enum amd_powergating_state state)
2198 {
2199 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2200 
2201 	switch (adev->asic_type) {
2202 	case CHIP_RAVEN:
2203 		sdma_v4_1_update_power_gating(adev,
2204 				state == AMD_PG_STATE_GATE ? true : false);
2205 		break;
2206 	default:
2207 		break;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
sdma_v4_0_get_clockgating_state(void * handle,u32 * flags)2213 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2214 {
2215 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2216 	int data;
2217 
2218 	if (amdgpu_sriov_vf(adev))
2219 		*flags = 0;
2220 
2221 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2222 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2223 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2224 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2225 
2226 	/* AMD_CG_SUPPORT_SDMA_LS */
2227 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2228 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2229 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2230 }
2231 
2232 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2233 	.name = "sdma_v4_0",
2234 	.early_init = sdma_v4_0_early_init,
2235 	.late_init = sdma_v4_0_late_init,
2236 	.sw_init = sdma_v4_0_sw_init,
2237 	.sw_fini = sdma_v4_0_sw_fini,
2238 	.hw_init = sdma_v4_0_hw_init,
2239 	.hw_fini = sdma_v4_0_hw_fini,
2240 	.suspend = sdma_v4_0_suspend,
2241 	.resume = sdma_v4_0_resume,
2242 	.is_idle = sdma_v4_0_is_idle,
2243 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2244 	.soft_reset = sdma_v4_0_soft_reset,
2245 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2246 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2247 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2248 };
2249 
2250 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2251 	.type = AMDGPU_RING_TYPE_SDMA,
2252 	.align_mask = 0xf,
2253 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2254 	.support_64bit_ptrs = true,
2255 	.vmhub = AMDGPU_MMHUB_0,
2256 	.get_rptr = sdma_v4_0_ring_get_rptr,
2257 	.get_wptr = sdma_v4_0_ring_get_wptr,
2258 	.set_wptr = sdma_v4_0_ring_set_wptr,
2259 	.emit_frame_size =
2260 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2261 		3 + /* hdp invalidate */
2262 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2263 		/* sdma_v4_0_ring_emit_vm_flush */
2264 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2265 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2266 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2267 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2268 	.emit_ib = sdma_v4_0_ring_emit_ib,
2269 	.emit_fence = sdma_v4_0_ring_emit_fence,
2270 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2271 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2272 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2273 	.test_ring = sdma_v4_0_ring_test_ring,
2274 	.test_ib = sdma_v4_0_ring_test_ib,
2275 	.insert_nop = sdma_v4_0_ring_insert_nop,
2276 	.pad_ib = sdma_v4_0_ring_pad_ib,
2277 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2278 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2279 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2280 };
2281 
2282 /*
2283  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2284  * So create a individual constant ring_funcs for those instances.
2285  */
2286 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2287 	.type = AMDGPU_RING_TYPE_SDMA,
2288 	.align_mask = 0xf,
2289 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2290 	.support_64bit_ptrs = true,
2291 	.vmhub = AMDGPU_MMHUB_1,
2292 	.get_rptr = sdma_v4_0_ring_get_rptr,
2293 	.get_wptr = sdma_v4_0_ring_get_wptr,
2294 	.set_wptr = sdma_v4_0_ring_set_wptr,
2295 	.emit_frame_size =
2296 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2297 		3 + /* hdp invalidate */
2298 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2299 		/* sdma_v4_0_ring_emit_vm_flush */
2300 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2301 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2302 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2303 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2304 	.emit_ib = sdma_v4_0_ring_emit_ib,
2305 	.emit_fence = sdma_v4_0_ring_emit_fence,
2306 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2307 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2308 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2309 	.test_ring = sdma_v4_0_ring_test_ring,
2310 	.test_ib = sdma_v4_0_ring_test_ib,
2311 	.insert_nop = sdma_v4_0_ring_insert_nop,
2312 	.pad_ib = sdma_v4_0_ring_pad_ib,
2313 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2314 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2315 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2316 };
2317 
2318 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2319 	.type = AMDGPU_RING_TYPE_SDMA,
2320 	.align_mask = 0xf,
2321 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2322 	.support_64bit_ptrs = true,
2323 	.vmhub = AMDGPU_MMHUB_0,
2324 	.get_rptr = sdma_v4_0_ring_get_rptr,
2325 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2326 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2327 	.emit_frame_size =
2328 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2329 		3 + /* hdp invalidate */
2330 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2331 		/* sdma_v4_0_ring_emit_vm_flush */
2332 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2333 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2334 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2335 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2336 	.emit_ib = sdma_v4_0_ring_emit_ib,
2337 	.emit_fence = sdma_v4_0_ring_emit_fence,
2338 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2339 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2340 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2341 	.test_ring = sdma_v4_0_ring_test_ring,
2342 	.test_ib = sdma_v4_0_ring_test_ib,
2343 	.insert_nop = sdma_v4_0_ring_insert_nop,
2344 	.pad_ib = sdma_v4_0_ring_pad_ib,
2345 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2346 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2347 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2348 };
2349 
2350 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2351 	.type = AMDGPU_RING_TYPE_SDMA,
2352 	.align_mask = 0xf,
2353 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2354 	.support_64bit_ptrs = true,
2355 	.vmhub = AMDGPU_MMHUB_1,
2356 	.get_rptr = sdma_v4_0_ring_get_rptr,
2357 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2358 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2359 	.emit_frame_size =
2360 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2361 		3 + /* hdp invalidate */
2362 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2363 		/* sdma_v4_0_ring_emit_vm_flush */
2364 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2365 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2366 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2367 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2368 	.emit_ib = sdma_v4_0_ring_emit_ib,
2369 	.emit_fence = sdma_v4_0_ring_emit_fence,
2370 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2371 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2372 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2373 	.test_ring = sdma_v4_0_ring_test_ring,
2374 	.test_ib = sdma_v4_0_ring_test_ib,
2375 	.insert_nop = sdma_v4_0_ring_insert_nop,
2376 	.pad_ib = sdma_v4_0_ring_pad_ib,
2377 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2378 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2379 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2380 };
2381 
sdma_v4_0_set_ring_funcs(struct amdgpu_device * adev)2382 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2383 {
2384 	int i;
2385 
2386 	for (i = 0; i < adev->sdma.num_instances; i++) {
2387 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2388 			adev->sdma.instance[i].ring.funcs =
2389 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2390 		else
2391 			adev->sdma.instance[i].ring.funcs =
2392 					&sdma_v4_0_ring_funcs;
2393 		adev->sdma.instance[i].ring.me = i;
2394 		if (adev->sdma.has_page_queue) {
2395 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2396 				adev->sdma.instance[i].page.funcs =
2397 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2398 			else
2399 				adev->sdma.instance[i].page.funcs =
2400 					&sdma_v4_0_page_ring_funcs;
2401 			adev->sdma.instance[i].page.me = i;
2402 		}
2403 	}
2404 }
2405 
2406 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2407 	.set = sdma_v4_0_set_trap_irq_state,
2408 	.process = sdma_v4_0_process_trap_irq,
2409 };
2410 
2411 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2412 	.process = sdma_v4_0_process_illegal_inst_irq,
2413 };
2414 
2415 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2416 	.set = sdma_v4_0_set_ecc_irq_state,
2417 	.process = amdgpu_sdma_process_ecc_irq,
2418 };
2419 
2420 
2421 
sdma_v4_0_set_irq_funcs(struct amdgpu_device * adev)2422 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2423 {
2424 	switch (adev->sdma.num_instances) {
2425 	case 1:
2426 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2427 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2428 		break;
2429 	case 8:
2430 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2431 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2432 		break;
2433 	case 2:
2434 	default:
2435 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2436 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2437 		break;
2438 	}
2439 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2440 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2441 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2442 }
2443 
2444 /**
2445  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2446  *
2447  * @ring: amdgpu_ring structure holding ring information
2448  * @src_offset: src GPU address
2449  * @dst_offset: dst GPU address
2450  * @byte_count: number of bytes to xfer
2451  *
2452  * Copy GPU buffers using the DMA engine (VEGA10/12).
2453  * Used by the amdgpu ttm implementation to move pages if
2454  * registered as the asic copy callback.
2455  */
sdma_v4_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count)2456 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2457 				       uint64_t src_offset,
2458 				       uint64_t dst_offset,
2459 				       uint32_t byte_count)
2460 {
2461 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2462 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2463 	ib->ptr[ib->length_dw++] = byte_count - 1;
2464 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2465 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2466 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2467 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2468 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2469 }
2470 
2471 /**
2472  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2473  *
2474  * @ring: amdgpu_ring structure holding ring information
2475  * @src_data: value to write to buffer
2476  * @dst_offset: dst GPU address
2477  * @byte_count: number of bytes to xfer
2478  *
2479  * Fill GPU buffers using the DMA engine (VEGA10/12).
2480  */
sdma_v4_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)2481 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2482 				       uint32_t src_data,
2483 				       uint64_t dst_offset,
2484 				       uint32_t byte_count)
2485 {
2486 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2487 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2488 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2489 	ib->ptr[ib->length_dw++] = src_data;
2490 	ib->ptr[ib->length_dw++] = byte_count - 1;
2491 }
2492 
2493 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2494 	.copy_max_bytes = 0x400000,
2495 	.copy_num_dw = 7,
2496 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2497 
2498 	.fill_max_bytes = 0x400000,
2499 	.fill_num_dw = 5,
2500 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2501 };
2502 
sdma_v4_0_set_buffer_funcs(struct amdgpu_device * adev)2503 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2504 {
2505 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2506 	if (adev->sdma.has_page_queue)
2507 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2508 	else
2509 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2510 }
2511 
2512 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2513 	.copy_pte_num_dw = 7,
2514 	.copy_pte = sdma_v4_0_vm_copy_pte,
2515 
2516 	.write_pte = sdma_v4_0_vm_write_pte,
2517 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2518 };
2519 
sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device * adev)2520 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2521 {
2522 	struct drm_gpu_scheduler *sched;
2523 	unsigned i;
2524 
2525 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2526 	for (i = 0; i < adev->sdma.num_instances; i++) {
2527 		if (adev->sdma.has_page_queue)
2528 			sched = &adev->sdma.instance[i].page.sched;
2529 		else
2530 			sched = &adev->sdma.instance[i].ring.sched;
2531 		adev->vm_manager.vm_pte_scheds[i] = sched;
2532 	}
2533 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2534 }
2535 
sdma_v4_0_get_ras_error_count(uint32_t value,uint32_t instance,uint32_t * sec_count)2536 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2537 					uint32_t instance,
2538 					uint32_t *sec_count)
2539 {
2540 	uint32_t i;
2541 	uint32_t sec_cnt;
2542 
2543 	/* double bits error (multiple bits) error detection is not supported */
2544 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2545 		/* the SDMA_EDC_COUNTER register in each sdma instance
2546 		 * shares the same sed shift_mask
2547 		 * */
2548 		sec_cnt = (value &
2549 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2550 			sdma_v4_0_ras_fields[i].sec_count_shift;
2551 		if (sec_cnt) {
2552 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2553 				sdma_v4_0_ras_fields[i].name,
2554 				instance, sec_cnt);
2555 			*sec_count += sec_cnt;
2556 		}
2557 	}
2558 }
2559 
sdma_v4_0_query_ras_error_count(struct amdgpu_device * adev,uint32_t instance,void * ras_error_status)2560 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2561 			uint32_t instance, void *ras_error_status)
2562 {
2563 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2564 	uint32_t sec_count = 0;
2565 	uint32_t reg_value = 0;
2566 
2567 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2568 	/* double bit error is not supported */
2569 	if (reg_value)
2570 		sdma_v4_0_get_ras_error_count(reg_value,
2571 				instance, &sec_count);
2572 	/* err_data->ce_count should be initialized to 0
2573 	 * before calling into this function */
2574 	err_data->ce_count += sec_count;
2575 	/* double bit error is not supported
2576 	 * set ue count to 0 */
2577 	err_data->ue_count = 0;
2578 
2579 	return 0;
2580 };
2581 
2582 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2583 	.ras_late_init = amdgpu_sdma_ras_late_init,
2584 	.ras_fini = amdgpu_sdma_ras_fini,
2585 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2586 };
2587 
sdma_v4_0_set_ras_funcs(struct amdgpu_device * adev)2588 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2589 {
2590 	switch (adev->asic_type) {
2591 	case CHIP_VEGA20:
2592 	case CHIP_ARCTURUS:
2593 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2594 		break;
2595 	default:
2596 		break;
2597 	}
2598 }
2599 
2600 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2601 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2602 	.major = 4,
2603 	.minor = 0,
2604 	.rev = 0,
2605 	.funcs = &sdma_v4_0_ip_funcs,
2606 };
2607