1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2017 Intel Corporation
3 */
4
5 #include <stdalign.h>
6 #include <stdio.h>
7 #include <string.h>
8
9 #include <rte_common.h>
10 #include <rte_malloc.h>
11 #include <rte_log.h>
12
13 #include "rte_table_hash.h"
14 #include "rte_lru.h"
15
16 #include "table_log.h"
17
18 #define KEYS_PER_BUCKET 4
19
20 #ifdef RTE_TABLE_STATS_COLLECT
21
22 #define RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(table, val) \
23 table->stats.n_pkts_in += val
24 #define RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(table, val) \
25 table->stats.n_pkts_lookup_miss += val
26
27 #else
28
29 #define RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(table, val)
30 #define RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(table, val)
31
32 #endif
33
34 struct bucket {
35 union {
36 struct bucket *next;
37 uint64_t lru_list;
38 };
39 uint16_t sig[KEYS_PER_BUCKET];
40 uint32_t key_pos[KEYS_PER_BUCKET];
41 };
42
43 struct grinder {
44 struct bucket *bkt;
45 uint64_t sig;
46 uint64_t match;
47 uint64_t match_pos;
48 uint32_t key_index;
49 };
50
51 struct rte_table_hash {
52 struct rte_table_stats stats;
53
54 /* Input parameters */
55 uint32_t key_size;
56 uint32_t entry_size;
57 uint32_t n_keys;
58 uint32_t n_buckets;
59 rte_table_hash_op_hash f_hash;
60 uint64_t seed;
61 uint32_t key_offset;
62
63 /* Internal */
64 uint64_t bucket_mask;
65 uint32_t key_size_shl;
66 uint32_t data_size_shl;
67 uint32_t key_stack_tos;
68
69 /* Grinder */
70 struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX];
71
72 /* Tables */
73 uint64_t *key_mask;
74 struct bucket *buckets;
75 uint8_t *key_mem;
76 uint8_t *data_mem;
77 uint32_t *key_stack;
78
79 /* Table memory */
80 alignas(RTE_CACHE_LINE_SIZE) uint8_t memory[];
81 };
82
83 static int
keycmp(void * a,void * b,void * b_mask,uint32_t n_bytes)84 keycmp(void *a, void *b, void *b_mask, uint32_t n_bytes)
85 {
86 uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask;
87 uint32_t i;
88
89 for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
90 if (a64[i] != (b64[i] & b_mask64[i]))
91 return 1;
92
93 return 0;
94 }
95
96 static void
keycpy(void * dst,void * src,void * src_mask,uint32_t n_bytes)97 keycpy(void *dst, void *src, void *src_mask, uint32_t n_bytes)
98 {
99 uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask;
100 uint32_t i;
101
102 for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
103 dst64[i] = src64[i] & src_mask64[i];
104 }
105
106 static int
check_params_create(struct rte_table_hash_params * params)107 check_params_create(struct rte_table_hash_params *params)
108 {
109 /* name */
110 if (params->name == NULL) {
111 TABLE_LOG(ERR, "%s: name invalid value", __func__);
112 return -EINVAL;
113 }
114
115 /* key_size */
116 if ((params->key_size < sizeof(uint64_t)) ||
117 (!rte_is_power_of_2(params->key_size))) {
118 TABLE_LOG(ERR, "%s: key_size invalid value", __func__);
119 return -EINVAL;
120 }
121
122 /* n_keys */
123 if (params->n_keys == 0) {
124 TABLE_LOG(ERR, "%s: n_keys invalid value", __func__);
125 return -EINVAL;
126 }
127
128 /* n_buckets */
129 if ((params->n_buckets == 0) ||
130 (!rte_is_power_of_2(params->n_buckets))) {
131 TABLE_LOG(ERR, "%s: n_buckets invalid value", __func__);
132 return -EINVAL;
133 }
134
135 /* f_hash */
136 if (params->f_hash == NULL) {
137 TABLE_LOG(ERR, "%s: f_hash invalid value", __func__);
138 return -EINVAL;
139 }
140
141 return 0;
142 }
143
144 static void *
rte_table_hash_lru_create(void * params,int socket_id,uint32_t entry_size)145 rte_table_hash_lru_create(void *params, int socket_id, uint32_t entry_size)
146 {
147 struct rte_table_hash_params *p = params;
148 struct rte_table_hash *t;
149 uint64_t table_meta_sz, key_mask_sz, bucket_sz, key_sz, key_stack_sz;
150 uint64_t data_sz, total_size;
151 uint64_t key_mask_offset, bucket_offset, key_offset, key_stack_offset;
152 uint64_t data_offset;
153 uint32_t n_buckets, i;
154
155 /* Check input parameters */
156 if ((check_params_create(p) != 0) ||
157 (!rte_is_power_of_2(entry_size)) ||
158 ((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
159 (sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2))) {
160 return NULL;
161 }
162
163 /*
164 * Table dimensioning
165 *
166 * Objective: Pick the number of buckets (n_buckets) so that there a chance
167 * to store n_keys keys in the table.
168 *
169 * Note: Since the buckets do not get extended, it is not possible to
170 * guarantee that n_keys keys can be stored in the table at any time. In the
171 * worst case scenario when all the n_keys fall into the same bucket, only
172 * a maximum of KEYS_PER_BUCKET keys will be stored in the table. This case
173 * defeats the purpose of the hash table. It indicates unsuitable f_hash or
174 * n_keys to n_buckets ratio.
175 *
176 * MIN(n_buckets) = (n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET
177 */
178 n_buckets = rte_align32pow2(
179 (p->n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET);
180 n_buckets = RTE_MAX(n_buckets, p->n_buckets);
181
182 /* Memory allocation */
183 table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash));
184 key_mask_sz = RTE_CACHE_LINE_ROUNDUP(p->key_size);
185 bucket_sz = RTE_CACHE_LINE_ROUNDUP(n_buckets * sizeof(struct bucket));
186 key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size);
187 key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t));
188 data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size);
189 total_size = table_meta_sz + key_mask_sz + bucket_sz + key_sz +
190 key_stack_sz + data_sz;
191
192 if (total_size > SIZE_MAX) {
193 TABLE_LOG(ERR,
194 "%s: Cannot allocate %" PRIu64 " bytes for hash "
195 "table %s",
196 __func__, total_size, p->name);
197 return NULL;
198 }
199
200 t = rte_zmalloc_socket(p->name,
201 (size_t)total_size,
202 RTE_CACHE_LINE_SIZE,
203 socket_id);
204 if (t == NULL) {
205 TABLE_LOG(ERR,
206 "%s: Cannot allocate %" PRIu64 " bytes for hash "
207 "table %s",
208 __func__, total_size, p->name);
209 return NULL;
210 }
211 TABLE_LOG(INFO, "%s (%u-byte key): Hash table %s memory footprint"
212 " is %" PRIu64 " bytes",
213 __func__, p->key_size, p->name, total_size);
214
215 /* Memory initialization */
216 t->key_size = p->key_size;
217 t->entry_size = entry_size;
218 t->n_keys = p->n_keys;
219 t->n_buckets = n_buckets;
220 t->f_hash = p->f_hash;
221 t->seed = p->seed;
222 t->key_offset = p->key_offset;
223
224 /* Internal */
225 t->bucket_mask = t->n_buckets - 1;
226 t->key_size_shl = rte_ctz32(p->key_size);
227 t->data_size_shl = rte_ctz32(entry_size);
228
229 /* Tables */
230 key_mask_offset = 0;
231 bucket_offset = key_mask_offset + key_mask_sz;
232 key_offset = bucket_offset + bucket_sz;
233 key_stack_offset = key_offset + key_sz;
234 data_offset = key_stack_offset + key_stack_sz;
235
236 t->key_mask = (uint64_t *) &t->memory[key_mask_offset];
237 t->buckets = (struct bucket *) &t->memory[bucket_offset];
238 t->key_mem = &t->memory[key_offset];
239 t->key_stack = (uint32_t *) &t->memory[key_stack_offset];
240 t->data_mem = &t->memory[data_offset];
241
242 /* Key mask */
243 if (p->key_mask == NULL)
244 memset(t->key_mask, 0xFF, p->key_size);
245 else
246 memcpy(t->key_mask, p->key_mask, p->key_size);
247
248 /* Key stack */
249 for (i = 0; i < t->n_keys; i++)
250 t->key_stack[i] = t->n_keys - 1 - i;
251 t->key_stack_tos = t->n_keys;
252
253 /* LRU */
254 for (i = 0; i < t->n_buckets; i++) {
255 struct bucket *bkt = &t->buckets[i];
256
257 lru_init(bkt);
258 }
259
260 return t;
261 }
262
263 static int
rte_table_hash_lru_free(void * table)264 rte_table_hash_lru_free(void *table)
265 {
266 struct rte_table_hash *t = table;
267
268 /* Check input parameters */
269 if (t == NULL)
270 return -EINVAL;
271
272 rte_free(t);
273 return 0;
274 }
275
276 static int
rte_table_hash_lru_entry_add(void * table,void * key,void * entry,int * key_found,void ** entry_ptr)277 rte_table_hash_lru_entry_add(void *table, void *key, void *entry,
278 int *key_found, void **entry_ptr)
279 {
280 struct rte_table_hash *t = table;
281 struct bucket *bkt;
282 uint64_t sig;
283 uint32_t bkt_index, i;
284
285 sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
286 bkt_index = sig & t->bucket_mask;
287 bkt = &t->buckets[bkt_index];
288 sig = (sig >> 16) | 1LLU;
289
290 /* Key is present in the bucket */
291 for (i = 0; i < KEYS_PER_BUCKET; i++) {
292 uint64_t bkt_sig = (uint64_t) bkt->sig[i];
293 uint32_t bkt_key_index = bkt->key_pos[i];
294 uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
295 t->key_size_shl];
296
297 if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
298 t->key_size) == 0)) {
299 uint8_t *data = &t->data_mem[bkt_key_index <<
300 t->data_size_shl];
301
302 memcpy(data, entry, t->entry_size);
303 lru_update(bkt, i);
304 *key_found = 1;
305 *entry_ptr = (void *) data;
306 return 0;
307 }
308 }
309
310 /* Key is not present in the bucket */
311 for (i = 0; i < KEYS_PER_BUCKET; i++) {
312 uint64_t bkt_sig = (uint64_t) bkt->sig[i];
313
314 if (bkt_sig == 0) {
315 uint32_t bkt_key_index;
316 uint8_t *bkt_key, *data;
317
318 /* Allocate new key */
319 if (t->key_stack_tos == 0) {
320 /* No keys available */
321 return -ENOSPC;
322 }
323 bkt_key_index = t->key_stack[--t->key_stack_tos];
324
325 /* Install new key */
326 bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl];
327 data = &t->data_mem[bkt_key_index << t->data_size_shl];
328
329 bkt->sig[i] = (uint16_t) sig;
330 bkt->key_pos[i] = bkt_key_index;
331 keycpy(bkt_key, key, t->key_mask, t->key_size);
332 memcpy(data, entry, t->entry_size);
333 lru_update(bkt, i);
334
335 *key_found = 0;
336 *entry_ptr = (void *) data;
337 return 0;
338 }
339 }
340
341 /* Bucket full */
342 {
343 uint64_t pos = lru_pos(bkt);
344 uint32_t bkt_key_index = bkt->key_pos[pos];
345 uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
346 t->key_size_shl];
347 uint8_t *data = &t->data_mem[bkt_key_index << t->data_size_shl];
348
349 bkt->sig[pos] = (uint16_t) sig;
350 keycpy(bkt_key, key, t->key_mask, t->key_size);
351 memcpy(data, entry, t->entry_size);
352 lru_update(bkt, pos);
353
354 *key_found = 0;
355 *entry_ptr = (void *) data;
356 return 0;
357 }
358 }
359
360 static int
rte_table_hash_lru_entry_delete(void * table,void * key,int * key_found,void * entry)361 rte_table_hash_lru_entry_delete(void *table, void *key, int *key_found,
362 void *entry)
363 {
364 struct rte_table_hash *t = table;
365 struct bucket *bkt;
366 uint64_t sig;
367 uint32_t bkt_index, i;
368
369 sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
370 bkt_index = sig & t->bucket_mask;
371 bkt = &t->buckets[bkt_index];
372 sig = (sig >> 16) | 1LLU;
373
374 /* Key is present in the bucket */
375 for (i = 0; i < KEYS_PER_BUCKET; i++) {
376 uint64_t bkt_sig = (uint64_t) bkt->sig[i];
377 uint32_t bkt_key_index = bkt->key_pos[i];
378 uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
379 t->key_size_shl];
380
381 if ((sig == bkt_sig) &&
382 (keycmp(bkt_key, key, t->key_mask, t->key_size) == 0)) {
383 uint8_t *data = &t->data_mem[bkt_key_index <<
384 t->data_size_shl];
385
386 bkt->sig[i] = 0;
387 t->key_stack[t->key_stack_tos++] = bkt_key_index;
388 *key_found = 1;
389 if (entry)
390 memcpy(entry, data, t->entry_size);
391 return 0;
392 }
393 }
394
395 /* Key is not present in the bucket */
396 *key_found = 0;
397 return 0;
398 }
399
rte_table_hash_lru_lookup_unoptimized(void * table,struct rte_mbuf ** pkts,uint64_t pkts_mask,uint64_t * lookup_hit_mask,void ** entries)400 static int rte_table_hash_lru_lookup_unoptimized(
401 void *table,
402 struct rte_mbuf **pkts,
403 uint64_t pkts_mask,
404 uint64_t *lookup_hit_mask,
405 void **entries)
406 {
407 struct rte_table_hash *t = (struct rte_table_hash *) table;
408 uint64_t pkts_mask_out = 0;
409
410 __rte_unused uint32_t n_pkts_in = rte_popcount64(pkts_mask);
411 RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(t, n_pkts_in);
412
413 for ( ; pkts_mask; ) {
414 struct bucket *bkt;
415 struct rte_mbuf *pkt;
416 uint8_t *key;
417 uint64_t pkt_mask, sig;
418 uint32_t pkt_index, bkt_index, i;
419
420 pkt_index = rte_ctz64(pkts_mask);
421 pkt_mask = 1LLU << pkt_index;
422 pkts_mask &= ~pkt_mask;
423
424 pkt = pkts[pkt_index];
425 key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset);
426 sig = (uint64_t) t->f_hash(key, t->key_mask, t->key_size, t->seed);
427
428 bkt_index = sig & t->bucket_mask;
429 bkt = &t->buckets[bkt_index];
430 sig = (sig >> 16) | 1LLU;
431
432 /* Key is present in the bucket */
433 for (i = 0; i < KEYS_PER_BUCKET; i++) {
434 uint64_t bkt_sig = (uint64_t) bkt->sig[i];
435 uint32_t bkt_key_index = bkt->key_pos[i];
436 uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
437 t->key_size_shl];
438
439 if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
440 t->key_size) == 0)) {
441 uint8_t *data = &t->data_mem[bkt_key_index <<
442 t->data_size_shl];
443
444 lru_update(bkt, i);
445 pkts_mask_out |= pkt_mask;
446 entries[pkt_index] = (void *) data;
447 break;
448 }
449 }
450 }
451
452 *lookup_hit_mask = pkts_mask_out;
453 RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - rte_popcount64(pkts_mask_out));
454 return 0;
455 }
456
457 /*
458 * mask = match bitmask
459 * match = at least one match
460 * match_many = more than one match
461 * match_pos = position of first match
462 *
463 * ----------------------------------------
464 * mask match match_many match_pos
465 * ----------------------------------------
466 * 0000 0 0 00
467 * 0001 1 0 00
468 * 0010 1 0 01
469 * 0011 1 1 00
470 * ----------------------------------------
471 * 0100 1 0 10
472 * 0101 1 1 00
473 * 0110 1 1 01
474 * 0111 1 1 00
475 * ----------------------------------------
476 * 1000 1 0 11
477 * 1001 1 1 00
478 * 1010 1 1 01
479 * 1011 1 1 00
480 * ----------------------------------------
481 * 1100 1 1 10
482 * 1101 1 1 00
483 * 1110 1 1 01
484 * 1111 1 1 00
485 * ----------------------------------------
486 *
487 * match = 1111_1111_1111_1110
488 * match_many = 1111_1110_1110_1000
489 * match_pos = 0001_0010_0001_0011__0001_0010_0001_0000
490 *
491 * match = 0xFFFELLU
492 * match_many = 0xFEE8LLU
493 * match_pos = 0x12131210LLU
494 */
495
496 #define LUT_MATCH 0xFFFELLU
497 #define LUT_MATCH_MANY 0xFEE8LLU
498 #define LUT_MATCH_POS 0x12131210LLU
499
500 #define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos)\
501 { \
502 uint64_t bucket_sig[4], mask[4], mask_all; \
503 \
504 bucket_sig[0] = bucket->sig[0]; \
505 bucket_sig[1] = bucket->sig[1]; \
506 bucket_sig[2] = bucket->sig[2]; \
507 bucket_sig[3] = bucket->sig[3]; \
508 \
509 bucket_sig[0] ^= mbuf_sig; \
510 bucket_sig[1] ^= mbuf_sig; \
511 bucket_sig[2] ^= mbuf_sig; \
512 bucket_sig[3] ^= mbuf_sig; \
513 \
514 mask[0] = 0; \
515 mask[1] = 0; \
516 mask[2] = 0; \
517 mask[3] = 0; \
518 \
519 if (bucket_sig[0] == 0) \
520 mask[0] = 1; \
521 if (bucket_sig[1] == 0) \
522 mask[1] = 2; \
523 if (bucket_sig[2] == 0) \
524 mask[2] = 4; \
525 if (bucket_sig[3] == 0) \
526 mask[3] = 8; \
527 \
528 mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]); \
529 \
530 match = (LUT_MATCH >> mask_all) & 1; \
531 match_many = (LUT_MATCH_MANY >> mask_all) & 1; \
532 match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3; \
533 }
534
535 #define lookup_cmp_key(mbuf, key, match_key, f) \
536 { \
537 uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\
538 uint64_t *bkt_key = (uint64_t *) key; \
539 uint64_t *key_mask = f->key_mask; \
540 \
541 switch (f->key_size) { \
542 case 8: \
543 { \
544 uint64_t xor = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
545 match_key = 0; \
546 if (xor == 0) \
547 match_key = 1; \
548 } \
549 break; \
550 \
551 case 16: \
552 { \
553 uint64_t xor[2], or; \
554 \
555 xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
556 xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
557 or = xor[0] | xor[1]; \
558 match_key = 0; \
559 if (or == 0) \
560 match_key = 1; \
561 } \
562 break; \
563 \
564 case 32: \
565 { \
566 uint64_t xor[4], or; \
567 \
568 xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
569 xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
570 xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
571 xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
572 or = xor[0] | xor[1] | xor[2] | xor[3]; \
573 match_key = 0; \
574 if (or == 0) \
575 match_key = 1; \
576 } \
577 break; \
578 \
579 case 64: \
580 { \
581 uint64_t xor[8], or; \
582 \
583 xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
584 xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
585 xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
586 xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
587 xor[4] = (pkt_key[4] & key_mask[4]) ^ bkt_key[4]; \
588 xor[5] = (pkt_key[5] & key_mask[5]) ^ bkt_key[5]; \
589 xor[6] = (pkt_key[6] & key_mask[6]) ^ bkt_key[6]; \
590 xor[7] = (pkt_key[7] & key_mask[7]) ^ bkt_key[7]; \
591 or = xor[0] | xor[1] | xor[2] | xor[3] | \
592 xor[4] | xor[5] | xor[6] | xor[7]; \
593 match_key = 0; \
594 if (or == 0) \
595 match_key = 1; \
596 } \
597 break; \
598 \
599 default: \
600 match_key = 0; \
601 if (keycmp(bkt_key, pkt_key, key_mask, f->key_size) == 0) \
602 match_key = 1; \
603 } \
604 }
605
606 #define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index)\
607 { \
608 uint64_t pkt00_mask, pkt01_mask; \
609 struct rte_mbuf *mbuf00, *mbuf01; \
610 uint32_t key_offset = t->key_offset; \
611 \
612 pkt00_index = rte_ctz64(pkts_mask); \
613 pkt00_mask = 1LLU << pkt00_index; \
614 pkts_mask &= ~pkt00_mask; \
615 mbuf00 = pkts[pkt00_index]; \
616 \
617 pkt01_index = rte_ctz64(pkts_mask); \
618 pkt01_mask = 1LLU << pkt01_index; \
619 pkts_mask &= ~pkt01_mask; \
620 mbuf01 = pkts[pkt01_index]; \
621 \
622 rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
623 rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
624 }
625
626 #define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \
627 pkt01_index) \
628 { \
629 uint64_t pkt00_mask, pkt01_mask; \
630 struct rte_mbuf *mbuf00, *mbuf01; \
631 uint32_t key_offset = t->key_offset; \
632 \
633 pkt00_index = rte_ctz64(pkts_mask); \
634 pkt00_mask = 1LLU << pkt00_index; \
635 pkts_mask &= ~pkt00_mask; \
636 mbuf00 = pkts[pkt00_index]; \
637 \
638 pkt01_index = rte_ctz64(pkts_mask); \
639 if (pkts_mask == 0) \
640 pkt01_index = pkt00_index; \
641 \
642 pkt01_mask = 1LLU << pkt01_index; \
643 pkts_mask &= ~pkt01_mask; \
644 mbuf01 = pkts[pkt01_index]; \
645 \
646 rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
647 rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
648 }
649
650 #define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index)\
651 { \
652 struct grinder *g10, *g11; \
653 uint64_t sig10, sig11, bkt10_index, bkt11_index; \
654 struct rte_mbuf *mbuf10, *mbuf11; \
655 struct bucket *bkt10, *bkt11, *buckets = t->buckets; \
656 uint8_t *key10, *key11; \
657 uint64_t bucket_mask = t->bucket_mask; \
658 rte_table_hash_op_hash f_hash = t->f_hash; \
659 uint64_t seed = t->seed; \
660 uint32_t key_size = t->key_size; \
661 uint32_t key_offset = t->key_offset; \
662 \
663 mbuf10 = pkts[pkt10_index]; \
664 key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset);\
665 sig10 = (uint64_t) f_hash(key10, t->key_mask, key_size, seed);\
666 bkt10_index = sig10 & bucket_mask; \
667 bkt10 = &buckets[bkt10_index]; \
668 \
669 mbuf11 = pkts[pkt11_index]; \
670 key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset);\
671 sig11 = (uint64_t) f_hash(key11, t->key_mask, key_size, seed);\
672 bkt11_index = sig11 & bucket_mask; \
673 bkt11 = &buckets[bkt11_index]; \
674 \
675 rte_prefetch0(bkt10); \
676 rte_prefetch0(bkt11); \
677 \
678 g10 = &g[pkt10_index]; \
679 g10->sig = sig10; \
680 g10->bkt = bkt10; \
681 \
682 g11 = &g[pkt11_index]; \
683 g11->sig = sig11; \
684 g11->bkt = bkt11; \
685 }
686
687 #define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\
688 { \
689 struct grinder *g20, *g21; \
690 uint64_t sig20, sig21; \
691 struct bucket *bkt20, *bkt21; \
692 uint8_t *key20, *key21, *key_mem = t->key_mem; \
693 uint64_t match20, match21, match_many20, match_many21; \
694 uint64_t match_pos20, match_pos21; \
695 uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\
696 \
697 g20 = &g[pkt20_index]; \
698 sig20 = g20->sig; \
699 bkt20 = g20->bkt; \
700 sig20 = (sig20 >> 16) | 1LLU; \
701 lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\
702 match20 <<= pkt20_index; \
703 match_many20 <<= pkt20_index; \
704 key20_index = bkt20->key_pos[match_pos20]; \
705 key20 = &key_mem[key20_index << key_size_shl]; \
706 \
707 g21 = &g[pkt21_index]; \
708 sig21 = g21->sig; \
709 bkt21 = g21->bkt; \
710 sig21 = (sig21 >> 16) | 1LLU; \
711 lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\
712 match21 <<= pkt21_index; \
713 match_many21 <<= pkt21_index; \
714 key21_index = bkt21->key_pos[match_pos21]; \
715 key21 = &key_mem[key21_index << key_size_shl]; \
716 \
717 rte_prefetch0(key20); \
718 rte_prefetch0(key21); \
719 \
720 pkts_mask_match_many |= match_many20 | match_many21; \
721 \
722 g20->match = match20; \
723 g20->match_pos = match_pos20; \
724 g20->key_index = key20_index; \
725 \
726 g21->match = match21; \
727 g21->match_pos = match_pos21; \
728 g21->key_index = key21_index; \
729 }
730
731 #define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \
732 entries) \
733 { \
734 struct grinder *g30, *g31; \
735 struct rte_mbuf *mbuf30, *mbuf31; \
736 struct bucket *bkt30, *bkt31; \
737 uint8_t *key30, *key31, *key_mem = t->key_mem; \
738 uint8_t *data30, *data31, *data_mem = t->data_mem; \
739 uint64_t match30, match31, match_pos30, match_pos31; \
740 uint64_t match_key30, match_key31, match_keys; \
741 uint32_t key30_index, key31_index; \
742 uint32_t key_size_shl = t->key_size_shl; \
743 uint32_t data_size_shl = t->data_size_shl; \
744 \
745 mbuf30 = pkts[pkt30_index]; \
746 g30 = &g[pkt30_index]; \
747 bkt30 = g30->bkt; \
748 match30 = g30->match; \
749 match_pos30 = g30->match_pos; \
750 key30_index = g30->key_index; \
751 key30 = &key_mem[key30_index << key_size_shl]; \
752 lookup_cmp_key(mbuf30, key30, match_key30, t); \
753 match_key30 <<= pkt30_index; \
754 match_key30 &= match30; \
755 data30 = &data_mem[key30_index << data_size_shl]; \
756 entries[pkt30_index] = data30; \
757 \
758 mbuf31 = pkts[pkt31_index]; \
759 g31 = &g[pkt31_index]; \
760 bkt31 = g31->bkt; \
761 match31 = g31->match; \
762 match_pos31 = g31->match_pos; \
763 key31_index = g31->key_index; \
764 key31 = &key_mem[key31_index << key_size_shl]; \
765 lookup_cmp_key(mbuf31, key31, match_key31, t); \
766 match_key31 <<= pkt31_index; \
767 match_key31 &= match31; \
768 data31 = &data_mem[key31_index << data_size_shl]; \
769 entries[pkt31_index] = data31; \
770 \
771 rte_prefetch0(data30); \
772 rte_prefetch0(data31); \
773 \
774 match_keys = match_key30 | match_key31; \
775 pkts_mask_out |= match_keys; \
776 \
777 if (match_key30 == 0) \
778 match_pos30 = 4; \
779 lru_update(bkt30, match_pos30); \
780 \
781 if (match_key31 == 0) \
782 match_pos31 = 4; \
783 lru_update(bkt31, match_pos31); \
784 }
785
786 /*
787 * The lookup function implements a 4-stage pipeline, with each stage processing
788 * two different packets. The purpose of pipelined implementation is to hide the
789 * latency of prefetching the data structures and loosen the data dependency
790 * between instructions.
791 *
792 * p00 _______ p10 _______ p20 _______ p30 _______
793 * ----->| |----->| |----->| |----->| |----->
794 * | 0 | | 1 | | 2 | | 3 |
795 * ----->|_______|----->|_______|----->|_______|----->|_______|----->
796 * p01 p11 p21 p31
797 *
798 * The naming convention is:
799 * pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1
800 */
rte_table_hash_lru_lookup(void * table,struct rte_mbuf ** pkts,uint64_t pkts_mask,uint64_t * lookup_hit_mask,void ** entries)801 static int rte_table_hash_lru_lookup(
802 void *table,
803 struct rte_mbuf **pkts,
804 uint64_t pkts_mask,
805 uint64_t *lookup_hit_mask,
806 void **entries)
807 {
808 struct rte_table_hash *t = (struct rte_table_hash *) table;
809 struct grinder *g = t->grinders;
810 uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
811 uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
812 uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
813 int status = 0;
814
815 __rte_unused uint32_t n_pkts_in = rte_popcount64(pkts_mask);
816 RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(t, n_pkts_in);
817
818 /* Cannot run the pipeline with less than 7 packets */
819 if (rte_popcount64(pkts_mask) < 7)
820 return rte_table_hash_lru_lookup_unoptimized(table, pkts,
821 pkts_mask, lookup_hit_mask, entries);
822
823 /* Pipeline stage 0 */
824 lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
825
826 /* Pipeline feed */
827 pkt10_index = pkt00_index;
828 pkt11_index = pkt01_index;
829
830 /* Pipeline stage 0 */
831 lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
832
833 /* Pipeline stage 1 */
834 lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
835
836 /* Pipeline feed */
837 pkt20_index = pkt10_index;
838 pkt21_index = pkt11_index;
839 pkt10_index = pkt00_index;
840 pkt11_index = pkt01_index;
841
842 /* Pipeline stage 0 */
843 lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
844
845 /* Pipeline stage 1 */
846 lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
847
848 /* Pipeline stage 2 */
849 lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
850
851 /*
852 * Pipeline run
853 *
854 */
855 for ( ; pkts_mask; ) {
856 /* Pipeline feed */
857 pkt30_index = pkt20_index;
858 pkt31_index = pkt21_index;
859 pkt20_index = pkt10_index;
860 pkt21_index = pkt11_index;
861 pkt10_index = pkt00_index;
862 pkt11_index = pkt01_index;
863
864 /* Pipeline stage 0 */
865 lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
866 pkt00_index, pkt01_index);
867
868 /* Pipeline stage 1 */
869 lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
870
871 /* Pipeline stage 2 */
872 lookup2_stage2(t, g, pkt20_index, pkt21_index,
873 pkts_mask_match_many);
874
875 /* Pipeline stage 3 */
876 lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
877 pkts_mask_out, entries);
878 }
879
880 /* Pipeline feed */
881 pkt30_index = pkt20_index;
882 pkt31_index = pkt21_index;
883 pkt20_index = pkt10_index;
884 pkt21_index = pkt11_index;
885 pkt10_index = pkt00_index;
886 pkt11_index = pkt01_index;
887
888 /* Pipeline stage 1 */
889 lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
890
891 /* Pipeline stage 2 */
892 lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
893
894 /* Pipeline stage 3 */
895 lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
896 entries);
897
898 /* Pipeline feed */
899 pkt30_index = pkt20_index;
900 pkt31_index = pkt21_index;
901 pkt20_index = pkt10_index;
902 pkt21_index = pkt11_index;
903
904 /* Pipeline stage 2 */
905 lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
906
907 /* Pipeline stage 3 */
908 lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
909 entries);
910
911 /* Pipeline feed */
912 pkt30_index = pkt20_index;
913 pkt31_index = pkt21_index;
914
915 /* Pipeline stage 3 */
916 lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
917 entries);
918
919 /* Slow path */
920 pkts_mask_match_many &= ~pkts_mask_out;
921 if (pkts_mask_match_many) {
922 uint64_t pkts_mask_out_slow = 0;
923
924 status = rte_table_hash_lru_lookup_unoptimized(table, pkts,
925 pkts_mask_match_many, &pkts_mask_out_slow, entries);
926 pkts_mask_out |= pkts_mask_out_slow;
927 }
928
929 *lookup_hit_mask = pkts_mask_out;
930 RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - rte_popcount64(pkts_mask_out));
931 return status;
932 }
933
934 static int
rte_table_hash_lru_stats_read(void * table,struct rte_table_stats * stats,int clear)935 rte_table_hash_lru_stats_read(void *table, struct rte_table_stats *stats, int clear)
936 {
937 struct rte_table_hash *t = table;
938
939 if (stats != NULL)
940 memcpy(stats, &t->stats, sizeof(t->stats));
941
942 if (clear)
943 memset(&t->stats, 0, sizeof(t->stats));
944
945 return 0;
946 }
947
948 struct rte_table_ops rte_table_hash_lru_ops = {
949 .f_create = rte_table_hash_lru_create,
950 .f_free = rte_table_hash_lru_free,
951 .f_add = rte_table_hash_lru_entry_add,
952 .f_delete = rte_table_hash_lru_entry_delete,
953 .f_add_bulk = NULL,
954 .f_delete_bulk = NULL,
955 .f_lookup = rte_table_hash_lru_lookup,
956 .f_stats = rte_table_hash_lru_stats_read,
957 };
958