1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #ifndef _RTE_ETHER_H_ 6 #define _RTE_ETHER_H_ 7 8 /** 9 * @file 10 * 11 * Ethernet Helpers in RTE 12 */ 13 14 #include <assert.h> 15 #include <stdalign.h> 16 #include <stdint.h> 17 #include <stdio.h> 18 19 #include <rte_random.h> 20 #include <rte_mbuf.h> 21 #include <rte_byteorder.h> 22 23 #ifdef __cplusplus 24 extern "C" { 25 #endif 26 27 #define RTE_ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */ 28 #define RTE_ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */ 29 #define RTE_ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */ 30 #define RTE_ETHER_HDR_LEN \ 31 (RTE_ETHER_ADDR_LEN * 2 + \ 32 RTE_ETHER_TYPE_LEN) /**< Length of Ethernet header. */ 33 #define RTE_ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */ 34 #define RTE_ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */ 35 #define RTE_ETHER_MTU \ 36 (RTE_ETHER_MAX_LEN - RTE_ETHER_HDR_LEN - \ 37 RTE_ETHER_CRC_LEN) /**< Ethernet MTU. */ 38 39 #define RTE_VLAN_HLEN 4 /**< VLAN (IEEE 802.1Q) header length. */ 40 /** Maximum VLAN frame length (excluding QinQ), including CRC. */ 41 #define RTE_ETHER_MAX_VLAN_FRAME_LEN \ 42 (RTE_ETHER_MAX_LEN + RTE_VLAN_HLEN) 43 44 #define RTE_ETHER_MAX_JUMBO_FRAME_LEN \ 45 0x3F00 /**< Maximum Jumbo frame length, including CRC. */ 46 47 #define RTE_ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */ 48 49 #define RTE_ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */ 50 51 /* VLAN header fields */ 52 #define RTE_VLAN_DEI_SHIFT 12 53 #define RTE_VLAN_PRI_SHIFT 13 54 #define RTE_VLAN_PRI_MASK 0xe000 /* Priority Code Point */ 55 #define RTE_VLAN_DEI_MASK 0x1000 /* Drop Eligible Indicator */ 56 #define RTE_VLAN_ID_MASK 0x0fff /* VLAN Identifier */ 57 58 #define RTE_VLAN_TCI_ID(vlan_tci) ((vlan_tci) & RTE_VLAN_ID_MASK) 59 #define RTE_VLAN_TCI_PRI(vlan_tci) (((vlan_tci) & RTE_VLAN_PRI_MASK) >> RTE_VLAN_PRI_SHIFT) 60 #define RTE_VLAN_TCI_DEI(vlan_tci) (((vlan_tci) & RTE_VLAN_DEI_MASK) >> RTE_VLAN_DEI_SHIFT) 61 #define RTE_VLAN_TCI_MAKE(id, pri, dei) ((id) | \ 62 ((pri) << RTE_VLAN_PRI_SHIFT) | \ 63 ((dei) << RTE_VLAN_DEI_SHIFT)) 64 65 /** 66 * Ethernet address: 67 * A universally administered address is uniquely assigned to a device by its 68 * manufacturer. The first three octets (in transmission order) contain the 69 * Organizationally Unique Identifier (OUI). The following three (MAC-48 and 70 * EUI-48) octets are assigned by that organization with the only constraint 71 * of uniqueness. 72 * A locally administered address is assigned to a device by a network 73 * administrator and does not contain OUIs. 74 * See http://standards.ieee.org/regauth/groupmac/tutorial.html 75 */ 76 struct __rte_aligned(2) rte_ether_addr { 77 uint8_t addr_bytes[RTE_ETHER_ADDR_LEN]; /**< Addr bytes in tx order */ 78 }; 79 80 static_assert(sizeof(struct rte_ether_addr) == 6, 81 "sizeof(struct rte_ether_addr) == 6"); 82 static_assert(alignof(struct rte_ether_addr) == 2, 83 "alignof(struct rte_ether_addr) == 2"); 84 85 #define RTE_ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */ 86 #define RTE_ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */ 87 88 /** 89 * Check if two Ethernet addresses are the same. 90 * 91 * @param ea1 92 * A pointer to the first ether_addr structure containing 93 * the ethernet address. 94 * @param ea2 95 * A pointer to the second ether_addr structure containing 96 * the ethernet address. 97 * 98 * @return 99 * True (1) if the given two ethernet address are the same; 100 * False (0) otherwise. 101 */ 102 static inline int rte_is_same_ether_addr(const struct rte_ether_addr *ea1, 103 const struct rte_ether_addr *ea2) 104 { 105 const uint16_t *w1 = (const uint16_t *)ea1; 106 const uint16_t *w2 = (const uint16_t *)ea2; 107 108 return ((w1[0] ^ w2[0]) | (w1[1] ^ w2[1]) | (w1[2] ^ w2[2])) == 0; 109 } 110 111 /** 112 * Check if an Ethernet address is filled with zeros. 113 * 114 * @param ea 115 * A pointer to a ether_addr structure containing the ethernet address 116 * to check. 117 * @return 118 * True (1) if the given ethernet address is filled with zeros; 119 * false (0) otherwise. 120 */ 121 static inline int rte_is_zero_ether_addr(const struct rte_ether_addr *ea) 122 { 123 const uint16_t *w = (const uint16_t *)ea; 124 125 return (w[0] | w[1] | w[2]) == 0; 126 } 127 128 /** 129 * Check if an Ethernet address is a unicast address. 130 * 131 * @param ea 132 * A pointer to a ether_addr structure containing the ethernet address 133 * to check. 134 * @return 135 * True (1) if the given ethernet address is a unicast address; 136 * false (0) otherwise. 137 */ 138 static inline int rte_is_unicast_ether_addr(const struct rte_ether_addr *ea) 139 { 140 return (ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR) == 0; 141 } 142 143 /** 144 * Check if an Ethernet address is a multicast address. 145 * 146 * @param ea 147 * A pointer to a ether_addr structure containing the ethernet address 148 * to check. 149 * @return 150 * True (1) if the given ethernet address is a multicast address; 151 * false (0) otherwise. 152 */ 153 static inline int rte_is_multicast_ether_addr(const struct rte_ether_addr *ea) 154 { 155 return ea->addr_bytes[0] & RTE_ETHER_GROUP_ADDR; 156 } 157 158 /** 159 * Check if an Ethernet address is a broadcast address. 160 * 161 * @param ea 162 * A pointer to a ether_addr structure containing the ethernet address 163 * to check. 164 * @return 165 * True (1) if the given ethernet address is a broadcast address; 166 * false (0) otherwise. 167 */ 168 static inline int rte_is_broadcast_ether_addr(const struct rte_ether_addr *ea) 169 { 170 const uint16_t *w = (const uint16_t *)ea; 171 172 return (w[0] & w[1] & w[2]) == 0xFFFF; 173 } 174 175 /** 176 * Check if an Ethernet address is a universally assigned address. 177 * 178 * @param ea 179 * A pointer to a ether_addr structure containing the ethernet address 180 * to check. 181 * @return 182 * True (1) if the given ethernet address is a universally assigned address; 183 * false (0) otherwise. 184 */ 185 static inline int rte_is_universal_ether_addr(const struct rte_ether_addr *ea) 186 { 187 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) == 0; 188 } 189 190 /** 191 * Check if an Ethernet address is a locally assigned address. 192 * 193 * @param ea 194 * A pointer to a ether_addr structure containing the ethernet address 195 * to check. 196 * @return 197 * True (1) if the given ethernet address is a locally assigned address; 198 * false (0) otherwise. 199 */ 200 static inline int rte_is_local_admin_ether_addr(const struct rte_ether_addr *ea) 201 { 202 return (ea->addr_bytes[0] & RTE_ETHER_LOCAL_ADMIN_ADDR) != 0; 203 } 204 205 /** 206 * Check if an Ethernet address is a valid address. Checks that the address is a 207 * unicast address and is not filled with zeros. 208 * 209 * @param ea 210 * A pointer to a ether_addr structure containing the ethernet address 211 * to check. 212 * @return 213 * True (1) if the given ethernet address is valid; 214 * false (0) otherwise. 215 */ 216 static inline int rte_is_valid_assigned_ether_addr(const struct rte_ether_addr *ea) 217 { 218 return rte_is_unicast_ether_addr(ea) && (!rte_is_zero_ether_addr(ea)); 219 } 220 221 /** 222 * Generate a random Ethernet address that is locally administered 223 * and not multicast. 224 * @param addr 225 * A pointer to Ethernet address. 226 */ 227 void 228 rte_eth_random_addr(uint8_t *addr); 229 230 /** 231 * Copy an Ethernet address. 232 * 233 * @param ea_from 234 * A pointer to a ether_addr structure holding the Ethernet address to copy. 235 * @param ea_to 236 * A pointer to a ether_addr structure where to copy the Ethernet address. 237 */ 238 static inline void 239 rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, 240 struct rte_ether_addr *__restrict ea_to) 241 { 242 *ea_to = *ea_from; 243 } 244 245 /** 246 * Macro to print six-bytes of MAC address in hex format 247 */ 248 #define RTE_ETHER_ADDR_PRT_FMT "%02X:%02X:%02X:%02X:%02X:%02X" 249 /** 250 * Macro to extract the MAC address bytes from rte_ether_addr struct 251 */ 252 #define RTE_ETHER_ADDR_BYTES(mac_addrs) ((mac_addrs)->addr_bytes[0]), \ 253 ((mac_addrs)->addr_bytes[1]), \ 254 ((mac_addrs)->addr_bytes[2]), \ 255 ((mac_addrs)->addr_bytes[3]), \ 256 ((mac_addrs)->addr_bytes[4]), \ 257 ((mac_addrs)->addr_bytes[5]) 258 259 #define RTE_ETHER_ADDR_FMT_SIZE 18 260 /** 261 * Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx. 262 * 263 * @param buf 264 * A pointer to buffer contains the formatted MAC address. 265 * @param size 266 * The format buffer size. 267 * @param eth_addr 268 * A pointer to a ether_addr structure. 269 */ 270 void 271 rte_ether_format_addr(char *buf, uint16_t size, 272 const struct rte_ether_addr *eth_addr); 273 /** 274 * Convert string with Ethernet address to an ether_addr. 275 * 276 * @param str 277 * A pointer to buffer contains the formatted MAC address. 278 * Accepts either byte or word format separated by colon, 279 * hyphen or period. 280 * 281 * The example formats are: 282 * XX:XX:XX:XX:XX:XX - Canonical form 283 * XX-XX-XX-XX-XX-XX - Windows and IEEE 802 284 * XXXX.XXXX.XXXX - Cisco 285 * where XX is a hex digit: 0-9, a-f, or A-F. 286 * In the byte format, leading zeros are optional. 287 * @param eth_addr 288 * A pointer to a ether_addr structure. 289 * @return 290 * 0 if successful 291 * -1 and sets rte_errno if invalid string 292 */ 293 int 294 rte_ether_unformat_addr(const char *str, struct rte_ether_addr *eth_addr); 295 296 /** 297 * Ethernet header: Contains the destination address, source address 298 * and frame type. 299 */ 300 struct rte_ether_hdr { 301 struct rte_ether_addr dst_addr; /**< Destination address. */ 302 struct rte_ether_addr src_addr; /**< Source address. */ 303 rte_be16_t ether_type; /**< Frame type. */ 304 }; 305 306 static_assert(sizeof(struct rte_ether_hdr) == 14, 307 "sizeof(struct rte_ether_hdr) == 14"); 308 static_assert(alignof(struct rte_ether_hdr) == 2, 309 "alignof(struct rte_ether_hdr) == 2"); 310 311 /** 312 * Ethernet VLAN Header. 313 * Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type 314 * of the encapsulated frame. 315 */ 316 struct rte_vlan_hdr { 317 rte_be16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */ 318 rte_be16_t eth_proto; /**< Ethernet type of encapsulated frame. */ 319 }; 320 321 static_assert(sizeof(struct rte_vlan_hdr) == 4, 322 "sizeof(struct rte_vlan_hdr) == 4"); 323 static_assert(alignof(struct rte_vlan_hdr) == 2, 324 "alignof(struct rte_vlan_hdr) == 2"); 325 326 327 328 /* Ethernet frame types */ 329 #define RTE_ETHER_TYPE_IPV4 0x0800 /**< IPv4 Protocol. */ 330 #define RTE_ETHER_TYPE_IPV6 0x86DD /**< IPv6 Protocol. */ 331 #define RTE_ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */ 332 #define RTE_ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */ 333 #define RTE_ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */ 334 #define RTE_ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */ 335 #define RTE_ETHER_TYPE_QINQ1 0x9100 /**< Deprecated QinQ VLAN. */ 336 #define RTE_ETHER_TYPE_QINQ2 0x9200 /**< Deprecated QinQ VLAN. */ 337 #define RTE_ETHER_TYPE_QINQ3 0x9300 /**< Deprecated QinQ VLAN. */ 338 #define RTE_ETHER_TYPE_PPPOE_DISCOVERY 0x8863 /**< PPPoE Discovery Stage. */ 339 #define RTE_ETHER_TYPE_PPPOE_SESSION 0x8864 /**< PPPoE Session Stage. */ 340 #define RTE_ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */ 341 #define RTE_ETHER_TYPE_1588 0x88F7 342 /**< IEEE 802.1AS 1588 Precise Time Protocol. */ 343 #define RTE_ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */ 344 #define RTE_ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */ 345 #define RTE_ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */ 346 #define RTE_ETHER_TYPE_MPLS 0x8847 /**< MPLS ethertype. */ 347 #define RTE_ETHER_TYPE_MPLSM 0x8848 /**< MPLS multicast ethertype. */ 348 #define RTE_ETHER_TYPE_ECPRI 0xAEFE /**< eCPRI ethertype (.1Q supported). */ 349 350 /** 351 * Extract VLAN tag information into mbuf 352 * 353 * Software version of VLAN stripping 354 * 355 * @param m 356 * The packet mbuf. 357 * @return 358 * - 0: Success 359 * - 1: not a vlan packet 360 */ 361 static inline int rte_vlan_strip(struct rte_mbuf *m) 362 { 363 struct rte_ether_hdr *eh 364 = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 365 struct rte_vlan_hdr *vh; 366 367 if (eh->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) 368 return -1; 369 370 vh = (struct rte_vlan_hdr *)(eh + 1); 371 m->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; 372 m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci); 373 374 /* Copy ether header over rather than moving whole packet */ 375 memmove(rte_pktmbuf_adj(m, sizeof(struct rte_vlan_hdr)), 376 eh, 2 * RTE_ETHER_ADDR_LEN); 377 378 return 0; 379 } 380 381 /** 382 * Insert VLAN tag into mbuf. 383 * 384 * Software version of VLAN unstripping 385 * 386 * @param m 387 * The packet mbuf. 388 * @return 389 * - 0: On success 390 * -EPERM: mbuf is shared overwriting would be unsafe 391 * -ENOSPC: not enough headroom in mbuf 392 */ 393 static inline int rte_vlan_insert(struct rte_mbuf **m) 394 { 395 struct rte_ether_hdr *oh, *nh; 396 struct rte_vlan_hdr *vh; 397 398 /* Can't insert header if mbuf is shared */ 399 if (!RTE_MBUF_DIRECT(*m) || rte_mbuf_refcnt_read(*m) > 1) 400 return -EINVAL; 401 402 /* Can't insert header if the first segment is too short */ 403 if (rte_pktmbuf_data_len(*m) < 2 * RTE_ETHER_ADDR_LEN) 404 return -EINVAL; 405 406 oh = rte_pktmbuf_mtod(*m, struct rte_ether_hdr *); 407 nh = (struct rte_ether_hdr *)(void *) 408 rte_pktmbuf_prepend(*m, sizeof(struct rte_vlan_hdr)); 409 if (nh == NULL) 410 return -ENOSPC; 411 412 memmove(nh, oh, 2 * RTE_ETHER_ADDR_LEN); 413 nh->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN); 414 415 vh = (struct rte_vlan_hdr *) (nh + 1); 416 vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci); 417 418 (*m)->ol_flags &= ~(RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_TX_VLAN); 419 420 if ((*m)->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) 421 (*m)->outer_l2_len += sizeof(struct rte_vlan_hdr); 422 else 423 (*m)->l2_len += sizeof(struct rte_vlan_hdr); 424 425 return 0; 426 } 427 428 #ifdef __cplusplus 429 } 430 #endif 431 432 #endif /* _RTE_ETHER_H_ */ 433